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Abstract
In the 1940’s Graham Higman initiated the study of finite subgroups of the unit group of
an integral group ring. Since then many fascinating aspects of this structure have been dis-
covered. Major questions such as the Isomorphism Problem and the Zassenhaus Conjectures
have been settled, leading to many new challenging problems. In this survey we review
classical and recent results, sketch methods and list questions relevant for the state of the
art.
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1 Introduction

Group rings first come up as a natural object in the study of representations
of groups as matrices over fields or more generally as endomorphisms of
modules. They also appear in topology, knot theory and other areas in
pure and applied mathematics. For example, many error correcting codes
can be realized as ideals in group algebras and this algebraic structure has
applications on decoding algorithms.

1 This work was partially supported by FWO (Research Foundation of Flanders), the Spanish Govern-
ment under Grant MTM2016-77445-P with “Fondos FEDER” and, by Fundación Séneca of Murcia
under Grant 19880/GERM/15.).
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The aim of this survey is to revise the history and state of the art on the
study of the finite subgroups of units in group rings with special empha-
sis on integral group rings of finite groups. For an introduction includ-
ing proofs of some first results the interested reader might want to consult
[136, 120]. Other surveys touching on the topics considered here include
[137, 85].

Let G be a group, R a ring and denote by U (R) the unit group of R and
by RG the group ring of G with coefficients in R. The main problem can be
stated as follows:

Main Problem: Describe the finite subgroups of U (RG) and, in
particular, its torsion elements.

This problem, especially in the case of integral group rings of finite groups,
has produced a lot of beautiful results which combine group theory, ring
theory, number theory, ordinary and modular representation theory and
other fields of mathematics. Several answers to the Main Problem have
been proposed. The strongest ones, such as the Isomorphism and Normal-
izer Problems and the Zassenhaus Conjectures, introduced below, are true
for large classes of groups, but today we know that they do not hold in gen-
eral. Other possible answers, as the Kimmerle or Spectrum Problems are
still open. We hope that this survey will stimulate research on these and
other fascinating questions on group rings. For this purpose we include
several open problems and revise the status of some problems given before
in [136] in our final remark.

One of the main motivations for studying finite subgroups of RG in the
case where G is finite is the so called Isomorphism Problem which asks
whether the ring structure of RG determines the group G up to isomor-
phism, i.e.

The Isomorphism Problem: Does the group rings RG and RH
being isomorphic imply that so are the groups G and H?

(ISO) is the Isomorphism Problem for R = Z and G finite.

Observe that the Isomorphism Problem is equivalent to the problem of
whether all the group bases of RG are isomorphic. A group basis is a group of
units in RG which is a basis of RG over R. It is easy to find negative solutions
to the Isomorphism Problem if the coefficient ring is big, for example, if G
and H are finite then CG and CH are isomorphic if and only if G and H
have the same list of character degrees, with multiplicities. In particular, if
G is finite and abelian then CG and CH are isomorphic if and only if G and
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H have the same order. As (ISO) was considered a conjecture for a long time
it is customary to speak of counterexamples to (ISO).

The “smaller” the coefficient ring is, the harder it is to find a negative
solution for the Isomorphism Problem. This is the moral of the following:

Remark 1 If there is a ring homomorphism R→ S then SG ∼= S⊗R RG. Thus a
negative answer to the Isomorphism Problem for R is also a negative answer for S.
In particular, a counterexample for (ISO) is a negative solution for the Isomorphism
Problem for all the rings.

In the same spirit, at least in characteristic zero, the “smaller” the ring R
is the harder it is to construct finite subgroups of RG besides those inside
the group U (R)G of trivial units. For example, if G is a finite abelian group
then all the torsion elements of U (ZG) are trivial, i.e. contained in ±G. This
implies that (ISO) has a positive solution for finite abelian groups. This is a
seminal result from the thesis of Graham Higman [71], where the Isomor-
phism Problem appeared for the first time and which raised the interest in
the study of units of integral group rings. More than 20 years later Albert
Whitcomb proved (ISO) for metabelian groups [144].

The map ε : RG → R associating each element of RG to the sum of
its coefficients is a ring homomorphism. This is called the augmentation
map. It restricts to a group homomorphism U (RG) → U (R) whose ker-
nel is denoted V(RG) and its elements are called normalized units. Clearly
U (RG) = U (R)×V(RG), in particular U (ZG) = ±V(ZG). It can be easily
shown that if RG and RH are isomorphic there is a normalized isomorphism
α : RG → RH, i.e. ε(α(x)) = ε(x) for every x ∈ RG.

Higman’s result on torsion units of integral group rings of abelian groups
cannot be generalized to non-abelian groups because conjugates of trivial
units are torsion units which in general are not trivial. A natural guess
is that all torsion units in the integral group ring of a finite group are of
this form, or equivalently every normalized torsion unit is conjugate to an
element of G. Higman already observed that V(ZS3) contains torsion units
which are not conjugate in U (ZS3) to trivial units (Sn denotes the symmetric
group on n letters). Since Higman’s thesis was not that well known, this
was reproven many years later by Ian Hughes and Kenneth Pearson. They
observed however that all the torsion elements of V(ZS3) are conjugate to
elements of S3 in QS3 [73]. Motivated by this and Higman’s result, Hans
Zassenhaus conjectured that this holds for all the integral group rings of
finite groups [145]:

The First Zassenhaus Conjecture (ZC1): If G is a finite group
then every normalized torsion unit in ZG is conjugate in QG to
an element of G.
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Similar conjectures for group bases and, in general for finite subgroups of
ZG, are attributed to Zassenhaus [135]:

The Second Zassenhaus Conjecture (ZC2): If G is a finite group
then every group basis of normalized units of ZG is conjugate in
QG to G.

The Third Zassenhaus Conjecture (ZC3): If G is a finite group
then every finite subgroup of normalized units in ZG is conjugate
in QG to a subgroup of G.

