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1 Introduction

Let G be a finite group and R a strongly G-graded ring. The question of when R is semisimple
(meaning in this paper semisimple artinian) has been studied by several authors. The most classical
result is Maschke’s Theorem for group rings. For crossed products over fields there is a satisfactory
answer given by Aljadeff and Robinson [3]. Another partial answer for skew group rings was given
by Alfaro, Ara and del Ŕıo [1]. A reduction of the problem to crossed products over division
rings was first given by Jespers and Okniński [10] and a more constructive version was given by
Haefner and del Ŕıo [8]. So, in order to give a complete answer to the problem there is still a gap
between crossed products over division rings and crossed products over fields. The first aim of the
paper is to fill this gap, showing that the semisimplicity question for crossed products over division
rings reduces to the same question for crossed products over fields. In Theorem 3.2 we make this
reduction and then in Theorem 3.3 we put together all the pieces of the puzzle.

A strongly G-graded ring R with identity component A induces a group homomorphism σ :
G → Pic(A) (see Section 2 for the details). As a consequence of Theorem 3.3, one deduces some
necessary conditions for a group homomorphism σ : G → Pic(A) to be induced by a semisimple
strongly G-graded ring, namely the conditions 1, 2 and 3 of Corollary 3.5. The Twisting Problem
asks whether these necessary conditions are also sufficient, that is given a group homomorphism
σ : G → Pic(A) satisfying conditions 1, 2 and 3 of Corollary 3.5, is there a semisimple strongly
G-graded ring with coefficient ring A inducing σ? This problem has been investigated in [3] and in
[4] for (outer) actions on fields. Our second result (Theorem 4.6) shows that the Twisting Problem
for G a cyclic group and A finitely generated as a module over its centre has always a positive
solution.

Our solution to the problem of semisimplicity of strongly graded rings has an application to
actions of finite groups on division rings of prime characteristic. We include this in the last section
of the paper. We show that if G is a finite group acting on a division ring D of characteristic p and
H is the kernel of this action, then trG(D) 6= 0 if and only if the elements of a p-Sylow subgroup
of G are linearly independent over D if and only if the elements of a p-Sylow subgroup of H are
linearly independent over D.
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2 Preliminaries

Let S be a ring (we consider all rings unital and associative). We use the following notation:

Z(S) = centre of S
S∗ = group of units of S

Aut(S) = group of automorphisms of S
Inn(S) = group of inner automorphisms of S and

Out(S) = Aut(S)/Inn(S) = group of outer automorphisms of S

The action of α ∈ Aut(S) on x ∈ S is denoted by xα, so that the product in Aut(S) is given by
αβ = β ◦ α. If u ∈ S∗ then ιu denotes the inner automorphism of S given by xιu = xu = u−1xu.
If P is an invertible S-bimodule, then [P ] denotes the isomorphism class of P (as a bimodule)
and Pic(S) = {[P ] : P is an invertible S −module} is the Picard group of S. We consider Out(S)
canonically embedded in Pic(S). Recall that there is a canonical group homomorphism θ : Pic(S) →
Aut(Z(S)) (see [5, II,5.4]). More explicitly, for every invertible S-bimodule there are two ring
isomorphisms λP , ρP : Z(S) → End(SPS) from Z(S) to the ring of S-bimodule endomorphisms of
P , given by λP (a)(x) = ax and ρP (a)(x) = xa. Then θP = ρP ◦ λ−1

P is an automorphism of Z(S)
and it does not depend on the choice of the representative P in the class [P ]. Then θ is given by
θ([P ]) = θP . If B is a subset of Z(S), then PicB(S) denotes the subgroup of Pic(S) consisting of
those elements that fix the elements of B, i.e. [P ] ∈ PicB(S) if and only if pb = bp for every p ∈ P
and b ∈ B.

Let G be a group with identity 1 and R a strongly G-graded ring, that is there is a decomposition
R = ⊕g∈GRg, where each Rg is an additive subgroup and RgRh = Rgh for every g, h ∈ G. We
refer to A = R1 as the coefficient ring of the graded ring R. If H is a subgroup of G, then
RH = ⊕h∈HRh is a strongly H-graded ring. For every g ∈ G, Rg is an invertible A-bimodule
and the map g 7→ [Rg] is a group homomorphism σ : G → Pic(A). Composing with the group
homomorphism Pic(A) → Aut(Z(A)), one obtains an action of G on Z(A) called the Miyashita
action.

