THE ISOMORPHISM PROBLEM FOR RATIONAL GROUP ALGEBRAS OF FINITE METACYCLIC NILPOTENT GROUPS

ÀNGEL GARCÍA-BLÁZQUEZ AND ÁNGEL DEL RÍO
Departamento de Matemáticas, Universidad de Murcia, 30100, Murcia, Spain

Abstract

We prove that if G and H are finite metacyclic groups with isomorphic rational group algebras and one of them is nilpotent, then G and H are isomorphic.

1. Introduction

The following general problem has been largely studied since the seminal work of Graham Higman [Hig40a, Hig40b] and the influential paper of Richard Brauer [Bra51]:

The Isomorphism Problem for Group Rings: Given R a commutative ring and G and H groups, does $R G$ and $R H$ being isomorphic as R-algebras implies that G and H are isomorphic as groups?
Suppose that G and H are finite abelian groups. Higman proved that if $\mathbb{Z} G \cong \mathbb{Z} H$, then $G \cong H$. This fails if $R=\mathbb{C}$ because if G and H are finite abelian group with the same order, then $\mathbb{C} G \cong \mathbb{C} H$. However, by a theorem of Perlis and Walker $\mathbb{Q} G \cong \mathbb{Q} H$ implies $G \cong H$ [PW50]. If now G and H are finite metabelian groups, then still we have that $\mathbb{Z} G \cong \mathbb{Z} H$ implies $G \cong H$ [Whi68]. However, Dade showed two finite metabelian groups G and H such that $k G$ and $k H$ are isomorphic as algebras for every field k [Dad71].

Observe that if $\mathbb{Z} G \cong \mathbb{Z} H$, then $R G \cong R H$ for every ring R. This explain why the positive results for the case where $R=\mathbb{Z}$ are more likely than for any other ring. Likewise positive results are more likely in a prime field than in any other field with the same characteristic. For a while it was expected that the Isomorphism Problem for Integral Group Ring may have a general positive answer at least for finite groups. However Hertweck showed two non-isomorphic solvable groups G and H such that $\mathbb{Z} G \cong \mathbb{Z} H$ and hence $R G$ and $R H$ are isomorphic for every ring R [Her01].

The aim of this paper is to contribute to the Isomorphism Problem for Group Rings with rational coefficients. The contrast between Perlis-Walker Theorem and the example of Dade suggests considering the class of metacyclic groups. The main result of the paper is the following, where π_{G} denotes the set of primes p for which G has a normal Hall p^{\prime}-subgroup:
Theorem A. Let G and H be two metacyclic finite groups such that $\mathbb{Q} G \cong \mathbb{Q} H$. Then $\pi_{G}=\pi_{H}$ and the Hall π_{G}-subgroups of G and H are isomorphic.

As a direct consequence of Theorem A we obtain the following:
Corollary B. If G and H are finite metacyclic groups with $\mathbb{Q} G \cong \mathbb{Q} H$ and G is nilpotent, then $G \cong H$.
In Section 2 we introduce the main notation of the paper and review some known results. In Section 3 we prove Theorem A for p-groups, and in Section 4 we prove the whole theorem.

Observe that in Theorem A and Corollary B it is not sufficient to assume that only one of the two groups G or H is metacyclic because the following groups

$$
\left\langle a, b \mid a^{p^{2}}=b^{p}=1, a^{b}=a^{1+p}\right\rangle, \quad\left\langle a, b \mid a^{p}=b^{p}=[b, a]^{p}=[a,[b, a]]=[b,[b, a]]=1\right\rangle,
$$

[^0]have isomorphic rational group algebras while the first group is metacyclic and the second one is not.

2. Notation and preliminaries

2.1. Number theory

We adopt the convention that $0 \notin \mathbb{N}$ and prime means prime in \mathbb{N}. Let $n \in \mathbb{N}$. Then ζ_{n} denotes a complex primitive n-th root of unity and $\pi(n)$ denotes the set of prime divisors of n. If p is prime, then n_{p} denotes the greatest power of p dividing n and $v_{p}(n)=\log _{p}\left(n_{p}\right)$. Moreover $v_{p}(0)=\infty$. If π is a set of primes, then $n_{\pi}=\prod_{p \in \pi} n_{p}$. If $m \in \mathbb{Z}$ with $\operatorname{gcd}(m, n)=1$, then $o_{n}(m)$ denotes the multiplicative order of m modulo n, i.e. the smallest positive integer k with $m^{k} \equiv 1 \bmod n$.

If A is a finite set, then $|A|$ denotes the cardinality of A and $\pi(A)=\pi(|A|)$.
If $x \in \mathbb{Z} \backslash\{0\}$, then we denote:

$$
\mathcal{S}(x \mid n)=\sum_{i=0}^{n-1} x^{i}= \begin{cases}n, & \text { if } x=1 \\ \frac{x^{n}-1}{x-1}, & \text { otherwise }\end{cases}
$$

The notation $\mathcal{S}(x \mid n)$ occurs in the following statement:

$$
\begin{equation*}
\text { If } g^{-1} h g=g^{x} \text { with } g \text { and } h \text { elements of a group, then }(h g)^{n}=h^{n} g^{\mathcal{S}(x \mid n)} . \tag{2.1}
\end{equation*}
$$

The following lemma collects some properties of the operator $\mathcal{S}(-\mid-)$.
Lemma 2.1. Let p be a prime, $R \in \mathbb{Z}, m \in \mathbb{N}$ and $a=v_{p}(R-1) \geq 1$. Then
(1) $v_{p}\left(R^{m}-1\right)= \begin{cases}v_{p}(R-1)+v_{p}(m), & \text { if } p \neq 2 \text { or } a \geq 2 ; \\ v_{p}(R+1)+v_{p}(m), & \text { if } p=2, a=1 \text { and } 2 \mid m ; \\ 1, & \text { otherwise. }\end{cases}$
(2) $o_{p^{m}}(R)= \begin{cases}p^{\max \left(0, m-v_{p}(R-1)\right)}, & \text { if } p \neq 2 \text { or } a \geq 2 ; \\ 1, & \text { if } p=2, a=1 \text { and } m \leq 1 ; \\ 2^{\max \left(1, m-v_{2}(R+1)\right)}, & \text { otherwise } .\end{cases}$
(3) Suppose that $a \leq m$ and if $p=2$, then $a \geq 2$. Then the following hold:
(a) $\left\{R^{x}+p^{m} \mathbb{Z}: x \geq 0\right\}=\left\{1+y p^{a}+p^{m} \mathbb{Z}: 0 \leq y<p^{m-a}\right\}$.
(b) If $n \in \mathbb{N}$ and $n \equiv k p^{m-a} \bmod p^{m}$, then

$$
\mathcal{S}(R \mid n) \equiv \begin{cases}n+k 2^{m-1} \quad \bmod 2^{m}, & \text { if } p=2 \text { and } m>a \\ n \bmod p^{m}, & \text { otherwise }\end{cases}
$$

Proof. See [GBdR23, Lemma 2.1] and [BGLdR23, Lemma 8.2].
We will need the following formula:

$$
\begin{align*}
\sum_{d=0}^{n} d 2^{d} & =\sum_{d=0}^{n} \sum_{i=0}^{d-1} 2^{d}=\sum_{i=0}^{n-1} 2^{i+1} \sum_{d=i+1}^{n} 2^{d-i-1}=\sum_{i=0}^{n-1} 2^{i+1} \sum_{j=0}^{n-i-1} 2^{j}=\sum_{i=0}^{n-1} 2^{i+1}\left(2^{n-i}-1\right) \tag{2.2}\\
& =n 2^{n+1}-2 \sum_{i=0}^{n-1} 2^{i}=n 2^{n+1}-2\left(2^{n}-1\right)=(n-1) 2^{n+1}+2
\end{align*}
$$

Recall that if $R, n \in \mathbb{N}$ with $\operatorname{gcd}(R, n)=1$ and $i \in \mathbb{Z}$, then the R-cyclotomic class modulo n containing i is the subset of \mathbb{Z} formed by the integers j such that $j \equiv i R^{k} \bmod n$ for some $k \geq 0$. The R-cyclotomic classes module n form a partition of \mathbb{Z} and each R-cyclotomic class modulo n is a union of cosets modulo n. More precisely, if i and j belong to the same R-cyclotomic class, then $\operatorname{gcd}(n, i)=\operatorname{gcd}(n, j)$ and, if $d=\frac{n}{\operatorname{gcd}(n, i)}$, then the R-cyclotomic class module n containing i is the disjoint union of $i+n \mathbb{Z}, i R+n \mathbb{Z}, \ldots, i R^{o_{d}(R)-1}+n \mathbb{Z}$. Therefore the number of R-cyclotomic classes module n is

$$
\begin{equation*}
C_{R, n}=\sum_{d \mid n} \frac{\varphi(d)}{o_{d}(R)} \tag{2.3}
\end{equation*}
$$

We will need a precise expression of this number for the case where n is a power of p and $R \equiv 1 \bmod p$.

Lemma 2.2. Let p be a prime and $R, m \in \mathbb{N}$ with $R \equiv 1 \bmod p$. Then the number of R-cyclotomic classes modulo p^{m} is

$$
C_{R, p^{m}}= \begin{cases}p^{m}, & \text { if } m \leq v_{p}(R-1) \\ 1+2^{m-1}, & \text { if } p=2 \text { and } 2 \leq m<v_{2}(R+1) \\ 1+2^{v_{2}(R+1)-1}\left(1+m-v_{2}(R+1)\right), & \text { if } p=2 \text { and } 2 \leq v_{2}(R+1) \leq m \\ p^{v_{p}(R-1)-1}\left(p+(p-1)\left(m-v_{p}(R-1)\right)\right), & \text { otherwise }\end{cases}
$$

Proof. If $m \leq v_{p}(R-1)$, then $o_{d}(R)=1$ for every divisor d of m and hence every R-cyclotomic class module p^{m} is formed by one coset modulo p^{m}. Therefore, in that case $C_{R, p^{m}}=p^{m}$. Suppose otherwise that $m>v_{p}(R-1)$.

Suppose that either p is odd or $p=2$ and $R \equiv 1 \bmod 4$. Using Lemma 2.1.(2) and (2.3) we have

$$
\begin{aligned}
C_{R, p^{m}} & =\sum_{k=0}^{m} \frac{\varphi\left(p^{k}\right)}{p^{\max \left(0, k-v_{p}(R-1)\right)}}=1+(p-1)\left(\sum_{k=1}^{v_{p}(R-1)} p^{k-1}+\sum_{k=v_{p}(R-1)+1}^{m} p^{v_{p}(R-1)-1}\right) \\
& =p^{v_{p}(R-1)}+(p-1)\left(m-v_{p}(R-1)\right) p^{v_{p}(R-1)-1}=p^{v_{p}(R-1)-1}\left(p+(p-1)\left(m-v_{p}(R-1)\right)\right)
\end{aligned}
$$

Otherwise, $p=2$ and $R \equiv-1 \bmod 4$. Then $2 \leq v_{2}(R+1)$ and $1=v_{2}(R-1)<m$. Using now Lemma 2.1.(2) and (2.3) we have $C_{R, 2^{m}}=2+\sum_{k=2}^{m} \frac{\varphi\left(2^{k}\right)}{2^{\max \left(1, k-v_{2}(R+1)\right)}}$ Thus, if $m<v_{2}(R+1)$, then $C_{R, 2^{m}}=$ $2+\sum_{k=2}^{m} 2^{k-2}=1+2^{m-1}$. Otherwise, i.e. if $m \geq v_{2}(R+1)$, then

$$
\begin{aligned}
C_{R, 2^{m}} & =2+\sum_{k=2}^{v_{2}(R+1)} 2^{k-2}+\sum_{k=v_{2}(R+1)+1}^{m} 2^{v_{2}(R+1)-1}=1+2^{v_{2}(R+1)-1}+\left(m-v_{2}(R+1)\right) 2^{v_{2}(R+1)-1} \\
& =1+2^{v_{2}(R+1)-1}\left(1+m-v_{2}(R+1)\right)
\end{aligned}
$$

2.2. Group theory

By default all the groups in this paper are finite. We use standard notation for a group G and $g, h \in G$: $Z(G)=$ center of $G, G^{\prime}=$ commutator subgroup of $G, \operatorname{Aut}(G)=$ group of automorphisms of $G,|g|=$ order of $g, g^{h}=g^{-1} h g,[g, h]=g^{-1} g^{h}$. The notation $H \leq G$ and $N \unlhd G$ means that H is a subgroup of G and N is a normal subgroup of G. If H is a subgroup, then $[G: H]$ denotes index of H in $G, N_{G}(H)$ the normalizer of H in G and $\operatorname{Core}_{G}(H)$ the core of H in G, i.e. the greatest subgroup of H that is normal in G.