Some support for these conjectures came from the following results: If H
is a finite subgroup of V(ZG) then its order divides the order of G [146]
and its elements are linearly independent over Q [71]. The exponents of G
and V(ZG) coincide. The last fact is even true replacing Z by any ring of
algebraic integers [40].

The Second Zassenhaus Conjecture is of special relevance because a posi-
tive solution for (ZC2) implies a positive solution for (ISO). Actually

(ZC2) ⇔ (ISO) + (AUT)

where (AUT) is the following Problem:

The Automorphism Problem (AUT): Is every normalized auto-
morphisms of ZG the composition of the linear extension of an
automorphism of G and the restriction to ZG of an inner auto-
morphism of QG?

In the late 1980s counterexamples to the conjectures started appearing.
The first one, by Klaus Wilhelm Roggenkamp and Leonard Lewy Scott
[133, 126, 134], was a metabelian negative solution to (AUT) and hence a
counterexample to (ZC2) and (ZC3). Observe that while (ZC2) fails for
finite metabelian groups, (ISO) holds for this class by Whitcomb’s result
mentioned above. So in the 1990s there was still some hope that (ISO) may
have a positive solution in general, as Higman had already stated in his
thesis: “Whether it is possible for two non-isomorphic groups to have iso-
morphic integral group rings I do not know, but the results of section 5

suggest that it is unlikely” [70]. However Martin Hertweck found in 1997

two non-isomorphic groups with isomorphic integral group rings [55, 56].
We elaborate on these questions in Section 3.

So the only of the above mentioned questions open at the end of the
1990s was (ZC1). From the 1980s (ZC1) has been proven for many groups
including some important classes as nilpotent or metacyclic groups. A lot
of work was put in trying to prove it for metabelian groups, but metabelian
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counterexamples were discovered by Florian Eisele and Leo Margolis in 2017

[47]. Details on (ZC1) are provided in Section 4.
Still both (ISO) and the Zassenhaus Conjectures have a positive solution

for many significant classes of finite groups and many interesting questions
on finite subgroups of U (ZG) are still open. In the introduction we mention
just a few of the most relevant. It is not known whether (ISO) has a positive
solution for finite groups of odd order and Hertweck’s method can not work
in this case. A classical open problem is the following special case of the
Isomorphism Problem:

Modular Isomorphism Problem (MIP): Let k be a field of char-
acteristic p and G and H finite p-groups. Does kG ∼= kH imply
G ∼= H?

Before we give more details on these questions in Section 3, we revise in
Section 2 some methods to attack the problems mentioned above as well as
known results on (ZC3), the strongest conjecture on the finite subgroups of
ZG.

The Zassenhaus Conjectures were possible answers to the Main Problem
and in particular (ZC1) was still standing as a possible answer for torsion
units until recently. Since all three Zassenhaus Conjectures have been dis-
proved, maybe it is time to reformulate them as the Zassenhaus Problems.
Another type of answer was proposed by Wolfgang Kimmerle [76]:

Kimmerle Problem (KP): Let G be a finite group and u a torsion
element in V(ZG). Does there exist a group H which contains G
such that u is conjugate in QH to an element of G?

Observe that while (ZC1) asks if it is enough to enlarge the coefficient
ring of ZG to obtain that all torsion units are trivial up to conjugation, (KP)
allows to enlarge also the group basis.

Recall that the spectrum of a group is the set of orders of its torsion ele-
ments. A weaker answer to the Main Problem could be provided by solving
the following problem:

The Spectrum Problem (SP): If G is a finite group do the spectra
of G and V(ZG) coincide?

See more about these problems in Section 5.
As V(ZG) and G have the same exponent, at least the orders of the p-

elements of V(ZG) and G coincide. So, it is natural to ask whether the iso-
morphism classes of the finite p-subgroups of V(ZG) and G are the same. It
is even an open question whether every (cyclic) finite p-subgroup of V(ZG)
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is conjugate in QG to a subgroup of G. Section 6 deals with these and other
questions on finite p-subgroups of V(ZG).

Techniques and results from modular representation theory have been
very useful in the study of the problems mentioned in this article. On the
other hand, questions in modular representation theory about the role of the
defect group in a block are related to questions on p-subgroups in units of
group rings. Here rational conjugacy is not as useful and p-adic conjugacy is
in the focus, as in the F∗-Theorem (Theorem 15) and in Theorem 20. There
is some hope that this kind of results might be applied e.g. to solve the
following question of Scott:

Scott’s Defect Group Question [133]: Let Zp denote the p-adic
integers, let G be a finite group and let B be a block of the group
ring ZpG. Is the defect group of B unique up to conjugation by a
unit of B and suitable normalization?

It is not clear, and should be regarded as part of the problem, what suit-
able normalization means if the block is not the principal block of the group
ring. This problem, and indeed Scott’s question in its generality, has been
solved by Markus Linckelmann in case the defect group is cyclic [94].

Scott’s question is also of interest since, as has been shown by Geoffrey
Robinson [124, 125], even a weak positive answer to it would provide a proof
of the Z∗p-Theorem avoiding the Classification of Finite Simple Groups. The
first proof of the Z∗p-theorem using the CFSG is due to Orest Artemovich [3].
Here the Z∗p-Theorem means an odd analogous of the famous Z∗-Theorem
of George Glauberman.

We use standard notation for cyclic Cn and dihedral group Dn of order
n; symmetric Sn and alternating group An of degree n; and linear groups
SL(n, q), PSL(n, q), etc. For an element g in a group G we denote by CG(g)
the centralizer and by gG the conjugacy class of g in G.

