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Abstract. We characterize the maximum r-local index of a Schur algebra over an abelian

number field K in terms of global information determined by the field K, for r an arbitrary

rational prime. This completes and unifies previous results of Janusz in [Jan] and Pendergrass

in [Pen1].

1. Introduction and Preliminaries

Let K be a field. A Schur algebra over K is a central simple K-algebra which is generated
over K by a finite group of units. The Schur group of K is the subgroup S(K) of the Brauer
group of K formed by classes containing a Schur algebra. By the Brauer-Witt Theorem (see e.g.
[Yam]), each class in S(K) can be represented by a cyclotomic algebra, i.e. a crossed product
of the form (L/K,α) in which L/K is a cyclotomic extension and the factor set α takes values
in the group of roots of unity W (L) of L.

In the case when K is an abelian number field; i.e. K is contained in a finite cyclotomic
extension of Q, Benard-Schacher theory [BS] gives a partial characterization of the elements of
S(K). According to this theory, if n is the Schur index of a Schur algebra over K, then W (K)
contains an element of order n. This is known as the Benard-Schacher Theorem. Furthermore,
if t

n (in lowest terms) is the local invariant of A at a prime R of K that lies over a rational
prime r, then each of the fractions c

n with 1 ≤ c ≤ n and c coprime to n will occur equally often
among the local invariants corresponding to the primes of K lying above r. In particular, these
local invariants all have the same denominator n for all the primes of K lying above r, which we
call the r-local index mr(A) of A. Only finitely many of the mr(A) are greater than 1, and the
Schur index of A is the least common multiple of the mr(A) as r runs over all rational primes.

The goal of this article is to characterize the maximum r-local index of a Schur algebra over
an abelian number field K in terms of global information determined by K. The existence
of this maximum is a consequence of the Benard-Schacher Theorem. Since S(K) is a torsion
abelian group, it is enough to compute the maximum of the r-local indices of Schur algebras
over K with index a power of p for every prime p dividing the order of W (K). We will refer
to this number as pβp(r). In [Jan], Janusz gave a formula for pβp(r) when either p is odd or K
contains a primitive 4-th root of unity. The remaining cases were considered by Pendergrass in
[Pen1]. However, some of the calculations involving factor sets in [Pen1] are not correct, and as
a consequence the formulas for 2β2(r) for odd primes r that appear there are inaccurate. This
article was motivated in part to find a correct formula for pβp(r) in this remaining case, and also
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because of the need to apply the formula in an upcoming work of the authors in [HOR], where
the gap between the Schur subgroup of an abelian number field and its subgroup generated by
classes containing cyclic cyclotomic algebras is studied. Since the local index at ∞ will be 2
when K is real and will be 1 otherwise, the only remaining case is that of r = 2. In this case, p
must be equal to 2 and we must have ζ4 6∈ K. The characterization of fields K for which S(K2)
is of order 2 is given in [Pen1, Corollary 3.3].

The main result of the paper (Theorem 13) characterizes pβp(r) in terms of the position of K
relative to an overlying cyclotomic extension F that is determined by K and p. The formulas for
pβp(r) are stated in terms of elements of certain Galois groups in this setting. The main difference
between our approach and that of Janusz and Pendergrass is that the field F that we use is
slightly larger, which allows us to present some of the somewhat artificial-looking calculations
in [Jan] in a more conceptual fashion. Another highlight of our approach is the treatment of
calculations involving factor sets. In Section 2 we generalize a result from [AS] which describes
the factor sets for a given action of an abelian group G on another abelian group W in terms of
some data. In particular, we give necessary and sufficient conditions that the data must satisfy
in order to be induced by a factor set. Because of the applications we have in mind, extra
attention is paid to the case when W is a cyclic p-group.

2. Factor set calculations

In this section W and G are two abelian groups and Υ : G → Aut(W ) is a group homomor-
phism. A group epimorphism π : G → G with kernel W is said to induce Υ if, given ug ∈ G

such that π(ug) = g, one has ugwu
−1
g = Υ(g)(w) for each w ∈W . If g 7→ ug is a crossed section

of π (i.e. π(ug) = g for each g ∈ G) then the map α : G × G → W defined by uguh = αg,hugh

is a factor set (or 2-cocycle) α ∈ Z2(G,W ). We always assume that the crossed sections are
normalized, i.e. u1 = 1 and hence αg,1 = α1,g = 1. Since a different choice of crossed section
for π would be a map g 7→ wgug where w : G→W , π determines a unique cohomology class in
H2(G,W ), namely the one represented by α.

Given a list g1, . . . , gn of generating elements of G, a group epimorphism π : G→ G inducing
Υ, and a crossed section g 7→ ug of π, we associate the elements βij and γi of W , for i, j ≤ n,
by the equalities:

(1)
ugjugi = βijugiugj , and

uqi
gi = γiu

t
(i)
1

g1 · · ·ut
(i)
i−1

gi−1 ,

where the integers qi and t(i)j for 1 ≤ i ≤ n and 0 ≤ j < i are determined by

(2) qi = order of gi modulo 〈g1, . . . , gi−1〉, gqi
i = g

t
(i)
1

1 · · · gt
(i)
i−1

i−1 , and 0 ≤ t
(i)
j < qj .