If π is a set of primes, then g_{π} and $g_{\pi^{\prime}}$ denote the π-part and π^{\prime}-part of g, respectively. When p is a prime we rather write g_{p} and $g_{p^{\prime}}$ than $g_{\{p\}}$ and $g_{\left\{p^{\prime}\right\}}$.

Let m be a positive integer. We let C_{m} denote a generic cyclic group of order m. For an integer x coprime with m, let α_{x} denote the automorphism of C_{m} given by $\alpha_{x}(a)=a^{x}$ for every $a \in A$ and σ_{x} the automorphism of $\mathbb{Q}\left(\zeta_{m}\right)$ given by $\sigma_{x}\left(\zeta_{m}\right)=\zeta_{m}^{x}$. Then $x \mapsto \alpha_{x}$ and $x \mapsto \sigma_{x}$ define isomorphisms $\alpha: \mathbb{Z}_{m}^{*} \rightarrow \operatorname{Aut}\left(C_{m}\right)$ and $\sigma: \mathbb{Z}_{m}^{*} \rightarrow \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right)$, where \mathbb{Z}_{m}^{*} denotes the group of units of $\mathbb{Z} / m \mathbb{Z}$. We are abusing the notation by treating elements of \mathbb{Z}_{m}^{*} as integers. In particular, $\alpha_{x} \mapsto \sigma_{x}$ defines an isomorphism $\operatorname{Aut}\left(C_{m}\right) \rightarrow \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right)$. We abuse the notations by considering the latter as an identification so that if Γ is a subgroup of $\operatorname{Aut}\left(C_{m}\right)$, then

$$
\mathbb{Q}\left(\zeta_{m}\right)^{\Gamma}=\left\{a \in \mathbb{Q}\left(\zeta_{m}\right): \sigma_{x}(a)=a \text { for all } \alpha_{x} \in \Gamma\right\},
$$

the Galois correspondent of Γ considered as a subgroup of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right)$.

2.3. Finite metacyclic p-groups

Finite metacyclic groups were classified by Hempel [Hem00]. Previously the finite metacyclic p-groups were classified by several means [Zas99, Lin71, Hal59, Bey72, Kin73, Lie96, Lie94, NX88, Réd89, Sim94]. For our purpose we need the description of the finite metacyclic groups in terms of group invariants given in [GBdR23] for the special case of p-groups. More precisely when [GBdR23, Corollary 4.1] is specialized to finite metacyclic p-groups one obtains the following:

Theorem 2.3. Let p be a prime integer. Then every finite metacyclic p-group is isomorphic to a group given by the following presentation

$$
\mathcal{P}_{p, \mu, \nu, \sigma, \rho, \epsilon}=\left\langle a, b \mid a^{p^{\mu}}=1, b^{p^{\nu}}=a^{p^{\sigma}}, b^{a}=a^{\epsilon+p^{\rho}}\right\rangle .
$$

for unique non-negative integers μ, ν, σ and ρ and a unique $\epsilon \in\{1,-1\}$ satisfying the following conditions:
(A) $\rho \leq \mu$, if $\mu \geq 1$, then $\rho \geq 1$ and, if $p=2 \geq \mu$, then $\rho \geq 2$.
(B) If $\epsilon=1$, then $\rho \leq \sigma \leq \mu \leq \rho+\sigma$ and $\sigma \leq \nu$.
(C) If $\epsilon=-1$, then
(a) $p=2 \leq \rho \leq \mu, \nu \geq 1, \mu-1 \leq \sigma \leq \mu \leq \rho+\nu \neq \sigma$ and
(b) if $2 \geq \nu$ and $3 \geq \mu$, then $\rho \leq \sigma$,

2.4. Wedderburn decomposition of rational group algebras

If A is a finite dimensional central simple F-algebra for F a field, then $\operatorname{Deg}(A)$ denotes the degree of A, i.e. $\operatorname{dim}_{F} A=\operatorname{Deg}(A)^{2}($ cf. $[\mathrm{Pie} 82])$.

Let F / K be a finite Galois field extension and let $G=\operatorname{Gal}(F / K)$. Let $\mathcal{U}(F)$ denotes the multiplicative group of F. If $f: G \times G \rightarrow \mathcal{U}(F)$ is a 2-cocycle, then $(F / K, f)$ denotes the crossed product

$$
(F / K, f)=\sum_{\alpha \in G} t_{\alpha} F, \quad x t_{\alpha}=t_{\alpha} \alpha(x), \quad t_{\alpha} t_{\beta}=t_{\alpha \beta} f(\alpha, \beta), \quad(x \in F, \alpha, \beta \in G)
$$

It is well known that $(F / K, f)$ is a central simple K-algebra and, if g is another 2-cocycle, then $(F / K, f)$ and $(F / K, g)$ are isomorphic as K-algebras if and only if $g f^{-1}$ is a 2-coboundary. Therefore, if $\bar{f} \in H^{2}(G, F)$ is represented by the coboundary f, then we denote $(F / K, \bar{f})=(F / K, f)$.

If G is cyclic of order n generated by α, and $a \in \mathcal{U}(K)$, then there is a cocycle $f: G \times G \rightarrow \mathcal{U}(K)$ given by

$$
f\left(\alpha^{i}, \alpha^{j}\right)= \begin{cases}1, & \text { if } 0 \leq i, j, i+j<n \\ a, & \text { if } 0 \leq i, j<n \leq i+j\end{cases}
$$

Then the crossed product algebra $(F / K, f)$ is said to be a cyclic algebra, it is usually denoted $(F / K, \alpha, a)$ and it can be described as follows:

$$
(F / K, \alpha, a)=\sum_{i=0}^{n-1} u^{i} F=F\left[u \mid x u=u \alpha(x), u^{n}=a\right] .
$$

If A is a semisimple ring, then A is a direct sum of central simple algebras. This expression is called the Wedderburn decomposition of A and its simple factors are called the Wedderburn components of A. The Wedderburn components of A are the direct summands of the form $A e$ with e a primitive central idempotent of A.

Let G be a finite group. Then $\mathbb{Q} G$ is semisimple and the center of each component A of $\mathbb{Q} G$ is isomorphic to the field of character values $\mathbb{Q}(\chi)$ of any irreducible character χ of G with $\chi(A) \neq 0$. It is well known that $\mathbb{Q}(\chi)$ is a finite abelian extension of \mathbb{Q} inside \mathbb{C} and henceforth it is the unique subfield of \mathbb{C} isomorphic to $\mathbb{Q}(\chi)$. We will abuse the notation and consider $Z(A)$ as equal to $\mathbb{Q}(\chi)$.

An important tool for us is a technique to describe the Wedderburn decomposition of $\mathbb{Q} G$ introduced in [OdRS04]. See also [JdR16, Section 3.5]. A closely related method to compute the primitive central idempotents of group algebras of finite solvable groups was introduced by S.D. Berman (see [Ber52, Ber55, Ber56] and [KP21]). We recall here its main ingredients.

If H is a subgroup of G, then \widehat{H} denotes the element $|H|^{-1} \sum_{h \in H} h$ of the rational group algebra $\mathbb{Q} G$. It is clear that \widehat{H} is an idempotent of $\mathbb{Q} G$ and it is central in $\mathbb{Q} G$ if and only if H is normal in G.

Let N be a normal subgroup of G. Then the kernel of the natural homomorphism $\mathbb{Q} G \rightarrow \mathbb{Q}(G / N)$ is $\mathbb{Q} G(1-\widehat{N})=\sum_{n \in N \backslash 1} \mathbb{Q} G(n-1)$. Therefore $\mathbb{Q} G=\mathbb{Q} G \widehat{N} \oplus \mathbb{Q} G(1-\widehat{N})$ and $\mathbb{Q}(G / N) \cong \mathbb{Q} G \widehat{N}$. Thus $\mathbb{Q}(G / N)$ is isomorphic to the direct sum of the Wedderburn components of $\mathbb{Q} G$ of the form $\mathbb{Q} G e$ with e a primitive central idempotent of $\mathbb{Q} G$ with $e \widehat{N}=e$.

We denote

$$
\varepsilon(G, N)= \begin{cases}\widehat{G}, & \text { if } G=N \\ \prod_{D / N \in M(G / N)}(\widehat{N}-\widehat{D}), & \text { otherwise }\end{cases}
$$

where $M(G / N)$ denote the set of minimal normal subgroups of G. Clearly $\varepsilon(G, N)$ is a central idempotent of $\mathbb{Q} G$.

If (H, K) is a pair of subgroups of G with $K \unlhd H$, then we denote

$$
e(G, H, K)=\sum_{g C_{G}(\varepsilon(H, K)) \in G / C_{G}(\varepsilon(H, K))} \varepsilon(H, K)^{g} .
$$

Observe that $e(G, H, K)$ belongs to the center of $\mathbb{Q} G$. If moreover, $\varepsilon(H, K)^{g} \varepsilon(H, K)=0$ for every $g \in$ $G \backslash C_{G}(\varepsilon(H, K))$, , then $e(G, H, K)$ is an idempotent of $\mathbb{Q} G$.

A strong Shoda pair of G is a pair (H, K) of subgroups of G satisfying the following conditions:
$(\mathrm{SS} 1) K \subseteq H \unlhd N_{G}(K)$,
(SS2) H / K is cyclic and maximal abelian in $N_{G}(K) / K$,
(SS3) $\varepsilon(H, K)^{g} \varepsilon(H, K)$ for every $g \in G \backslash C_{G}(\varepsilon(H, K))$.
Remark 2.4. Suppose that (H, K) is a strong Shoda pair of G and let $m=[H: K]$ and $N=N_{G}(K)$. Then $H / K \cong C_{m}$ and the action of N by conjugation on H induces a faithful action of N / H on $\mathbb{Q}\left(\zeta_{m}\right)$. More precisely, if $n \in N$, then $h^{n} K=\alpha_{r}(h K)$ for some integer r, with $\operatorname{gcd}(r, m)=1$. The map $n H \rightarrow \sigma_{r}$ defines an injective homomorphism $\alpha: N / H \rightarrow \operatorname{Aut}\left(\mathbb{Q}\left(\zeta_{m}\right)\right)$. Let $F_{G, H, K}=\mathbb{Q}\left(\zeta_{m}\right)^{\operatorname{Im} \alpha}$. Then we have a short exact sequence [JdR16, Theorem 3.5.5]:

$$
1 \rightarrow H / K \cong\left\langle\zeta_{m}\right\rangle \rightarrow N / K \rightarrow N / H \cong \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right) / F_{G, H, K}\right) \rightarrow 1
$$

which induces an element $\bar{f} \in H^{2}\left(N / H, \mathbb{Q}\left(\zeta_{m}\right)\right)$. More precisely from an election of a set of representatives $\left\{c_{u}: u \in N / H\right\}$ of H cosets in N, we define $f(u, v)=\zeta_{m}^{k}$ if $c_{u} c_{v}=c_{u v} h^{k}$. This defines an element of $H^{2}\left(N / H, \mathbb{Q}\left(\zeta_{m}\right)\right)$ because another election yields to another 2-cocycle differing in a 2 -coboundary. Associated to \bar{f} one has the crossed product algebra

$$
\begin{aligned}
& A(G, H, K)=\left(\mathbb{Q}\left(\zeta_{m}\right) / F_{G, H, K}, \bar{f}\right)=\oplus_{u \in N / H} t_{u} \mathbb{Q}\left(\zeta_{m}\right) \\
& x t_{u}=t_{u} \sigma_{u}(x), \quad t_{u} t_{v}=t_{u v} f(u, v), \quad\left(x \in \mathbb{Q}\left(\zeta_{m}\right), u, v \in N / K\right)
\end{aligned}
$$

Proposition 2.5. [OdRS04, Proposition 3.4] [JdR16, Theorem 3.5.5] Let (H,K) be a strong Shoda pair of G and let $m=[H: K], n=\left[G: N_{G}(K)\right]$ and $e=e(G, H, K)$. Then e is a primitive central idempotent of $\mathbb{Q} G$ and $\mathbb{Q} G e \cong M_{n}(A(G, H, K))$. Moreover, $\operatorname{Deg}(\mathbb{Q} G e)=[G: H], Z(\mathbb{Q} G e(G, H, K)) \cong F_{G, H, K}$ and $\{g \in G: g e=e\}=\operatorname{Core}_{G}(K)$.