2 General finite subgroups

Though the group of units of group rings has been studied for about eighty
years there are very few classes of group rings for which the group of units
has been described explicitly. For the case of integral group rings, the inter-
ested reader can consult the book by Sudarshan Kumar Sehgal [136] and by
Eric Jespers and Ángel del Río [77, 78]. An overview of Higman’s thesis [70],
the starting point of the area, may be found in [132]. Actually constructing
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specific units is not that obvious, except for the trivial units of a group ring
RG, i.e. those in U (R)G. For example, there is a famous question, stud-
ied at least since the 1960s, attributed to Irving Kaplansky [81], though he
refers to a question 1.135 by Dmitrij Smirnov and Adalbert Bovdi from the
first edition of the Dniester notebook from 1969 (the first edition is entirely
included in [49] and the English translation [50]):

Kaplansky’s Unit Conjecture: If G is a torsion-free group and R
is a field then every unit of RG is trivial.

Kaplansky’s Unit Conjecture is still open and few progress has been made
on it besides the case of ordered groups for which it is easy to verify (in
fact the same proof works for unique product groups). In contrast with
this, the only finite groups for which all the units of ZG are trivial are the
abelian groups of exponent dividing 4 or 6 and the Hamiltonian 2-groups.
Actually these are the only groups for which U (ZG) is finite [70] (see also
[77, Theorem 1.5.6]).

From now on R is a commutative ring, G is a finite group and we focus
on finite subgroups of U (RG). The commutativity of R allows to identify
left and right RG-modules by setting rgm = mrg−1 for r ∈ R, g ∈ G and m
an element in a left or right RG-module.

Higman proved that if G is an abelian finite group then every torsion
unit of ZG is trivial. In the 1970s some authors computed U (ZG) for some
small non-abelian groups G. For example, Hughes and Pearson computed
U (ZS3) [73] and César Polcino Milies computed U (ZD8) [117]. As a conse-
quence of these computations it follows that (ZC3) has a positive solution for
S3 and D8. These early results were achieved by very explicit computations.

A notion to deal with more general classes of groups is the so called double
action module:

Definition 2 Let H be group and let α : H → U (RG) be a group homomorphism.
Let (RG)α be the R(G × H)-module whose underlying R-module equals RG and
the action by elements of G× H is given by:

(g, h) ·m = α(h)mg−1 (g ∈ G, h ∈ H, m ∈ (RG)α.

The connection between the Zassenhaus Conjectures and double action
modules relies on the following observations.

Proposition 3 Let α, β : H → U (RG) be group homomorphisms. Then (RG)α

and (RG)β are isomorphic as R(G×H)-modules if and only if there is u ∈ U (RG)

such that β(h) = u−1α(h)u for every h ∈ H.
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Proposition 4 Let G and H be groups and let M be a left R(G × H)-module.
Then M is isomorphic to a double action R(G × H)-module if and only if its re-
striction to RG is isomorphic to the regular right RG-module.

For our applications R usually is the ring of integers or the field of ra-
tionals, and occasionally the ring Zp of p-adic integers. More precisely,
consider a finite subgroup H of V(ZG). Then the embedding α : H ↪→
U (ZG) defines a double action Z(G× H)-module but also a double action
Q(G × H)-module (QG)α. By Proposition 3, to prove that H is conjugate
in QG to a subgroup of G we need to prove that (QG)α

∼= (QG)β for some
group homomorphism β : H → G. As two Q(G× H)-modules are isomor-
phic if and only if they afford the same character, the following formula is
relevant:

χα(g, h) = |CG(g)| εg(α(h)) (g ∈ G, h ∈ H). (1)

Here χα denotes the character afforded by (RG)α for an arbitrary homomor-
phism α : H → U (RG) and

εg : RG → R, ∑
x∈G

axx 7→ ∑
x∈gG

ax.

The element εg(a) is called the partial augmentation of a at g. The partial aug-
mentation has an even more practical role in dealing with the Zassenhaus
Conjectures via the following:

Proposition 5 [103],[136, Lemma 41.4] The following are equivalent for a finite
subgroup H of V(ZG):

1. H is conjugate in QG to a subgroup of G.

2. There is a group homomorphism ϕ : H → G such that for every h ∈ H and
g ∈ G one has εg(h) 6= 0 if and only if gG = ϕ(h)G.

This theorem has been the cornerstone in the study of the Zassenhaus
Conjectures. It is the reason why a lot of research has been deployed to
study partial augmentations of torsion units of ZG. We collect here some
of the most important results in this direction. The first one is also known
as the Berman-Higman theorem, named after Higman and Samuil Berman
- probably the two earliest researchers in the field.

Proposition 6 Let G be a finite group and let u be a torsion unit of order n in
V(ZG).

1. If n 6= 1 then ε1(u) = 0 [77, Proposition 1.5.1].
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2. If u lies in a group basis then there is an element g ∈ G such that εx(u) 6= 0
if and only if x ∈ gG. This is an immediate consequence of the class sum
correspondence [128, IV.1 Theorem].

3. If εg(u) 6= 0 then the order of g divides n [60].

4. If εg(u) 6= 0 and the p-part of u is conjugate to an element x of G in ZpG
then x is conjugate to the p-part of G [61].

5. If G is solvable then εg(u) 6= 0 for some element g of order n in G. [62].

Proposition 4 also motivated the introduction of an algorithmic method to
study finite subgroups H of V(ZG) using the characters of G to obtain re-
strictions on the partial augmentations of the elements of H. Each ordinary
character χ of G extends linearly to a map defined on CG, its restriction to
H is the character χH of a CH-module and we have

χH(h) = ∑
gG

εg(h)χ(g), (h ∈ H)

where ∑gG represents a sum running on representatives of the conjugacy
classes of G. Therefore for each ordinary character ψ of H we have

1
|H| ∑

h∈H
∑
gG

εg(h)χ(g)ψ(h) = 〈χH , ψ〉H ∈ Z≥0. (2)

This can be used in combination with Propositions 4 and 5 to prove or dis-
prove the Zassenhaus Conjectures in some cases. The information provided
by this on partial augmentations is also information about the characters of
double action modules, by (1). This sometimes helps to construct specific
groups of units and eventually counterexamples to the Zassenhaus Conjec-
tures. See Section 4 for more details.

