ÀNGEL GARCÍA-BLÁZQUEZ AND ÁNGEL DEL RÍO

Departamento de Matemáticas, Universidad de Murcia, 30100, Murcia, Spain

ABSTRACT. We prove that if G and H are finite metacyclic groups with isomorphic rational group algebras and one of them is nilpotent, then G and H are isomorphic.

1. Introduction

The following general problem has been largely studied since the seminal work of Graham Higman [Hig40a, Hig40b] and the influential paper of Richard Brauer [Bra51]:

The Isomorphism Problem for Group Rings: Given R a commutative ring and G and H groups, does RG and RH being isomorphic as R-algebras implies that G and H are isomorphic as groups?

Suppose that G and H are finite abelian groups. Higman proved that if $\mathbb{Z}G \cong \mathbb{Z}H$, then $G \cong H$. This fails if $R = \mathbb{C}$ because if G and H are finite abelian group with the same order, then $\mathbb{C}G \cong \mathbb{C}H$. However, by a theorem of Perlis and Walker $\mathbb{Q}G \cong \mathbb{Q}H$ implies $G \cong H$ [PW50]. If now G and H are finite metabelian groups, then still we have that $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$ [Whi68]. However, Dade showed two finite metabelian groups G and H such that kG and kH are isomorphic as algebras for every field k [Dad71].

Observe that if $\mathbb{Z}G \cong \mathbb{Z}H$, then $RG \cong RH$ for every ring R. This explain why the positive results for the case where $R = \mathbb{Z}$ are more likely than for any other ring. Likewise positive results are more likely in a prime field than in any other field with the same characteristic. For a while it was expected that the Isomorphism Problem for Integral Group Ring may have a general positive answer at least for finite groups. However Hertweck showed two non-isomorphic solvable groups G and H such that $\mathbb{Z}G \cong \mathbb{Z}H$ and hence RG and RH are isomorphic for every ring R [Her01].

The aim of this paper is to contribute to the Isomorphism Problem for Group Rings with rational coefficients. The contrast between Perlis-Walker Theorem and the example of Dade suggests considering the class of metacyclic groups. The main result of the paper is the following, where π_G denotes the set of primes p for which G has a normal Hall p'-subgroup:

Theorem A. Let G and H be two metacyclic finite groups such that $\mathbb{Q}G \cong \mathbb{Q}H$. Then $\pi_G = \pi_H$ and the Hall π_G -subgroups of G and H are isomorphic.

As a direct consequence of Theorem A we obtain the following:

Corollary B. If G and H are finite metacyclic groups with $\mathbb{Q}G \cong \mathbb{Q}H$ and G is nilpotent, then $G \cong H$.

In Section 2 we introduce the main notation of the paper and review some known results. In Section 3 we prove Theorem A for p-groups, and in Section 4 we prove the whole theorem.

Observe that in Theorem A and Corollary B it is not sufficient to assume that only one of the two groups G or H is metacyclic because the following groups

$$\left\langle a, b | a^{p^2} = b^p = 1, a^b = a^{1+p} \right\rangle, \quad \left\langle a, b | a^p = b^p = [b, a]^p = [a, [b, a]] = [b, [b, a]] = 1 \right\rangle,$$

E-mail address: angel.garcia11@um.es, adelrio@um.es.

 $^{1991\} Mathematics\ Subject\ Classification.\ 16S34,\ 20C05,\ 20C10.$

Key words and phrases. Group rings, Isomorphism Problem.

Partially supported Grant PID2020-113206GB-I00 funded by MCIN/AEI/10.13039/501100011033 and by Fundación Séneca (22004/PI/22).

have isomorphic rational group algebras while the first group is metacyclic and the second one is not.

2. Notation and preliminaries

2.1. Number theory

We adopt the convention that $0 \notin \mathbb{N}$ and prime means prime in \mathbb{N} . Let $n \in \mathbb{N}$. Then ζ_n denotes a complex primitive *n*-th root of unity and $\pi(n)$ denotes the set of prime divisors of *n*. If *p* is prime, then n_p denotes the greatest power of *p* dividing *n* and $v_p(n) = \log_p(n_p)$. Moreover $v_p(0) = \infty$. If π is a set of primes, then $n_{\pi} = \prod_{p \in \pi} n_p$. If $m \in \mathbb{Z}$ with gcd(m, n) = 1, then $o_n(m)$ denotes the multiplicative order of *m* modulo *n*, i.e. the smallest positive integer *k* with $m^k \equiv 1 \mod n$.

If A is a finite set, then |A| denotes the cardinality of A and $\pi(A) = \pi(|A|)$. If $x \in \mathbb{Z} \setminus \{0\}$, then we denote:

$$\mathcal{S}\left(x\mid n\right) = \sum_{i=0}^{n-1} x^{i} = \begin{cases} n, & \text{if } x = 1;\\ \frac{x^{n}-1}{x-1}, & \text{otherwise.} \end{cases}$$

The notation $\mathcal{S}(x \mid n)$ occurs in the following statement:

(2.1) If
$$g^{-1}hg = g^x$$
 with g and h elements of a group, then $(hg)^n = h^n g^{\mathcal{S}(x|n)}$.

The following lemma collects some properties of the operator $\mathcal{S}(-|-)$.

Lemma 2.1. Let p be a prime, $R \in \mathbb{Z}$, $m \in \mathbb{N}$ and $a = v_p(R-1) \ge 1$. Then

$$(1) \ v_p(R^m - 1) = \begin{cases} v_p(R - 1) + v_p(m), & \text{if } p \neq 2 \text{ or } a \geq 2; \\ v_p(R + 1) + v_p(m), & \text{if } p = 2, a = 1 \text{ and } 2 \mid m; \\ 1, & \text{otherwise.} \end{cases}$$

$$(2) \ o_{p^m}(R) = \begin{cases} p^{\max(0, m - v_p(R - 1))}, & \text{if } p \neq 2 \text{ or } a \geq 2; \\ 1, & \text{if } p = 2, a = 1 \text{ and } m \leq 1; \\ 2^{\max(1, m - v_2(R + 1))}, & \text{otherwise.} \end{cases}$$

$$(3) \ Suppose \ that \ a \leq m \ and \ if \ p = 2, \ then \ a \geq 2. \ Then \ the \ following \ hold: \\ (a) \ \{R^x + p^m\mathbb{Z} : x \geq 0\} = \{1 + yp^a + p^m\mathbb{Z} : 0 \leq y < p^{m-a}\}.$$

If
$$n \in \mathbb{N}$$
 and $n \equiv kp^{m-a} \mod p^m$, then

$$\mathcal{S}(R \mid n) \equiv \begin{cases} n + k2^{m-1} \mod 2^m, & \text{if } p = 2 \text{ and } m > a; \\ n \mod p^m, & \text{otherwise.} \end{cases}$$

Proof. See [GBdR23, Lemma 2.1] and [BGLdR23, Lemma 8.2].

We will need the following formula:

(b)

(2.2)
$$\sum_{d=0}^{n} d2^{d} = \sum_{d=0}^{n} \sum_{i=0}^{d-1} 2^{d} = \sum_{i=0}^{n-1} 2^{i+1} \sum_{d=i+1}^{n} 2^{d-i-1} = \sum_{i=0}^{n-1} 2^{i+1} \sum_{j=0}^{n-i-1} 2^{j} = \sum_{i=0}^{n-1} 2^{i+1} (2^{n-i} - 1)$$
$$= n2^{n+1} - 2\sum_{i=0}^{n-1} 2^{i} = n2^{n+1} - 2(2^{n} - 1) = (n-1)2^{n+1} + 2.$$

Recall that if $R, n \in \mathbb{N}$ with gcd(R, n) = 1 and $i \in \mathbb{Z}$, then the *R*-cyclotomic class modulo *n* containing *i* is the subset of \mathbb{Z} formed by the integers *j* such that $j \equiv iR^k \mod n$ for some $k \geq 0$. The *R*-cyclotomic classes module *n* form a partition of \mathbb{Z} and each *R*-cyclotomic class modulo *n* is a union of cosets modulo *n*. More precisely, if *i* and *j* belong to the same *R*-cyclotomic class, then gcd(n, i) = gcd(n, j) and, if $d = \frac{n}{gcd(n,i)}$, then the *R*-cyclotomic class module *n* containing *i* is the disjoint union of $i + n\mathbb{Z}, iR + n\mathbb{Z}, \ldots, iR^{o_d(R)-1} + n\mathbb{Z}$. Therefore the number of *R*-cyclotomic classes module *n* is

(2.3)
$$C_{R,n} = \sum_{d|n} \frac{\varphi(d)}{o_d(R)}.$$

We will need a precise expression of this number for the case where n is a power of p and $R \equiv 1 \mod p$.

Lemma 2.2. Let p be a prime and $R, m \in \mathbb{N}$ with $R \equiv 1 \mod p$. Then the number of R-cyclotomic classes modulo p^m is

$$C_{R,p^m} = \begin{cases} p^m, & \text{if } m \le v_p(R-1); \\ 1+2^{m-1}, & \text{if } p = 2 \text{ and } 2 \le m < v_2(R+1); \\ 1+2^{v_2(R+1)-1}(1+m-v_2(R+1)), & \text{if } p = 2 \text{ and } 2 \le v_2(R+1) \le m; \\ p^{v_p(R-1)-1}(p+(p-1)(m-v_p(R-1))), & \text{otherwise.} \end{cases}$$

Proof. If $m \leq v_p(R-1)$, then $o_d(R) = 1$ for every divisor d of m and hence every R-cyclotomic class module p^m is formed by one coset modulo p^m . Therefore, in that case $C_{R,p^m} = p^m$. Suppose otherwise that $m > v_p(R-1)$.

Suppose that either p is odd or p = 2 and $R \equiv 1 \mod 4$. Using Lemma 2.1.(2) and (2.3) we have

$$C_{R,p^m} = \sum_{k=0}^m \frac{\varphi(p^k)}{p^{\max(0,k-v_p(R-1))}} = 1 + (p-1) \left(\sum_{k=1}^{v_p(R-1)} p^{k-1} + \sum_{k=v_p(R-1)+1}^m p^{v_p(R-1)-1} \right)$$
$$= p^{v_p(R-1)} + (p-1)(m-v_p(R-1))p^{v_p(R-1)-1} = p^{v_p(R-1)-1}(p+(p-1)(m-v_p(R-1))).$$

Otherwise, p = 2 and $R \equiv -1 \mod 4$. Then $2 \leq v_2(R+1)$ and $1 = v_2(R-1) < m$. Using now Lemma 2.1.(2) and (2.3) we have $C_{R,2^m} = 2 + \sum_{k=2}^m \frac{\varphi(2^k)}{2^{\max(1,k-v_2(R+1))}}$ Thus, if $m < v_2(R+1)$, then $C_{R,2^m} = 2 + \sum_{k=2}^m 2^{k-2} = 1 + 2^{m-1}$. Otherwise, i.e. if $m \geq v_2(R+1)$, then

$$C_{R,2^m} = 2 + \sum_{k=2}^{v_2(R+1)} 2^{k-2} + \sum_{k=v_2(R+1)+1}^m 2^{v_2(R+1)-1} = 1 + 2^{v_2(R+1)-1} + (m - v_2(R+1))2^{v_2(R+1)-1}$$

= 1 + 2^{v_2(R+1)-1}(1 + m - v_2(R+1)).