In the particular case where G is metabelian all the Wedderburn components of $\mathbb{Q} G$ are of the form $A(G, H, K)$ for some special kind of strong Shoda pairs of G. More precisely we have the following (see [OdRS04, Theorem 4.7] or [JdR16, Theorem 3.5.12]):
Theorem 2.6. Let G be a finite group and let A be a maximal abelian subgroup of G containing G^{\prime}. Then every Wedderburn component of $\mathbb{Q} G$ is of the form $\mathbb{Q} G e(G, H, K)$ for subgroups H and K satisfying the following conditions:
(1) H is a maximal element in the set $\left\{B \leq G: A \leq B\right.$ and $\left.B^{\prime} \leq K \leq B\right\}$.
(2) H / K is cyclic.

Moreover every pair (H, K) satisfying (1) and (2) is a strong Shoda pair of G and hence $\mathbb{Q} G e(G, H, K) \cong$ $M_{n}(A(G, H, K))$ with $n=\left[G: N_{G}(K)\right]$.

Suppose that G is a finite metacyclic group and let A be a cyclic normal subgroup of G with G / A cyclic. Then every Wedderburn component of $\mathbb{Q} G$ is of the form $\mathbb{Q} G e(G, H, K)$ for (H, K) be subgroups of G satisfying the conditions of Theorem 2.6. Then, $N_{G}(K) / H$ is cyclic, say generated by $u H$, and of order k. Moreover, H / K is cyclic, say generated by $a K$, and normal in $N_{G}(K) / K$ so that $(a K)^{u K}=a^{x} K$ and $(u K)^{k}=a^{y}$ for some integers x and y. By Proposition 2.5 we have

$$
\begin{equation*}
A(G, H, K) \cong\left(\mathbb{Q}\left(\zeta_{m}\right) / F, \sigma_{x}, \zeta_{m}^{y}\right)=\mathbb{Q}\left(\zeta_{m}\right)\left[\bar{u} \mid \zeta_{m} \bar{u}=\bar{u} \zeta_{m}^{x}, \bar{u}^{k}=\zeta_{m}^{y}\right] \tag{2.4}
\end{equation*}
$$

2.5. Tools for the Isomorphism Problem for group rings

In this subsection we recall two results relevant for the Isomorphism Problem for rational group algebras. The first one is a well known result of Artin which tell us what is the number of Wedderburn components of a rational group algebra. See [CR62, Corollary 39.5] or [JdR16, Corollary 7.1.12]

Theorem 2.7 (Artin). If G is a finite group, then the number of Wedderburn components of $\mathbb{Q} G$ is the number of conjugacy classes of cyclic subgroups of G.

The second one is a consequence of the Perlis-Walker Theorem.
Theorem 2.8. If G and H are finite groups with $\mathbb{Q} G \cong \mathbb{Q} H$, then $G / G^{\prime} \cong H / H^{\prime}$.
Proof. Let $A(G)$ denote the kernel of the natural homomorphism $\mathbb{Q} G \rightarrow \mathbb{Q}\left(G / G^{\prime}\right)$. Then $A(G)$ is a the smallest ideal I of $\mathbb{Q} G$ such that $(\mathbb{Q} G) / I$ is commutative. In particular, if $f: \mathbb{Q} G \rightarrow \mathbb{Q} H$ is an isomorphism, then $f(A(G))=A(H)$ and therefore f induces an isomorphism $\mathbb{Q}\left(G / G^{\prime}\right) \cong \mathbb{Q}\left(H / H^{\prime}\right)$. Then $G / G^{\prime} \cong H / H^{\prime}$, by the Perlis-Walker Theorem [PW50].

3. The Isomorphism Problem for finite metacyclic p-groups

In this section p is a prime and we prove that the Isomorphism Problem for rational group algebras has positive solution for finite metacyclic p-groups.

All throughout G is a finite metacyclic p-group. By Theorem 2.3, $G \cong \mathcal{P}_{p, \mu, \nu, \sigma, \rho, \epsilon}$ for unique non-negative integers μ, ν, σ and ρ and unique $\epsilon \in\{1,-1\}$ satisfying conditions (A)-(C).

The proof of the main result of this section relies in five technical lemmas.
Lemma 3.1. Suppose that $\epsilon=1$ and $\mu>0$. Let $0 \leq d<\nu$ and for every $1 \leq i \leq p^{\mu}$ set

$$
\begin{aligned}
l_{i} & = \begin{cases}2^{\sigma}+i\left(2^{\nu-d}+2^{\mu-1}\right), & \text { if } p=2 \nmid i \text { and } \mu=\nu+\rho ; \\
p^{\sigma}+i p^{\nu-d}, & \text { otherwise } ;\end{cases} \\
k_{i} & =\min \left(\mu, v_{p}\left(l_{i}\right)\right) \text { and } h_{i}=\min \left(k_{i}, \rho+d, \rho+v_{p}(i)\right) .
\end{aligned}
$$

Then $\left\langle b^{p^{d}} a^{i}\right\rangle$ and $\left\langle b^{p^{d}} a^{j}\right\rangle$ are conjugate in G if and only if $i \equiv j \bmod p^{h_{i}}$. In that case, $k_{i}=k_{j}$ and $h_{i}=h_{j}$.

Proof. As $\mu>0$, by condition (A), we also have $\rho>0$. Let $R=1+p^{\rho}$. By Lemma 2.1.(1) we have $v_{p}\left(R^{p^{d}}-1\right)=d+\rho$ and by condition (B) we have $\mu-(d+\rho) \leq \nu-d$. Hence, applying Lemma 2.1.(3b) with $a=d+\rho$ and $m=\nu+\rho>a$ we obtain the following for every $k \in \mathbb{N}$:

$$
\mathcal{S}\left(R^{p^{d}} \mid k p^{\nu-d}\right)= \begin{cases}k 2^{\nu+d}+k 2^{\nu+\rho-1} \bmod 2^{\nu+\rho}, & \text { if } p=2 \\ k p^{\nu+\rho}, & \text { if } p \neq 2\end{cases}
$$

Then

$$
\mathcal{S}\left(R^{p^{d}} \mid k p^{\nu-d}\right) \equiv \begin{cases}k 2^{\nu-d}+k 2^{\mu-1} \bmod 2^{\mu}, & \text { if } p=2, \text { and } \mu=\nu+\rho \tag{3.1}\\ k p^{\nu-d} \bmod p^{\mu}, & \text { otherwise }\end{cases}
$$

Moreover $a^{b^{p^{d}}}=a^{R^{p^{d}}}$ and hence, by (2.1) we have

$$
\begin{equation*}
\left(b^{p^{d}} a^{i}\right)^{p^{\nu-d}}=b^{p^{\nu}} a^{i \mathcal{S}\left({R^{p^{d}}} \mid p^{\nu-d}\right)}=a^{p^{\sigma}+i \mathcal{S}}\left({R^{p^{d}} \mid p^{\nu-d}}\right)=a^{l_{i}} . \tag{3.2}
\end{equation*}
$$

Suppose that $\left\langle b^{p^{d}} a^{i}\right\rangle$ and $\left\langle b^{p^{d}} a^{j}\right\rangle$ are conjugate in G. Then there are integers x, y, u with $p \nmid u$ such that $b^{p^{d}} a^{j}=\left(\left(b^{p^{d}} a^{i}\right)^{u}\right)^{b^{y} a^{x}}$. In particular $b^{p^{d}}\langle a\rangle=b^{u p^{d}}\langle a\rangle$ and therefore $u \equiv 1 \bmod p^{\nu-d}$. Write $u=1+v p^{\nu-d}$. Then

$$
\left(b^{p^{d}} a^{i}\right)^{u}=b^{p^{d}} a^{i}\left(b^{p^{d}} a^{i}\right)^{v p^{\nu-d}}=b^{p^{d}} a^{i+v l_{i}} .
$$

Hence

$$
b^{p^{d}} a^{j}=\left(b^{p^{d}} a^{i+v l_{i}}\right)^{b^{y} a^{x}}=b^{p^{d}} a^{\left(i+v l_{i}\right) R^{y}+x\left(1-R^{p^{d}}\right)} .
$$

On the other hand, $R^{y}=1+Y p^{\rho}$ for some integer Y. Then

$$
j \equiv i+i Y p^{\rho}+v l_{i} R^{y}+x\left(1-R^{p^{d}}\right) \equiv i \quad \bmod p^{h_{i}}
$$

because $h_{i}=\min \left(k_{i}, \rho+d, r+v_{p}(i)\right)=\min \left(\mu, v_{p}\left(l_{i}\right), v_{p}\left(1-R^{p^{d}}\right), \rho+v_{p}(i)\right)$.
Conversely suppose that $j \equiv i \bmod p^{h_{i}}$ and consider the four possibilities for h_{i} separately. Of course, if $h_{i}=\mu$, then $b^{p^{d}} a^{i}=b^{p^{d}} a^{j}$. Suppose that $h_{i}=\rho+d$. Then $h_{i}=v_{p}\left(1-R^{p^{d}}\right)$, by Lemma 2.1.(1). Therefore there is an integer x such that $j \equiv i+x\left(1-R^{p^{d}}\right) \bmod p^{\mu}$, and hence $\left(b^{p^{d}} a^{i}\right)^{a^{x}}=b^{p^{d}} a^{i+x\left(1-R^{p^{d}}\right)}=b^{p^{d}} a^{j}$.

Assume that $h_{i}=k_{i}=v_{p}\left(l_{i}\right)$. Then $j \equiv i+v l_{i} \bmod p^{\mu}$ for some $v \in \mathbb{N}$. Hence, using (3.2), we have $\left(b^{p^{d}} a^{i}\right)^{1+v p^{\nu-d}}=b^{p^{d}} a^{i+v l_{i}}=b^{p^{d}} a^{j}$. Finally, suppose that $h_{i}=\rho+v_{p}(i)$. Then there is an integer z such that $j \equiv i+z i p^{\rho} \bmod p^{\mu}$. Moreover, by Lemma 2.1.(3a), there is a non-negative integer y such that $R^{y} \equiv 1+z p^{\rho}$. Then $\left(b^{p^{d}} a^{i}\right)^{b^{y}}=b^{p^{d}} a^{i R^{y}}=b^{p^{d}} a^{i\left(1+z p^{\rho}\right)}=b^{p^{d}} a^{j}$.

For the last part, suppose that $\left\langle b^{p^{d}} a^{i}\right\rangle$ and $\left\langle b^{p^{d}} a^{j}\right\rangle$ are conjugate in G. Then, from (3.2) we have $p^{\nu-d+\mu-k_{i}}=\left|b^{p^{d}} a^{i}\right|=\left|b^{p^{d}} a^{j}\right|=p^{\nu-d+\mu-k_{j}}$, so that $k_{i}=k_{j}$. Suppose that $h_{i} \neq h_{j}$. Then necessarily $v_{p}(i) \neq v_{p}(j)$ and, as $j \equiv i \bmod p^{h_{i}}$, we have $h_{i} \leq v_{p}(i)<\rho+v_{p}(i)$. Interchanging the roles of i and j we also obtain $h_{j} \leq v_{p}(j)<\rho+v_{p}(j)$. So that $h_{i}=\min \left(k_{i}, \rho+d\right)=\min \left(k_{j}, \rho+d\right)=h_{j}$, a contradiction.
Lemma 3.2. If $\epsilon=1$, then the number of conjugacy classes of cyclic subgroups of G is $N=A_{\sigma}+A$ where

$$
\begin{aligned}
A_{\sigma} & =p^{\rho-1} \sigma\left(1+(p-1) \frac{1+2 \nu-\sigma}{2}\right)-\frac{p^{\rho+\sigma-\mu}}{p-1} \text { and } \\
A & =\frac{3 p^{\rho-1}-2}{p-1}+p^{\rho-1} \frac{6-\rho+2 \nu \rho-\rho^{2}+p\left(\rho^{2}+2 \nu-3 \rho-2 \nu \rho+2\right)}{2}
\end{aligned}
$$

Proof. For every $0 \leq d \leq \nu$ we let \mathcal{C}_{d} denote the set of cyclic subgroups C of G satisfying $[C\langle a\rangle:\langle a\rangle]=p^{\nu-d}$. Clearly \mathcal{C}_{d} is closed by conjugation in G. Let N_{d} denote the number of conjugacy classes of cyclic subgroups of G belonging to \mathcal{C}_{d}. Then the number of conjugacy classes of cyclic subgroups of G is $\sum_{d=0}^{\nu} N_{d}$. For every $1 \leq i \leq p^{\mu}$ we will use the notation l_{i}, k_{i} and h_{i} introduced in Lemma 3.1.

As $G /\langle a\rangle$ is cyclic of order p^{ν}, every element of \mathcal{C}_{d} is formed by the groups of the form $\left\langle b^{p^{d}} a^{i}\right\rangle$ with $1 \leq i \leq p^{\mu}$. In particular $N_{\nu}=\mu+1$, the number of subgroups of $\langle a\rangle$.