In case the subgroup is p-regular similar formulas are available for p-
Brauer characters. More precisely, if H is a finite subgroup of U (ZG) of
order coprime with p, χ is a p-Brauer character of G and ψ is an ordinary
character of H then

1
|H| ∑

h∈H

p′

∑
gG

εg(h)χ(g)ψ(h) ∈ Z≥0 (3)

where
p′

∑
gG

represents a sum running on representatives of the conjugacy
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classes of p-regular elements of G [60, 105]. Actually, these are the only
partial augmentations relevant for the application of Proposition 5, because
if h ∈ H and g is p-singular then εg(h) = 0 (see statement (3) of Proposi-
tion 6).

These formulas are the bulk of the method introduced by Indar Singh
Luthar and Inder Bir Singh Passi who used it to prove (ZC1) for A5 [97].
Later it was generalized by Hertweck and used to prove (ZC1) for some
small PSL(2, q) and to give a new short proof for S5 [60]. It is nowadays
known as the HeLP Method. It consists, roughly speaking, in solving for-
mulas (2) and (3) for all irreducible χ and ψ viewing the εg(h) as unknowns
and employing additional properties of these integers such as those given
in Proposition 6. The method has been implemented for the GAP system
[51, 13] for the case where H is cyclic.

The strongest positive results on (ZC3) were achieved by Al Weiss. The
first one was proved before by Roggenkamp and Scott for the special case
of group bases.

Theorem 7 [142][136, Appendix] Let R be a p-adic ring i.e. the integral closure
of Zp in a finite extension of the field of fractions of Zp, and let G be a finite p-
group. Then every finite subgroup of V(RG) is conjugate in the units of RG to a
subgroup of G.

This theorem is an application of a deep module-theoretic result of Weiss
[142] which strongly restricts the possible structure of double action mod-
ules of p-adic group rings of p-groups. As a consequence of Theorem 7,
(ZC3) holds for p-groups. Actually Weiss proved:

Theorem 8 [143] (ZC3) holds for nilpotent groups.

Next theorem collects some other results on (ZC3).

Theorem 9 (ZC3) holds for G in the following cases:

1. G = C o A with C cyclic, A abelian and gcd(|C|, |A|) = 1 [139].

2. G is either S4, the binary octahedral group [43], A5, S5 or SL(2, 5) [44].

3. All the Sylow subgroups of G are cyclic [80].

4. |G| = p2q with p and q primes [95].

As it was mentioned in the introduction, the first counterexamples to
(ZC2) and (ZC3) were constructed by Roggenkamp and Scott as a nega-
tive solution to (AUT) [126, 134]. This counterexample was metabelian and
supersolvable. Using their methods Lee Klingler gave an easier negative



Finite Subgroups of Group Rings: A survey 11

solution for such a group of order 2880 [93]. More negative solutions were
later constructed by Hertweck [57, 58], the smallest of order 96 [59], using
groups found by Peter Blanchard as semilocal negative solutions [16].

We close this section with a very general problem posed by Kimmerle at
a conference [76] for which little is known:

The Subgroup Isomorphism Problem (SIP): What are the finite
groups H satisfying the following property for all finite groups G?
If V(ZG) contains a subgroup isomorphic to H then G contains a
subgroup isomorphic to H.

Note that (SP) is the specification of (SIP) to cyclic groups. The only
groups for which a positive solution for (SIP) has been proven are cyclic
p-groups [40], Cp × Cp for p a prime [84, 64] and C4 × C2 [105]. All the
known negative solutions to (SIP) are based on Hertweck’s counterexample
to (ISO).

3 Group bases

As already mentioned in the introduction, a lot of research on the units of
group rings originally focused on the role of group bases inside the unit
group. This is directly related to questions such as (ISO) or (ZC2). Still
it turned out to be very complicated to achieve results for big classes of
groups, apart from metabelian groups. Roggenkamp and Scott [127] proved
(ISO) for finite p-groups. In fact they proved that inside the p-adic group
ring of a finite p-group any two group bases are conjugate and hence they
are isomorphic. This of course implies (ZC2) for this class of groups. The
stronger results of Weiss [142], quoted in Theorems 7 and 8, were obtained
using different methods. After these relevant achievements other positive
results for (ISO) were obtained by some authors. Next theorem summarizes
some of the most important classes of solvable groups for which (ISO) has
been proved.

Theorem 10 (ISO) has a positive answer for the following classes of groups:

1. Abelian-by-nilpotent groups [127],

2. Supersolvable groups [82],

3. Frobenius groups and 2-Frobenius groups [82],

4. nilpotent-by-abelian groups (a result of Kimmerle given in [128, Section XII]).
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Stronger (yet technical) versions of the first and last statements in the
previous theorem can be found in [129] and [54, 91], respectively.

Another problem about the natural group basis of an integral group ring,
which is deeply connected to the solution of (ISO), is the so-called Normal-
izer Problem. Note that the group basis G is obviously normalized by G
itself and the central units of ZG. The Normalizer Problem asks if these
two groups already fill out the normalizer of G in U (ZG):

The Normalizer Problem (NP): Let G be a finite group. Is it true
that the normalizer of G in the units of ZG is the group generated
by G and the central units of ZG?

For many decades this was called the Normalizer Conjecture and so it
is reasonable to speak of counterexamples to (NP). In this survey we con-
centrate on (NP) for finite soluble groups, see [140] for recent results on
other classes of groups. One first important contribution, in a more general
context, was given already in the 1960’s.

Theorem 11 (Coleman Lemma) [41] Let H be a p-subgroup of the finite group
G and let R be a ring in which p is not invertible. Then NU (RG)(H) = NG(H) ·
CU (RG)(H). In particular, (NP) has a positive solution for p-groups.

A further important contribution by Stefan Jackowski and Zbigniew Marciniak
is the following.