If Rg has a unit ug for every g ∈ G, then R is said to be a crossed product. In this case
{ug : g ∈ G} is a basis of R as a right A-module and there are maps

β : G → Aut(A) t : G×G → A∗

called the action and twisting respectively. They are defined by

aug = uga
β(g) uguh = ught(g, h).

for every g, h ∈ G and a ∈ A. Usually we simplify the notation and write ag for aβ(g). The action
and twisting satisfy the following conditions

t(g1g2, g3)t(g1, g2)β(g3) = t(g1, g2g3)t(g2, g3), β(g1g2)ιt(g1,g2) = β(g1)β(g2) (2.1)

for every g1, g2, g3 ∈ G (see [15]). By (2.1), the map β induces a homomorphism α : G → Out(A) ⊆
Pic(A) which is precisely the group homomorphism σ coming from the structure of strongly graded
ring on R (we call this an outer action of G on A) and restricts to an action of G on Z(A) which
coincides with the Miyashita action.

Note that R is a crossed product if and only if the image of σ is embedded in Out(A). It is
customary to denote a crossed product over G with coefficient ring A by A ∗G. When we want to
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emphasize the action and the twisting we will use the notation A ∗β
t G 1. The action and twisting

depend on the selection of a unit in each homogeneous component; a change in this selection yields
a change in the action and twisting; this is called a diagonal change of basis. A twisted group ring
is a crossed product with trivial action; in this case the notation is A ∗t G. Modulo a diagonal
change of basis a twisted group ring is the same as a crossed product with trivial outer action. A
skew group ring is a crossed product with trivial twisting and the notation is A ∗β G. If H is a
subgroup of G and B is a subring of A with t(h, h′) ∈ B∗ for every h, h′ ∈ H and β(h) restricts to
an automorphism of B for every h ∈ H, then the corresponding subcrossed product is denoted by
B ∗H or B ∗β

t H (with the usual abuse of notation).

3 Criterion for Semisimplicity

Let R be a strongly G-graded ring with coefficient ring A. It is well known that if R is semisimple
then RH is semisimple for every subgroup H of G. This is a consequence of the fact that RH is
a direct summand of R as an RH -bimodule (see for example [14, Propositions 1.2 and 1.3]). In
particular if R is semisimple then A is semisimple.

If C is a Morita context between A and another ring A′, then associated with C there is a
strongly graded R′ with coefficient ring A′ so that the categories of graded modules R − gr and
R′ − gr are graded equivalent and hence R and R′ are graded Morita equivalent. In particular, if
A is semisimple, then R is graded Morita equivalent to a crossed product over a direct product of
division rings. (Recall that every strongly graded ring over a direct product of division rings is a
crossed product, see e.g. the beginning of section 6 in [8].) Since graded Morita equivalence implies
Morita equivalence [11] and the coefficient ring of a semisimple strongly graded ring is semisimple,
we conclude that in order to describe the semisimple strongly graded rings it is enough to describe
the semisimple crossed products with a direct product of division rings as their coefficient rings. In
fact, it is possible to reduce further, namely to crossed products over one division ring. This was
first given in [10] and more constructively in [8]. That is, modulo the results of these two papers,
it only remains to produce a criterion to decide when a crossed product over a division ring is
semisimple. In this section we give one step ahead and reduce the problem to the case when the
coefficient ring is a field and then use the characterization given by Aljadeff and Robinson [3] for
this case.

Remark 3.1 Before going ahead we would like to mention that in the proof of Lemma 7.2 in [8]
(which is a stage in the proof of [8, Proposition 7.4], and an essential step in the reduction of
the semisimplicity problem from strongly graded rings with semisimple coefficient ring to crossed
products over division rings) the authors make use of Skolem-Noether Theorem. This would suggest
the implicit assumption that each division subring is finite dimensional over its centre. However,
the use of Skolem-Noether Theorem in the mentioned lemma can be avoided by using [16, Corollary
2.9.19].