From now on we assume that $0 \leq d<\nu$.
Claim 1. If $v_{p}(i) \geq \min (\sigma, \rho+\bar{d})$, then $\left\langle b^{p^{d}} a^{i}\right\rangle$ is conjugate to $\left\langle b^{p^{d}}\right\rangle$ in G.
Indeed, suppose that $v_{p}(i) \geq \min (\sigma, \rho+d)$. By Lemma 3.1 we have to prove that $i \equiv 0 \bmod p^{h_{i}}$, i.e. $h_{i} \leq v_{p}(i)$. First of all observe that $v_{p}(i) \geq \min (\sigma, \rho+d) \geq 1$, because $1 \leq \rho \leq \sigma$. Hence $l_{i}=p^{\sigma}+i p^{\nu-d}$. If $v_{p}\left(i p^{\nu-d}\right)>\sigma$, then $v_{p}\left(l_{i}\right)=s$ and hence $h_{i}=\min \left(\sigma, \rho+d, \rho+v_{p}(i)\right)=\min (\sigma, \rho+d) \leq v_{p}(i)$, as desired. Suppose otherwise that $v_{p}\left(i p^{\nu-d}\right) \leq \sigma$. Then $v_{p}(i)<v_{p}\left(i p^{\nu-d}\right) \leq \sigma$ and hence, by hypothesis $\rho+d \leq v_{p}(i)$. Then, by condition (B) of Theorem 2.3 we have $v_{p}\left(i p^{\nu-d}\right) \geq \rho+\nu \geq \mu \geq \sigma \geq v_{p}\left(i p^{\nu-d}\right)$. Therefore $v_{p}\left(i p^{\nu-d}\right)=\rho+\nu=\mu=\sigma$ and $v_{p}(i)=\rho+d<\sigma$. Then $h_{i}=\min (\sigma, \rho+d)=\rho+d \leq v_{p}(i)$, again as desired.

Claim 2. If $1 \leq i, j \leq p^{\mu}, v_{p}(i)<\min (\sigma, \rho+d)$ and $\left\langle b^{p^{d}} a^{i}\right\rangle$ and $\left\langle b^{p^{d}} a^{j}\right\rangle$ are conjugate in G, then $v_{p}(i)=v_{p}(j)$.

Indeed, by Lemma 3.1 we have $h_{i}=h_{j}$, which we denote h, and $i \equiv j \bmod p^{h}$. By means of contradiction suppose that $v_{p}(i) \neq v_{p}(j)$. Then $h \leq \min \left(v_{p}(i), v_{p}(j)\right) \leq v_{p}(i)<\min (\sigma, \rho+d)$ and therefore $\min \left(\mu, v_{p}\left(l_{j}\right), \rho+\right.$ $d)=\min \left(\mu, v_{p}\left(l_{i}\right), \rho+d\right)=h<\min (\sigma, \rho+d)$. Thus $v_{p}\left(l_{i}\right)=v_{p}\left(l_{j}\right)=h \leq \min \left(v_{p}(i), v_{p}(j)\right)$. However $v_{p}\left(i p^{\nu-d}\right)>v_{p}(i)$ and, if $p=2 \neq i$, then $v_{2}\left(i\left(2^{\nu-d}+2^{\mu-1}\right)\right)>v_{2}(i)$. Therefore $v_{p}\left(l_{i}-p^{\sigma}\right)>v_{p}(i) \geq h=$ $v_{p}\left(l_{i}\right)$. Then $h=v_{p}\left(l_{j}\right)=v_{p}\left(l_{i}\right)=\sigma \geq \min (\sigma, \rho+d)$, a contradiction.

We use Claims 1 and 2 and Lemma 3.1 as follows: For every $0 \leq h<\min (\sigma, \rho+d)$ let

$$
X_{h}=\left\{i \in \mathbb{Z}: 1 \leq i \leq p^{\mu} \text { and } v_{p}(i)=h\right\}
$$

and consider the equivalence relation in X_{h} given by

$$
i \sim_{d} j \text { if and only if } k_{i}=k_{j}(=k) \text { and } i \equiv j \bmod p^{\min (k, \rho+d, \rho+h)} .
$$

Let $N_{d, h}$ be the number of $\sim_{d^{-}}$-equivalence classes in X_{h}. By Lemma 3.1 and Claim 2, if $i \in X_{h}, 1 \leq j \leq p^{\mu}$, $v_{p}(i)<\min (\sigma, \rho+d)$ and $\left\langle b^{p^{d}} a_{i}\right\rangle$ and $\left\langle b^{p^{d}} j\right\rangle$ are conjugate in G, then $j \in X_{h}$ and i and j belong to the same \sim_{d}-class. Therefore, using also Claim 1, we have

$$
\begin{equation*}
N_{d}=1+\sum_{h=0}^{\min (\sigma, \rho+d)-1} N_{d, h} \tag{3.3}
\end{equation*}
$$

Our next goal is obtaining a formula for $N_{d, h}$ and for that we consider three cases:
Case 1: Suppose that $d \leq \nu-\rho$.

Let $h \in X_{h}$. We claim that $k_{i}=\min (\sigma, \rho+d, \rho+h)$. This is clear if $v_{p}\left(l_{i}\right)=\sigma$. Suppose that $v_{p}\left(l_{i}\right)>\sigma$. Then $v_{p}\left(l_{i}-p^{\sigma}\right)=\sigma$. If $h=0$, then, as $\rho \leq \sigma$, we have $k_{i}=\rho=\min (\sigma, \rho+d, \rho+h)$ as desired. Otherwise $l_{i}-p^{\sigma}=i p^{\nu-d}$, so that $h+\nu-d=\sigma$ and, by assumption we have $\rho+h=\rho+d-\nu+\sigma \leq \sigma$. Then again $k_{i}=\min (\sigma, \rho+d, \rho+h)$. Finally, suppose that $v_{p}\left(l_{i}\right)<\sigma$. Then $v_{p}\left(l_{i}-p^{\sigma}\right)=v_{p}\left(l_{i}\right)$. If $l_{i}-p^{\sigma}=i p^{\nu-d}$, then $h+\rho \leq h+\nu-d=v_{p}\left(l_{i}\right)<\sigma \leq \mu$ and hence $k_{i}=\min (\rho+d, \rho+h)=\min (\sigma, \rho+d, \rho+h)$. Otherwise $p=2$, $h=0, \mu=\nu+\rho$ and $l_{i}-2^{\sigma}=i\left(2^{\nu-d}+2^{\mu-1}\right)$. Then $\mu \geq \sigma>v_{2}\left(l_{i}\right)=v_{2}\left(2^{\nu-d}+2^{\mu-1}\right) \geq \nu-d \geq \rho=\rho+h$, because $\nu-d=\mu-\rho-d \leq \mu-\rho \leq \mu-1$. Then $k_{i}=\rho=\min (\sigma, \rho+d, \rho+h)$. So all the cases $k_{i}=\min (\sigma, \rho+d, \rho+h)$, as desired.

Combining Lemma 3.1 with the claim in the previous paragraph we deduce that for $d \leq \nu-\rho$ and $h<\min (\sigma, \rho+d)$, the \sim_{d}-equivalence classes of X_{h} have $p^{\mu-\min (\sigma, \rho+d, \rho+h)}$ elements. Thus, for each $d \leq \nu-\rho$ and $0 \leq h<\min (\sigma, \rho+d)$, we have

$$
N_{d, h}=\frac{\varphi\left(p^{\mu-h}\right)}{p^{\mu-\min (\sigma, \rho+d, \rho+h)}}=(p-1) p^{\min (\sigma, \rho+d, \rho+h)-h-1} .
$$

As, by Claim 1, for a fixed $d \mid \mu$, all the cyclic groups $\left\langle b^{p^{d}} a^{i}\right\rangle$ with $v_{p}(i) \geq \min (\sigma, \rho+d)$ are conjugate we have

$$
\begin{align*}
& \sum_{d=0}^{\nu-\rho} N_{d}=\sum_{d=0}^{\nu-\rho}\left(1+\sum_{h=0}^{\min (\sigma, \rho+d)-1} N_{d, h}\right)=\sum_{d=0}^{\sigma-\rho}\left(1+\sum_{h=0}^{d-1}(p-1) p^{\rho-1}+\sum_{h=d}^{d+\rho-1}(p-1) p^{\rho+d-h-1}\right) \\
& +\sum_{d=\sigma-\rho+1}^{\nu-\rho}\left(1+\sum_{h=0}^{\sigma-\rho-1}(p-1) p^{\rho-1}+\sum_{h=\sigma-\rho}^{\sigma-1}(p-1) p^{\sigma-h-1}\right)=(\nu-\rho+1)+ \\
& \sum_{d=0}^{\sigma-\rho}\left(d(p-1) p^{\rho-1}+(p-1) \sum_{x=0}^{\rho-1} p^{x}\right)+\sum_{d=\sigma-\rho+1}^{\nu-\rho}\left((\sigma-\rho)(p-1) p^{\rho-1}+(p-1) \sum_{x=0}^{\rho-1} p^{x}\right) \tag{3.4}\\
& =(\nu-\rho+1)+\frac{(\sigma-\rho)(\sigma-\rho+1)}{2}(p-1) p^{\rho-1}+(\nu-\sigma)(\sigma-\rho)(p-1) p^{\rho-1}+(\nu-\rho+1)\left(p^{\rho}-1\right) \\
& =p^{\rho-1}\left((\sigma-\rho)(p-1) \frac{1+2 \nu-\rho-\sigma}{2}+(\nu-\rho+1) p\right) .
\end{align*}
$$

Case 2: Suppose that $\nu-\rho<d \leq \nu-1$ and $h \neq \sigma+d-\nu$.
Let $i \in X_{h}$. Then $v_{p}\left(p^{\sigma}+i p^{\nu-d}\right)=\min (\sigma, h+\nu-d)$. If $v_{p}\left(l_{i}\right) \neq \min (\sigma, h+\nu-d)$, then $p=2 \neq i, \mu=\nu+\rho$ and $l_{i}=2^{\sigma}+i\left(2^{\nu-d}+2^{\mu-1}\right)$. Then, from $\rho \geq 1$ and $d>\nu-\rho \geq 0$ we deduce $\mu-1=v_{2}\left(l_{i}-\left(2^{\sigma}+i 2^{\nu-d}\right)\right)=$ $\min \left(v_{2}\left(l_{i}\right), v_{2}\left(2^{\sigma}+i 2^{\nu-d}\right)\right)=\min \left(v_{2}\left(l_{i}\right), \sigma, \nu-d\right) \leq \nu-d=\mu-\rho-d<\mu-1$, a contradiction. This proves that $v_{p}\left(l_{i}\right)=\min (\sigma, h+\nu-d)$. Therefore, $h_{i}=\min \left(\mu, v_{p}\left(l_{i}\right), \rho+d, \rho+h\right)=\min (\sigma, h+\nu-d, \rho+d, \rho+h)=$ $\min (\sigma, h+\nu-d, \rho+h)=\min (\sigma, h+\nu-d) \leq \mu$, because $\sigma \leq \nu<\rho+d$ and $h+\nu-d<h+\rho$, by condition (B) in Theorem 2.3 and the assumption. Hence, by Lemma 3.1, each class inside X_{h} with $\sigma>h \neq \sigma+d-\nu$ contains $p^{\mu-\min (\sigma, h+\nu-d)}$ elements. This proves the following
if $\sigma>h \neq \sigma+d-\nu$, then $N_{d, h}=\frac{\varphi\left(p^{\mu-h}\right)}{p^{\mu-\min (\sigma, h+\nu-d)}}=(p-1) p^{\min (\sigma-h, \nu-d)-1}$.