Theorem 12 [75] Let G be a finite group with normal Sylow 2-subgroup. Then
(NP) has a positive solution for G. In particular, it has a positive solution for groups
of odd order.

Finally Hertweck constructed in his thesis [55] counterexamples to (NP)
and (ISO).

Theorem 13 [56, Theorem A] There is a metabelian counterexample to (NP) of
order 225 · 972.

Theorem 14 [56, Theorem B] There are counterexamples to (ISO) of derived
length 4 and order 221 · 9728.

It is not a coincidence that both counterexamples appeared at the same
time. Actually, to construct his counterexample for (ISO) Hertweck first
constructed a counterexample G to (NP). This G is different from the group
described in Theorem 13 and actually is not metabelian. He explicitly con-
structed a unit t in ZG normalizing G and not acting as an inner automor-
phism of G. He then defined an action of an element c on G which is invert-
ing t, i.e. tc = t−1, and proceeded to show that X = G o 〈c〉 and Y = 〈G, tc〉
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are two non-isomorphic group bases of ZX. In view of this construction
and Theorem 12 it becomes clear that part (a) of the following problem is
wide open, since no counterexample to (NP) can serve as a starting point
for the construction of a counterexample as carried out by Hertweck.

Problem 1: Does (ISO) have a positive answer for the following
classes of groups?

1. Groups of odd order.

2. Groups of derived length 3.

But even in the case where the order of the group is even (ISO) has “al-
most” a positive answer. Namely, any group G can be extended by an ele-
mentary abelian group N such that (ISO) has a positive answer for N o G.
This is a consequence of a strong result obtained by Roggenkamp and Scott:
the F∗-Theorem. See [66] for some history of the theorem and also a com-
plete proof of the most general case.

To state the F∗-Theorem let IR(G) denote the augmentation ideal of a
group ring RG, i.e. the kernel of its augmentation map.

Theorem 15 [F∗-Theorem] Let R be a p-adic ring and G a finite group with a
normal p-subgroup N containing the centralizer of N in G. Let α be an automor-
phism of RG such that α stabilizes IR(G) and IR(N)G. Then G and α(G) are
conjugate inside the units of RG.

If one is only interested in the case of integral coefficients then this can be
used to answer (ZC2):

Corollary 16 [68, Theorem 1.1] Let G be a finite group with normal p-subgroup
N such that the centralizer of N in G is contained in N. Then (ZC2) holds for G.

Though most of the time the questions mentioned in this section have been
studied for special classes of solvable groups, also (almost) simple groups
were partly in the focus of attention. We mention some results. The proof
of the first theorem uses the Classification of Finite Simple Groups.

Theorem 17 [89] If ZG ∼= ZH then G and H have isomorphic chief series. In
particular, (ISO) holds for finite simple groups.

Theorem 18 [116, 17, 20, 19, 18, 21] (ZC2) holds for symmetric groups, minimal
simple groups, simple groups of Lie type of small rank, 18 sporadic simple groups
and Coxeter groups.

In view of these results it might be surprising that all three Zassenhaus
Conjectures remain open for alternating groups, cf. [136, Problem 14].
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We close this section by shortly considering the general Isomorphism
Problem. Sam Perlis and Gordon Walker proved that the Isomorphism
Problem for finite abelian groups and rational coefficients has a positive so-
lution [115]. Observe that this implies Higman’s answer to (ISO) for abelian
groups by Remark 1. Richard Brauer asked in [37] the following strong ver-
sion of the Isomorphism Problem: Can two non-isomorphic finite groups
have isomorphic group algebras over every field? Two metabelian finite
groups satisfying this were exhibited by Everett Dade [42]. This contrasts
with the positive result on (ISO) for metabelian groups mentioned above
which was already known at the time. Note that questions on degrees of ir-
reducible complex characters, as presented e.g. in [74, Section 12] or in more
recent work on local-global conjectures such as [102, 114], can be regarded
as questions on what determines the isomorphism type of a complex group
algebra. Recently a variation of the Isomorphism Problem for twisted group
rings has been introduced [112].

In contrast to the problems described before, (MIP) deals with an object
which is finite, but whose unit group fills up almost the whole group al-
gebra. Though extensively studied the problem is only solved when G is
either not too far from being abelian or when its order is not too big. Major
contributions were given by, among others, Donald Steven Passman, Robert
Sandling and Czesław Bagiński. We refer to [69, 15, 46] for an overview
of known results and for a list of invariants of any group basis determined
by the modular group algebra. To our knowledge it is not even clear if the
choice of the base field k might make a difference for (MIP).

4 Torsion units - (ZC1)

In Section 2 we have observed the relevance of partial augmentations for the
study of finite subgroups of V(ZG). When studying the First Zassenhaus
Conjecture this has even a nicer form:

Theorem 19 [103] Let G be a finite group and let u be an element of order n in
V(ZG). Then u is conjugate in QG to an element of G if and only if for every
divisor d of n and every g ∈ G one has εg(ud) ≥ 0.

Observe that the condition in the last theorem is equivalent to the follow-
ing: for every d | n there is a conjugacy class of G containing all the elements
at which ud has non-zero partial augmentation.

Most of the early papers on the First Zassenhaus Conjecture dealt with
special classes of metacyclic and cyclic-by-abelian groups. For example,
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(ZC1) was proved for groups of the form C o A with C and A cyclic of
coprime order in [119, 118]. This was generalized in [100] for the case
where A is abelian (also of order coprime to the order of C). The proof
of the stronger statement in Theorem 9.(1) uses these results. More positive
answers to (ZC1) for special cases of cyclic-by-abelian groups appeared in
[113, 103, 99, 121]. Finally Hertweck proved (ZC1) for metacyclic groups in
[63]. Actually he proved it for groups of the form G = CA with C a cyclic
normal subgroup of G and A an abelian subgroup. This was generalized by
Mauricio Caicedo and the authors who proved (ZC1) for cyclic-by-abelian
groups [38]. This and Theorem 9.(1) suggest to study the following:

Problem 2: Does (ZC3) hold for cyclic-by-abelian groups?