2.2. Group theory

By default all the groups in this paper are finite. We use standard notation for a group G and $g, h \in G$: Z(G) = center of G, G' = commutator subgroup of G, Aut(G) = group of automorphisms of G, |g| = orderof $g, g^h = g^{-1}hg, [g, h] = g^{-1}g^h$. The notation $H \leq G$ and $N \leq G$ means that H is a subgroup of G and Nis a normal subgroup of G. If H is a subgroup, then [G : H] denotes index of H in $G, N_G(H)$ the normalizer of H in G and $\text{Core}_G(H)$ the core of H in G, i.e. the greatest subgroup of H that is normal in G.

If π is a set of primes, then g_{π} and $g_{\pi'}$ denote the π -part and π' -part of g, respectively. When p is a prime we rather write g_p and $g_{p'}$ than $g_{\{p\}}$ and $g_{\{p'\}}$.

Let *m* be a positive integer. We let C_m denote a generic cyclic group of order *m*. For an integer *x* coprime with *m*, let α_x denote the automorphism of C_m given by $\alpha_x(a) = a^x$ for every $a \in A$ and σ_x the automorphism of $\mathbb{Q}(\zeta_m)$ given by $\sigma_x(\zeta_m) = \zeta_m^x$. Then $x \mapsto \alpha_x$ and $x \mapsto \sigma_x$ define isomorphisms $\alpha : \mathbb{Z}_m^* \to \operatorname{Aut}(C_m)$ and $\sigma : \mathbb{Z}_m^* \to \operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})$, where \mathbb{Z}_m^* denotes the group of units of $\mathbb{Z}/m\mathbb{Z}$. We are abusing the notation by treating elements of \mathbb{Z}_m^* as integers. In particular, $\alpha_x \mapsto \sigma_x$ defines an isomorphism $\operatorname{Aut}(C_m) \to \operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})$. We abuse the notations by considering the latter as an identification so that if Γ is a subgroup of $\operatorname{Aut}(C_m)$, then

$$\mathbb{Q}(\zeta_m)^{\Gamma} = \{ a \in \mathbb{Q}(\zeta_m) : \sigma_x(a) = a \text{ for all } \alpha_x \in \Gamma \},\$$

the Galois correspondent of Γ considered as a subgroup of $\operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})$.

2.3. Finite metacyclic p-groups

Finite metacyclic groups were classified by Hempel [Hem00]. Previously the finite metacyclic *p*-groups were classified by several means [Zas99, Lin71, Hal59, Bey72, Kin73, Lie96, Lie94, NX88, Réd89, Sim94]. For our purpose we need the description of the finite metacyclic groups in terms of group invariants given in [GBdR23] for the special case of *p*-groups. More precisely when [GBdR23, Corollary 4.1] is specialized to finite metacyclic *p*-groups one obtains the following:

Theorem 2.3. Let p be a prime integer. Then every finite metacyclic p-group is isomorphic to a group given by the following presentation

$$\mathcal{P}_{p,\mu,\nu,\sigma,\rho,\epsilon} = \left\langle a, b \mid a^{p^{\mu}} = 1, b^{p^{\nu}} = a^{p^{\sigma}}, b^{a} = a^{\epsilon+p^{\rho}} \right\rangle$$

for unique non-negative integers μ, ν, σ and ρ and a unique $\epsilon \in \{1, -1\}$ satisfying the following conditions:

- (A) $\rho \leq \mu$, if $\mu \geq 1$, then $\rho \geq 1$ and, if $p = 2 \geq \mu$, then $\rho \geq 2$.
- (B) If $\epsilon = 1$, then $\rho \leq \sigma \leq \mu \leq \rho + \sigma$ and $\sigma \leq \nu$.
- (C) If $\epsilon = -1$, then
 - (a) $p = 2 \le \rho \le \mu, \nu \ge 1, \mu 1 \le \sigma \le \mu \le \rho + \nu \ne \sigma$ and (b) if $2 \ge \nu$ and $3 \ge \mu$, then $\rho \le \sigma$,

2.4. Wedderburn decomposition of rational group algebras

If A is a finite dimensional central simple F-algebra for F a field, then Deg(A) denotes the degree of A, i.e. $\dim_F A = \text{Deg}(A)^2$ (cf. [Pie82]).

Let F/K be a finite Galois field extension and let G = Gal(F/K). Let $\mathcal{U}(F)$ denotes the multiplicative group of F. If $f: G \times G \to \mathcal{U}(F)$ is a 2-cocycle, then (F/K, f) denotes the crossed product

$$(F/K, f) = \sum_{\alpha \in G} t_{\alpha} F, \quad xt_{\alpha} = t_{\alpha} \alpha(x), \quad t_{\alpha} t_{\beta} = t_{\alpha\beta} f(\alpha, \beta), \quad (x \in F, \alpha, \beta \in G).$$

It is well known that (F/K, f) is a central simple K-algebra and, if g is another 2-cocycle, then (F/K, f)and (F/K, g) are isomorphic as K-algebras if and only if gf^{-1} is a 2-coboundary. Therefore, if $\overline{f} \in H^2(G, F)$ is represented by the coboundary f, then we denote $(F/K, \overline{f}) = (F/K, f)$.

If G is cyclic of order n generated by α , and $a \in \mathcal{U}(K)$, then there is a cocycle $f : G \times G \to \mathcal{U}(K)$ given by

$$f(\alpha^{i}, \alpha^{j}) = \begin{cases} 1, & \text{if } 0 \leq i, j, i+j < n; \\ a, & \text{if } 0 \leq i, j < n \leq i+j \end{cases}$$

Then the crossed product algebra (F/K, f) is said to be a cyclic algebra, it is usually denoted $(F/K, \alpha, a)$ and it can be described as follows:

$$(F/K, \alpha, a) = \sum_{i=0}^{n-1} u^i F = F[u \mid xu = u\alpha(x), u^n = a].$$

If A is a semisimple ring, then A is a direct sum of central simple algebras. This expression is called the *Wedderburn decomposition* of A and its simple factors are called the *Wedderburn components* of A. The Wedderburn components of A are the direct summands of the form Ae with e a primitive central idempotent of A.

Let G be a finite group. Then $\mathbb{Q}G$ is semisimple and the center of each component A of $\mathbb{Q}G$ is isomorphic to the field of character values $\mathbb{Q}(\chi)$ of any irreducible character χ of G with $\chi(A) \neq 0$. It is well known that $\mathbb{Q}(\chi)$ is a finite abelian extension of \mathbb{Q} inside \mathbb{C} and henceforth it is the unique subfield of \mathbb{C} isomorphic to $\mathbb{Q}(\chi)$. We will abuse the notation and consider Z(A) as equal to $\mathbb{Q}(\chi)$.

An important tool for us is a technique to describe the Wedderburn decomposition of $\mathbb{Q}G$ introduced in [OdRS04]. See also [JdR16, Section 3.5]. A closely related method to compute the primitive central idempotents of group algebras of finite solvable groups was introduced by S.D. Berman (see [Ber52, Ber55, Ber56] and [KP21]). We recall here its main ingredients.

If H is a subgroup of G, then \widehat{H} denotes the element $|H|^{-1} \sum_{h \in H} h$ of the rational group algebra $\mathbb{Q}G$. It is clear that \widehat{H} is an idempotent of $\mathbb{Q}G$ and it is central in $\mathbb{Q}G$ if and only if H is normal in G.

Let N be a normal subgroup of G. Then the kernel of the natural homomorphism $\mathbb{Q}G \to \mathbb{Q}(G/N)$ is $\mathbb{Q}G(1-\widehat{N}) = \sum_{n \in N \setminus 1} \mathbb{Q}G(n-1)$. Therefore $\mathbb{Q}G = \mathbb{Q}G\widehat{N} \oplus \mathbb{Q}G(1-\widehat{N})$ and $\mathbb{Q}(G/N) \cong \mathbb{Q}G\widehat{N}$. Thus $\mathbb{Q}(G/N)$ is isomorphic to the direct sum of the Wedderburn components of $\mathbb{Q}G$ of the form $\mathbb{Q}Ge$ with e a primitive central idempotent of $\mathbb{Q}G$ with $e\widehat{N} = e$.

We denote

$$\varepsilon(G,N) = \begin{cases} \widehat{G}, & \text{if } G = N; \\ \prod_{D/N \in M(G/N)} (\widehat{N} - \widehat{D}), & \text{otherwise.} \end{cases}$$

where M(G/N) denote the set of minimal normal subgroups of G. Clearly $\varepsilon(G, N)$ is a central idempotent of $\mathbb{Q}G$.

If (H, K) is a pair of subgroups of G with $K \leq H$, then we denote

$$e(G, H, K) = \sum_{gC_G(\varepsilon(H, K)) \in G/C_G(\varepsilon(H, K))} \varepsilon(H, K)^g.$$

Observe that e(G, H, K) belongs to the center of $\mathbb{Q}G$. If moreover, $\varepsilon(H, K)^g \varepsilon(H, K) = 0$ for every $g \in G \setminus C_G(\varepsilon(H, K))$, then e(G, H, K) is an idempotent of $\mathbb{Q}G$.

A strong Shoda pair of G is a pair (H, K) of subgroups of G satisfying the following conditions:

(SS1) $K \subseteq H \trianglelefteq N_G(K)$,

(SS2) H/K is cyclic and maximal abelian in $N_G(K)/K$,

(SS3) $\varepsilon(H,K)^g \varepsilon(H,K)$ for every $g \in G \setminus C_G(\varepsilon(H,K))$.

Remark 2.4. Suppose that (H, K) is a strong Shoda pair of G and let m = [H : K] and $N = N_G(K)$. Then $H/K \cong C_m$ and the action of N by conjugation on H induces a faithful action of N/H on $\mathbb{Q}(\zeta_m)$. More precisely, if $n \in N$, then $h^n K = \alpha_r(hK)$ for some integer r, with gcd(r, m) = 1. The map $nH \to \sigma_r$ defines an injective homomorphism $\alpha : N/H \to Aut(\mathbb{Q}(\zeta_m))$. Let $F_{G,H,K} = \mathbb{Q}(\zeta_m)^{\operatorname{Im} \alpha}$. Then we have a short exact sequence [JdR16, Theorem 3.5.5]:

$$1 \to H/K \cong \langle \zeta_m \rangle \to N/K \to N/H \cong \operatorname{Gal}(\mathbb{Q}(\zeta_m)/F_{G,H,K}) \to 1,$$

which induces an element $\overline{f} \in H^2(N/H, \mathbb{Q}(\zeta_m))$. More precisely from an election of a set of representatives $\{c_u : u \in N/H\}$ of H cosets in N, we define $f(u, v) = \zeta_m^k$ if $c_u c_v = c_{uv}h^k$. This defines an element of $H^2(N/H, \mathbb{Q}(\zeta_m))$ because another election yields to another 2-cocycle differing in a 2-coboundary. Associated to \overline{f} one has the crossed product algebra

$$A(G, H, K) = (\mathbb{Q}(\zeta_m)/F_{G, H, K}, \overline{f}) = \bigoplus_{u \in N/H} t_u \mathbb{Q}(\zeta_m),$$

$$xt_u = t_u \sigma_u(x), \quad t_u t_v = t_{uv} f(u, v), \quad (x \in \mathbb{Q}(\zeta_m), u, v \in N/K).$$

Proposition 2.5. [OdRS04, Proposition 3.4] [JdR16, Theorem 3.5.5] Let (H, K) be a strong Shoda pair of G and let m = [H : K], $n = [G : N_G(K)]$ and e = e(G, H, K). Then e is a primitive central idempotent of $\mathbb{Q}G$ and $\mathbb{Q}Ge \cong M_n(A(G, H, K))$. Moreover, $\text{Deg}(\mathbb{Q}Ge) = [G : H]$, $Z(\mathbb{Q}Ge(G, H, K)) \cong F_{G,H,K}$ and $\{g \in G : ge = e\} = \text{Core}_G(K)$.