If α is the factor set associated to π and the crossed section g 7→ ug, then we say that α induces
the data (βij , γi). The following proposition gives necessary and sufficient conditions for a list
(βij , γi) of elements of W to be induced by a factor set.

The order of an element g of a group is denoted by |g|.
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Proposition 1. Let W and G = 〈g1, . . . , gn〉 be abelian groups and let Υ : G→ Aut(W ) be an
action of G on W . For every 1 ≤ i, j ≤ n, let qi and t(i)j be the integers determined by (2). For
every w ∈W and 1 ≤ i ≤ n, let

Υi = Υ(gi), N t
i (w) = wΥi(w)Υ2

i (w) · · ·Υt−1
i (w), and Ni = N qi

i .

For every 1 ≤ i, j ≤ n, let βij and γi be elements of W . Then the following conditions are
equivalent:

(1) There is a factor set α ∈ Z2(G,W ) inducing the data (βij , γi).
(2) The following equalities hold for every 1 ≤ i, j, k ≤ n:

(C1) βii = βijβji = 1.
(C2) βijβjkβki = Υk(βij)Υi(βjk)Υj(βki).

(C3) Ni(βij)γi = Υj(γi)N
t
(i)
1

1 (β1j)Υ
t
(i)
1

1 (N t
(i)
2

2 (β2j)) · · ·Υ
t
(i)
1

1 Υt
(i)
2

2 . . .Υ
t
(i)
i−2

i−2 (N
t
(i)
i−1

i−1 (β(i−1)j)).

Proof. (1) implies (2). Assume that there is a factor set α ∈ Z2(G,W ) inducing the data (βij , γi).
Then there is a surjective homomorphism π : G → G and a crossed section g 7→ ug of π such
that the βij and γi satisfy (1). Condition (C1) is clear. Conjugating by ugk

in ugjugi = βijugiugj

yields

βjkΥj(βik)βijugiugj = βjkΥj(βik)ugjugi = βjkugjβikugi = ugk
ugjugiu

−1
gk

=
ugk

βijugiugju
−1
gk

= Υk(βij)βikugiβjkugj = Υk(βij)βikΥi(βjk)ugiugj .

Therefore, we have βjkΥj(βik)βij = Υk(βij)βikΥi(βjk) and so (C2) follows from (C1).
To prove (C3), we use the obvious relation (wugi)

t = N t
i (w)ut

gi
. Conjugating by ugj in

uqi
gi = γiu

t
(i)
1

g1 · · ·ut
(i)
i−1

gi−1 results in

Ni(βij)γiu
t
(i)
1

g1 · · ·ut
(i)
i−1

gi−1 = N qi
i (βij)u

qi
gi = (βijugi)

qi = ugju
qi
giu

−1
gj

= ugjγiu
t
(i)
1

g1 · · ·ut
(i)
i−1

gi−1u
−1
gj

=

Υj(γi)(β1jug1)
t
(i)
1 · · · (β(i−1)jugi−1)

t
(i)
i−1 = Υj(γi)N

t
(i)
1

1 (β1j)u
t
(i)
1

g1 · · ·N t
(i)
i−1

i−1 (β(i−1)j)u
t
(i)
i−1

gi−1 =

Υj(γi)N
t
(i)
1

1 (β1j)Υ
t
(i)
1

1 (N t
(i)
2

2 (β2j)) · · ·Υ
t
(i)
1

1 Υt
(i)
2

2 . . .Υ
t
(i)
i−2

i−2 (N
t
(i)
i−1

i−1 (β(i−1)j))u
t
(i)
1

g1 · · ·ut
(i)
i−1

gi−1 .

Cancelling on both sides produces (C3). This finishes the proof of (1) implies (2).
Before proving (2) implies (1), we show that if π : G → G is a group homomorphism with

kernel W inducing Υ, g 7→ ug is a crossed section of π and βij and γi are given by (1), then G

is isomorphic to the group Ĝ given by the following presentation: the set of generators of Ĝ is
{ŵ, ĝi : w ∈W, i = 1, . . . , n}, and the relations are

(3) ŵ1w2 = ŵ1ŵ2, Υi(w) = ĝiŵĝ
−1
i , ĝj ĝi = β̂ij ĝiĝj and ĝqi

i = γ̂iĝ
t
(i)
1

1 · · · ĝt
(i)
i−1

i−1 ,

for each 1 ≤ i, j ≤ n and w,w1, w2 ∈ W . Since the relations obtained by replacing ŵ by
w and ĝi by ugi in equation (3) for each x ∈ W and each 1 ≤ i ≤ n, hold in G, there is a
surjective group homomorphism φ : Ĝ → G, which associates ŵ with w, for every w ∈ W ,
and ĝi with ugi , for every i = 1, . . . , n. Moreover, φ restricts to an isomorphism Ŵ → W and
|ĝi〈Ŵ , ĝ1, . . . , ĝi−1〉| = qi. Hence [Ĝ : Ŵ | = q1 · · · qn = [G : W ] and so |Ĝ| = |G|. We conclude
that φ is an isomorphism.
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(2) implies (1). Assume that the βij ’s and γi’s satisfy conditions (C1), (C2) and (C3). We
will recursively construct groups G0, G1, . . . , Gn. Start with G0 = W . Assume that Gk−1 =
〈W,ug1 , . . . , ugk−1

〉 has been constructed with ug1 , . . . , ugk−1
satisfying the last three relations

of (3), for 1 ≤ i, j < k, and that these relations, together with the relations in W , form
a complete list of relations for Gk−1. To define Gk we first construct a semidirect product
Hk = Gk−1 ock

〈xk〉, where ck acts on Gk−1 by

ck(w) = Υk(w), (w ∈W ), ck(ugi) = βikugi .