Meanwhile (ZC1) was proved for groups of order at most 144, many
groups of order less than 288 [72, 53, 5] and many other groups. The follow-
ing list includes the most relevant families of groups for which (ZC1) has
been proven:

• Metabelian:

– A o 〈b〉 where A is abelian and b is of prime order smaller than
any prime dividing |A| [103].

– Groups with a normal abelian subgroup of index 2 [98].

– Cyclic-by-abelian groups [38].

• Solvable non-metabelian:

– Nilpotent groups [143].

– Frobenius groups of order paqb for p and q primes [80].

– P o A with P a p-group and A an abelian p′-group [61].

– A× F with A abelian and F a Frobenius group with complement
of odd order [8].

• Non-solvable:

– A5 [97], S5 [101], A6 [65], GL(2, 5) and the covering group of S5
[25].

– PSL(2, q) for q ≤ 25 or q ∈ {31, 32} [141, 61, 60, 65, 52, 87, 11, 14].

– PSL(2, p) for p a Fermat or Mersenne prime [110].

– SL(2, p) or SL(2, p2) for p prime [122].

– Finite subgroups of division rings [43, 44, 7].
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More positive results for (ZC1) can be found in [1, 96, 123, 138, 48, 23, 108,
109, 111].

As evident from the above, part (a) of the following problem has seen little
advances since being included in [136, Problems 10, 14].

Problem 3: Is (ZC1) true for the following groups?

1. Alternating and symmetric groups.

2. PSL(2, p) for p a prime.

As it was mentioned in the introduction a metabelian counterexample to
(ZC1) was discovered recently by Eisele and Margolis [47]. It is worth to
give some explanations on how this counterexample was discovered. Many
of the groups for which (ZC1) was proved contained a normal subgroup
N such that N and G/N have nice properties (cyclic, abelian or at least
nilpotent). Often the proof separates the case where the torsion unit u maps
to 1 by the natural homomorphism ωN : ZG → Z(G/N). We write

V(ZG, N) = {u ∈ V(ZG) | ωN(u) = 1}.

The following particular case of (ZC1) was proposed in [136]

Sehgal’s 35th Problem: If G is a finite group and N is a normal
nilpotent group of G, is every torsion element of V(ZG, N) con-
jugate in QG to an element of G?

The following result of Hertweck, which appeared in [106], has interest in
itself but it is also important for its applications to Sehgal’s 35th Problem,
due to statement (4) of Proposition 6.

Theorem 20 Let G be a finite group with normal p-subgroup N. Let u be a
torsion element in V(ZG, N). Then u is conjugate in ZpG to an element of N.

Indeed, it implies that if u is a torsion unit in V(ZG, N), for N a nilpotent
normal subgroup of G, then N contains an element n such that for every
prime p the p-parts of u and n are conjugate in ZpG. Moreover, by Propo-
sition 6.(4), if εg(u) 6= 0 for some g ∈ G then the p-parts of n and g are
conjugate in G.

One attempt to attack Sehgal’s 35th Problem, already present in [103], is
the matrix strategy which uses the structure of ZG as free ZN-module to
get a ring homomorphism ρ : ZG → Mk(ZN), with k = [G : N]. Here
Mk denotes the k× k-matrix ring. If u ∈ V(ZG, N) then ρ(u) is mapped to
the identity via the entrywise application of the augmentation map. Using
Theorem 19, Theorem 20 and a generalization of (1) it can be proved that if
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ρ(u) is conjugate in Mk(QN) to a diagonal matrix with entries in N then u is
conjugate in QG to an element of G, which would be the desired conclusion.
However, Gerald Cliff and Weiss proved that for N nilpotent this approach
only works if N has at most one non-cyclic Sylow subgroup [39].

Due to this negative result the matrix strategy was abandoned. However
the authors observed in [108] that some results in the paper of Cliff and
Weiss can be used to obtain inequalities involving the partial augmenta-
tions of torsion elements of V(ZG, N) which we refer to as the Cliff-Weiss
inequalities. In case N is abelian these inequalities take the following friendly
form:

Proposition 21 [108, Proposition 1.1] Let N be an nilpotent normal subgroup of
G such that N has an abelian Hall p′-subgroup A for some prime p and let u be a
torsion element of V(ZG, N). If K is a subgroup of A such that A/K is cyclic and
n ∈ N then

∑
g∈nK

|CG(g)|εgG(u) ≥ 0.

The Cliff-Weiss inequalities are actually properly stronger than the in-
equalities (2) for units in V(ZG, N) [109]. Moreover in [111] the authors pre-
sented an algorithm based on these inequalities and Theorem 20 to search
for minimal possible negative solutions to Sehgal’s 35th Problem and hence
to (ZC1). More precisely the algorithm starts with a nilpotent group N and
computes a group G containing N as normal subgroup and a list of integers
which satisfy the Cliff-Weiss inequalities but not the conditions of Theo-
rem 19, i.e. they pass the test of the Cliff-Weiss inequalities to be the partial
augmentations of a negative solution to Sehgal’s 35th Problem.

Of course non-trivial solutions of the Cliff-Weiss inequalities do not pro-
vide the counterexample yet, because one has to prove the existence of a
torsion unit realizing the partial augmentations provided by the algorithm.
By the double action strategy this reduces to a module theoretical problem,
namely one has to prove that there is a certain Z(G × Cn)-lattice which is
isomorphic to a double action module by Proposition 4, where n is the order
of the hypothetical unit which is determined by the partial augmentations
(see the paragraph after Theorem 20). A first step to obtain this lattice con-
sists in showing the existence of a Zp(G × Cn)-lattice with the same char-
acter as the double action Q(G× Cn)-module, which exists since the partial
augmentations of the hypothetical unit satisfies the constraints of the HeLP-
method, for every prime p. By the results of Cliff and Weiss, a unit satisfying
also the Cliff-Weiss inequalities corresponds to a Zp(G×Cn)-lattice which is
free as ZpN-lattice. The fundamental ingredient which allows the construc-
tion to work at this point is that the p-Sylow subgroup Np of N is a direct
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factor in N. Hence ZpN = ZpNp′ ⊗Zp ZpNp and the representation theory
of the first factor is easy to control. It turns out that assuming N is abelian
and that a Zp(G × Cn)-lattice which is free of rank 1 as ZpG-lattice (com-
pare with Proposition 4), assuming only that the action of G on N satisfies
a certain, relatively weak, condition [47, Section 5].