Let D∗G = D∗β
t G be a crossed product where D is a division ring with centre K of characteristic

p (a divisor of |G| to avoid the trivial case solved by Maschke’s Theorem). Let α : G → Out(D) be
the outer action induced by β. Let H be the kernel of α so that, after a diagonal change of basis
D ∗H = D ∗t′ H is a twisted group ring for some twisting t′ : G×G → D∗. By (2.1), t′(g, h) ∈ K∗

for every g, h ∈ H and hence one can consider the twisted group ring K ∗t′ H.
We obtain the following criterion for semisimple crossed products over division rings.

1This notation is slightly different from the one in [3].
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Theorem 3.2 With the above notation, the following are equivalent:

1. D ∗G is semisimple.

2. D ∗H = D ∗t′ H is semisimple.

3. K ∗t′ H is semisimple.

Proof. 1 implies 2 is explained in the first paragraph of the section.
To prove the equivalence between 2 and 3 note that D ∗t′ H = D⊗K (K ∗t′ H). Then 3 implies

2 is a consequence of [9, Lemma 4.1.1]. Furthermore, D⊗K J(K ∗t′ H) ⊆ J(D ∗H), where J stands
for the Jacobson radical, and 2 implies 3 follows.

2 implies 1. Assume that D ∗H is semisimple and let {ug}g∈G be the set of homogeneous units
that leads to the given action and twisting: β and t. Consider D ∗ G = (D ∗ H) ∗γ

τ (G/H) as
a crossed product of Ḡ = G/H with coefficients in D ∗ H. The action γ permutes the primitive
central idempotents of the (semisimple) ring D ∗ H. For every primitive central idempotent e of
D ∗ H let Ḡe be the stabilizer of e under the action γ and Be = (D ∗ H)e. By [8, Theorem 7.5]
there is an induced crossed product Be ∗γe

τe Ḡe, and D ∗ G is semisimple if and only if Be ∗γe
τe Ḡe

is semisimple for every primitive idempotent e. We claim that γe is outer, that is if γe(g + H) is
inner, then g ∈ H.

Assume that γe(g + H) = ιu where u =
∑

h∈H uhxh is a unit of Be. That is uxγe(g+H) = xu

for every x ∈ Be. By the natural embedding of D in Be we have uaγe(g+H) = au for every a ∈ D.
However ag = aγe(g+H) and so xhah−1g = axh for every h in the support of u. Therefore βh−1g is
inner, so that h−1g ∈ H and hence g ∈ H. This proves the claim.

Now by a folklore argument (see e.g. the proof of [12, Theorem 2.3]) one deduces that Be ∗ Ḡe

is simple.

Now the characterization of semisimple strongly graded rings is complete by a combination of
Theorem 3.2, [8] and [3]. We put together all the pieces. Let R = ⊕g∈GRg be a strongly G-graded
ring with coefficient ring R1 = A. A necessary condition for R to be semisimple is that A is
semisimple, so let us assume that for the rest of the section. Let B be the basic ring of A. That
is B is a direct product of all division rings that appear in the decomposition of A. Then A and
B are Morita equivalent and hence Pic(A) = Pic(B) = Out(B) so that σ : G → Pic(R) induces an
outer action of G on B. In fact, the structure of strongly G-graded ring of R induces a structure of
crossed product B ∗G with coefficients in B [8]. Moreover, σ induces an action on Z(A) = Z(B).
Let E be a set of representatives of the orbits of the primitive central idempotents under this
action and for every e ∈ E let Ge be the stabilizer of e. Then σ induces group homomorphisms
σe : Ge → Out(De), where eA = Mne(De) for some ne ≥ 1 and a division ring De. In fact,
σe also induces crossed product structures De ∗ Ge and Mne(De) ∗ Ge for every e ∈ E [8]. Let
He be the kernel of σe and let Pe be a p-Sylow subgroup of He, where p is the characteristic of
De. (If De has characteristic 0, then Pe is the trivial group.) Recall that if P =

∏m
i=1 Ci is an

abelian p-group where each Ci is cyclic of order pei and K is a field of characteristic p then the
second cohomology group H2(P,K∗) is isomorphic to ⊕m

i=1K
∗/(K∗)pei [3], thus every element of

H2(P,K∗) is represented by an m-tuple (a1(K∗)pe1 , . . . , am(K∗)pem ).