In order to check that this defines an automorphism of Gk−1 we need to check that ck respects
the defining relations of Gk−1. This follows from the commutativity of G and conditions (C1),
(C2) and (C3) by straightforward calculations which we leave to the reader.

Notice that the defining relations of Hk are the defining relations of Gk−1 and the relations

xkw = Υk(w)xk and xkugi = βikugixk. Using (C3) one deduces ugix
qk
k u

−1
gi

= ugiγku
t
(k)
1

g1 · · ·ut
(k)
k−1

gk−1u
−1
gi

,

for each i ≤ k − 1. This shows that yk = x−qk
k γku

t
(k)
1

g1 · · ·ut
(k)
k−1

gk−1 belongs to the center of Hk. Let
Gk = Hk/〈yk〉 and ugk

= xk〈yk〉. Now it is easy to see that the defining relations of Gk are the
relations of W and the last three relations in (3), for 0 ≤ i, j ≤ k.

It is clear now that the assignment w 7→ 1 and ugi 7→ gi for each i = 1, . . . , n defines a group
homomorphism π : G = Gn → G with kernel W and inducing Υ. If α is the factor set associated
to π and the crossed section g 7→ ug, then (βij , γi) is the list of data induced by α. �

Note that the group generated by the values of the factor set α coincides with the group
generated by the data (βij , γi). This observation will be used in the next section.

In the case G = 〈g1〉 × · · · × 〈gn〉 we obtain the following corollary that one should compare
with Theorem 1.3 of [AS].

Corollary 2. If G = 〈g1〉 × · · · × 〈gn〉 then a list D = (βij , γi)1≤i,j≤n of elements of W is the
list of data associated to a factor set in Z2(G,W ) if and only if the elements of D satisfy (C1),
(C2) and Ni(βij)γi = Υj(γi), for every 1 ≤ i, j ≤ n.

In the remainder of this section we assume that W = 〈ζ〉 is a cyclic p-group, for p a prime
integer. Let pa and pa+b denote the orders of WG = {x ∈W : Υ(g)(x) = x for each g ∈ G} and
W respectively. We assume that 0 < a, b. We also set

C = Ker(Υ) and D = {g ∈ G : Υ(g)(ζ) = ζ or Υ(g)(ζ) = ζ−1}.

Note that D is subgroup of G containing C, G/D is cyclic, and [D : C] ≤ 2. Furthermore,
the assumption a > 0 implies that if C 6= D then pa = 2.

Lemma 3. There exists a ρ ∈ D and a subgroup B of C such that D = 〈ρ〉×B and C = 〈ρ2〉×B.

Proof. The lemma is obvious if C = D (just take ρ = 1). So assume that C 6= D and temporarily
take ρ to be any element of D \C. Since [D : C] = 2, one may assume without loss of generality
that |ρ| is a power of 2. Write C = C2 × C2′ , where C2 and C2′ denote the 2-primary and
2′-primary parts of C, and choose a decomposition C2 = 〈c1〉 × · · · × 〈cn〉 of C2. By reordering
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the ci’s if needed, one may assume that ρ2 = ca1
1 . . . cak

k c
2ck+1

k+1 . . . c2an
n with a1, . . . , ak odd. Then

replacing ρ by ρc
−ak+1

k+1 . . . c−an
n one may assume that ρ2 = ca1

1 . . . cak
k , with a1, . . . , ak odd. Let

H = 〈ρ, c1, . . . , ck〉. Then |ρ|/2 = |ρ2| = exp(H ∩ C), the exponent of H ∩ C, and so ρ is an
element of maximal order in H. This implies that H = 〈ρ〉 ×H1 for some H1 ≤ H. Moreover,
if h ∈ H1 \ C then 1 6= ρ|ρ|/2 = h|ρ|/2 ∈ 〈ρ〉 ∩ H1, a contradiction. This shows that H1 ⊆ C.
Thus C2 = (H ∩ C2) × 〈ck+1〉 × · · · × 〈cn〉 = 〈ρ2〉 × H1 × 〈ck+1〉 × · · · × 〈cn〉. Then ρ and
B = H1 × 〈ck+1〉 × · · · × 〈cn〉 × C2′ satisfy the required conditions. �

By Lemma 3, there is a decomposition D = B × 〈ρ〉 with C = B × 〈ρ2〉, which will be fixed
for the remainder of this section. Moreover, if C = D then we assume ρ = 1. Since G/D is
cyclic, G/C = 〈ρC〉 × 〈σC〉 for some σ ∈ G. It is easy to see that σ can be selected so that if
D = G then σ = 1, and σ(ζ) = ζc for some integer c satisfying

(4) vp(cqσ − 1) = a+ b, and vp(c− 1) =


a if G/C is cyclic and G 6= D,

a+ b if G/C is cyclic and G = D, and
d ≥ 2 for some integer d, if G/C is not cyclic,

where qσ = |σC| and the map vp : Q → Z is the classical p-adic valuation. In particular, if G/C
is non-cyclic (equivalently C 6= D 6= G) then pa = 2, b ≥ 2, ρ(ζ) = ζ−1 and σ(ζ2b−1

) = ζ2b−1
.