In the particular case where G is metabelian all the Wedderburn components of $\mathbb{Q}G$ are of the form A(G, H, K) for some special kind of strong Shoda pairs of G. More precisely we have the following (see [OdRS04, Theorem 4.7] or [JdR16, Theorem 3.5.12]):

Theorem 2.6. Let G be a finite group and let A be a maximal abelian subgroup of G containing G'. Then every Wedderburn component of $\mathbb{Q}G$ is of the form $\mathbb{Q}Ge(G, H, K)$ for subgroups H and K satisfying the following conditions:

- (1) *H* is a maximal element in the set $\{B \leq G : A \leq B \text{ and } B' \leq K \leq B\}$.
- (2) H/K is cyclic.

Moreover every pair (H, K) satisfying (1) and (2) is a strong Shoda pair of G and hence $\mathbb{Q}Ge(G, H, K) \cong M_n(A(G, H, K))$ with $n = [G : N_G(K)]$.

Suppose that G is a finite metacyclic group and let A be a cyclic normal subgroup of G with G/A cyclic. Then every Wedderburn component of $\mathbb{Q}G$ is of the form $\mathbb{Q}Ge(G, H, K)$ for (H, K) be subgroups of G satisfying the conditions of Theorem 2.6. Then, $N_G(K)/H$ is cyclic, say generated by uH, and of order k. Moreover, H/K is cyclic, say generated by aK, and normal in $N_G(K)/K$ so that $(aK)^{uK} = a^x K$ and $(uK)^k = a^y$ for some integers x and y. By Proposition 2.5 we have

(2.4)
$$A(G,H,K) \cong (\mathbb{Q}(\zeta_m)/F, \sigma_x, \zeta_m^y) = \mathbb{Q}(\zeta_m)[\overline{u} \mid \zeta_m \overline{u} = \overline{u}\zeta_m^x, \overline{u}^k = \zeta_m^y].$$

2.5. Tools for the Isomorphism Problem for group rings

In this subsection we recall two results relevant for the Isomorphism Problem for rational group algebras. The first one is a well known result of Artin which tell us what is the number of Wedderburn components of a rational group algebra. See [CR62, Corollary 39.5] or [JdR16, Corollary 7.1.12]

Theorem 2.7 (Artin). If G is a finite group, then the number of Wedderburn components of $\mathbb{Q}G$ is the number of conjugacy classes of cyclic subgroups of G.

The second one is a consequence of the Perlis-Walker Theorem.

Theorem 2.8. If G and H are finite groups with $\mathbb{Q}G \cong \mathbb{Q}H$, then $G/G' \cong H/H'$.

Proof. Let A(G) denote the kernel of the natural homomorphism $\mathbb{Q}G \to \mathbb{Q}(G/G')$. Then A(G) is a the smallest ideal I of $\mathbb{Q}G$ such that $(\mathbb{Q}G)/I$ is commutative. In particular, if $f : \mathbb{Q}G \to \mathbb{Q}H$ is an isomorphism, then f(A(G)) = A(H) and therefore f induces an isomorphism $\mathbb{Q}(G/G') \cong \mathbb{Q}(H/H')$. Then $G/G' \cong H/H'$, by the Perlis-Walker Theorem [PW50].

3. The Isomorphism Problem for finite metacyclic *p*-groups

In this section p is a prime and we prove that the Isomorphism Problem for rational group algebras has positive solution for finite metacyclic p-groups.

All throughout G is a finite metacyclic p-group. By Theorem 2.3, $G \cong \mathcal{P}_{p,\mu,\nu,\sigma,\rho,\epsilon}$ for unique non-negative integers μ, ν, σ and ρ and unique $\epsilon \in \{1, -1\}$ satisfying conditions (A)-(C).

The proof of the main result of this section relies in five technical lemmas.

Lemma 3.1. Suppose that $\epsilon = 1$ and $\mu > 0$. Let $0 \le d < \nu$ and for every $1 \le i \le p^{\mu}$ set

$$l_{i} = \begin{cases} 2^{\sigma} + i(2^{\nu-d} + 2^{\mu-1}), & \text{if } p = 2 \nmid i \text{ and } \mu = \nu + \rho; \\ p^{\sigma} + ip^{\nu-d}, & \text{otherwise}; \end{cases}$$

$$k_{i} = \min(\mu, v_{p}(l_{i})) \quad \text{and} \quad h_{i} = \min(k_{i}, \rho + d, \rho + v_{p}(i)).$$

Then $\langle b^{p^d} a^i \rangle$ and $\langle b^{p^d} a^j \rangle$ are conjugate in G if and only if $i \equiv j \mod p^{h_i}$. In that case, $k_i = k_j$ and $h_i = h_j$.

Proof. As $\mu > 0$, by condition (A), we also have $\rho > 0$. Let $R = 1 + p^{\rho}$. By Lemma 2.1.(1) we have $v_p(R^{p^d} - 1) = d + \rho$ and by condition (B) we have $\mu - (d + \rho) \le \nu - d$. Hence, applying Lemma 2.1.(3b) with $a = d + \rho$ and $m = \nu + \rho > a$ we obtain the following for every $k \in \mathbb{N}$:

$$\mathcal{S}\left(R^{p^{d}} \mid kp^{\nu-d}\right) = \begin{cases} k2^{\nu+d} + k2^{\nu+\rho-1} \mod 2^{\nu+\rho}, & \text{if } p = 2;\\ kp^{\nu+\rho}, & \text{if } p \neq 2. \end{cases}$$

Then

(3.1)
$$S\left(R^{p^{d}} \mid kp^{\nu-d}\right) \equiv \begin{cases} k2^{\nu-d} + k2^{\mu-1} \mod 2^{\mu}, & \text{if } p = 2, \text{ and } \mu = \nu + \rho; \\ kp^{\nu-d} \mod p^{\mu}, & \text{otherwise.} \end{cases}$$

Moreover $a^{b^{p^d}} = a^{R^{p^d}}$ and hence, by (2.1) we have

(3.2)
$$(b^{p^{d}}a^{i})^{p^{\nu-d}} = b^{p^{\nu}}a^{iS\left(R^{p^{d}}|p^{\nu-d}\right)} = a^{p^{\sigma}+iS\left(R^{p^{d}}|p^{\nu-d}\right)} = a^{l_{i}}.$$

Suppose that $\langle b^{p^d} a^i \rangle$ and $\langle b^{p^d} a^j \rangle$ are conjugate in G. Then there are integers x, y, u with $p \nmid u$ such that $b^{p^d} a^j = ((b^{p^d} a^i)^u)^{b^y a^x}$. In particular $b^{p^d} \langle a \rangle = b^{up^d} \langle a \rangle$ and therefore $u \equiv 1 \mod p^{\nu-d}$. Write $u = 1 + vp^{\nu-d}$. Then

$$(b^{p^{d}}a^{i})^{u} = b^{p^{d}}a^{i}(b^{p^{d}}a^{i})^{vp^{\nu-d}} = b^{p^{d}}a^{i+vl_{i}}$$

Hence

$$b^{p^{d}}a^{j} = (b^{p^{d}}a^{i+vl_{i}})^{b^{y}a^{x}} = b^{p^{d}}a^{(i+vl_{i})R^{y}+x(1-R^{p^{d}})}.$$

On the other hand, $R^y = 1 + Y p^{\rho}$ for some integer Y. Then

$$j \equiv i + iYp^{\rho} + vl_iR^y + x(1 - R^{p^a}) \equiv i \mod p^{h_i},$$

because $h_i = \min(k_i, \rho + d, r + v_p(i)) = \min(\mu, v_p(l_i), v_p(1 - R^{p^d}), \rho + v_p(i)).$

Conversely suppose that $j \equiv i \mod p^{h_i}$ and consider the four possibilities for h_i separately. Of course, if $h_i = \mu$, then $b^{p^d} a^i = b^{p^d} a^j$. Suppose that $h_i = \rho + d$. Then $h_i = v_p(1 - R^{p^d})$, by Lemma 2.1.(1). Therefore there is an integer x such that $j \equiv i + x(1 - R^{p^d}) \mod p^{\mu}$, and hence $(b^{p^d} a^i)^{a^x} = b^{p^d} a^{i+x(1-R^{p^d})} = b^{p^d} a^j$.

Assume that $h_i = k_i = v_p(l_i)$. Then $j \equiv i + vl_i \mod p^{\mu}$ for some $v \in \mathbb{N}$. Hence, using (3.2), we have $(b^{p^d}a^i)^{1+vp^{\nu-d}} = b^{p^d}a^{i+vl_i} = b^{p^d}a^j$. Finally, suppose that $h_i = \rho + v_p(i)$. Then there is an integer z such that $j \equiv i + zip^{\rho} \mod p^{\mu}$. Moreover, by Lemma 2.1.(3a), there is a non-negative integer y such that $R^y \equiv 1 + zp^{\rho}$. Then $(b^{p^d}a^i)^{b^y} = b^{p^d}a^{i(1+zp^{\rho})} = b^{p^d}a^j$.

For the last part, suppose that $\langle b^{p^d} a^i \rangle$ and $\langle b^{p^d} a^j \rangle$ are conjugate in G. Then, from (3.2) we have $p^{\nu-d+\mu-k_i} = |b^{p^d} a^i| = |b^{p^d} a^j| = p^{\nu-d+\mu-k_j}$, so that $k_i = k_j$. Suppose that $h_i \neq h_j$. Then necessarily $v_p(i) \neq v_p(j)$ and, as $j \equiv i \mod p^{h_i}$, we have $h_i \leq v_p(i) < \rho + v_p(i)$. Interchanging the roles of i and j we also obtain $h_j \leq v_p(j) < \rho + v_p(j)$. So that $h_i = \min(k_i, \rho + d) = \min(k_j, \rho + d) = h_j$, a contradiction. \Box

Lemma 3.2. If $\epsilon = 1$, then the number of conjugacy classes of cyclic subgroups of G is $N = A_{\sigma} + A$ where

$$A_{\sigma} = p^{\rho-1}\sigma \left(1 + (p-1)\frac{1+2\nu-\sigma}{2}\right) - \frac{p^{\rho+\sigma-\mu}}{p-1} and$$
$$A = \frac{3p^{\rho-1}-2}{p-1} + p^{\rho-1}\frac{6-\rho+2\nu\rho-\rho^2+p(\rho^2+2\nu-3\rho-2\nu\rho+2)}{2}.$$

Proof. For every $0 \le d \le \nu$ we let C_d denote the set of cyclic subgroups C of G satisfying $[C \langle a \rangle : \langle a \rangle] = p^{\nu-d}$. Clearly C_d is closed by conjugation in G. Let N_d denote the number of conjugacy classes of cyclic subgroups of G belonging to C_d . Then the number of conjugacy classes of cyclic subgroups of G is $\sum_{d=0}^{\nu} N_d$. For every $1 \le i \le p^{\mu}$ we will use the notation l_i , k_i and h_i introduced in Lemma 3.1.