Once such a Zp(G× Cn)-lattice Mp is constructed for every prime p, one
obtains a Z(π)(G × Cn)-lattice with the same character as each Mp, where
Z(π) denotes the localization of Z at the set of prime divisors of the order
of G. So one obtains what is usually called a semilocal counterexample.
It remains to show how this lattice can be “deformed” into a Z(G × Cn)-
lattice with the same character. This is done in [47, Section 6] in a rather
general context which could be applied also to non-cyclic groups and other
coefficient rings. In the situation of (ZC1) this boils down to checking that
G does not map surjectively onto certain groups (which is, in this case,
equivalent to the Eichler condition for ZG) and that D(u) has an eigenvalue
1 for any irreducible Q-representation D of G.

With all this machinery set up, to find a counterexample to (ZC1) remains
a matter of calculations and it turns out that the candidates constructed as
minimal possible negative solutions to Sehgal’s 35th Problem in [111] are in
fact negative solutions and as such counterexamples to (ZC1).

The construction gives rise to the following problem.

Problem 4: Classify those nilpotent groups N such that Sehgal’s
35th Problem has a positive solution for any group G containing
N as normal subgroup.

By Theorem 20 and [39] the class of groups described in this problem
contains those nilpotent groups which have at most one non-cyclic Sylow
subgroup, cf. [108] for details. More technical results for the problem can be
found in [108, 111, 109]. By the counterexamples to (ZC1) there are infinitely
many pairs of different primes p and q such that the direct product of a
cyclic group of order p · q with itself is not contained in this class. This is
particularly the case for (p, q) = (7, 19), but not for (p, q) with p ≤ 5.

The evidence provided by positive solutions to (ZC1) and Problem 3 and
by the counterexamples to (ZC1) suggests that the following might have a
positive answer:

Problem 5: Is (ZC1) true for supersolvable groups? Is it true at
least for supersolvable metabelian groups?
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5 Torsion units - Alternatives to (ZC1)

Already when (ZC1) was still open several weaker forms of the conjecture
were proposed, and all of these remain open, in a strong sense. The first and
strongest is the Kimmerle Problem mentioned in the introduction. It was
posed by Kimmerle at a conference in Oberwolfach [76][Problem 22], partly
motivated by an observation of Hertweck on the group rings of PSL(2, q)
and PGL(2, q) [60, Remark 6.2]. As (ZC1) was regarded as the main prob-
lem, (KP) was not studied much by itself. The authors observed in [109] that
(KP) is actually equivalent to Problem 44 from [136], a generalization of a
question posed by Bovdi (see [22, p. 26] or [2, Problem 1.5]). More precisely:

Proposition 22 Let G be a finite group and u a torsion element of V(ZG). Con-
sider G as a subgroup of the symmetric group SG in the standard way. The following
are equivalent:

1. u is conjugate to an element of G in the rational group algebra of some group
containing G.

2. u is conjugate to an element of G in the rational group algebra of SG.

3. For every positive integer m different from the order of u the coefficients of u
corresponding to elements of G of order m sum up to 0.

We summarize some results on (KP). The first two follow from results of
Stanley Orlando Juriaans, Michael Dokuchaev and Sehgal using Proposi-
tion 22.

Theorem 23 (KP) has a positive answer if one of the following holds.

1. G is metabelian [45],

2. G has only abelian Sylow subgroups [79],

3. u is of prime order [90],

4. G has a Sylow tower [8]. In particular, for G supersolvable.

It was observed in [8] that the counterexamples to (ZC1) constructed in
[47] can not provide negative solutions to (KP) as they have Sylow towers
and are also metabelian. Actually, as explained above, the methods in [47]
can probably allow to construct more counterexamples G, some of which
might not have a Sylow tower and not be metabelian. However all units
providing counterexamples with this method will live in V(ZG, N) for a
normal nilpotent subgroup N of G. On the other hand, for elements in
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V(ZG, N), the Kimmerle Problem has a positive solution by Proposition 23

and [109, Theorem 3.3]. In this sense a solution to (KP) would need signifi-
cant new ideas.

The other weaker version of (ZC1) mentioned in the introduction, i.e. (SP),
is very natural and more in the style of questions already asked by Higman.
As a consequence of Proposition 6.(5) we have:

Corollary 24 (SP) has a positive solution for solvable groups.

So (SP) has a positive answer for a very big class of groups, a class for
which probably there will never be an argument or algorithm that can tell
if a specific group in this class satisfies (ZC1) or not. It is very interesting
what this class can give for (KP):

Problem 6: Does (KP) hold for solvable groups?

One weaker version of (SP) which found some attention was also for-
mulated by Kimmerle [83]. Recall that the prime graph, also called the
Gruenberg-Kegel graph, of a group G is an undirected graph whose ver-
tices are the primes appearing as order of elements in G and the vertices p
and q are connected by an edge if and only if G contains an element of order
pq.

The Prime Graph Question (PQ): Let G be a finite group. Do G
and V(ZG) have the same prime graph?

The structural advantage is that for (PQ) there is a reduction theorem,
while this is not the case for any of the other questions given above. Recall
that a group G is called almost simple if there is a non-abelian simple group
S such that G is isomorphic to a subgroup of Aut(S) containing Inn(S), and
in this case S is called the socle of G.