For every positive integer t we set

V (t) = 1 + c+ c2 + · · ·+ ct−1 =
ct − 1
c− 1

.

Now we choose a decomposition B = 〈c1〉× · · ·×〈cn〉 and adapt the notation of Proposition 1
for a group epimorphism f : G→ G with kernelW inducing Υ and elements uc1 , . . . , ucn , uσ, uρ ∈
G with f(uci) = ci, f(uρ) = ρ and f(uσ) = σ, by setting

βij = [ucj , uci ], βiρ = β−1
ρi = [uρ, uci ], βiσ = β−1

σi = [uσ, uci ], and βσρ = β−1
ρσ = [βρ, βσ].

We also set

(5)
qi = |ci|, qρ = |ρ|, and σqσ = ct11 . . . c

tn
n ρ

2tρ ,

where 0 ≤ ti < qi and 0 ≤ tρ < |ρ2|.

With a slightly different notation than in Proposition 1, we have, for each 1 ≤ i ≤ n, t(i)j = 0

for each 0 ≤ j < i, t(ρ)
i = 0 , t(σ)

i = ti, and t
(σ)
ρ = 2tρ. Furthermore, qρ = 1 if C = D and qρ is

even if C 6= D. Continuing with the adaptation of the notation of Proposition 1 we set

γi = uqi
ci
, γρ = u

qρ
ρ , and γσ = uqσ

σ u
−t1
c1 . . . u−tn

cn
u

2tρ
ρ .

We refer to the list {βij , βiσ, βiρ, βσρ, γi, γρ, γσ : 0 ≤ i < j ≤ n}, which we abbreviate as
(β, γ), as the data associated to the group epimorphism f : G→ G and choice of crossed section
uc1 , . . . , ucn , uσ, uρ, or as the data induced by the corresponding factor set in Z2(G,W ).

Furthermore, for every w ∈W , 1 ≤ i ≤ n and t ≥ 0 one has

N t
i (w) = wt, N t

σ(w) = wV (t) and N t
ρ(w) =


wt, if ρ = 1;
1, if ρ 6= 1 and t is even;
w, if ρ 6= 1 and t is odd.
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In particular, for every w ∈W one has

Ni(w) = wqi , Nσ(w) = wV (qσ), and Nρ(w) = 1.

Rewriting Proposition 1 for this case we obtain the following.

Corollary 4. Let W be a finite cyclic p-group and let G be an abelian group acting on W with
G = 〈c1, . . . , cn, σ, ρ〉, B = 〈c1〉×· · ·×〈cn〉, D = B×〈ρ〉 and C = B×〈ρ2〉 as above. Let qi, qρ, qσ
and the ti’s be given by (5). Let βσρ, γρ, γσ ∈ W and for every 1 ≤ i, j ≤ n let βij , βiσ, βiρ and
γi be elements of W . Then the following conditions are equivalent:

(1) The given collection (β, γ) = {βij , γi, βiσ, γσ, γρ, βσρ} is the list of data induced by some
factor set in Z2(G,W ).

(2) The following equalities hold for every 1 ≤ i, j ≤ n:
(C1) βii = βijβji = 1.
(C2) (a) βij ∈WG.

(b) If ρ 6= 1 then β2
iσ = β1−c

iρ .
(C3) (a) βqi

ij = 1.
(b) βqi

iσ = γc−1
i .

(c) β−V (qσ)
iσ = βt1

1i . . . β
tn
ni .

(d) γc−1
σ βt1

1σ . . . β
tn
nσ = 1.

(e) If ρ = 1 then βiρ = βσρ = γρ = 1.
(f) If ρ 6= 1 then βqi

iργ
2
i = 1, βV (qσ)

σρ γ2
σ = βt1

1ρ . . . β
tn
nρ and γρ ∈WG.

Proof. By completing the data with βσi = β−1
iσ , βρi = β−1

iρ and βσσ = βρρ = 1 we have that (C1)
is a rewriting of condition (C1) from Proposition 1.

(C2) is the rewriting of condition (C2) from Proposition 1 because this condition vanishes
when 1 ≤ i, j, k ≤ n and when two of the elements i, j, k are equal. Furthermore, permuting
i, j, k in (C2) yields equivalent conditions. So we only have to consider three cases: substituting
i = i, j = j, and k = σ; i = i, j = j, and k = ρ; and i = i, j = ρ, and k = σ. In the first
two cases one obtains σ(βij) = ρ(βij) = βij , or equivalently βij ∈ WG. For ρ = 1 the last case
vanishes, and for ρ 6= 1 (C2) yields β2

iσ = β1−c
iρ .

Rewriting (C3) from Proposition 1 we obtain: (a) for i = i, j = j; (b) for i = i and j = σ;
(c) for i = σ and j = i; and (d) for i = σ and j = σ.