As $G/\langle a \rangle$ is cyclic of order p^{ν} , every element of C_d is formed by the groups of the form $\langle b^{p^d} a^i \rangle$ with $1 \leq i \leq p^{\mu}$. In particular $N_{\nu} = \mu + 1$, the number of subgroups of $\langle a \rangle$.

From now on we assume that $0 \le d < \nu$.

Claim 1. If $v_p(i) \ge \min(\sigma, \rho + d)$, then $\left\langle b^{p^d} a^i \right\rangle$ is conjugate to $\left\langle b^{p^d} \right\rangle$ in G.

Indeed, suppose that $v_p(i) \ge \min(\sigma, \rho + d)$. By Lemma 3.1 we have to prove that $i \equiv 0 \mod p^{h_i}$, i.e. $h_i \le v_p(i)$. First of all observe that $v_p(i) \ge \min(\sigma, \rho + d) \ge 1$, because $1 \le \rho \le \sigma$. Hence $l_i = p^{\sigma} + ip^{\nu-d}$. If $v_p(ip^{\nu-d}) > \sigma$, then $v_p(l_i) = s$ and hence $h_i = \min(\sigma, \rho + d, \rho + v_p(i)) = \min(\sigma, \rho + d) \le v_p(i)$, as desired. Suppose otherwise that $v_p(ip^{\nu-d}) \le \sigma$. Then $v_p(i) < v_p(ip^{\nu-d}) \le \sigma$ and hence, by hypothesis $\rho + d \le v_p(i)$. Then, by condition (B) of Theorem 2.3 we have $v_p(ip^{\nu-d}) \ge \rho + \nu \ge \mu \ge \sigma \ge v_p(ip^{\nu-d})$. Therefore $v_p(ip^{\nu-d}) = \rho + \nu = \mu = \sigma$ and $v_p(i) = \rho + d < \sigma$. Then $h_i = \min(\sigma, \rho + d) = \rho + d \le v_p(i)$, again as desired.

Claim 2. If $1 \le i, j \le p^{\mu}$, $v_p(i) < \min(\sigma, \rho + d)$ and $\langle b^{p^d} a^i \rangle$ and $\langle b^{p^d} a^j \rangle$ are conjugate in G, then $v_p(i) = v_p(j)$.

Indeed, by Lemma 3.1 we have $h_i = h_j$, which we denote h, and $i \equiv j \mod p^h$. By means of contradiction suppose that $v_p(i) \neq v_p(j)$. Then $h \leq \min(v_p(i), v_p(j)) \leq v_p(i) < \min(\sigma, \rho+d)$ and therefore $\min(\mu, v_p(l_j), \rho+d) = \min(\mu, v_p(l_i), \rho+d) = h < \min(\sigma, \rho+d)$. Thus $v_p(l_i) = v_p(l_j) = h \leq \min(v_p(i), v_p(j))$. However $v_p(ip^{\nu-d}) > v_p(i)$ and, if $p = 2 \neq i$, then $v_2(i(2^{\nu-d} + 2^{\mu-1})) > v_2(i)$. Therefore $v_p(l_i - p^{\sigma}) > v_p(i) \geq h = v_p(l_i)$. Then $h = v_p(l_j) = \sigma \geq \min(\sigma, \rho+d)$, a contradiction.

We use Claims 1 and 2 and Lemma 3.1 as follows: For every $0 \le h < \min(\sigma, \rho + d)$ let

$$X_h = \{ i \in \mathbb{Z} : 1 \le i \le p^{\mu} \text{ and } v_p(i) = h \},\$$

and consider the equivalence relation in X_h given by

 $i \sim_d j$ if and only if $k_i = k_j (=k)$ and $i \equiv j \mod p^{\min(k, \rho+d, \rho+h)}$.

Let $N_{d,h}$ be the number of \sim_d -equivalence classes in X_h . By Lemma 3.1 and Claim 2, if $i \in X_h$, $1 \leq j \leq p^{\mu}$, $v_p(i) < \min(\sigma, \rho + d)$ and $\langle b^{p^d} a_i \rangle$ and $\langle b^{p^d} j \rangle$ are conjugate in G, then $j \in X_h$ and i and j belong to the same \sim_d -class. Therefore, using also Claim 1, we have

(3.3)
$$N_d = 1 + \sum_{h=0}^{\min(\sigma, \rho+d)-1} N_{d,h}$$

Our next goal is obtaining a formula for $N_{d,h}$ and for that we consider three cases: Case 1: Suppose that $d \leq \nu - \rho$.

Let $h \in X_h$. We claim that $k_i = \min(\sigma, \rho + d, \rho + h)$. This is clear if $v_p(l_i) = \sigma$. Suppose that $v_p(l_i) > \sigma$. Then $v_p(l_i - p^{\sigma}) = \sigma$. If h = 0, then, as $\rho \leq \sigma$, we have $k_i = \rho = \min(\sigma, \rho + d, \rho + h)$ as desired. Otherwise $l_i - p^{\sigma} = ip^{\nu-d}$, so that $h + \nu - d = \sigma$ and, by assumption we have $\rho + h = \rho + d - \nu + \sigma \leq \sigma$. Then again $k_i = \min(\sigma, \rho + d, \rho + h)$. Finally, suppose that $v_p(l_i) < \sigma$. Then $v_p(l_i - p^{\sigma}) = v_p(l_i)$. If $l_i - p^{\sigma} = ip^{\nu-d}$, then $h + \rho \leq h + \nu - d = v_p(l_i) < \sigma \leq \mu$ and hence $k_i = \min(\rho + d, \rho + h) = \min(\sigma, \rho + d, \rho + h)$. Otherwise p = 2, $h = 0, \ \mu = \nu + \rho$ and $l_i - 2^{\sigma} = i(2^{\nu-d} + 2^{\mu-1})$. Then $\mu \geq \sigma > v_2(l_i) = v_2(2^{\nu-d} + 2^{\mu-1}) \geq \nu - d \geq \rho = \rho + h$, because $\nu - d = \mu - \rho - d \leq \mu - \rho \leq \mu - 1$. Then $k_i = \rho = \min(\sigma, \rho + d, \rho + h)$. So all the cases $k_i = \min(\sigma, \rho + d, \rho + h)$, as desired.

Combining Lemma 3.1 with the claim in the previous paragraph we deduce that for $d \leq \nu - \rho$ and $h < \min(\sigma, \rho + d)$, the \sim_d -equivalence classes of X_h have $p^{\mu - \min(\sigma, \rho + d, \rho + h)}$ elements. Thus, for each $d \leq \nu - \rho$ and $0 \leq h < \min(\sigma, \rho + d)$, we have

$$N_{d,h} = \frac{\varphi(p^{\mu-h})}{p^{\mu-\min(\sigma,\rho+d,\rho+h)}} = (p-1)p^{\min(\sigma,\rho+d,\rho+h)-h-1}$$

As, by Claim 1, for a fixed $d \mid \mu$, all the cyclic groups $\langle b^{p^d} a^i \rangle$ with $v_p(i) \ge \min(\sigma, \rho + d)$ are conjugate we have

$$\sum_{d=0}^{\nu-\rho} N_d = \sum_{d=0}^{\nu-\rho} \left(1 + \sum_{h=0}^{\min(\sigma,\rho+d)-1} N_{d,h} \right) = \sum_{d=0}^{\sigma-\rho} \left(1 + \sum_{h=0}^{d-1} (p-1)p^{\rho-1} + \sum_{h=d}^{d+\rho-1} (p-1)p^{\rho+d-h-1} \right) \\ + \sum_{d=\sigma-\rho+1}^{\nu-\rho} \left(1 + \sum_{h=0}^{\sigma-\rho-1} (p-1)p^{\rho-1} + \sum_{h=\sigma-\rho}^{\sigma-1} (p-1)p^{\sigma-h-1} \right) = (\nu-\rho+1) +$$

$$(3.4) \quad \sum_{d=0}^{\sigma-\rho} \left(d(p-1)p^{\rho-1} + (p-1)\sum_{x=0}^{\rho-1} p^x \right) + \sum_{d=\sigma-\rho+1}^{\nu-\rho} \left((\sigma-\rho)(p-1)p^{\rho-1} + (p-1)\sum_{x=0}^{\rho-1} p^x \right) \\ = (\nu-\rho+1) + \frac{(\sigma-\rho)(\sigma-\rho+1)}{2} (p-1)p^{\rho-1} + (\nu-\sigma)(\sigma-\rho)(p-1)p^{\rho-1} + (\nu-\rho+1)(p^{\rho}-1) \\ = p^{\rho-1} \left((\sigma-\rho)(p-1)\frac{1+2\nu-\rho-\sigma}{2} + (\nu-\rho+1)p \right).$$

Case 2: Suppose that $\nu - \rho < d \le \nu - 1$ and $h \ne \sigma + d - \nu$.

Let $i \in X_h$. Then $v_p(p^{\sigma} + ip^{\nu-d}) = \min(\sigma, h+\nu-d)$. If $v_p(l_i) \neq \min(\sigma, h+\nu-d)$, then $p = 2 \neq i, \mu = \nu + \rho$ and $l_i = 2^{\sigma} + i(2^{\nu-d} + 2^{\mu-1})$. Then, from $\rho \ge 1$ and $d > \nu - \rho \ge 0$ we deduce $\mu - 1 = v_2(l_i - (2^{\sigma} + i2^{\nu-d})) = \min(v_2(l_i), v_2(2^{\sigma} + i2^{\nu-d})) = \min(v_2(l_i), \sigma, \nu - d) \le \nu - d = \mu - \rho - d < \mu - 1$, a contradiction. This proves that $v_p(l_i) = \min(\sigma, h+\nu-d)$. Therefore, $h_i = \min(\mu, v_p(l_i), \rho + d, \rho + h) = \min(\sigma, h+\nu-d, \rho + d, \rho + h) = \min(\sigma, h+\nu-d, \rho + d) \le \mu$, because $\sigma \le \nu < \rho + d$ and $h+\nu-d < h+\rho$, by condition (B) in Theorem 2.3 and the assumption. Hence, by Lemma 3.1, each class inside X_h with $\sigma > h \neq \sigma + d - \nu$ contains $p^{\mu-\min(\sigma,h+\nu-d)}$ elements. This proves the following

if
$$\sigma > h \neq \sigma + d - \nu$$
, then $N_{d,h} = \frac{\varphi(p^{\mu-h})}{p^{\mu-\min(\sigma,h+\nu-d)}} = (p-1)p^{\min(\sigma-h,\nu-d)-1}$

Then

$$\sum_{d=\nu-\rho+1}^{\nu-1} \left(1 + \sum_{h=0,h\neq\sigma+d-\nu}^{\sigma-1} N_{d,h} \right)$$

$$= \sum_{d=\nu-\rho+1}^{\nu-1} \left(1 + (p-1) \left(\sum_{h=0}^{\sigma+d-\nu-1} p^{\nu-d-1} + \sum_{h=\sigma+d-\nu+1}^{\sigma-1} p^{\sigma-h-1} \right) \right)$$

$$= \sum_{x=1}^{\rho-1} \left(1 + (p-1) \sum_{h=0}^{\sigma-x-1} p^{x-1} + (p-1) \sum_{h=\sigma-x+1}^{\sigma-1} p^{\sigma-h-1} \right)$$

$$= \sum_{x=1}^{\rho-1} \left(1 + (\sigma-x)(p-1)p^{x-1} + (p-1) \sum_{y=0}^{x-2} p^{y} \right) = \sum_{x=1}^{\rho-1} \left((\sigma-x)p^{x} - (\sigma-x)p^{x-1} + p^{x-1} \right)$$

$$= \sum_{x=1}^{\rho-1} (\sigma-x)p^{x} - \sum_{x=0}^{\rho-2} (\sigma-x-1)p^{x} + \sum_{x=0}^{\rho-2} p^{x} = (\sigma-\rho+1)p^{\rho-1} + 2\sum_{x=1}^{\rho-2} p^{x} - (\sigma-1) + 1$$

$$= (1-\rho)p^{\rho-1} + \sigma(p^{\rho-1}-1) + 2\frac{p^{\rho-1}-1}{p-1}.$$

Case 3: Finally, suppose that $\nu - \rho < d \le \nu - 1$ and $h = \sigma + d - \nu$.