Theorem 3.3 With the above notation, the following are equivalent:

1. R is semisimple.

2. Mne(De) ∗Ge is semisimple for every e ∈ E.
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3. De ∗Ge is semisimple for every e ∈ E.

4. De ∗He = De ∗t′e He is semisimple for every e ∈ E.

5. Ke ∗t′e He is semisimple for every e ∈ E, where Ke = Z(De).

6. Ke ∗t′e Pe is semisimple, for every e ∈ E.

7. For every e ∈ E,

(a) |H ′
e| is prime to p (so that Pe is abelian, say Pe =

∏m
i=1 Ci with Ci cyclic of order pei),

and

(b) if the restriction of t′e to Pe is represented by an m-tuple (a1(K∗)pe1 , . . . , am(K∗)pem )
then X = {a1, . . . , am} is p-independent over Kp, that is Kp(Y ) 6= Kp(X) for every
proper subset Y of X.

8. For every e ∈ E, Ke ∗t′e Pe is a purely inseparable field extension of Ke.

Proof. The equivalence between 1, 2 and 3 was proved in [8], the equivalence between 3, 4 and 5
is Theorem 3.2 and the equivalence between 5, 6, 7 and 8 was proved in [3]. See also [4] Th.1 and
”Reductions” in pages 411-412.

Corollary 3.4 Let R = ⊕g∈GRg be a strongly G-graded ring with coefficient ring R1 = A. Assume
that the action of G permutes transitively the primitive central idempotents of A (in particular all
components have the same characteristic, say p), and let

H = {g ∈ G : [Rg] ∈ PicZ(eA)(A) and [eRg] = [eA]},

where e is a primitive central idempotent of A. Then the following are equivalent

1. R is semisimple.

2. RH is semisimple.

3. RHp is semisimple, where Hp is a p-Sylow subgroup of H if p is prime and H0 = {1}.

Proof. With the notation of Theorem 3.3, the assumptions imply that the set E has only one
element, which we denote by e. Then, Ge = {g ∈ G : ex = xe for every x ∈ Rg} and H = He. By
the equivalence of 1 and 6 in 3.3, the three conditions are equivalent to the semisimplicity of the
twisted group ring K ∗Hp where K = Z(eA).

In the next corollary p− deg(K) denotes the p-degree of a field K, that is the minimal number
of elements needed to generate K as a Kp-algebra, and rank(P ) the rank of a group P , that is the
minimal number of elements necessary to generate P .

Corollary 3.5 If R = ⊕g∈GRg is a semisimple strongly G-graded ring with coefficients in A, e is
a primitive central idempotent of A, K = Z(Ae),

H = {g ∈ G : [Rg] ∈ PicZ(eA)(A) and [eRg] = [eA]},

p is the characteristic of K and Hp a p-Sylow subgroup of H if p is prime and H0 = {1} then
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1. A is semisimple,

2. Hp is abelian, has a normal complement in H and

3. rank(Hp) ≤ p− deg(K).

Proof. See the first paragraph of the section to obtain 1. For the proof of 2 and 3 we apply Theorem
3.3 and use its notation with He = H. By condition (7.a), |H ′| is prime to p, so that Hp is abelian
and has a normal complement in H. Furthermore by condition (7.b), rank(Hp) ≤ p− deg(K).

Remarks 3.6 With the notation of 3.4 and 3.5.

1. By Noether-Skolem Theorem, if Ae is finite dimensional over its centre then H = {g ∈ G :
[Rg] ∈ PicZ(eA)(A)}, that is g ∈ H if and only if ax = xa for every x ∈ Rg and a ∈ Z(eA).
In general, g ∈ H if and only if there is u ∈ eA∗ such that ax = xau for every x ∈ Rg and
a ∈ eA.