We consider separately the cases ρ = 1 and ρ 6= 1 for the remaining cases for rewriting (C3).
Assume first that ρ = 1. When i is replaced by ρ and j replaced by i (respectively, by σ)
we obtain βiρ = 1 (respectively βσρ = 1). On the other hand the requirement of only using
normalized crossed sections implies γρ = 1 in this case. When j = ρ the conditions obtained are
trivial.

Now assume that ρ 6= 1. For i = i and j = ρ one obtains βqi
iργ

2
i = 1. For i = ρ and

j = i one obtains a trivial condition because Nρ(x) = 1. For i = σ and j = ρ, we obtain
β

V (qσ)
σρ γ2

σ = βt1
1ρ . . . β

tn
nρ. For i = ρ and j = σ one has σ(γρ) = γρ, and for i = ρ and j = ρ one

obtains ρ(γρ) = γρ. The last two equalities are equivalent to γρ ∈WG. �
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Corollary 5. With the notation of Corollary 4, assume that G/C is non-cyclic and qk and tk
are even for some k ≤ n. Let (β, γ) be the list of data induced by a factor set in Z2(G,W ).
Then the list obtained by replacing βkσ by −βkσ and keeping the remaining data fixed is also
induced by a factor set in Z2(G,W ).

Proof. It is enough to show that βkσ appears in all the conditions of Corollary 4 with an even
exponent. Indeed, it only appears in (C2.b) with exponent 2; in (C3.b) with exponent qk; in
(C3.c) with exponent −V (qσ); and in (C3.d) and (C3.f) with exponent tk. By the assumption
it only remains to show that V (qσ) is even. Indeed, v2(V (qσ)) = v2(cqσ − 1) − v2(c − 1) =
1 + b− v2(c− 1) ≥ 1 because c 6≡ 1 mod 21+b. �

The data (β, γ) induced by a factor set are not cohomologically invariant because they depend
on the selection of π and of the uci ’s, uσ and uρ. However, at least the βij are cohomologically
invariant. For every α ∈ H2(G,W ) we associate a matrix βα = (βij)1≤i,j≤n of elements of WG

as follows: First select a group epimorphism π : G → G realizing α and uc1 , . . . , ucn ∈ G such
that π(uci) = ci, and then set βij = [ucj , uci ]. The definition of βα does not depend on the choice
of π and the uci ’s because if w1, w2 ∈W and u1, u2 ∈ G then [w1u1, w2u2] = [u1, u2].

Proposition 6. Let β = (βij)1≤i,j≤n be a matrix of elements of WG and for every 1 ≤ i, j ≤ n

let aii = 0 and aij = min(a, vp(qi), vp(qj)), if i 6= j.
Then there is an α ∈ H2(G,W ) such that β = βα if and only if the following conditions hold

for every 1 ≤ i, j ≤ n:

(6) βijβji = βpaij

ij = 1.

Proof. Assume first that β = βα for some α ∈ Z2(G,W ). Then (6) is a consequence of conditions
(C1), (C2.a) and (C3.a) of Corollary 4.

Conversely, assume that β satisfies (6). The idea of the proof is that one can enlarge β to a list
of data (β, γ) that satisfies conditions (C1)–(C3) of Corollary 4. Hence the desired conclusion
follows from the corollary.

Condition (C1) follows automatically from (6). If i, j ≤ n then βij ∈ WG follows from the
fact that a ≥ aij and so (6) implies that βpa

ij = 1. Hence (C2.a) holds. Also (C3.a) holds
automatically from (6) because paij divides qi. Hence, we have to select the βiσ’s, βiρ’s, γi’s,
βσρ, γσ, and γρ for (C2.b) and (C3.b)–(C3.f) to hold.

Assume first that D = G. In this case we just take βiσ = βiρ = βσρ = γi = γσ = γρ = 1 for
every i. Then (C2.b), (C3.b), (C3.d) and (C3.f) hold trivially by our selection. Moreover, in
this case σ = 1 and so ti = 0 for each i = 1, . . . , n, hence (C3.c) also holds.

In the remainder of the proof we assume that D 6= G. First we show how one can assign values
to βσi and γi, for i ≤ n for (C3.b)–(C3.d) to hold. Let d = vp(c−1) and e = vp(V (qσ)) = a+b−d.
(see (4)). Note that d = a if C = D and a = 1 ≤ 2 ≤ d ≤ b if C 6= D (because we are assuming
that D 6= G). Let X1, X2, Y1 and Y2 be integers such that c − 1 = pdX1, V (qσ) = peX2, and
X1Y1 ≡ X2Y2 ≡ 1 mod pa+b. By (6), βpaij

ij = 1 and so βij ∈ W pa+b−aij . Therefore there are

integers bij , for 1 ≤ i, j ≤ n such that bii = bij + bij = 0 and βij = ζbijpa+b−aij . For every i ≤ n
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set

xi = Y2

n∑
j=1

tjbjip
a−aji , βσi = ζxip

d−a
yi = Y1Y2

n∑
j=1

tjbji
qi
paij

, and γi = ζyi .