Then, $h < \sigma$ and by condition (B) if $i \in X_h$, then $v_p(i) = h \ge \rho + d - \nu > 0$ and hence $l_i = p^{\sigma} + ip^{\nu-d} = p^{\sigma}(1+ip^{-h})$. Therefore $v_p(l_i) = \sigma + v_p(1+ip^{-h})$. Also, by condition (B) we have $\rho \le \sigma \le \nu$, and therefore $h \le d$. Thus $h_i = \min(k_i, \rho + h)$. Observe that, as $1 \le i \le p^{\mu}$, we have that $0 \le v_p(1+ip^{-h}) \le \mu - h$. For $0 \le l \le \mu - h$ we set

$$Y_l = \{i \in X_h : v_p(1 + ip^{-h}) = l\}$$
 and $Z_l = \bigcup_{t=l}^{\mu-h} Y_t$

The sets Y_l with $l = 0, 1, \ldots, \mu - h$ form a partition of X_h . A straightforward argument show that

$$|Y_l| = \begin{cases} (p-2)p^{\mu-h-1}, & \text{if } l = 0; \\ \varphi(p^{\mu-h-l}), & \text{if } 1 \le l < \mu-h; \\ 1, & \text{if } l = \mu-h; \end{cases} \text{ and } |Z_l| = \begin{cases} \varphi(p^{\mu-h}), & \text{if } l = 0; \\ p^{\mu-h-l}, & \text{if } 1 \le l \le \mu-h. \end{cases}$$

For each $i \in Y_l$ we have $k_i = \min(\mu, \sigma + l)$. Therefore, if $i \in Y_l$, then

$$h_i = \begin{cases} \min(\mu, \rho + h), & \text{if } i \in Z_{\mu - \sigma};\\ \min(\sigma + l, \rho + h), & \text{otherwise.} \end{cases}$$

By Lemma 3.1, each \sim_d -class inside X_h is contained either in some Y_l with $l < \mu - \sigma$ or in $Z_{\mu-\sigma}$. Moreover, two elements i and j in Y_l with $l < \mu - \sigma$ belong to the same class if and only if $i \equiv j \mod p^{\min(\mu,\rho+h)}$. While two elements in $Z_{\mu-\sigma}$ are in the same class if and only if $i \equiv j \mod p^{\min(\mu,\rho+h)}$. Recalling that $h = \sigma + d - \nu$ we deduce that if $l < \min(\mu - \sigma, \rho + d - \nu)$, then each class inside Y_l has cardinality $p^{\mu-(\sigma+l)}$, while every class contained in $Z_{\min(\mu-\sigma,\rho+d-\nu)}$ has cardinality $p^{\mu-\min(\mu,\rho+h)}$. Having in mind that $\frac{|Z_{\min(\mu,\sigma,\rho+d-\nu)}|}{p^{\mu-\min(\mu,\rho+\sigma+d-\nu)}} = \frac{|Z_{\min(\mu,\sigma,\rho+d-\nu)}|}{p^{\mu-\min(\mu,\rho+\sigma+d-\nu)}} + \frac{|Y_{\min(\mu-\sigma,\rho+d-\nu)}|}{p^{\mu-(\sigma+\min(\mu,\sigma,\rho+d-\nu))}}$ we have

$$\begin{split} N_{d,\sigma+d-\nu} &= \frac{|Z_{\min(\mu-\sigma,\rho+d-\nu)+1}|}{p^{\mu-\min(\mu,\rho+\sigma+d-\nu)}} + \sum_{l=0}^{\min(\mu-\sigma,\rho+d-\nu)} \frac{|Y_l|}{p^{\mu-(\sigma+l)}} \\ &= p^{\nu-d-1} + (p-2)p^{\nu-d-1} + \sum_{l=1}^{\min(\mu-\sigma,\rho+d-\nu)} \frac{\varphi(p^{\mu-\sigma+\nu-d-l})}{p^{\mu-\sigma-l}} \\ &= (p-1)p^{\nu-d-1} + \min(\mu-\sigma,\rho+d-\nu)(p-1)p^{\nu-d-1} = (1+\min(\mu-\sigma,\rho+d-\nu))(p-1)p^{\nu-d-1} \end{split}$$

Thus

$$\begin{aligned} \sum_{d=\nu-\rho+1}^{\nu-1} N_{d,\sigma+d-\nu} &= (p-1) \sum_{d=\nu-\rho+1}^{\nu-1} (1+\min(\mu-\sigma,\rho+d-\nu))p^{\nu-d-1} \\ &= (p-1) \sum_{x=0}^{\rho-2} (1+\min(\mu-\sigma,\rho-x-1))p^x \\ &= (p-1) \left(\sum_{x=0}^{\rho+\sigma-\mu-2} (1+\mu-\sigma)p^x + \sum_{x=\rho+\sigma-\mu-1}^{\rho-2} (\rho-x)p^x \right) \\ &= (1+\mu-\sigma)(p^{\rho+\sigma-\mu-1}-1) + \sum_{x=\rho+\sigma-\mu}^{\rho-2} (\rho-x)p^{x+1} - \sum_{x=\rho+\sigma-\mu-1}^{\rho-2} (\rho-x)p^x \\ &= (1+\mu-\sigma)(p^{\rho+\sigma-\mu-1}-1) + \sum_{x=\rho+\sigma-\mu}^{\rho-1} (\rho-x+1)p^x - \sum_{x=\rho+\sigma-\mu-1}^{\rho-2} (\rho-x)p^x \\ &= (1+\mu-\sigma)(p^{\rho+\sigma-\mu-1}-1) + 2p^{\rho-1} + \sum_{x=\rho+\sigma-\mu}^{\rho-2} p^x - (\mu+1-\sigma)p^{\rho+\sigma-\mu-1} \\ &= (\sigma-1-\mu) + 2p^{\rho-1} + p^{\rho+\sigma-\mu} \sum_{x=0}^{\mu-\sigma-2} p^x = (\sigma-1-\mu) + 2p^{\rho-1} + p^{\rho+\sigma-\mu} \frac{p^{\mu-\sigma-1}-1}{p-1} \end{aligned}$$

Combining (3.3), (3.4), (3.5). and (3.6), and recalling that $N_{\nu} = \mu + 1$, we finally obtain that the number of conjugacy classes of cyclic subgroups of G

$$\begin{split} \sum_{d=0}^{\nu} N_d &= \mu + 1 + \sum_{d=0}^{\nu-\rho} N_d + \sum_{d=\nu-\rho+1}^{\nu-1} \left(1 + \sum_{h=0,h\neq\sigma+d-\nu}^{\min(\sigma,\rho+d)} N_{d,h} + N_{d,\sigma+d-\nu} \right) \\ &= \mu + 1 + p^{\rho-1} \left((\sigma-\rho)(p-1) \frac{1+2\nu-\rho-\sigma}{2} + (\nu-\rho+1)p \right) \\ &+ (1-\rho)p^{\rho-1} + \sigma(p^{\rho-1}-1) + 2\frac{p^{\rho-1}-1}{p-1} + (\sigma-1-\mu) + 2p^{\rho-1} + \frac{p^{\rho-1}-p^{\rho+\sigma-\mu}}{p-1} \\ &= p^{\rho-1}\sigma \left[1 + (p-1)\frac{1+2\nu-\rho-\sigma}{2} \right] + p^{\rho-1} \left(-\rho(p-1)\frac{1+2\nu-\rho-\sigma}{2} + (\nu-\rho+1)p \right) \\ &+ (1-\rho)p^{\rho-1} + 2\frac{p^{\rho-1}-1}{p-1} + 2p^{\rho-1} + \frac{p^{\rho-1}-p^{\rho+\sigma-\mu}}{p-1} \\ &= p^{\rho-1}\sigma \left[1 + (p-1)\frac{1+2\nu-\sigma}{2} \right] - \frac{p^{\rho+\sigma-\mu}}{p-1} \\ &+ \frac{3p^{\rho-1}-2}{p-1} + p^{\rho-1}\frac{6-2\rho-\rho(p-1)(1+2\nu-\rho)+2(\nu-\rho+1)p}{2} \\ &= p^{\rho-1}\sigma \left[1 + (p-1)\frac{1+2\nu-\sigma}{2} \right] - \frac{p^{\rho+\sigma-\mu}}{p-1} \\ &+ \frac{3p^{\rho-1}-2}{p-1} + p^{\rho-1}\frac{6-\rho+2\nu\rho-\rho^2+p(\rho^2+2\nu-3\rho-2\nu\rho+2)}{2} = A_{\sigma} + A. \end{split}$$

Lemma 3.3. If $\epsilon = -1$, then the number of conjugacy classes of G is $3 \cdot 2^{\nu-1} + 2^{\rho-1}(3 \cdot 2^{\nu-1} - 2^{\nu+\rho-\mu})$.

Proof. By a Theorem of Berman [Ber55], the number of conjugacy classes of G is $2^{\nu} \sum_{i=1}^{k} \frac{1}{h_i}$ where h_1, \ldots, h_k are the cardinalities of the conjugacy classes of G contained in $\langle a \rangle$. To compute these cardinalities we first

classify the elements of $\langle a \rangle$ by its order. More precisely we set $C_{\delta} = \{x \in \langle a \rangle : |x| = 2^{\delta}\}$, for $0 \le \delta \le \mu$. Each conjugacy class of G contained in $\langle a \rangle$ is contained in some C_{δ} . Moreover, $a^i \in C_{\delta}$ if and only if $\frac{2^{\mu}}{\gcd(i,2^{\mu})} = 2^{\delta}$. In that case, if d is the cardinality of the conjugacy class of G containing a^i , then $C_G(a^i) = \langle a, b^d \rangle$ and d is the minimum positive integer with $i(-1+2^{\rho})^d \equiv i \mod 2^{\mu}$ or equivalently $(-1+2^{\rho}) \equiv 1 \mod 2^{\delta}$. Thus $d = o_{2^{\delta}}(-1+2^{\rho})$. This shows that each conjugacy class of G contained in C_{δ} has $o_{2^{\delta}}(-1+2^{\rho})$ elements. As $|C_{\delta}| = \varphi(2^{\delta})$, the list h_1, \ldots, h_k is formed by the integers $o_{2^{\delta}}(-1+2^{\rho})$ with this integer repeated $\frac{\varphi(2^{\delta})}{o_{2^{\delta}}(-1+2^{\rho})}$ times. Hence Berman result provides the following formula for the number of conjugacy classes of G:

$$2^{\nu} \sum_{\delta=0}^{\mu} \frac{\varphi(2^{\delta})}{o_{2^{\delta}}(-1+2^{\rho})^2}.$$