Then

$$
\begin{align*}
& \sum_{d=\nu-\rho+1}^{\nu-1}\left(1+\sum_{h=0, h \neq \sigma+d-\nu}^{\sigma-1} N_{d, h}\right) \\
= & \sum_{d=\nu-\rho+1}^{\nu-1}\left(1+(p-1)\left(\sum_{h=0}^{\sigma+d-\nu-1} p^{\nu-d-1}+\sum_{h=\sigma+d-\nu+1}^{\sigma-1} p^{\sigma-h-1}\right)\right) \\
= & \sum_{x=1}^{\rho-1}\left(1+(p-1) \sum_{h=0}^{\sigma-x-1} p^{x-1}+(p-1) \sum_{h=\sigma-x+1}^{\sigma-1} p^{\sigma-h-1}\right) \tag{3.5}\\
= & \sum_{x=1}^{\rho-1}\left(1+(\sigma-x)(p-1) p^{x-1}+(p-1) \sum_{y=0}^{x-2} p^{y}\right)=\sum_{x=1}^{\rho-1}\left((\sigma-x) p^{x}-(\sigma-x) p^{x-1}+p^{x-1}\right) \\
= & \sum_{x=1}^{\rho-1}(\sigma-x) p^{x}-\sum_{x=0}^{\rho-2}(\sigma-x-1) p^{x}+\sum_{x=0}^{\rho-2} p^{x}=(\sigma-\rho+1) p^{\rho-1}+2 \sum_{x=1}^{\rho-2} p^{x}-(\sigma-1)+1 \\
= & (1-\rho) p^{\rho-1}+\sigma\left(p^{\rho-1}-1\right)+2 \frac{p^{\rho-1}-1}{p-1} .
\end{align*}
$$

Case 3: Finally, suppose that $\nu-\rho<d \leq \nu-1$ and $h=\sigma+d-\nu$.
Then, $h<\sigma$ and by condition (B) if $i \in X_{h}$, then $v_{p}(i)=h \geq \rho+d-\nu>0$ and hence $l_{i}=p^{\sigma}+i p^{\nu-d}=$ $p^{\sigma}\left(1+i p^{-h}\right)$. Therefore $v_{p}\left(l_{i}\right)=\sigma+v_{p}\left(1+i p^{-h}\right)$. Also, by condition (B) we have $\rho \leq \sigma \leq \nu$, and therefore $h \leq d$. Thus $h_{i}=\min \left(k_{i}, \rho+h\right)$. Observe that, as $1 \leq i \leq p^{\mu}$, we have that $0 \leq v_{p}\left(1+i p^{-h}\right) \leq \mu-h$. For $0 \leq l \leq \mu-h$ we set

$$
Y_{l}=\left\{i \in X_{h}: v_{p}\left(1+i p^{-h}\right)=l\right\} \quad \text { and } \quad Z_{l}=\bigcup_{t=l}^{\mu-h} Y_{t}
$$

The sets Y_{l} with $l=0,1, \ldots, \mu-h$ form a partition of X_{h}. A straightforward argument show that

$$
\left|Y_{l}\right|= \begin{cases}(p-2) p^{\mu-h-1}, & \text { if } l=0 ; \\
\varphi\left(p^{\mu-h-l}\right), & \text { if } 1 \leq l<\mu-h ; \quad \text { and } \quad\left|Z_{l}\right|=\left\{\begin{array}{ll}
\varphi\left(p^{\mu-h}\right), & \text { if } l=0 \\
1, & \text { if } l=\mu-h ;
\end{array} \quad . \quad \text { pr-h, } \quad \text { if } 1 \leq l \leq \mu-h\right.\end{cases}
$$

For each $i \in Y_{l}$ we have $k_{i}=\min (\mu, \sigma+l)$. Therefore, if $i \in Y_{l}$, then

$$
h_{i}= \begin{cases}\min (\mu, \rho+h), & \text { if } i \in Z_{\mu-\sigma} \\ \min (\sigma+l, \rho+h), & \text { otherwise }\end{cases}
$$

By Lemma 3.1, each \sim_{d}-class inside X_{h} is contained either in some Y_{l} with $l<\mu-\sigma$ or in $Z_{\mu-\sigma}$. Moreover two elements i and j in Y_{l} with $l<\mu-\sigma$ belong to the same class if and only if $i \equiv j \bmod p^{\min (\sigma+l, \rho+h)}$ while two elements in $Z_{\mu-\sigma}$ are in the same class if and only if $i \equiv j \bmod p^{\min (\mu, \rho+h)}$. Recalling that $h=\sigma+d-\nu$ we deduce that if $l<\min (\mu-\sigma, \rho+d-\nu)$, then each class inside Y_{l} has cardinality $p^{\mu-(\sigma+l)}$, while every class contained in $Z_{\min (\mu-\sigma, \rho+d-\nu)}$ has cardinality $p^{\mu-\min (\mu, \rho+h)}$. Having in mind that $\frac{\left|Z_{\min (\mu-\sigma, \rho+d-\nu)}\right|}{p^{\mu-\min (\mu, \rho+\sigma+d-\nu)}}=\frac{\left|Z_{\min (\mu-\sigma, \rho+d-\nu)+1}\right|}{p^{\mu-\min (\mu, \rho+\sigma+d-\nu)}}+\frac{\left|Y_{\min }(\mu-\sigma, \rho+d-\nu)\right|}{p^{\mu-(\sigma+\min (\mu-\sigma, \rho+d-\nu))}}$ we have

$$
\begin{aligned}
& N_{d, \sigma+d-\nu}=\frac{\left|Z_{\min (\mu-\sigma, \rho+d-\nu)+1}\right|}{p^{\mu-\min (\mu, \rho+\sigma+d-\nu)}}+\sum_{l=0}^{\min (\mu-\sigma, \rho+d-\nu)} \frac{\left|Y_{l}\right|}{p^{\mu-(\sigma+l)}} \\
& =p^{\nu-d-1}+(p-2) p^{\nu-d-1}+\sum_{l=1}^{\min (\mu-\sigma, \rho+d-\nu)} \frac{\varphi\left(p^{\mu-\sigma+\nu-d-l}\right)}{p^{\mu-\sigma-l}} \\
& =(p-1) p^{\nu-d-1}+\min (\mu-\sigma, \rho+d-\nu)(p-1) p^{\nu-d-1}=(1+\min (\mu-\sigma, \rho+d-\nu))(p-1) p^{\nu-d-1} .
\end{aligned}
$$

Thus

$$
\begin{align*}
& \sum_{d=\nu-\rho+1}^{\nu-1} N_{d, \sigma+d-\nu}=(p-1) \sum_{d=\nu-\rho+1}^{\nu-1}(1+\min (\mu-\sigma, \rho+d-\nu)) p^{\nu-d-1} \\
& =(p-1) \sum_{x=0}^{\rho-2}(1+\min (\mu-\sigma, \rho-x-1)) p^{x} \\
& =(p-1)\left(\sum_{x=0}^{\rho+\sigma-\mu-2}(1+\mu-\sigma) p^{x}+\sum_{x=\rho+\sigma-\mu-1}^{\rho-2}(\rho-x) p^{x}\right) \\
& =(1+\mu-\sigma)\left(p^{\rho+\sigma-\mu-1}-1\right)+\sum_{x=\rho+\sigma-\mu-1}^{\rho-2}(\rho-x) p^{x+1}-\sum_{x=\rho+\sigma-\mu-1}^{\rho-2}(\rho-x) p^{x} \tag{3.6}\\
& =(1+\mu-\sigma)\left(p^{\rho+\sigma-\mu-1}-1\right)+\sum_{x=\rho+\sigma-\mu}^{\rho-1}(\rho-x+1) p^{x}-\sum_{x=\rho+\sigma-\mu-1}^{\rho-2}(\rho-x) p^{x} \\
& =(1+\mu-\sigma)\left(p^{\rho+\sigma-\mu-1}-1\right)+2 p^{\rho-1}+\sum_{x=\rho+\sigma-\mu}^{\rho-2} p^{x}-(\mu+1-\sigma) p^{\rho+\sigma-\mu-1} \\
& =(\sigma-1-\mu)+2 p^{\rho-1}+p^{\rho+\sigma-\mu} \sum_{x=0}^{\mu-\sigma-2} p^{x}=(\sigma-1-\mu)+2 p^{\rho-1}+p^{\rho+\sigma-\mu} \frac{p^{\mu-\sigma-1}-1}{p-1} \\
& =(\sigma-1-\mu)+2 p^{\rho-1}+\frac{p^{\rho-1}-p^{\rho+\sigma-\mu}}{p-1} .
\end{align*}
$$

Combining (3.3), (3.4), (3.5). and (3.6), and recalling that $N_{\nu}=\mu+1$, we finally obtain that the number of conjugacy classes of cyclic subgroups of G

$$
\begin{align*}
\sum_{d=0}^{\nu} N_{d}= & \mu+1+\sum_{d=0}^{\nu-\rho} N_{d}+\sum_{d=\nu-\rho+1}^{\nu-1}\left(1+\sum_{h=0, h \neq \sigma+d-\nu}^{\min (\sigma, \rho+d)} N_{d, h}+N_{d, \sigma+d-\nu}\right) \\
= & \mu+1+p^{\rho-1}\left((\sigma-\rho)(p-1) \frac{1+2 \nu-\rho-\sigma}{2}+(\nu-\rho+1) p\right) \\
& +(1-\rho) p^{\rho-1}+\sigma\left(p^{\rho-1}-1\right)+2 \frac{p^{\rho-1}-1}{p-1}+(\sigma-1-\mu)+2 p^{\rho-1}+\frac{p^{\rho-1}-p^{\rho+\sigma-\mu}}{p-1} \\
= & p^{\rho-1} \sigma\left[1+(p-1) \frac{1+2 \nu-\rho-\sigma}{2}\right]+p^{\rho-1}\left(-\rho(p-1) \frac{1+2 \nu-\rho-\sigma}{2}+(\nu-\rho+1) p\right) \\
& +(1-\rho) p^{\rho-1}+2 \frac{p^{\rho-1}-1}{p-1}+2 p^{\rho-1}+\frac{p^{\rho-1}-p^{\rho+\sigma-\mu}}{p-1} \tag{3.7}\\
= & p^{\rho-1} \sigma\left[1+(p-1) \frac{1+2 \nu-\sigma}{2}\right]-\frac{p^{\rho+\sigma-\mu}}{p-1} \\
& +\frac{3 p^{\rho-1}-2}{p-1}+p^{\rho-1} \frac{6-2 \rho-\rho(p-1)(1+2 \nu-\rho)+2(\nu-\rho+1) p}{2} \\
= & p^{\rho-1} \sigma\left[1+(p-1) \frac{1+2 \nu-\sigma}{2}\right]-\frac{p^{\rho+\sigma-\mu}}{p-1} \\
& +\frac{3 p^{\rho-1}-2}{p-1}+p^{\rho-1} \frac{6-\rho+2 \nu \rho-\rho^{2}+p\left(\rho^{2}+2 \nu-3 \rho-2 \nu \rho+2\right)}{2}=A_{\sigma}+A .
\end{align*}
$$

Lemma 3.3. If $\epsilon=-1$, then the number of conjugacy classes of G is $3 \cdot 2^{\nu-1}+2^{\rho-1}\left(3 \cdot 2^{\nu-1}-2^{\nu+\rho-\mu}\right)$.
Proof. By a Theorem of Berman [Ber55], the number of conjugacy classes of G is $2^{\nu} \sum_{i=1}^{k} \frac{1}{h_{i}}$ where h_{1}, \ldots, h_{k} are the cardinalities of the conjugacy classes of G contained in $\langle a\rangle$. To compute these cardinalities we first
classify the elements of $\langle a\rangle$ by its order. More precisely we set $C_{\delta}=\left\{x \in\langle a\rangle:|x|=2^{\delta}\right\}$, for $0 \leq \delta \leq \mu$. Each conjugacy class of G contained in $\langle a\rangle$ is contained in some C_{δ}. Moreover, $a^{i} \in C_{\delta}$ if and only if $\frac{2^{\mu}}{\operatorname{gcd}\left(i, 2^{\mu}\right)}=2^{\delta}$. In that case, if d is the cardinality of the conjugacy class of G containing a^{i}, then $C_{G}\left(a^{i}\right)=\left\langle a, b^{d}\right\rangle$ and d is the minimum positive integer with $i\left(-1+2^{\rho}\right)^{d} \equiv i \bmod 2^{\mu}$ or equivalently $\left(-1+2^{\rho}\right) \equiv 1 \bmod 2^{\delta}$. Thus $d=o_{2^{\delta}}\left(-1+2^{\rho}\right)$. This shows that each conjugacy class of G contained in C_{δ} has $o_{2^{\delta}}\left(-1+2^{\rho}\right)$ elements. As $\left|C_{\delta}\right|=\varphi\left(2^{\delta}\right)$, the list h_{1}, \ldots, h_{k} is formed by the integers $o_{2^{\delta}}\left(-1+2^{\rho}\right)$ with this integer repeated $\frac{\varphi\left(2^{\delta}\right)}{o_{2^{\delta}}\left(-1+2^{\rho}\right)}$ times. Hence Berman result provides the following formula for the number of conjugacy classes of G :

$$
2^{\nu} \sum_{\delta=0}^{\mu} \frac{\varphi\left(2^{\delta}\right)}{o_{2^{\delta}}\left(-1+2^{\rho}\right)^{2}}
$$