2. If p does not divide |H| then conditions 2 and 3 of Corollary 3.5 hold automatically.

4 The Twisting Problem for Cyclic Groups

Our objective in this section is to construct crossed products (and more generally strongly graded
rings) with some prescribed data. The Twisting Problem for Strongly Graded Rings asks whether
a given group homomorphism σ : G → Pic(A) can be realized by a semisimple strongly G-graded
ring R assuming the necessary conditions 1, 2 and 3 of Corollary 3.5 hold. This is a generalization
of the Twisting Problem for Crossed Products considered in [2], [3] and [4].

Of course to solve the Twisting Problem we first have to solve the problem of whether the
homomorphism σ can be realized by a strongly graded ring. This is the Realization Problem. See
[7] for a complete account of this classical question in case R is a crossed product and see [6] in
case R is a general strongly graded ring.

Let σ : G → Pic(A) be a group homomorphism and set σ(g) = [Rg], g ∈ G. Then for every
g1, g2 ∈ G there is a bimodule isomorphism

µg1,g2 : Rg1 ⊗A Rg2 → Rg1g2

and for every g1, g2, g3 ∈ G there is a unique c(g1, g2, g3) ∈ Z(A)∗ such that

µg1g2,g3 ◦ (µg1,g2 ⊗ 1Rg3
) = c(g1, g2, g3)µg1,g2g3 ◦ (1Rg1

⊗ µg2,g3).

(See [6] for the details.) The map cσ = c : G3 → Z(A)∗ (called the Teichmüller obstruction) is a
3-cocycle. It depends on the selection of the R’s and the µ’s up to a 3-coboundary, that is there is
a well defined map

Homgroups(G, Pic(A)) → H3(G, Z(A)∗)
σ 7→ [cσ].

The isomorphisms µg1,g2 define a strongly G-graded ring structure on ⊕g∈GRg if and only if cσ is
cohomologically trivial, so that σ can be realized by a strongly graded ring if and only if cσ is a
3-coboundary. In that case all the solutions of the Realization Problem for σ are parameterized by
H2(G, Z(A)∗) up to graded isomorphism. More concretely, let R = ⊕g∈GRg be a strongly G-graded
ring that realizes σ for every g ∈ G. For every g1, g2 ∈ G let µg1,g2 : Rg1 ⊗A Rg2 → Rg1g2 be the

6



isomorphism induced by the product in R. If q ∈ Z2(G, Z(A)∗) then µ′ = qµ induces another
structure of strongly G-graded ring over A (denoted by Rq) that realizes σ. All the structures of
strongly G-graded rings that realize σ can be obtained in this form. Furthermore, R and Rq are
graded isomorphic if and only if q ∈ B2(G, Z(A)∗) (see [13, Section A.1.3]).

We summarize the discussion above in:

Proposition 4.1 Given a group homomorphism σ : G → Pic(A),

1. [6] There exists a strongly graded ring inducing σ if and only if the 3-cocycle c = cσ is a
coboundary. This is independently of the choices of the A-bimodules Rg ∈ σ(g) and the
isomorphisms Rg ⊗A Rh ' Rgh.

2. [13, Section A.1.3] Assume such a strongly graded ring does exist. Let B be the set of graded
isomorphism classes of strongly G-graded rings that induce σ. Then the group H2(G, Z(A)∗)
acts transitively and freely on B.

If an outer action has a lifting to an action then the Realization Problem for Crossed Products
always has a positive solution (the skew group ring). In particular this is the case for commutative
rings. The following example shows that the Realization Problem may have a negative answer if
the base ring is non commutative.

Example 4.2 Let D = Cq2
(X, Y ) be the skew field of fractions of the complex algebra generated

by X and Y defined by the relation XY = q2Y X, where q ∈ C is not a root of 1. Define an action
of C2 = 〈σ〉 on D as follows: Xσ = −X, Y σ = qY . This action is outer since σ2 acts as conjugation
by X. Now, suppose this outer action admits a twisting f . We can assume that f is normalized
i.e. f(1, 1) = f(1, σ) = f(σ, 1) = 1. From (2.1) we conclude that conjugation by f(σ, σ) is the same
as conjugation by X (action of σ2). This implies f(σ, σ) = zX where z ∈ Z(D). Now, by (2.1),
putting g1 = g2 = g3 = σ we have f(σ, σ)σ = f(σ, σ), but (zX)σ = −zX 6= zX, a contradiction. It
is easy to see that if q is a root of 1, then there exists a twisting that realizes this outer action.