By Lemma 2.1.(2),

$$p_{2^{\delta}}(-1+2^{\rho}) = \begin{cases} 1, & \text{if } \delta \leq 1; \\ 2^{\max(1,\delta-\rho)}, & \text{otherwise.} \end{cases}$$

Then, $\sum_{\delta=0}^{\rho} \frac{\varphi(2^{\delta})}{o_{2\delta}(-1+2^{\rho})^2} = 2 + \sum_{\delta=2}^{\rho} 2^{\delta-3} = 2 + \frac{1}{2} \sum_{\alpha=0}^{\rho-2} 2^{\alpha} = 2 + \frac{2^{\rho-1}-1}{2}$ and, if $\rho < \mu$, then

$$\sum_{\delta=\rho+1}^{\mu} \frac{\varphi(2^{\delta})}{o_{2^{\delta}}(-1+2^{\rho})^2} = \sum_{\delta=\rho+1}^{\mu} 2^{2\rho-\delta-1} = \sum_{\beta=2\rho-\mu-1}^{\rho-2} 2^{\beta} = 2^{2\rho-\mu-1} \sum_{\beta=0}^{\mu-\rho-1} 2^{\beta} = 2^{2\rho-\mu-1} (2^{\mu-\rho}-1).$$

Observe that if $\rho = \mu$, then the latter is 0. Thus, the number of conjugacy classes of G is

$$2^{\nu+1} + 2^{\nu-1}(2^{\rho-1} - 1) + 2^{\nu+2\rho-\mu-1}(2^{\mu-\rho} - 1) = 3 \cdot 2^{\nu-1} + 2^{\rho-1}(3 \cdot 2^{\nu-1} - 2^{\nu+\rho-\mu}),$$

as desired.

Lemma 3.4. Suppose that $\epsilon = -1$, $\rho \ge \mu - 1$ and $\mu \ge 3$. Then the following statements hold:

- (1) $\mathbb{Q}G$ has a simple component with center $\mathbb{Q}(\zeta_{2^{\mu}} + \zeta_{2^{\mu}}^{-1})$ if and only if $\rho = \sigma = \mu$. (2) $\mathbb{Q}G$ has a simple component with center $\mathbb{Q}(\zeta_{2^{\mu}} \zeta_{2^{\mu}}^{-1})$ if and only if $\rho = \mu 1$ and $\sigma = \mu$.

Proof. Let $H = C_G(a)$ and $K_0 = \langle b^2 \rangle$. The assumption $\rho \ge \mu - 1$ implies that $H = \langle a, b^2 \rangle$ is a maximal abelian subgroup of G. Then (H, K_0) satisfy the conditions in Theorem 2.6 and hence $\mathbb{Q}Ge(G, H, K_0)$ is a simple component of $\mathbb{O}G$. Moreover, by Proposition 2.5 we have

$$Z(\mathbb{Q}Ge(G, H, K_0)) \cong \begin{cases} \mathbb{Q}(\zeta_{2^{\mu}} + \zeta_{2^{\mu}}^{-1}), & \text{if } \rho = \sigma = \mu; \\ \mathbb{Q}(\zeta_{2^{\mu}} - \zeta_{2^{\mu}}^{-1}), & \text{if } \rho = \mu - 1 \text{ and } \sigma = \mu; \\ \mathbb{Q}(\zeta_{2^{\mu-1}} + \zeta_{2^{\mu-1}}^{-1}), & \text{if } \rho = \sigma = \mu - 1. \end{cases}$$

This proves the reverse implication of (1) and (2).

Conversely suppose that A is a simple component of $\mathbb{Q}G$ with center $\mathbb{Q}(\zeta_{2^{\mu}} + \zeta_{2^{\mu}}^{-1})$ or $\mathbb{Q}(\zeta_{2^{\mu}} - \zeta_{2^{\mu}}^{-1})$. Since $\mu \geq 3$, this fields are not cyclotomic extensions of \mathbb{Q} and therefore A is not commutative, for otherwise A will be a Wedderburn component of $\mathbb{Q}(G/G')$ and the Wedderburn components of a commutative rational group algebra are cyclotomic extensions of \mathbb{Q} . As H is maximal abelian in G and $G/H \cong C_2$ there is a pair (H_1, K) of subgroups of G satisfying the conditions of Theorem 2.6 and $H_1 \in \{H, G\}$. However, $H_1 \neq G$ because A is not commutative. Therefore $H = H_1$. If K is not normal in G, then $N_G(K) = H$ and hence $A \cong M_2(\mathbb{Q}(\zeta_{[H:K]}))$ contradicting the fact that the center of A is not cyclotomic. Thus, K is normal in G and the center of A has index 2 in $\mathbb{Q}(\zeta_{[H:K]})$. By Proposition 2.5, $\varphi([H:K]) = 2 \dim Z(A) = 2^{\mu-1}$ and hence $[H:K] = 2^{\mu}$. Another consequence of Proposition 2.5 and the fact that A is not commutative is that $H \neq \langle K, b^2 \rangle$ and as $H/K = \langle aK, b^2 K \rangle$ is a cyclic 2-group it follows that $H = \langle K, a \rangle$. As $[H:K] = 2^{\mu} = |a|$ we have $a^{2^{\mu-1}} \notin K$. Thus $G' \cap K = 1$. As K is normal in G, it follows that $K \subseteq Z(G) = \langle a^{2^{\mu-1}}, b^2 \rangle$. If $\sigma = \mu - 1$, then $Z(G) = \langle b^2 \rangle$ and its order is 2^{ν} . Then $K = \langle b^4 \rangle$, which is not possible because $H/\langle b^4 \rangle$ is not cyclic. Thus $\sigma = \mu$ and $Z(G) = \left\langle a^{2^{\mu-1}} \right\rangle \times \left\langle b^2 \right\rangle$. Then $K = \left\langle b^2 \right\rangle$ or $K = \left\langle a^{2^{\mu-1}} b^2 \right\rangle$. Arguing as in the first paragraph we deduce that $Z(\mathbb{Q}Ge(G,H,K)) = \mathbb{Q}(\zeta_{2^{\mu}} + \zeta_{2^{\mu}}^{-1})$ if $\rho = \mu$ and $Z(\mathbb{Q}Ge(G,H,K)) = \mathbb{Q}(\zeta_{2^{\mu}} - \zeta_{2^{\mu}}^{-1})$ if $\rho = \mu - 1$.

Lemma 3.5. Suppose that $\epsilon = -1$ and $\rho < \mu < \nu + \rho$. Let $F = \{\alpha \in \mathbb{Q}(\zeta_{2^{\mu}}) : \sigma_{-1+2^{\rho}}(\alpha) = \alpha\}$. Then $\mathbb{Q}G$ has a simple component of degree $2^{\mu-\rho}$ and center F if and only if $\sigma = \mu$.

Proof. Let $H = \langle a, b^{2^{\mu-\rho}} \rangle$. Suppose that $\sigma = \mu$ and let $K = \langle b^{2^{\mu-\rho}} \rangle$. Then (H, K) satisfies the conditions of Theorem 2.6, and by Proposition 2.5, we have that $\mathbb{Q}Ge(G, H, K)$ has degree $[G:H] = 2^{\mu-\rho}$ and center F.

Otherwise, by condition (C) in Theorem 2.3 we have $\sigma = \mu - 1$. By means of contradiction suppose that $\mathbb{Q}G$ has a simple component A of degree $2^{\mu-\rho}$ and center F. Then $H = \langle a, b^{2^{\mu-\rho}} \rangle$. As H is maximal abelian subgroup of G with G/H abelian, by Theorem 2.6, we have $A = \mathbb{Q}Ge(G, H_1, K)$ for subgroups H_1 and K satisfying the conditions of Theorem 2.6 and $H_1 \supseteq H$. However, by Proposition 2.5, $[G:H] = 2^{\mu-\rho} = Deg(A) = [G:H_1]$ and hence $H_1 = H$. As H/K is cyclic, either $H = \langle a, K \rangle$ or $H = \langle b^{2^{\mu-\rho}}, K \rangle$. In the second case $N_G(K)/K$ is abelian and by Proposition 2.5, the center F of A is a cyclotomic extension of \mathbb{Q} , which is not the case. Therefore $H = \langle a, K \rangle$. In particular $[H:K] \leq |a| = 2^{\mu}$. If $a^{2^{\mu-1}} \in K$, then $\langle a^{2^{\mu-1}} \rangle = \langle a, b^{2^{\mu-\rho-1}} \rangle' \subseteq K \leq \langle a, b^{2^{\mu-\rho-1}} \rangle$ and $\langle a, b^{2^{\mu-\rho-1}} \rangle$ contains properly H, in contradiction with the assumption that (H, K) satisfy condition (1) of Theorem 2.6. Therefore $K \cap \langle a \rangle = 1$, and hence $[H:K] \geq |a| = 2^{\mu}$. So $[H:K] = 2^{\mu}$. As $N_G(K)/H \cong \text{Gal}(\mathbb{Q}(\zeta_{[H:K]})/F)$, we have $[N_G(K):H] = [\mathbb{Q}(\zeta_{[H:K]}), E^{\mu-\rho} = [G:H]$ and hence $G = N_G(K)$, i.e. $K \leq G$. As $K \cap G' = 1$ it follows that $K \subseteq Z(G) = \langle a^{2^{\mu-1}}, b^{2^{\mu-\rho}} \rangle = \langle b^{2^{\mu-\rho}} \rangle$. Finally, the assumption $\mu < \nu + \rho$ implies that H contains $\langle a \rangle$ properly. Therefore $|H| > 2^{\mu}$, and hence K is a non-trivial subgroup of the cyclic subgroup $\langle b^{2^{\mu-\rho}} \rangle$. Thus K contains the unique element of order 2 of Z(G), namely $a^{2^{\mu-1}}$, a contradiction.

We are ready to prove the main result of this section.

Theorem 3.6. Let p be prime integer. If G_1 and G_2 are finite metacyclic p-groups and $\mathbb{Q}G_1 \cong \mathbb{Q}G_2$, then $G_1 \cong G_2$.

Proof. Suppose that $\mathbb{Q}G_1 \cong \mathbb{Q}G_2$. By Theorem 2.3, we have $G_i \cong \mathcal{P}_{p,\mu_i,\nu,\sigma_i,\rho_i,\epsilon_i}$ with each list $\mu_i, \nu_i, \sigma_i, \rho_i, \epsilon_i$ satisfying conditions (A)-(C). We will prove that $(\mu_1, \nu_1, \sigma_1, \rho_1, \epsilon_1) = (\mu_2, \nu_2, \sigma_2, \rho_2, \epsilon_2)$.

First of all $p^{\mu_1+\nu_1} = |G_1| = |G_2| = p^{\mu_2+\nu_2}$ and hence $\mu_1 + \nu_1 = \mu_2 + \nu_2$. Moreover, by Theorem 2.8 we have $G_1/G'_1 \cong G_2/G'_2$ and from conditions (B) and (C) it follows that

$$G_i/G'_i \cong \begin{cases} C_{p^{\rho_i}} \times C_{p^{\nu_i}}, & \text{if } \epsilon_i = 1, \\ C_2 \times C_{2^{\nu_i}}, & \text{if } \epsilon_i = -1 \end{cases}$$

Suppose that $\epsilon_1 = 1$ and $\epsilon_2 = -1$. Then $C_{2^{\rho_1}} \times C_{2^{\nu_i}} \cong C_2 \times C_{2^{\nu_2}}$, by Theorem 2.8, and by conditions (B) and (C) we have p = 2, $\rho_1 \leq \nu_1$, $2 \leq \rho_2$ and $1 \leq \nu_2$. Therefore $\rho_1 = 1$, and hence $\mu_1 = 1$ by condition (A). This implies that G_1 is abelian but G_2 is not abelian, in contradiction with $\mathbb{Q}G_1 \cong \mathbb{Q}G_2$. This proves that $\epsilon_1 = \epsilon_2$, which we denote ϵ from now on.