By Lemma 2.1.(2),

$$
o_{2^{\delta}}\left(-1+2^{\rho}\right)= \begin{cases}1, & \text { if } \delta \leq 1 \\ 2^{\max (1, \delta-\rho)}, & \text { otherwise }\end{cases}
$$

Then, $\sum_{\delta=0}^{\rho} \frac{\varphi\left(2^{\delta}\right)}{o_{2^{\delta}}\left(-1+2^{\rho}\right)^{2}}=2+\sum_{\delta=2}^{\rho} 2^{\delta-3}=2+\frac{1}{2} \sum_{\alpha=0}^{\rho-2} 2^{\alpha}=2+\frac{2^{\rho-1}-1}{2}$ and, if $\rho<\mu$, then

$$
\sum_{\delta=\rho+1}^{\mu} \frac{\varphi\left(2^{\delta}\right)}{o_{2^{\delta}}\left(-1+2^{\rho}\right)^{2}}=\sum_{\delta=\rho+1}^{\mu} 2^{2 \rho-\delta-1}=\sum_{\beta=2 \rho-\mu-1}^{\rho-2} 2^{\beta}=2^{2 \rho-\mu-1} \sum_{\beta=0}^{\mu-\rho-1} 2^{\beta}=2^{2 \rho-\mu-1}\left(2^{\mu-\rho}-1\right)
$$

Observe that if $\rho=\mu$, then the latter is 0 . Thus, the number of conjugacy classes of G is

$$
2^{\nu+1}+2^{\nu-1}\left(2^{\rho-1}-1\right)+2^{\nu+2 \rho-\mu-1}\left(2^{\mu-\rho}-1\right)=3 \cdot 2^{\nu-1}+2^{\rho-1}\left(3 \cdot 2^{\nu-1}-2^{\nu+\rho-\mu}\right)
$$

as desired.
Lemma 3.4. Suppose that $\epsilon=-1, \rho \geq \mu-1$ and $\mu \geq 3$. Then the following statements hold:
(1) $\mathbb{Q} G$ has a simple component with center $\mathbb{Q}\left(\zeta_{2^{\mu}}+\zeta_{2^{\mu}}^{-1}\right)$ if and only if $\rho=\sigma=\mu$.
(2) $\mathbb{Q} G$ has a simple component with center $\mathbb{Q}\left(\zeta_{2^{\mu}}-\zeta_{2^{\mu}}^{-1}\right)$ if and only if $\rho=\mu-1$ and $\sigma=\mu$.

Proof. Let $H=C_{G}(a)$ and $K_{0}=\left\langle b^{2}\right\rangle$. The assumption $\rho \geq \mu-1$ implies that $H=\left\langle a, b^{2}\right\rangle$ is a maximal abelian subgroup of G. Then $\left(H, K_{0}\right)$ satisfy the conditions in Theorem 2.6 and hence $\mathbb{Q} G e\left(G, H, K_{0}\right)$ is a simple component of $\mathbb{Q} G$. Moreover, by Proposition 2.5 we have

$$
Z\left(\mathbb{Q} G e\left(G, H, K_{0}\right)\right) \cong \begin{cases}\mathbb{Q}\left(\zeta_{2^{\mu}}+\zeta_{2^{\mu}}^{-1}\right), & \text { if } \rho=\sigma=\mu ; \\ \mathbb{Q}\left(\zeta_{2^{\mu}}-\zeta_{2^{\mu}}^{-1}\right), & \text { if } \rho=\mu-1 \text { and } \sigma=\mu ; \\ \mathbb{Q}\left(\zeta_{2^{\mu-1}}+\zeta_{2^{\mu-1}}^{-1}\right), & \text { if } \rho=\sigma=\mu-1\end{cases}
$$

This proves the reverse implication of (1) and (2).
Conversely suppose that A is a simple component of $\mathbb{Q} G$ with center $\mathbb{Q}\left(\zeta_{2^{\mu}}+\zeta_{2^{\mu}}^{-1}\right)$ or $\mathbb{Q}\left(\zeta_{2^{\mu}}-\zeta_{2^{\mu}}^{-1}\right)$. Since $\mu \geq 3$, this fields are not cyclotomic extensions of \mathbb{Q} and therefore A is not commutative, for otherwise A will be a Wedderburn component of $\mathbb{Q}\left(G / G^{\prime}\right)$ and the Wedderburn components of a commutative rational group algebra are cyclotomic extensions of \mathbb{Q}. As H is maximal abelian in G and $G / H \cong C_{2}$ there is a pair $\left(H_{1}, K\right)$ of subgroups of G satisfying the conditions of Theorem 2.6 and $H_{1} \in\{H, G\}$. However, $H_{1} \neq G$ because A is not commutative. Therefore $H=H_{1}$. If K is not normal in G, then $N_{G}(K)=H$ and hence $A \cong M_{2}\left(\mathbb{Q}\left(\zeta_{[H: K]}\right)\right)$ contradicting the fact that the center of A is not cyclotomic. Thus, K is normal in G and the center of A has index 2 in $\mathbb{Q}\left(\zeta_{[H: K]}\right)$. By Proposition 2.5, $\varphi([H: K])=2 \operatorname{dim} Z(A)=2^{\mu-1}$ and hence $[H: K]=2^{\mu}$. Another consequence of Proposition 2.5 and the fact that A is not commutative is that $H \neq\left\langle K, b^{2}\right\rangle$ and as $H / K=\left\langle a K, b^{2} K\right\rangle$ is a cyclic 2-group it follows that $H=\langle K, a\rangle$. As $[H: K]=2^{\mu}=|a|$ we have $a^{2^{\mu-1}} \notin K$. Thus $G^{\prime} \cap K=1$. As K is normal in G, it follows that $K \subseteq Z(G)=\left\langle a^{2^{\mu-1}}, b^{2}\right\rangle$. If $\sigma=\mu-1$, then $Z(G)=\left\langle b^{2}\right\rangle$ and its order is 2^{ν}. Then $K=\left\langle b^{4}\right\rangle$, which is not possible because $H /\left\langle b^{4}\right\rangle$ is not cyclic. Thus $\sigma=\mu$ and $Z(G)=\left\langle a^{2^{\mu-1}}\right\rangle \times\left\langle b^{2}\right\rangle$. Then $K=\left\langle b^{2}\right\rangle$ or $K=\left\langle a^{2^{\mu-1}} b^{2}\right\rangle$. Arguing as in the first paragraph we deduce that $Z(\mathbb{Q} G e(G, H, K))=\mathbb{Q}\left(\zeta_{2^{\mu}}+\zeta_{2^{\mu}}^{-1}\right)$ if $\rho=\mu$ and $Z(\mathbb{Q} G e(G, H, K))=\mathbb{Q}\left(\zeta_{2^{\mu}}-\zeta_{2^{\mu}}^{-1}\right)$ if $\rho=\mu-1$.

Lemma 3.5. Suppose that $\epsilon=-1$ and $\rho<\mu<\nu+\rho$. Let $F=\left\{\alpha \in \mathbb{Q}\left(\zeta_{2^{\mu}}\right): \sigma_{-1+2^{\rho}}(\alpha)=\alpha\right\}$. Then $\mathbb{Q} G$ has a simple component of degree $2^{\mu-\rho}$ and center F if and only if $\sigma=\mu$.

Proof. Let $H=\left\langle a, b^{2^{\mu-\rho}}\right\rangle$. Suppose that $\sigma=\mu$ and let $K=\left\langle b^{2^{\mu-\rho}}\right\rangle$. Then (H, K) satisfies the conditions of Theorem 2.6, and by Proposition 2.5, we have that $\mathbb{Q} G e(G, H, K)$ has degree $[G: H]=2^{\mu-\rho}$ and center F.

Otherwise, by condition (C) in Theorem 2.3 we have $\sigma=\mu-1$. By means of contradiction suppose that $\mathbb{Q} G$ has a simple component A of degree $2^{\mu-\rho}$ and center F. Then $H=\left\langle a, b^{2^{\mu-\rho}}\right\rangle$. As H is maximal abelian subgroup of G with G / H abelian, by Theorem 2.6 , we have $A=\mathbb{Q} G e\left(G, H_{1}, K\right)$ for subgroups H_{1} and K satisfying the conditions of Theorem 2.6 and $H_{1} \supseteq H$. However, by Proposition $2.5,[G: H]=2^{\mu-\rho}=$ $\operatorname{Deg}(A)=\left[G: H_{1}\right]$ and hence $H_{1}=H$. As H / K is cyclic, either $H=\langle a, K\rangle$ or $H=\left\langle b^{2^{\mu-\rho}}, K\right\rangle$. In the second case $N_{G}(K) / K$ is abelian and by Proposition 2.5 , the center F of A is a cyclotomic extension of \mathbb{Q}, which is not the case. Therefore $H=\langle a, K\rangle$. In particular $[H: K] \leq|a|=2^{\mu}$. If $a^{2^{\mu-1}} \in K$, then $\left\langle a^{2^{\mu-1}}\right\rangle=$ $\left\langle a, b^{2^{\mu-\rho-1}}\right\rangle^{\prime} \subseteq K \unlhd\left\langle a, b^{2^{\mu-\rho-1}}\right\rangle$ and $\left\langle a, b^{2^{\mu-\rho-1}}\right\rangle$ contains properly H, in contradiction with the assumption that (H, K) satisfy condition (1) of Theorem 2.6. Therefore $K \cap\langle a\rangle=1$, and hence $[H: K] \geq|a|=2^{\mu}$. So $[H: K]=2^{\mu}$. As $N_{G}(K) / H \cong \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{[H: K]}\right) / F\right)$, we have $\left[N_{G}(K): H\right]=\left[\mathbb{Q}\left(\zeta_{[H: K]}\right): F\right]=2^{\mu-\rho}=[G: H]$ and hence $G=N_{G}(K)$, i.e. $K \unlhd G$. As $K \cap G^{\prime}=1$ it follows that $K \subseteq Z(G)=\left\langle a^{2^{\mu-1}}, b^{2^{\mu-\rho}}\right\rangle=\left\langle b^{2^{\mu-\rho}}\right\rangle$. Finally, the assumption $\mu<\nu+\rho$ implies that H contains $\langle a\rangle$ properly. Therefore $|H|>2^{\mu}$, and hence K is a non-trivial subgroup of the cyclic subgroup $\left\langle b^{2^{\mu-\rho}}\right\rangle$. Thus K contains the unique element of order 2 of $Z(G)$, namely $a^{2^{\mu-1}}$, a contradiction.

We are ready to prove the main result of this section.
Theorem 3.6. Let p be prime integer. If G_{1} and G_{2} are finite metacyclic p-groups and $\mathbb{Q} G_{1} \cong \mathbb{Q} G_{2}$, then $G_{1} \cong G_{2}$.

Proof. Suppose that $\mathbb{Q} G_{1} \cong \mathbb{Q} G_{2}$. By Theorem 2.3, we have $G_{i} \cong \mathcal{P}_{p, \mu_{i}, \nu, \sigma_{i}, \rho_{i}, \epsilon_{i}}$ with each list $\mu_{i}, \nu_{i}, \sigma_{i}, \rho_{i}, \epsilon_{i}$ satisfying conditions (A)-(C). We will prove that $\left(\mu_{1}, \nu_{1}, \sigma_{1}, \rho_{1}, \epsilon_{1}\right)=\left(\mu_{2}, \nu_{2}, \sigma_{2}, \rho_{2}, \epsilon_{2}\right)$.

First of all $p^{\mu_{1}+\nu_{1}}=\left|G_{1}\right|=\left|G_{2}\right|=p^{\mu_{2}+\nu_{2}}$ and hence $\mu_{1}+\nu_{1}=\mu_{2}+\nu_{2}$. Moreover, by Theorem 2.8 we have $G_{1} / G_{1}^{\prime} \cong G_{2} / G_{2}^{\prime}$ and from conditions (B) and (C) it follows that

$$
G_{i} / G_{i}^{\prime} \cong \begin{cases}C_{p^{\rho_{i}}} \times C_{p^{\nu_{i}}}, & \text { if } \epsilon_{i}=1 \\ C_{2} \times C_{2^{\nu_{i}}}, & \text { if } \epsilon_{i}=-1\end{cases}
$$

Suppose that $\epsilon_{1}=1$ and $\epsilon_{2}=-1$. Then $C_{2^{\rho_{1}}} \times C_{2^{\nu_{i}}} \cong C_{2} \times C_{2^{\nu_{2}}}$, by Theorem 2.8, and by conditions (B) and (C) we have $p=2, \rho_{1} \leq \nu_{1}, 2 \leq \rho_{2}$ and $1 \leq \nu_{2}$. Therefore $\rho_{1}=1$, and hence $\mu_{1}=1$ by condition (A). This implies that G_{1} is abelian but G_{2} is not abelian, in contradiction with $\mathbb{Q} G_{1} \cong \mathbb{Q} G_{2}$. This proves that $\epsilon_{1}=\epsilon_{2}$, which we denote ϵ from now on.