Theorem 25 [88] Let G be a finite group. Then (PQ) has a positive answer for G
if and only if it has a positive answer for all almost simple homomorphic images of
G.

So one might hope that the Classification of Finite Simple Groups can
provide a way to prove (PQ) for all groups. But a lot remains to be done,
since many series of almost simple groups still need to be handled. We
summarize some important results.

Theorem 26 Let G be a finite almost-simple group. Then (PQ) has a positive
answer for G if the socle of G is one of the following:

1. The alternating group An [97, 65, 130, 131, 11, 4, 12].



Finite Subgroups of Group Rings: A survey 21

2. PSL(2, p) or PSL(2, p2) for some prime p [60, 10].

3. One of 18 sporadic simple groups [36, 27, 28, 33, 35, 29, 24, 30, 31, 26, 34,
32, 87, 107, 12].

4. A group whose order is divisible by at most three pairwise different primes [88,
11] or one of many groups whose order is divisible by four pairwise different
primes [14].

6 p-subgroups

In this section we revise the main results and questions on the finite p-
subgroups of U (ZG) for G a finite group and p a prime integer. The ques-
tions are the specialization to p-subgroups of V(ZG) of the problems given
above which we refer to by adding the prefix “p-”. For example, the p-
versions of (ZC3) and (SIP) are as follows:

(p-ZC3): Given a finite group G, is every finite p-subgroup of
V(ZG) conjugate in QG to a subgroup of G?

(p-SIP). What are the finite p-groups P satisfying the following
property for all finite groups G? If V(ZG) contains a subgroup
isomorphic to P then G contains a subgroup isomorphic to P.

The following terminology was introduced in [104, 90]. One says that G
satisfies a Weak Sylow Like Theorem when every finite p-subgroup of V(ZG)
is isomorphic to a subgroup of G.

That the role of p-subgroups in V(ZG) is very special is expressed already
by the Lemma of Coleman (Theorem 11), which implies a positive solution
for (p-NP). Also, the result of James Cohn and Donald Livingstone on the
exponent of V(ZG), mentioned above, is equivalent to a positive solution to
(p-SP).

By Theorem 20, the p-version of Sehgal’s 35th Problem has a positive
answer in general. This was in fact already observed earlier by Hertweck
[61]. Moreover, as a consequence of Theorem 7, (ZC3) holds for p-groups
and hence (p-ZC2) and (p-ISO) hold. These latter also follows from the
following result:

Theorem 27 [92] If G is a finite group and P is a p-subgroup of a group basis of
ZG then P is conjugate in QG to a subgroup of G.
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In the situation of general p-subgroups the knowledge is much more
sparse. There is no counterexample to (p-ZC3). Neither is there a general
answer to (p-ZC1), not even for units of order p, though in this case (p-KP)
holds, cf. Theorem 23. Note, that all positive results for (SIP), mentioned
in Section 2, are in fact results for (p-SIP). A big step in the solution of this
problem might be an answer to the following:

Problem 7: Is (SIP) true for elementary-abelian groups?

We collect here some results on (p-ZC3) and Weak Sylow Like Theorems:

Theorem 28 If G is a finite group and p a prime integer then (p-ZC3) has a
positive answer for G in the following cases:

1. G is nilpotent-by-nilpotent or supersolvable [43].

2. G has a normal Sylow p-subgroup [136, 41.12].

3. G is solvable and the Sylow p-subgroups of G are abelian [43, Proposition 2.11].

4. G is solvable and every Sylow subgroup of G is either abelian or a quaternion
2-group [43, Theorem 5.1].

5. G is a Frobenius group [43, 44, 80, 25, 90].

6. p = 2, the Sylow 2-subgroup of G has at most 8 elements and G is not
isomorphic to A7 [6, 105].

Theorem 29 G satisfies a Weak Sylow Like Theorem for p-subgroups in the fol-
lowing cases:

1. p = 2 and the Sylow 2-subgroups of G are either abelian, quaternion [86] or
dihedral [105].

2. G has cyclic Sylow p-subgroups [84, 64].

For G = PSL(2, r f ) the p-subgroups of V(ZG) found some attention start-
ing with [67]. It is known today that (p-ZC3) has a positive answer for G if
p 6= r, or p = r = 2, or f = 1 [104]. Also a Weak Sylow Like Theorem holds
for G if f ≤ 3 [67, 9].

Remark: A quarter of a century ago Sehgal included a list of 56 open
problems in his book on units of integral group rings [136]. Several of those
concerned topics mentioned in this article. Some have been solved, while
others remain open.
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1. Problem 8 is (SP), Problem 45 is (MIP) and hence both are still open.
Problem 43 is (NP) and has been solved by Hertweck.

2. By Proposition 22, Problem 9 is equivalent to (p-KP) and Problem 44

to (KP). Both remain open.

3. Problems 10 and 11 ask to prove (ZC1) and (ZC3) for symmetric groups.
Problem 14 asks about (ZC1)-(ZC3) for alternating groups. They re-
main open.

4. Problems 33, 34 and 37 are related with the matrix strategy mentioned
in Section 4. They have been solved by Cliff and Weiss [39].

5. Problems 12, 35 and 36 are solved negatively by the counterexample to
(ZC1) [47].

6. Problem 32 asks the following: Let N be a normal subgroup in G,
where G is a finite group, and u a torsion element in V(ZG, N). Does
the order of u necessarily divide the order of N? This has positive
solution if N is solvable, as we quickly show: Assume that u is of
order n and let N′ be a minimal normal subgroup of G contained in N.
Then N′ must be an elementary-abelian p-group, for some prime p, as
N is solvable. If the projection u′ of u in Z(G/N′) has order smaller
than u, then the order of u′ is n/p by [61, Proposition 4.2]. So arguing
by induction on the order of N we can answer the problem for solvable
N.

We are thankful to the referee who provided the idea for this proof.
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