Moreover, if $\epsilon = 1$, then $C_{p^{\rho_1}} \times C_{p^{\nu_1}} \cong C_{p^{\rho_2}} \times C_{p^{\nu_2}}$ with $\rho_i \leq \nu_i$, and if $\epsilon = -1$, then $C_2 \times C_{2^{\nu_1}} \cong C_2 \times C_{2^{\nu_2}}$ and $1 \leq \nu_1, \nu_2$. Thus, in both cases $\nu_1 = \nu_2$, and hence $\mu_1 = \mu_2$. From now on we set $\mu = \mu_i$ and $\nu = \nu_i$. Suppose that $\epsilon = 1$. Then $C_{p^{\rho_1}} \times C_{p^{\nu_1}} \cong C_{p^{\rho_2}} \times C_{p^{\nu_2}}$ and hence $\rho_1 = \rho_2$, which we denote ρ . Moreover, by Artin's Theorem (Theorem 2.7), the number of Wedderburn components of $\mathbb{Q}G_i$ is the number of conjugacy classes of cyclic subgroups of G_i . Therefore, if A_{σ_1} and A_{σ_2} are as defined in Lemma 3.2, then we have $A_{\sigma_1} = A_{\sigma_2}$. Let

$$B_{\sigma_i} = 2p^{\mu-\rho}(p-1)A_i = -2p^{\sigma_i} + \sigma_i p^{\mu-1}(p-1)(2+(p-1)(1+2\nu-\sigma_i)).$$

Then $B_{\sigma_1} = B_{\sigma_2}$. By means of contradiction, assume without loss of generality that $\sigma_1 < \sigma_2$. By condition (B) we have $\sigma_1 < \sigma_2 \le \mu \le \nu + \rho$. If $\sigma_1 < \mu - 1$, then $\min(\sigma_2, \mu - 1) \le v_p(B_{\sigma_2}) = v_p(B_{\sigma_1}) = \sigma_1 < \mu - 1$, which contradicts the assumption $\sigma_2 > \sigma_1$. Therefore, $\mu - 1 \le \sigma_1 < \sigma_2 \le \min(\mu, \nu)$, i.e. $\sigma_1 = \mu - 1$ and

$$\sigma_2 = \mu \leq \nu$$
. Then

$$0 = B_{\mu} - B_{\mu-1}$$

= $-2p^{\mu} + \mu p^{\mu-1}(p-1)(2 + (p-1)(2\nu + 1 - \mu))$
 $+2p^{\mu-1} - (\mu - 1)p^{\mu-1}(p-1)(2 + (p-1)(2\nu + 1 - (\mu - 1)))$
= $p^{\mu-1}(p-1)[-2 + \mu(2 + (p-1)(2\nu + 1 - \mu)) - (\mu - 1)(2 + (p-1)(2\nu + 2 - \mu))]$
= $p^{\mu-1}(p-1)[-2 + 2\mu - 2(\mu - 1) + \mu(p-1)(2\nu + 1 - \mu) - (\mu - 1)(p-1)(2\nu + 2 - \mu)]$
= $p^{\mu-1}(p-1)[\mu(p-1)(2\nu + 1 - \mu) - \mu(p-1)(2\nu + 2 - \mu) + (p-1)(2\nu + 2 - \mu)]$
= $2p^{\mu-1}(p-1)^2(\nu + 1 - \mu) > 0,$

which is the desired contradiction.

Suppose now that $\epsilon = -1$. We first prove that $\rho_1 = \rho_2$. By means of contradiction suppose that $\rho_1 < \rho_2$. It is well known that the dimension over \mathbb{Q} of the center of $\mathbb{Q}G_i$ is the number of conjugacy classes of G_i . Then, by Lemma 3.3 we have

$$2^{\rho_1}(3 \cdot 2^{\nu-1} - 2^{\nu+\rho_1-\mu}) = 2^{\rho_2}(3 \cdot 2^{\nu-1} - 2^{\nu+\rho_2-\mu}).$$

If $\rho_2 < \mu - 1$, then

$$2\rho_2 + \nu - \mu = v_2(2^{\rho_2}(3 \cdot 2^{\nu-1} - 2^{\nu+\rho_2-\mu})) = v_2(2^{\rho_1}(3 \cdot 2^{\nu-1} - 2^{\nu+\rho_1-\mu})) = 2\rho_1 + \nu - \mu,$$

which contradicts the assumption $\rho_1 < \rho_2$. Therefore $\rho_2 \ge \mu - 1$. If $\rho_1 < \mu - 1$, then using that $\mu \ge 2$, by condition (C), we have

$$\rho_2 + \nu - 1 \le v_2 (2^{\rho_2} (3 \cdot 2^{\nu-1} - 2^{\nu+\rho_2 - \mu})) = v_2 (2^{\rho_1} (3 \cdot 2^{\nu-1} - 2^{\nu+\rho_1 - \mu})) = 2\rho_1 + \nu - \mu < \rho_1 + \nu - 1,$$

again in contradiction with the assumption $\rho_1 < \rho_2$. Therefore $\rho_1 = \mu - 1$ and $\rho_2 = \mu$, and hence $\mu \geq 3$, by condition (A). If $\sigma_2 = \mu$, then, by Lemma 3.4, $\mathbb{Q}G_2$ has a simple component with center isomorphic to $\mathbb{Q}(\zeta_{2^{\mu}} + \zeta_{2^{\mu}})$ while $\mathbb{Q}G_1$ does not. Therefore $\sigma_2 = \mu - 1$. This implies that $\nu = 1$, by condition (C). Therefore G_2 is the quaternion group of order $2^{\mu+1}$. If $\sigma_1 = \mu$, then G_1 is the dihedral group of order $2^{\mu+1}$. Otherwise $\sigma_1 = \mu - 1$ and, if $b_1 = ba$, then $b_1^2 = 1$ so that G_1 is the semidihedral group $\langle a, b_1 | a^{2^{\mu-1}} = b_1^2 = 1, a^{b_1} = a^{-1+2^{\mu-1}} \rangle$. Looking at the Wedderburn decomposition of the rational group algebras of dihedral, semidihedral groups and quaternion group in [JdR16, 19.4.1] we deduce that $\mathbb{Q}G_2$ has a simple component isomorphic to the quaternion algebra $\mathbb{H}(\mathbb{Q}(\zeta_{2^{\mu}} + \zeta_{2^{\mu}}))$, which is a non-commutative division algebra, while $\mathbb{Q}G_1$ does not have any Wedderburn component which is a non-commutative division algebra. This yields the desired contradiction in this case.

So we can set $\rho = \rho_1 = \rho_2$ and it remains to prove that $\sigma_1 = \sigma_2$. Otherwise, we may assume that $\sigma_1 = \mu - 1$ and $\sigma_2 = \mu < \nu + \rho$, by condition (C). If $\rho < \mu$, then we obtain a contradiction with Lemma 3.5. Thus $\rho = \mu$. If $\mu \ge 3$, then the contradiction follows from Lemma 3.4. Thus $\mu = 2$, but then G_1 is the quaternion group of order 8 and G_2 is the dihedral group of order 8 and again $\mathbb{Q}G_1$ has Wedderburn component which is a non-commutative division algebra but $\mathbb{Q}G_2$ does not, yielding to the final contradiction.

4. The Isomorphism Problem for finite metacyclic nilpotent groups

Given a finite group G we say that a Wedderburn component of $\mathbb{Q}G$ is a *p*-component if its degree is a power of p and its center embeds in $\mathbb{Q}(\zeta_{p^n})$ for some non-negative integer n.

Lemma 4.1. Let G be a finite group and (L, K) a strong Shoda pair of G. Then $\mathbb{Q}Ge(G, L, K)$ is a pcomponent if and only if [G: L] is a power of p and $[L: K]_{p'} \in \{1, 2\}$.

Proof. The reverse implication is a direct consequence of Proposition 2.5. Conversely, set $A = \mathbb{Q}Ge(G, L, K)$ and suppose that A is a p-component. Let d = [G : L] and c = [L : K]. As d is the degree of A, it is a power of p. Moreover the center of A is isomorphic to the Galois correspondent $F_{G,L,K} = \mathbb{Q}(\zeta_c)^{\text{Im}(\alpha)}$ of a subgroup of $\text{Gal}(\mathbb{Q}(\zeta_c)/\mathbb{Q})$ isomorphic to $N_G(K)/L$ (Remark 2.4). The assumption implies that $F \subseteq \mathbb{Q}(\zeta_{c_p})$. As $[N_G(K) : L]$ is a power of p, so is $[\mathbb{Q}(\zeta_c) : F_{G,L,K}]$ and hence $\varphi(c_{p'}) = [\mathbb{Q}(\zeta_c) : \mathbb{Q}(\zeta_{c_p})]$ is a power of p. Then $c_{p'}$ is either 1 or 2.

If G is a finite group, then we use the notation

$$\pi_G = \{p \in \pi(G) : G \text{ has a normal Hall } p' - \text{subgroup}\}$$
 and $\pi'_G = \pi(G) \setminus \pi_G$

Remark 4.2. If G is metacyclic and p is the smallest prime dividing |G|, then $p \in \pi_G$. In particular, $2 \notin \pi'_G$.

Proof. Let $\pi = \pi_G$ and $\pi' = \pi'_G$. If $p \in \pi'$, then, by [GBdR23, Lemma 3.1], G'_p has a non-central element h of order p. Therefore G contains an element g such that $[g,h] \neq 1$, and we may assume that |g| is a power of a prime q. Then $\operatorname{Aut}(\langle h \rangle)$ has an element of order q. As $\operatorname{Aut}(\langle h \rangle)$ has order p-1 it follows that $q \mid p-1$ and in particular q > p. Thus p is not the smallest prime dividing |G|.

Lemma 4.3. If G and H are metacyclic groups with $\mathbb{Q}G \cong \mathbb{Q}H$, then $\pi'_G = \pi'_H$ and $\pi_G = \pi_H$.

Proof. Let $\pi = \pi_G$ and $\pi' = \pi'_G$. We claim that $\pi' = \{p \in \pi(G') : (G/G')_p \text{ is cyclic}\}$. Let $A = \langle a \rangle \leq G$ and $B = \langle b \rangle \leq G$ with G = AB. By [GBdR23, Lemma 3.1], $\langle a_p, b_p \rangle$ is a Sylow *p*-subgroup of G, $A_{\pi'} = G'_{\pi'}$ and $G = A_{\pi'} \rtimes \left(B_{\pi'} \times \prod_{q \in \pi} A_q B_q\right)$. Therefore, if $p \in \pi'$, then $(G/G')_p$ is cyclic. If $p \in \pi' \setminus \pi(G')$, then $A_{\pi'} \rtimes \left(B_{\pi' \setminus \{p\}} \times \prod_{q \in \pi} A_q B_q\right)$ is a normal Hall *p'*-subgroup of G and hence $p \in \pi$, a contradiction. This proves that $\pi' \subseteq \{p \in \pi(G') : (G/G')_p \text{ is cyclic}\}$. Conversely, if $p \in \pi$, then $[b_{p'}, a_p] = 1$ and therefore $G'_p = \langle a_p, b_p \rangle'$. Then $(G/G')_p \cong \langle a_p, b_p \rangle / \langle a_p, b_p \rangle'$. Therefore, if $(G/G')_p$ is cyclic, then so is $\langle a_p, b_p \rangle$ by the Burnside Basis Theorem. In that case $1 = \langle a_p, b_p \rangle = G'_p$, i.e. $p \notin \pi(G')$. This finishes the proof of the claim.