Moreover, if $\epsilon=1$, then $C_{p^{\rho_{1}}} \times C_{p^{\nu_{1}}} \cong C_{p^{\rho_{2}}} \times C_{p^{\nu_{2}}}$ with $\rho_{i} \leq \nu_{i}$, and if $\epsilon=-1$, then $C_{2} \times C_{2^{\nu_{1}}} \cong C_{2} \times C_{2^{\nu_{2}}}$ and $1 \leq \nu_{1}, \nu_{2}$. Thus, in both cases $\nu_{1}=\nu_{2}$, and hence $\mu_{1}=\mu_{2}$. From now on we set $\mu=\mu_{i}$ and $\nu=\nu_{i}$. Suppose that $\epsilon=1$. Then $C_{p^{\rho_{1}}} \times C_{p^{\nu_{1}}} \cong C_{p^{\rho_{2}}} \times C_{p^{\nu_{2}}}$ and hence $\rho_{1}=\rho_{2}$, which we denote ρ. Moreover, by Artin's Theorem (Theorem 2.7), the number of Wedderburn components of $\mathbb{Q} G_{i}$ is the number of conjugacy classes of cyclic subgroups of G_{i}. Therefore, if $A_{\sigma_{1}}$ and $A_{\sigma_{2}}$ are as defined in Lemma 3.2 , then we have $A_{\sigma_{1}}=A_{\sigma_{2}}$. Let

$$
B_{\sigma_{i}}=2 p^{\mu-\rho}(p-1) A_{i}=-2 p^{\sigma_{i}}+\sigma_{i} p^{\mu-1}(p-1)\left(2+(p-1)\left(1+2 \nu-\sigma_{i}\right)\right)
$$

Then $B_{\sigma_{1}}=B_{\sigma_{2}}$. By means of contradiction, assume without loss of generality that $\sigma_{1}<\sigma_{2}$. By condition (B) we have $\sigma_{1}<\sigma_{2} \leq \mu \leq \nu+\rho$. If $\sigma_{1}<\mu-1$, then $\min \left(\sigma_{2}, \mu-1\right) \leq v_{p}\left(B_{\sigma_{2}}\right)=v_{p}\left(B_{\sigma_{1}}\right)=\sigma_{1}<\mu-1$, which contradicts the assumption $\sigma_{2}>\sigma_{1}$. Therefore, $\mu-1 \leq \sigma_{1}<\sigma_{2} \leq \min (\mu, \nu)$, i.e. $\sigma_{1}=\mu-1$ and
$\sigma_{2}=\mu \leq \nu$. Then

$$
\begin{aligned}
0= & B_{\mu}-B_{\mu-1} \\
= & -2 p^{\mu}+\mu p^{\mu-1}(p-1)(2+(p-1)(2 \nu+1-\mu)) \\
& +2 p^{\mu-1}-(\mu-1) p^{\mu-1}(p-1)(2+(p-1)(2 \nu+1-(\mu-1))) \\
= & p^{\mu-1}(p-1)[-2+\mu(2+(p-1)(2 \nu+1-\mu))-(\mu-1)(2+(p-1)(2 \nu+2-\mu))] \\
= & p^{\mu-1}(p-1)[-2+2 \mu-2(\mu-1)+\mu(p-1)(2 \nu+1-\mu)-(\mu-1)(p-1)(2 \nu+2-\mu)] \\
= & p^{\mu-1}(p-1)[\mu(p-1)(2 \nu+1-\mu)-\mu(p-1)(2 \nu+2-\mu)+(p-1)(2 \nu+2-\mu)] \\
= & 2 p^{\mu-1}(p-1)^{2}(\nu+1-\mu)>0,
\end{aligned}
$$

which is the desired contradiction.
Suppose now that $\epsilon=-1$. We first prove that $\rho_{1}=\rho_{2}$. By means of contradiction suppose that $\rho_{1}<\rho_{2}$. It is well known that the dimension over \mathbb{Q} of the center of $\mathbb{Q} G_{i}$ is the number of conjugacy classes of G_{i}. Then, by Lemma 3.3 we have

$$
2^{\rho_{1}}\left(3 \cdot 2^{\nu-1}-2^{\nu+\rho_{1}-\mu}\right)=2^{\rho_{2}}\left(3 \cdot 2^{\nu-1}-2^{\nu+\rho_{2}-\mu}\right)
$$

If $\rho_{2}<\mu-1$, then

$$
2 \rho_{2}+\nu-\mu=v_{2}\left(2^{\rho_{2}}\left(3 \cdot 2^{\nu-1}-2^{\nu+\rho_{2}-\mu}\right)=v_{2}\left(2^{\rho_{1}}\left(3 \cdot 2^{\nu-1}-2^{\nu+\rho_{1}-\mu}\right)\right)=2 \rho_{1}+\nu-\mu,\right.
$$

which contradicts the assumption $\rho_{1}<\rho_{2}$. Therefore $\rho_{2} \geq \mu-1$. If $\rho_{1}<\mu-1$, then using that $\mu \geq 2$, by condition (C), we have

$$
\rho_{2}+\nu-1 \leq v_{2}\left(2^{\rho_{2}}\left(3 \cdot 2^{\nu-1}-2^{\nu+\rho_{2}-\mu}\right)=v_{2}\left(2^{\rho_{1}}\left(3 \cdot 2^{\nu-1}-2^{\nu+\rho_{1}-\mu}\right)\right)=2 \rho_{1}+\nu-\mu<\rho_{1}+\nu-1\right.
$$

again in contradiction with the assumption $\rho_{1}<\rho_{2}$. Therefore $\rho_{1}=\mu-1$ and $\rho_{2}=\mu$, and hence $\mu \geq 3$, by condition (A). If $\sigma_{2}=\mu$, then, by Lemma 3.4, $\mathbb{Q} G_{2}$ has a simple component with center isomorphic to $\mathbb{Q}\left(\zeta_{2^{\mu}}+\zeta_{2^{\mu}}\right)$ while $\mathbb{Q} G_{1}$ does not. Therefore $\sigma_{2}=\mu-1$. This implies that $\nu=1$, by condition (C). Therefore G_{2} is the quaternion group of order $2^{\mu+1}$. If $\sigma_{1}=\mu$, then G_{1} is the dihedral group of order $2^{\mu+1}$. Otherwise $\sigma_{1}=\mu-1$ and, if $b_{1}=b a$, then $b_{1}^{2}=1$ so that G_{1} is the semidihedral group $\left\langle a, b_{1} \mid a^{2^{\mu-1}}=b_{1}^{2}=1, a^{b_{1}}=a^{-1+2^{\mu-1}}\right\rangle$. Looking at the Wedderburn decomposition of the rational group algebras of dihedral, semidihedral groups and quaternion group in [JdR16, 19.4.1] we deduce that $\mathbb{Q} G_{2}$ has a simple component isomorphic to the quaternion algebra $\mathbb{H}\left(\mathbb{Q}\left(\zeta_{2^{\mu}}+\zeta_{2^{\mu}}\right)\right)$, which is a non-commutative division algebra, while $\mathbb{Q} G_{1}$ does not have any Wedderburn component which is a non-commutative division algebra. This yields the desired contradiction in this case.

So we can set $\rho=\rho_{1}=\rho_{2}$ and it remains to prove that $\sigma_{1}=\sigma_{2}$. Otherwise, we may assume that $\sigma_{1}=\mu-1$ and $\sigma_{2}=\mu<\nu+\rho$, by condition (C). If $\rho<\mu$, then we obtain a contradiction with Lemma 3.5. Thus $\rho=\mu$. If $\mu \geq 3$, then the contradiction follows from Lemma 3.4. Thus $\mu=2$, but then G_{1} is the quaternion group of order 8 and G_{2} is the dihedral group of order 8 and again $\mathbb{Q} G_{1}$ has Wedderburn component which is a non-commutative division algebra but $\mathbb{Q} G_{2}$ does not, yielding to the final contradiction.

4. The Isomorphism Problem for finite metacyclic nilpotent groups

Given a finite group G we say that a Wedderburn component of $\mathbb{Q} G$ is a p-component if its degree is a power of p and its center embeds in $\mathbb{Q}\left(\zeta_{p^{n}}\right)$ for some non-negative integer n.
Lemma 4.1. Let G be a finite group and (L, K) a strong Shoda pair of G. Then $\mathbb{Q} G e(G, L, K)$ is a p component if and only if $[G: L]$ is a power of p and $[L: K]_{p^{\prime}} \in\{1,2\}$.
Proof. The reverse implication is a direct consequence of Proposition 2.5. Conversely, set $A=\mathbb{Q} G e(G, L, K)$ and suppose that A is a p-component. Let $d=[G: L]$ and $c=[L: K]$. As d is the degree of A, it is a power of p. Moreover the center of A is isomorphic to the Galois correspondent $F_{G, L, K}=\mathbb{Q}\left(\zeta_{c}\right) \operatorname{Im}^{(\alpha)}$ of a subgroup of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{c}\right) / \mathbb{Q}\right)$ isomorphic to $N_{G}(K) / L$ (Remark 2.4). The assumption implies that $F \subseteq \mathbb{Q}\left(\zeta_{c_{p}}\right)$. As $\left[N_{G}(K): L\right]$ is a power of p, so is $\left[\mathbb{Q}\left(\zeta_{c}\right): F_{G, L, K}\right]$ and hence $\varphi\left(c_{p^{\prime}}\right)=\left[\mathbb{Q}\left(\zeta_{c}\right): \mathbb{Q}\left(\zeta_{c_{p}}\right)\right]$ is a power of p. Then $c_{p^{\prime}}$ is either 1 or 2.

If G is a finite group, then we use the notation

$$
\pi_{G}=\left\{p \in \pi(G): G \text { has a normal Hall } p^{\prime}-\text { subgroup }\right\} \quad \text { and } \quad \pi_{G}^{\prime}=\pi(G) \backslash \pi_{G}
$$

Remark 4.2. If G is metacyclic and p is the smallest prime dividing $|G|$, then $p \in \pi_{G}$. In particular, $2 \notin \pi_{G}^{\prime}$.
Proof. Let $\pi=\pi_{G}$ and $\pi^{\prime}=\pi_{G}^{\prime}$. If $p \in \pi^{\prime}$, then, by [GBdR23, Lemma 3.1], G_{p}^{\prime} has a non-central element h of order p. Therefore G contains an element g such that $[g, h] \neq 1$, and we may assume that $|g|$ is a power of a prime q. Then $\operatorname{Aut}(\langle h\rangle)$ has an element of order q. As $\operatorname{Aut}(\langle h\rangle)$ has order $p-1$ it follows that $q \mid p-1$ and in particular $q>p$. Thus p is not the smallest prime dividing $|G|$.

Lemma 4.3. If G and H are metacyclic groups with $\mathbb{Q} G \cong \mathbb{Q} H$, then $\pi_{G}^{\prime}=\pi_{H}^{\prime}$ and $\pi_{G}=\pi_{H}$.
Proof. Let $\pi=\pi_{G}$ and $\pi^{\prime}=\pi_{G}^{\prime}$. We claim that $\pi^{\prime}=\left\{p \in \pi\left(G^{\prime}\right):\left(G / G^{\prime}\right)_{p}\right.$ is cyclic $\}$. Let $A=\langle a\rangle \unlhd G$ and $B=\langle b\rangle \leq G$ with $G=A B$. By [GBdR23, Lemma 3.1], $\left\langle a_{p}, b_{p}\right\rangle$ is a Sylow p-subgroup of $G, A_{\pi^{\prime}}=G_{\pi^{\prime}}^{\prime}$ and $G=A_{\pi^{\prime}} \rtimes\left(B_{\pi^{\prime}} \times \prod_{q \in \pi} A_{q} B_{q}\right)$. Therefore, if $p \in \pi^{\prime}$, then $\left(G / G^{\prime}\right)_{p}$ is cyclic. If $p \in \pi^{\prime} \backslash \pi\left(G^{\prime}\right)$, then $A_{\pi^{\prime}} \rtimes\left(B_{\pi^{\prime} \backslash\{p\}} \times \prod_{q \in \pi} A_{q} B_{q}\right)$ is a normal Hall p^{\prime}-subgroup of G and hence $p \in \pi$, a contradiction. This proves that $\pi^{\prime} \subseteq\left\{p \in \pi\left(G^{\prime}\right):\left(G / G^{\prime}\right)_{p}\right.$ is cyclic $\}$. Conversely, if $p \in \pi$, then $\left[b_{p^{\prime}}, a_{p}\right]=1$ and therefore $G_{p}^{\prime}=\left\langle a_{p}, b_{p}\right\rangle^{\prime}$. Then $\left(G / G^{\prime}\right)_{p} \cong\left\langle a_{p}, b_{p}\right\rangle /\left\langle a_{p}, b_{p}\right\rangle^{\prime}$. Therefore, if $\left(G / G^{\prime}\right)_{p}$ is cyclic, then so is $\left\langle a_{p}, b_{p}\right\rangle$ by the Burnside Basis Theorem. In that case $1=\left\langle a_{p}, b_{p}\right\rangle=G_{p}^{\prime}$, i.e. $p \notin \pi\left(G^{\prime}\right)$. This finishes the proof of the claim.