Then V (qσ)pd−axi = peX2Y2
∑n

j=1 tjbjip
d−aji ≡

∑n
j=1 tjbjip

a+b−aji mod pa+b and therefore

β
V (qσ)
σi = ζ

∑n
j=1 tjbjip

a+b−aji
=

n∏
i=1

β
tj
ji ,

that is (C3.c) holds. Moreover qipd−axi = pdY2
∑n

j=1 tjbji
qi

paij ≡ pdX1yi = (c−1)yi and therefore

βqi
iσ = γc−1

i , that is (C3.b) holds.
We now compute

(7)
n∑

i=1

tixi = Y2

∑
1≤i,j≤n

titjbijp
a−aij = Y2

n+1∑
i=1

t2i biip
a−aii + Y2

∑
1≤i<j≤n

titj(bij + bji)pa−aij = 0.

Then setting γσ = 1, one has

γc−1
σ

n∏
i=1

βti
iσ =

n∏
i=1

ζ−tixip
d−a

= ζ−pd−a
∑n

i=1 tixi = 1

and (C3.d) holds. This finishes the assignments of βiσ and γi for i ≤ n and of γσ.
If C = D then a quick end is obtained assigning βiρ = βσρ = γρ = 1.
So it only remains to assign values to βiρ, βσρ and γρ under the assumption that C 6= D. Set

βiρ = ζ−Y1xi . In this case pa = 2 and therefore 2pd−axi = pdxi ≡ (c− 1)Y1xi and qiY1xi = 2yi.
Thus β2

iσβ
c−1
iρ = ζ2pd−axiζ(1−c)Y1xi = 1, hence (C2.b) holds, and βqi

iργ
2
i = ζ−qiY1xi+2yi = 1, hence

the first relation of (C3.f) follows.
Finally, using (7) one has

βt1
1ρ . . . β

tn
nρ = (βt1

1σ . . . β
tn
nσ)−Y1 = 1 = γ2

σ

and the last two relations of (C3.f) hold when βσρ = γρ = 1. �

Let β = (βij) be an n×n matrix of elements of WG satisfying (6). Then the map Ψ : B×B →
WG given by

Ψ((cx1
1 . . . cxn

n , cy1
1 . . . cyn

n )) =
∏

1≤i,j≤n

β
xiyj

ij

is a skew pairing of B over WG in the sense of [Jan]; that is, it satisfies the following conditions
for every x, y, z ∈ B:

(Ψ1) Ψ(x, x) = Ψ(x, y)Ψ(y, x) = 1, (Ψ2) Ψ(x, yz) = Ψ(x, y)Ψ(x, z).

Conversely, every skew pairing of B over WG is given by a matrix β = (βij = Ψ(ci, cj))1≤i,j≤n

satisfying (6). In particular, every class in H2(G,W ) induces a skew pairing Ψ = Ψα of B
over WG given by Ψ(x, y) = αx,yα

−1
y,x, for all x, y ∈ B, for any cocycle α representing the given

cohomology class.
In terms of skew pairings, Proposition 6 takes the following form.
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Corollary 7. If Ψ is a skew pairing of B over WG then there is an α ∈ H2(G,W ) such that
Ψ = Ψα.

Corollary 7 was obtained in [Jan, Proposition 2.5] for pa 6= 2. The remaining cases were
considered in [Pen1, Corollary 1.3], where it is stated that for every skew pairing Ψ of C over
WG there is a factor set α ∈ Z2(G,W ) such that Ψ(x, y) = αx,yα

−1
y,x, for all x, y ∈ C. However,

this is false if ρ2 6= 1 and B has nontrivial elements of order 2. Indeed, if Ψ is the skew pairing of
B over WG given by the factor set α then Ψ(x, ρ2) = 1 for each x ∈ C. To see this we introduce
a new set of generators of G, namely G = 〈c1, . . . , cn, cn+1, ρ, σ〉 with cn+1 = ρ2. Then condition
(C3) of Proposition 1, for i = ρ and j = i reads β(n+1)i = 1 which is equivalent to Ψ(ci, ρ2) = 1
for all 1 ≤ i ≤ n. Using this it is easy to give a counterexample to [Pen1, Corollary 1.3].

Before finishing this section we mention two lemmas that will be needed in next section. The
first is elementary and so the proof has been omitted.

Lemma 8. Let S be the set of skew pairings of B with values in WG. If B = B′ × B′′ and
b1, b2 ∈ B′ and b3 ∈ B′′ then

max{Ψ(b1 · b3, b2) : Ψ ∈ S} = max{Ψ(b1, b2) : Ψ ∈ S} ·max{Ψ(b3, b2) : Ψ ∈ S}.

Lemma 9. Let B̂ = B×〈g〉 be an abelian group and let h ∈ B. If k = gcd{pa, |g|} and t = |hBk|
then t is the maximum possible value of Ψ(h, g) as Ψ runs over all skew pairings of B̂ over 〈ζpa〉.

Proof. Since k divides pa, the hypothesis t = |hBk| implies that there is a group homomorphism
χ : B → 〈ζpa〉 such that χ(Bk) = 1 and χ(h) has order t. Let Ψ : B̂ × B̂ → 〈ζpa〉 be given by
Ψ(xgi, ygj) = χ(xjy−i) = χ(x)iχ(y)−j , for x, y ∈ B. If gi = gi′ , then i ≡ i′ mod |g| and hence
i ≡ i′ mod k. Therefore, xiBk = xi′Bk, which implies that χ(x)i = χ(x)i′ . This shows that Ψ
is well defined. Now it is easy to see that Ψ is a skew pairing and Ψ(h, g) = χ(h) has order t.