By Theorem 2.8, the assumption implies that $G/\dot{G}' \cong H/H'$ and hence |G'| = |H'|. Then $G' \cong H'$ as both G' and H' are cyclic. Then, using the claim for G and H_i , we deduce that $\pi'_G = \{p \in \pi(G') : (G/G')_p \text{ is cyclic}\} = \{p \in \pi(H') : (H/H')_p \text{ is cyclic}\} = \pi'_H \text{ and } \pi_G = \pi(|G|) \setminus \pi'_G = \pi(|H|) \setminus \pi'_H = \pi_H$. \Box

In the remainder of the paper if G is a group and p is a prime, then G_p denotes a Sylow subgroup of G and $G_{p'}$ a Hall p'-subgroup of G.

Lemma 4.4. If G is metacyclic and $p \in \pi_G$, then the sum of the p-components of $\mathbb{Q}G$ is isomorphic to a direct product of k copies of $\mathbb{Q}G_p$, where

$$k = \begin{cases} 1, & \text{if } p = 2; \\ [G_2 : G'_2 G^2_2], & \text{otherwise.} \end{cases}$$

Proof. Let $\pi = \pi_G$ and $\pi' = \pi'_G$ and suppose that $p \in \pi$. By Remark 4.2, $2 \notin \pi'$ and hence G has a normal Hall $\{2, p\}'$ -subgroup N. Let e be a primitive central idempotent such that $\mathbb{Q}Ge$ is a p-component of G. Then e = e(G, L, K) for some strong Shoda pair (L, K) of G and, by Lemma 4.1 [G : K] is either a power of p or 2 times a power of p. In particular $N \subseteq K$. Then $\widehat{NM} = \widehat{M}$ for every subgroup M containing K and as N is normal in G we also have $\widehat{NM}^g = 0$ for every $g \in G$. This implies that $\widehat{N}e = e$. This proves that every p-component of $\mathbb{Q}G$ is contained in $\mathbb{Q}G\widehat{N}$. Therefore $\mathbb{Q}G\widehat{N} = A \oplus B$, where A is the sum of the p-components of $\mathbb{Q}G$, and B is the sum of the Wedderburn components of $\mathbb{Q}G\widehat{N}$ which are not p-components. We want to prove that $\mathbb{Q}(G_p)^k \cong A$.

Suppose first that p = 2. Therefore $N = G_{2'}$, and hence $G/N \cong G_2$. Thus G/N is a 2-group, and hence every Wedderburn component of $\mathbb{Q}(G/N)$, and $\mathbb{Q}G\hat{N}$, is a *p*-component. Therefore $\mathbb{Q}(G_2) \cong \mathbb{Q}G\hat{N} = A$, as desired.

Suppose that $p \neq 2$. Then $G/N = U_2 \times U'_p$ with $U_2 = G_{p'}/N \cong G_2$, and $U_p = G_{2'}/N \cong G_p$. Let $F_2 = U'_2 U_2^2$, the Frattini subgroup of U_2 . Then $F_2 = L/N$ for some subgroup L of $G_{p'}$ and, by Lemma 4.1, it follows that $L \subseteq K$ and the argument in the first paragraph shows that every p-component of $\mathbb{Q}G\hat{L}$ is contained in $\mathbb{Q}G\hat{L}$. Thus $\mathbb{Q}G\hat{L} = A \oplus C$ where C is the sum of the Wedderburn components of $\mathbb{Q}G\hat{L}$ which are not p-components. Moreover, $G/L \cong U_p \times E$ for E an elementary abelian 2-group of order k. Then $\mathbb{Q}E \cong \mathbb{Q}^k$ and hence $\mathbb{Q}G\hat{L} \cong \mathbb{Q}(G/L) \cong (\mathbb{Q}U_p)^k$. Moreover, as U_p is a p-group, every Wedderburn component of $\mathbb{Q}U_p$ is a p-component. In other words, C = 0 and hence $A \cong (\mathbb{Q}U_p)^k = (\mathbb{Q}G_p)^k$, as desired. \Box

Lemma 4.5. Let G and H be finite metacyclic groups with $\mathbb{Q}G \cong \mathbb{Q}H$, let $p \in \pi_G$ and let G_p and H_p be Sylow subgroups of G and H respectively. Then $\mathbb{Q}G_p \cong \mathbb{Q}H_p$.

Proof. Let $\pi = \pi_G$ and $\pi' = \pi'_G$ and let k be as in Lemma 4.4. As $2 \notin \pi'$, by Remark 4.2, and $G/G_{\pi'}$ is nilpotent, it follows that $G_2/G'_2G_2^2$ is isomorphic to the Sylow 2-subgroup of the quotient G/G' by its Frattini subgroup. Since $G/G' \cong H/H'$, the value of k is the same whether it is computed for G or H. Let A_G and A_H be the sum of the Wedderburn p-components of $\mathbb{Q}G$ and $\mathbb{Q}H$. Since $\mathbb{Q}G \cong \mathbb{Q}H$, $A_G \cong A_H$. By Lemma 4.4, $(\mathbb{Q}G_p)^k \cong A_G \cong A_H \cong (\mathbb{Q}H_p)^k$ an therefore $\mathbb{Q}G_p \cong \mathbb{Q}H_p$.

We are ready to prove our main results. We first state and prove Theorem A.

Theorem 4.6. Let G and H be two metacyclic finite groups such that $\mathbb{Q}G \cong \mathbb{Q}H$. Then $\pi_G = \pi_H$ and the Hall π_G -subgroups of G and H are isomorphic.

Proof. By Lemma 4.3 we have $\pi_G = \pi_H$ and from now on we denote the latter by π . Then the Hall π -subgroups of G and H are nilpotent, and hence it is enough to prove that if $p \in \pi$, then the Sylow p-subgroups G_p of G and H_p of H are isomorphic. However, $\mathbb{Q}G_p \cong \mathbb{Q}H_p$, by Lemma 4.5, and hence $G_p \cong H_p$, by Theorem 3.6.

If G is nilpotent, then $\pi'_G = \emptyset$ and hence Corollary B follows directly from Theorem 4.6.

References

[Ber52]	S. D. Berman, On the theory of representations of finite groups, Dokl. Akad. Nauk SSSR (N.S.) 86 (1952), 885–888.
[Ber55]	, Group algebras of abelian extensions of finite groups, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 431–434.
[Ber56]	, p-adic ring of characters, Dokl. Akad. Nauk SSSR (N.S.) 106 (1956), 583–586. MR 0077539 (17,1052g)
[Bey72]	F. R. Beyl, The classification of metacyclic p-groups, and other applications to homological algebra to group
	theory, ProQuest LLC, Ann Arbor, MI, 1972, Thesis (Ph.D.)-Cornell University. MR 2622614
[BGLdR23]	O. Broche, D. García-Lucas, and Á. del Río, A classification of the finite 2-generator cyclic-by-abelian groups of
	prime-power order, International Journal of Algebra and Computation 33 (2023), no. 04, 641-686.
[Bra51]	R. Brauer, On the algebraic structure of group rings, J. Math. Soc. Japan 3 (1951), 237–251. MR 0044577 (13,442b)
[CR62]	Ch. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Ap-
[]	plied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962.
	MR 0144979 ($26 \# 2519$)
[Dad71]	E. Dade, Deux groupes finis distincts ayant la même algèbre de groupe sur tout corps, Math. Z. 119 (1971),
[345–348.
[GBdR23]	À. García-Blázquez and Á. del Río, A classification of metacyclic groups by group invariants, Bull. Math. Soc. Sci.
	Math. Roumanie (N.S.) 66(114) (2023), no. 2, 209–233.
[Hal59]	M. Hall, Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
[Hem00]	C. E. Hempel, Metacyclic groups, Communications in Algebra 28 (2000), no. 8, 3865–3897.
[Her01]	M. Hertweck, A counterexample to the isomorphism problem for integral group rings, Ann. of Math. 154 (2001),
	115–138.
[Hig40a]	G. Higman, Units in group rings, Thesis (Ph.D.)–Univ. Oxford, 1940.
[Hig40b]	, The units of group-rings, Proc. London Math. Soc. (2) 46 (1940), 231–248. MR 0002137 (2,5b)
[JdR16]	E. Jespers and Á. del Río, Group Ring Groups. Volume 1: Orders and generic constructions of units, Berlin: De
	Gruyter, 2016.
[Kin73]	B. W. King, Presentations of metacyclic groups, Bull. Austral. Math. Soc. 8 (1973), 103–131. MR 323893
[KP21]	R. S. Kulkarni and S. S. Pradhan, Schur index and extensions of witt-berman's theorems, arxiv.2012.10892 (2021).
[Lie94]	S. Liedahl, Presentations of metacyclic p-groups with applications to K-admissibility questions, J. Algebra 169
	(1994), no. 3, 965–983. MR 1302129
[Lie96]	, Enumeration of metacyclic p-groups, J. Algebra 186 (1996), no. 2, 436–446. MR 1423270
[Lin71]	W. Lindenberg, Struktur und Klassifizierung bizyklischer p-Gruppen, Gesellschaft für Mathematik und Datenver-
	arbeitung, Bonn, 1971, BMBW-GMD-40. MR 0285609
[NX88]	M. F. Newman and M. Xu, Metacyclic groups of prime-power order, Adv. in Math. (Beijing) 17 (1988), 106–107.
	MR 0404441
[OdRS04]	A. Olivieri, Á. del Río, and J. J. Simón, On monomial characters and central idempotents of rational group algebras,
	Comm. Algebra 32 (2004), no. 4, 1531–1550. MR 2100373 (2005i:16054)
[Pie82]	R. S. Pierce, Associative algebras, Graduate Texts in Mathematics, vol. 88, Springer-Verlag, New York, 1982,
	Studies in the History of Modern Science, 9. MR 674652 (84c:16001)
[PW50]	S. Perlis and G. L. Walker, Abelian group algebras of finite order, Trans. Amer. Math. Soc. 68 (1950), 420–426.
	MR 0034758 (11,638k)
[Réd 89]	L. Rédei, Endliche p-Gruppen, Akadémiai Kiadó, Budapest, 1989. MR 992619
[Sim94]	Hyo-Seob Sim, Metacyclic groups of odd order, Proc. London Math. Soc. (3) 69 (1994), no. 1, 47–71. MR 1272420
[Whi68]	A. Whitcomb, The Group Ring Problem, ProQuest LLC, Ann Arbor, MI, 1968, Thesis (Ph.D.)-The University of
-	Chicago.
[Zas99]	H. J. Zassenhaus, The theory of groups, Dover Publications, Inc., Mineola, NY, 1999, Reprint of the second (1958)
	edition. MR 1644892