Since the trivial map G → Out(A) can always be realized by a crossed product we obtain:

Lemma 4.3 For every σ ∈ Hom(G, Pic(A)) the obstruction cσ belongs to the kernel of the restric-
tion map

resG
Ker σ

: H3(G, Z(A)∗) → H3(Ker σ,Z(A)∗).

We now restrict our attention to a group homomorphism σ : G → Pic(A) where G is cyclic and
A is semisimple and finitely generated as a Z(A) module. In order to show that the Realization
Problem has a positive solution under these conditions, we address the following strengthening of
Hilbert’s 90th Theorem for abelian groups:

Lemma 4.4 Let K be a field and G an abelian group acting faithfully by automorphisms on S =
Kn. If the restriction of the action of G on the primitive idempotents of S is transitive then
H1(G, S∗) = 1.

Proof. Let e1, . . . , en be the primitive idempotents of S. Let g1, . . . , gn be elements in G such that
gi(e1) = ei for any i = 1, . . . , n, and let N be the stabilizer of ei (it does not depend on i since G is
abelian). Then N acts on the fields Sei for every i and g1, . . . , gn is a transversal set for N in G.
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We claim that the action of N on Se1 (and hence on every Sei) is faithful. Indeed, assume that
τ ∈ N acts trivially on Se1, then for every r ∈ S and 1 ≤ j ≤ n

τ(rej) = gjτg−1
j (rej) = gjτ(rg−1

j e1) = gj(rg−1
j e1) = rej .

Thus, τ acts trivially on S and so τ = 1.
Now, let f = (f1, . . . , fn) ∈ Z1(G, S∗) be a 1-cocycle. The elements of N are linearly indepen-

dent over Se1 and therefore there exists an element ae1 ∈ Se1 satisfying

be1 =
∑
h∈N

f(h)h(ae1) ∈ (Se1)∗.

Hence

s =
∑

g∈G f(g)g(ae1) =
∑n

i=1

∑
h∈N f(gih)gih(ae1)

=
∑n

i=1 f(gi)gi
∑

h∈N f(h)h(ae1) =
∑n

i=1 f(gi)gi(be1)

=
∑n

i=1 f(gi)gi(be1)ei = (f1(g1)g1(be1), f2(g2)g2(be1), .., fn(gn)gn(ben)) ∈ S∗.

Now it is easily seen that for every σ ∈ G, f(σ) = sσ(s)−1 (see e.g. the proof of [19, Theorem
1-5-4]) which says that the cocycle f ∈ Z1(G, S∗) is actually a coboundary.

Proposition 4.5 Let G be a cyclic group and σ : G → Pic(A) a group homomorphism where A
is semisimple and finitely generated as a module over Z(A). Then σ can be realized by a strongly
G-graded ring.

Proof. By the first paragraph of Section 3 we may assume that A =
∏n

i=1 Di where each Di is
a division algebra finite dimensional over its centre and σ : G → Out(A) is an outer action of G
on A. The outer action σ permutes the Di’s. Let A1, . . . , Ak be the direct products of the orbits
of this action giving rise to outer actions σi on each Ai. We need to show that the obstruction of
each σi vanishes in H3(G, Z(Ai)) (Proposition 4.1), so, without loss of generality, we may assume
that A = A1, that is the action is transitive on the primitive idempotents of A. Observe that for
the cohomology groups of degree 3 we have an exact sequence

H3(G/H, Z(A)∗) inf→ H3(G, Z(A)∗) res→ H3(H,Z(A)∗)

where H = Ker σ. Indeed, since G is cyclic, the sequence above is naturally isomorphic to the
sequence

H1(G/H, Z(A)∗) inf→ H1(G, Z(A)∗) res→ H1(H,Z(A)∗)

which is exact (see [17, Chapter VII, (Section 6), Proposition 4]).

By Skolem-Noether Theorem G/H acts faithfully on Z(A), and hence H1(G/H, Z(A)∗) = 1 by
Lemma 4.4. Thus, the restriction map res is injective and by Lemma 4.3 cσ is cohomologically
trivial. It follows by Proposition 4.1 that the Realization Problem has a positive solution for σ.