Conversely, if Ψ is any skew pairing of B̂ over 〈ζpa〉, then Ψ(x, g)pa
= 1 and Ψ(x, g)|x| =

Ψ(1, g) = 1 for all x ∈ B. This implies that Ψ(xk, g) = Ψ(x, g)k = 1 for all x ∈ B, and so
Ψ(Bk, g) = 1. Therefore Ψ(h, g)t = Ψ(ht, g) ∈ Ψ(Bk, g) = 1, so the order of Ψ(h, g) divides
t. �

3. Local index computations

In this section K denotes an abelian number field, p a prime, and r an odd prime. Our goal
is to find a global formula for β(r) = βp(r), the maximum nonnegative integer for which pβ(r) is
the r-local index of a Schur algebra over K.

We are going to abuse the notation and denote by Kr the completion of K at a (any) prime of
K dividing r. If E/K is a finite Galois extension, one may assume that the prime of E dividing
r, used to compute Er, divides the prime of K over r, used to compute Kr. We use the classical
notation:

e(E/K, r) = e(Er/Kr) = ramification index of Er/Kr.

f(E/K, r) = f(Er/Kr) = residue degree of Er/Kr.

mr(A) = Index of Kr ⊗K A, for a Schur algebra A over K.
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By Benard-Schacher Theory and because E/K is a finite Galois extension, e(E/K, r), f(E/K, r)
and mr(A) do not depend on the selection of the prime of K dividing r (see [Ser] and [BS]).
By the Benard-Schacher Theorem and because |S(Kr)| divides r − 1 [Yam], if either ζp 6∈ K or
r 6≡ 1 mod p then β(r) = 0. So to avoid trivialities we assume that ζp ∈ K and r ≡ 1 mod p.

Suppose K ⊆ F = Q(ζn) for some positive integer n and let n = rvr(n)n′. Then Gal(F/Q)
contains a canonical Frobenius automorphism at r which is defined by ψr(ζrvr(n)) = ζrvr(n) and
ψr(ζn′) = ζr

n′ . We can then define the canonical Frobenius automorphism at r in Gal(F/K) as
φr = ψ

f(K/Q,r)
r . On the other hand, the inertia subgroup at r in Gal(F/K) is by definition the

subgroup of Gal(F/K) that acts as Gal(Fr/Kr(ζn′)) in the completion at r.
We use the following notation.

Notation 10. First we define some positive integers:
m = minimum even positive integer with K ⊆ Q(ζm),
a = minimum positive integer with ζpa ∈ K,
s = vp(m) and

b =


s, if p is odd or ζ4 ∈ K,
s+ vp([K ∩Q(ζps) : Q]) + 2, if Gal(K(ζp2a+s)/K) is not cyclic, and
s+ 1, otherwise.

We also define
L = Q(ζm), ζ = ζpa+b , W = 〈ζ〉, F = L(ζ),

G = Gal(F/K), C = Gal(F/K(ζ)), and D = Gal(F/K(ζ + ζ−1)).

Since ζp ∈ K, the automorphism Υ : G→ Aut(W ) induced by the Galois action satisfies the
conditions of Section 2 and the notation is consistent. As in that section we fix elements ρ and
σ in G and a subgroup B = 〈c1〉 × · · · × 〈cn〉 of C such that D = B × 〈ρ〉, C = B × 〈ρ2〉 and
G/C = 〈ρC〉×〈σC〉. Furthermore, σ(ζ) = ζc for some integer c chosen according to (4). Notice
that by the choice of b, G 6= B.

We also fix an odd prime r and set

e = e(K(ζr)/K, r), f = f(K/Q, r) and ν(r) = max{0, a+ vp(e)− vp(rf − 1)}.

Let φ ∈ G be the canonical Frobenius automorphism at r in G, and write

φ = ρj′σjη, with η ∈ B, 0 ≤ j′ < |ρ| and 0 ≤ j < |σC|.

Let q be an odd prime not dividing m. Let Gq = Gal(F (ζq)/K), Cq = Gal(F (ζq)/K(ζ)) and
let c0 denote a generator of Gal(F (ζq)/F ). Finally we fix
θ = θq, a generator of the inertia group of r in Gq and
φq = cs0

0 φ = cs0
0 ηρ

j′σj = ηqρ
j′σj, the canonical Frobenius automorphism at r in Gq.

Observe that we are consideringG as a subgroup ofGq by identifyingG with Gal(F (ζq)/K(ζq)).
Again the Galois action induces a homomorphism Υq : Gq → Aut(W ) and WGq = 〈ζpa〉. So this
action satisfies the conditions of Section 2 and we adapt the notation by settting

Bq = 〈c0〉 ×B, Cq = Gal(F (ζq)/K(ζ)) = Ker(Υq) and Dq = Gal(F (ζq)/K(ζ + ζ−1)).
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Notice that Cq = 〈c0〉 × C = Bq × 〈ρ2〉 and Dq = D × 〈c0〉. Hence G/C ' Gq/Cq.
If Ψ is a skew pairing of B over WG then Ψ has a unique extension to a skew pairing Ψ of C

over WG which satisfies Ψ(B, ρ2) = Ψ(ρ2, B) = 1. So we are going to apply skew pairings of B
to pairs of elements in C under the assumption that we are using this extension.