By Theorem 2.8, the assumption implies that $G / G^{\prime} \cong H / H^{\prime}$ and hence $\left|G^{\prime}\right|=\left|H^{\prime}\right|$. Then $G^{\prime} \cong H^{\prime}$ as both G^{\prime} and H^{\prime} are cyclic. Then, using the claim for G and H_{i}, we deduce that $\pi_{G}^{\prime}=\left\{p \in \pi\left(G^{\prime}\right)\right.$: $\left(G / G^{\prime}\right)_{p}$ is cyclic $\}=\left\{p \in \pi\left(H^{\prime}\right):\left(H / H^{\prime}\right)_{p}\right.$ is cyclic $\}=\pi_{H}^{\prime}$ and $\pi_{G}=\pi(|G|) \backslash \pi_{G}^{\prime}=\pi(|H|) \backslash \pi_{H}^{\prime}=\pi_{H}$.

In the remainder of the paper if G is a group and p is a prime, then G_{p} denotes a Sylow subgroup of G and $G_{p^{\prime}}$ a Hall p^{\prime}-subgroup of G.
Lemma 4.4. If G is metacyclic and $p \in \pi_{G}$, then the sum of the p-components of $\mathbb{Q} G$ is isomorphic to a direct product of k copies of $\mathbb{Q} G_{p}$, where

$$
k= \begin{cases}1, & \text { if } p=2 \\ {\left[G_{2}: G_{2}^{\prime} G_{2}^{2}\right],} & \text { otherwise }\end{cases}
$$

Proof. Let $\pi=\pi_{G}$ and $\pi^{\prime}=\pi_{G}^{\prime}$ and suppose that $p \in \pi$. By Remark $4.2,2 \notin \pi^{\prime}$ and hence G has a normal Hall $\{2, p\}^{\prime}$-subgroup N. Let e be a primitive central idempotent such that $\mathbb{Q} G e$ is a p-component of G. Then $e=e(G, L, K)$ for some strong Shoda pair (L, K) of G and, by Lemma $4.1[G: K]$ is either a power of p or 2 times a power of p. In particular $N \subseteq K$. Then $\widehat{N} \widehat{M}=\widehat{M}$ for every subgroup M containing K and as N is normal in G we also have $\widehat{N} \widehat{M^{g}}=0$ for every $g \in G$. This implies that $\widehat{N} e=e$. This proves that every p-component of $\mathbb{Q} G$ is contained in $\mathbb{Q} G \widehat{N}$. Therefore $\mathbb{Q} G \widehat{N}=A \oplus B$, where A is the sum of the p-components of $\mathbb{Q} G$, and B is the sum of the Wedderburn components of $\mathbb{Q} G \widehat{N}$ which are not p-components. We want to prove that $\mathbb{Q}\left(G_{p}\right)^{k} \cong A$.

Suppose first that $p=2$. Therefore $N=G_{2^{\prime}}$, and hence $G / N \cong G_{2}$. Thus G / N is a 2 -group, and hence every Wedderburn component of $\mathbb{Q}(G / N)$, and $\mathbb{Q} G \widehat{N}$, is a p-component. Therefore $\mathbb{Q}\left(G_{2}\right) \cong \mathbb{Q} G \widehat{N}=A$, as desired.

Suppose that $p \neq 2$. Then $G / N=U_{2} \times U_{p}^{\prime}$ with $U_{2}=G_{p^{\prime}} / N \cong G_{2}$, and $U_{p}=G_{2^{\prime}} / N \cong G_{p}$. Let $F_{2}=U_{2}^{\prime} U_{2}^{2}$, the Frattini subgroup of U_{2}. Then $F_{2}=L / N$ for some subgroup L of $G_{p^{\prime}}$ and, by Lemma 4.1, it follows that $L \subseteq K$ and the argument in the first paragraph shows that every p-component of $\mathbb{Q} G$ is contained in $\mathbb{Q} G \widehat{L}$. Thus $\mathbb{Q} G \widehat{L}=A \oplus C$ where C is the sum of the Wedderburn components of $\mathbb{Q} G \widehat{L}$ which are not p-components. Moreover, $G / L \cong U_{p} \times E$ for E an elementary abelian 2-group of order k. Then $\mathbb{Q} E \cong \mathbb{Q}^{k}$ and hence $\mathbb{Q} G \widehat{L} \cong \mathbb{Q}(G / L) \cong\left(\mathbb{Q} U_{p}\right)^{k}$. Moreover, as U_{p} is a p-group, every Wedderburn component of $\mathbb{Q} U_{p}$ is a p-component. In other words, $C=0$ and hence $A \cong\left(\mathbb{Q} U_{p}\right)^{k}=\left(\mathbb{Q} G_{p}\right)^{k}$, as desired.
Lemma 4.5. Let G and H be finite metacyclic groups with $\mathbb{Q} G \cong \mathbb{Q} H$, let $p \in \pi_{G}$ and let G_{p} and H_{p} be Sylow subgroups of G and H respectively. Then $\mathbb{Q} G_{p} \cong \mathbb{Q} H_{p}$.
Proof. Let $\pi=\pi_{G}$ and $\pi^{\prime}=\pi_{G}^{\prime}$ and let k be as in Lemma 4.4. As $2 \notin \pi^{\prime}$, by Remark 4.2, and $G / G_{\pi^{\prime}}$ is nilpotent, it follows that $G_{2} / G_{2}^{\prime} G_{2}^{2}$ is isomorphic to the Sylow 2-subgroup of the quotient G / G^{\prime} by its Frattini subgroup. Since $G / G^{\prime} \cong H / H^{\prime}$, the value of k is the same whether it is computed for G or H. Let A_{G} and A_{H} be the sum of the Wedderburn p-components of $\mathbb{Q} G$ and $\mathbb{Q} H$. Since $\mathbb{Q} G \cong \mathbb{Q} H, A_{G} \cong A_{H}$. By Lemma $4.4,\left(\mathbb{Q} G_{p}\right)^{k} \cong A_{G} \cong A_{H} \cong\left(\mathbb{Q} H_{p}\right)^{k}$ an therefore $\mathbb{Q} G_{p} \cong \mathbb{Q} H_{p}$.

We are ready to prove our main results. We first state and prove Theorem A.
Theorem 4.6. Let G and H be two metacyclic finite groups such that $\mathbb{Q} G \cong \mathbb{Q} H$. Then $\pi_{G}=\pi_{H}$ and the Hall π_{G}-subgroups of G and H are isomorphic.

Proof. By Lemma 4.3 we have $\pi_{G}=\pi_{H}$ and from now on we denote the latter by π. Then the Hall π-subgroups of G and H are nilpotent, and hence it is enough to prove that if $p \in \pi$, then the Sylow p subgroups G_{p} of G and H_{p} of H are isomorphic. However, $\mathbb{Q} G_{p} \cong \mathbb{Q} H_{p}$, by Lemma 4.5, and hence $G_{p} \cong H_{p}$, by Theorem 3.6.

If G is nilpotent, then $\pi_{G}^{\prime}=\emptyset$ and hence Corollary B follows directly from Theorem 4.6.

References

[Ber52] S. D. Berman, On the theory of representations of finite groups, Dokl. Akad. Nauk SSSR (N.S.) 86 (1952), 885-888. [Ber55] , Group algebras of abelian extensions of finite groups, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), $431-434$. [Ber56] , p-adic ring of characters, Dokl. Akad. Nauk SSSR (N.S.) 106 (1956), 583-586. MR 0077539 (17,1052g)
[Bey72] F. R. Beyl, The classification of metacyclic p-groups, and other applictations to homological algebra to group theory, ProQuest LLC, Ann Arbor, MI, 1972, Thesis (Ph.D.)-Cornell University. MR 2622614
[BGLdR23] O. Broche, D. García-Lucas, and Á. del Río, A classification of the finite 2-generator cyclic-by-abelian groups of prime-power order, International Journal of Algebra and Computation 33 (2023), no. 04, 641-686.
[Bra51] R. Brauer, On the algebraic structure of group rings, J. Math. Soc. Japan 3 (1951), 237-251. MR 0044577 (13,442b)
[CR62] Ch. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley \& Sons, New York-London, 1962. MR 0144979 (26 \#2519)
[Dad71] E. Dade, Deux groupes finis distincts ayant la même algèbre de groupe sur tout corps, Math. Z. 119 (1971), 345-348.
[GBdR23] À. García-Blázquez and Á. del Río, A classification of metacyclic groups by group invariants, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 66(114) (2023), no. 2, 209-233.
[Hal59] M. Hall, Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
[Hem00] C. E. Hempel, Metacyclic groups, Communications in Algebra 28 (2000), no. 8, 3865-3897.
[Her01] M. Hertweck, A counterexample to the isomorphism problem for integral group rings, Ann. of Math. 154 (2001), 115-138.
[Hig40a] G. Higman, Units in group rings, Thesis (Ph.D.)-Univ. Oxford, 1940.
[Hig40b] _ , The units of group-rings, Proc. London Math. Soc. (2) 46 (1940), 231-248. MR 0002137 (2,5b)
[JdR16] E. Jespers and Á. del Río, Group Ring Groups. Volume 1: Orders and generic constructions of units, Berlin: De Gruyter, 2016.
[Kin73] B. W. King, Presentations of metacyclic groups, Bull. Austral. Math. Soc. 8 (1973), 103-131. MR 323893
[KP21] R. S. Kulkarni and S. S. Pradhan, Schur index and extensions of witt-berman's theorems, arxiv. 2012.10892 (2021).
[Lie94] S. Liedahl, Presentations of metacyclic p-groups with applications to K-admissibility questions, J. Algebra 169 (1994), no. 3, 965-983. MR 1302129
[Lie96] , Enumeration of metacyclic p-groups, J. Algebra 186 (1996), no. 2, 436-446. MR 1423270
[Lin71] W. Lindenberg, Struktur und Klassifizierung bizyklischer p-Gruppen, Gesellschaft für Mathematik und Datenverarbeitung, Bonn, 1971, BMBW-GMD-40. MR 0285609
[NX88] M. F. Newman and M. Xu, Metacyclic groups of prime-power order, Adv. in Math. (Beijing) 17 (1988), $106-107$. MR 0404441
[OdRS04] A. Olivieri, Á. del Río, and J. J. Simón, On monomial characters and central idempotents of rational group algebras, Comm. Algebra 32 (2004), no. 4, 1531-1550. MR 2100373 (2005i:16054)
[Pie82] R. S. Pierce, Associative algebras, Graduate Texts in Mathematics, vol. 88, Springer-Verlag, New York, 1982, Studies in the History of Modern Science, 9. MR 674652 (84c:16001)
[PW50] S. Perlis and G. L. Walker, Abelian group algebras of finite order, Trans. Amer. Math. Soc. 68 (1950), $420-426$. MR 0034758 (11,638k)
[Réd89] L. Rédei, Endliche p-Gruppen, Akadémiai Kiadó, Budapest, 1989. MR 992619
[Sim94] Hyo-Seob Sim, Metacyclic groups of odd order, Proc. London Math. Soc. (3) 69 (1994), no. 1, 47-71. MR 1272420
[Whi68] A. Whitcomb, The Group Ring Problem, ProQuest LLC, Ann Arbor, MI, 1968, Thesis (Ph.D.)-The University of Chicago.
[Zas99] H. J. Zassenhaus, The theory of groups, Dover Publications, Inc., Mineola, NY, 1999, Reprint of the second (1958) edition. MR 1644892

[^0]: E-mail address: angel.garcia11@um.es, adelrio@um.es.
 1991 Mathematics Subject Classification. 16S34, 20C05, 20C10.
 Key words and phrases. Group rings, Isomorphism Problem.
 Partially supported Grant PID2020-113206GB-I00 funded by MCIN/AEI/10.13039/501100011033 and by Fundación Séneca (22004/PI/22).