Note that the condition of A being finitely generated as a Z(A) module in Proposition 4.5
cannot be omitted as Example 4.2 shows.

We now show that the twisting problem has a positive solution if G and A satisfy the conditions
of Proposition 4.5.
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Theorem 4.6 The twisting problem has a positive solution for finite cyclic groups and rings finitely
generated as modules over their centre. That is, if G = Cm = 〈g〉 is a cyclic group and σ : G →
Pic(A) is a group homomorphism with A finitely generated as module over Z(A), then the following
conditions are equivalent

1. There is a semisimple strongly G-graded ring that realizes σ.

2. (a) A is semisimple and

(b) for every primitive central idempotent e of A such that Ke = Z(Ae) has characteristic
p 6= 0, either no element of order p of G fixes the elements of Ke or Ke is not perfect.

Proof. Assume that 1 holds. Let e be an idempotent of A such that K = Ke has characteristic
p > 0, and let P be the p-Sylow subgroup of the stabilizer of e. By Corollary 3.5, rank(P ) ≤
p − deg(K). It follows that either P = 1, that is no element of order p of G fixes the elements of
Ke, or else p− deg(K) ≥ 1, which means Ke is not perfect.

Conversely, assume that 2 holds. As in the proof of Proposition 4.5 we may assume that A is
a direct product of division rings. Furthermore, we may assume that the action on the primitive
central idempotents is transitive hence A = Dn, where D is a division ring finite dimensional over
its centre. Let K = Z(D) (hence Z(A) = Kn), and let p be the characteristic of K. By Proposition
4.5, σ can be realized by a strongly graded ring, and under the assumption A = Dn, there is even
a crossed product R = A ∗α

t G that realizes σ. Assume that R is not semisimple (otherwise we are
done). By Maschke’s theorem p > 0. Fix a primitive central idempotent e of A and identify K
with Z(Ae). Let H = He be the subgroup of elements of G that fix K elementwise and P = Pe a
p-Sylow subgroup of H. By Theorem 3.2, P 6= 1 and the cocycle of the subcrossed product K ∗ P
is represented by an element a ∈ K∗p. By our assumption K is not perfect. Let k = KG be the
fixed subfield of K under the action of G. Since K is a finite extension of k, k is not perfect as well
and hence there exists b ∈ k \ kp. Now, if we define the cocycle f ∈ Z2(G, K∗) by:

f(gi, gj) = {b i+j≥m
1 i+j<m

then the crossed product S = A∗α
tf G realizes σ and is semisimple as it is semisimple when restricted

to P .

5 An Application to Division Algebras

For an action of a finite group G on a ring R, let trG : R → RG denote the trace map, i.e
trG(x) =

∑
g∈G xg. In this section we prove the following theorem:

Theorem 5.1 Let G be a finite group and D a division ring with centre K of characteristic p > 0.
Suppose G acts on D via a homomorphism β : G → Aut(D). Let H = β−1(Inn(D)) and let Gp

and Hp be Sylow p-subgroups of G and H respectively. Then the following are equivalent:

1. trG(D) 6= 0.

2. The skew group ring D ∗β G is semisimple.

3. trH(D) 6= 0.

4. The skew group ring D ∗β H is semisimple.
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5. trHp(D) 6= 0 (in particular Hp ∩ ker(β) = {1} and hence Hp ≤ Aut(D)).

6. The skew group ring D ∗β Hp is semisimple.

7. The elements of Hp (viewed in End(D)) are linearly independent over D.

8. The elements of Gp (in End(D)) are linearly independent over D.

Remark 5.2 By Corollary 3.5, the conditions above yield that Hp is abelian with normal comple-
ment in H or equivalently H ′ is a p′−group. By [18] β(H)′ is a cyclic p′−group.

Proof. For the equivalence of 1-6 recall that the trace map trG is non trivial if and only if D is
projective over the skew group ring D ∗β G and these are equivalent to the semisimplicity of D ∗β G
(see [8, Theorem 7.6]). In our case we have already shown that semisimplicity of one of the skew
group rings D ∗β G, D ∗β H, D ∗β Hp is equivalent to the semisimplicity of each one of the others.
Clearly 8 ⇒ 7 ⇒ 5. Furthermore 7 implies 8 follows from Lemma 5.4 below.

Let us prove that 5 implies 7. Assume that 5 holds. Since Hp acts by inner automorphisms on
D we have Hp ≤ D∗/K∗. The group extension

1 → K∗ → D∗ → D∗/K∗ → 1

gives an extension
1 → K∗ → Ĥp → Hp → 1.

For every h ∈ Hp choose a representative uh ∈ Ĥp, that is xh = u−1
h xuh for every x ∈ D. Since the

p-group Hp is abelian (see Corollary 3.5) and K∗ has no non-trivial p-th roots of 1, it follows from
the universal coefficients theorem that Ĥp is also an abelian group. Now, if

1 = A0 < A1 < ... < At = Hp

is a sequence of subgroups of Hp such that Ai+1/Ai ' Cp is cyclic of order p, then the corresponding
extensions Âi form a sequence of subgroups of Ĥp, where Âi+1/Âi ' Cp. For every i = 0, ..., t let
Ki be the subalgebra of D generated by Âi. Each extension Ki+1/Ki is either purely inseparable
of degree p or trivial. We claim that Kt is pt−dimensional over K and consequently the elements
{uh}h∈Hp are linearly independent over K. Indeed, if dimK Kt < pt =| Hp | then Ki+1 = Ki for
some i and then CD(Âi ) = CD(Ki) = CD(Ki+1) = CD(Âi+1) where CD(T ) denotes the centralizer
of T in D. This implies that the generator of Âi+1 modulo Âi commutes with the image of trAi in
D. It follows that trAi+1 = 0 and so trHp = 0, a contradiction.

Now, consider the K−algebra maps

η1 : D → End(DDHp ) (left multiplication) and
η2 : Kt → End(DDHp ) (right multiplication).

Clearly, the images of η1 and η2 commute and so we obtain a map

η = η1 ⊗ η2 : D ⊗K Kt → End(DDHp )

which is injective since D ⊗K Kt is simple. In order to show that the elements of Hp are linearly
independent over D let

∑
h∈Hp

dhh = 0. Then for every x ∈ D,
∑

h∈Hp
dhuhxu−1

h = 0. This says
that η(

∑
h∈Hp

dhuh ⊗ u−1
h ) = 0 and by the injectivity of η, one has that

∑
h∈Hp

dhuh ⊗ u−1
h = 0.

Finally, by the linear independence of {uh}h∈Hp (and hence of {u−1
h }h∈Hp) over K, dh = 0 for all

h ∈ Hp as desired.
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Remark 5.3 By the proof of [12, Lemma 2.18], [D : DHp ] = dimK Kt and by the preceding
paragraph they are equal to ord(Hp). It follows that D ⊗K Kt and EndDHp (D) have the same
dimension over DHp and hence η is an isomorphism.

We still owe the reader

Lemma 5.4 Let D be a division ring, G a group of automorphisms of D and H = G ∩ Inn(D).
Then the automorphisms of G (viewed in End(D)) are linearly independent over D if and only if
the elements of H are linearly independent over D.

Proof. Assume that the elements of H are linearly independent. If the theorem is false there is a
non empty subset {σ1, . . . , σn}, n ≥ 2 of G and elements {αi}n

i=1 in D (not all zeroes) such that

φ = α1σ1 + α2σ2 + . . . + αnσn = 0

Without loss of generality we can assume n is minimal, α1 = 1 ∈ D, σ1 = 1 ∈ G and σ2 /∈ H. It
follows that there is s ∈ D such that σ2(s) 6= α−1

2 sα2. Then

0 = s−1φs− φ
= 1 + s−1α2σ2(s)σ2 + s−1α3σ3(s)σ3 + . . . + s−1αnσn(s)σn − (1 + α2σ2 + α3σ3 + . . . + αnσn)
= (s−1α2σ2(s)− α2)σ2 + (s−1α3σ3(s)− α3)σ3 + . . . + (s−1αnσn(s)− αn)σn.

This linear combination is non trivial since s−1α2σ2(s) − α2 6= 0 and its length is ≤ n − 1, a
contradiction.
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