Since p 6= r, θ ∈ Cq. Moreover, if r = q then θ is a generator of Gal(F (ζr)/F ) and otherwise
θ ∈ C. Notice also that if G/C is non-cyclic then pa = 2 and K ∩Q(ζ2s) = Q(ζ2d + ζ−1

2d ), where
d = vp(c− 1), and so b = s+ d.

It follows from results of Janusz [Jan, Proposition 3.2] and Pendergrass [Pen2, Theorem 1] that
pβ(r) always occurs as the r-local index of a cyclotomic algebra of the form (L(ζq)/L, α) where
q is either 4 or a prime not dividing m and α takes values in W (L(ζq))p, with the possibility of
q = 4 occurring only in the case when ps = 2. By inflating the factor set α to F (ζq) (which will
be equal to F when ps = 2), we have that pβ(r) = mr(A), where

(8)
A = (F (ζq)/K,α) (we also write α for the inflation),
q is an odd prime not dividing m, and
α takes values in 〈ζp4〉 if ps = 2 and in 〈ζps〉 otherwise.

So it suffices to find a formula for the maximum r-local index of a Schur algebra over K of this
form.

Write A =
⊕

g∈Gq
F (ζq)ug, with u−1

g xug = g(x) and uguh = αg,hugh, for each x ∈ F (ζq) and
g, h ∈ Gq. After a diagonal change of basis one may assume that if g = cs0

0 c
s1
1 . . . csn

n ρ
sρσsσ with

0 ≤ si < qi = |ci|, 0 ≤ sρ < |ρ| and 0 ≤ sσ < qσ = |σC| then ug = us0
c0u

s1
c1 . . . u

sn
cn
u

sρ
ρ usσ

σ .
It is well known (see [Yam] and [Jan, Theorem 1]) that

(9) mr(A) = |ξ|, where ξ = ξα =
(
αθ,φq

αφq ,θ

)rvr(e)

u
rvr(e)(rf−1)
θ .

This can be slightly simplified as follows. If r|e then 〈θ〉 has an element θk of order r. Since θ
fixes every root of unity of order coprime with r, necessarily r2 divides m and the fixed field of
θk in L is Q(ζm/r). Then K ⊆ Q(ζm/r), contradicting the minimality of m. Thus r - e and so

(10) ξ =
αθ,φq

αφq ,θ
urf−1

θ =
αθ,φq

αφq ,θ
γ

rf−1
e

θ = [uθ, uφq ]γ
rf−1

e
θ , where γθ = ue

θ.

With our choice of the {ug : g ∈ Gq}, we have

[uθ, uφq ] = [uθ, uηqu
j′
ρ u

j
σ] = Ψ(θ, ηq)[uθ, u

j′
ρ u

j
σ],

where Ψ = Ψα is the skew pairing associated to α. Therefore,

ξ = ξ0Ψ(θ, ηq) with ξ0 = ξ0,α = [uθ, u
j′
ρ u

j
σ]γ

rf−1
e

θ .

Let (β, γ) be the data associated to the factor set α (relative to the set of generators c1, . . . , cn, ρ, σ).

Lemma 11. Let A = (F (ζq)/K,α) be a cyclotomic algebra satisfying the conditions of (8) and
use the above notation. Let θ = cs0

0 c
s1
1 · · · csn

n ρ
2sn+1, with 0 ≤ si < qi for 0 ≤ i ≤ n, and

0 ≤ sn+1 ≤ |ρ2|.

(1) If G/C is cyclic then ξpν(r)

0 = 1.
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(2) Assume that G/C is non cyclic and let µi = β
1−c
2

iρ β−1
iσ . Then µi = ±1 and ξpν(r)

0 =∏n
i=0 µ

2ν(r)(j+j′)si

i .

Proof. For the sake of regularity we write cn+1 = ρ2. Since e = |θ|, we have that qi divides esi

for each i. Furthermore, vp(e) is the maximum of the vp

(
qi

gcd(qi,si)

)
for i = 1, . . . , n. Then

vp(e)− vp(rf − 1) = max
{
vp

(
qi

gcd(qi, si)(rf − 1)

)
, i = 1, . . . , n

}
.

Hence

(11)
ν(r) = max{0, vp(e) + a− vp(rf − 1)}

= min
{
x ≥ 0 : pa divides px · si(r

f−1)
qi

, for each i = 1, . . . , n
}
.

Now we compute γθ in terms of the previous expression of θ. Set v = u
sn+1
cn+1 and y =

us0
c0u

s1
c1 · · ·u

sn
cn

. Then

uθ = yv = γvy, with γ = Ψ(csn+1

n+1 , c
s0
0 c

s1
1 . . . , csn

n ).

Thus γe = Ψ(cesn+1

n+1 , cs0
0 c

s1
1 . . . , csn

n ) = 1. Using that [y, γ] = 1, one easily proves by induction on
m that

(yv)m = γ(
m
2 )ymvm.

Hence

(yv)e = γ(
e
2)yeve = γ(

e
2)yeuesn+1

cn+1
= γ(

e
2)yeγ

esn+1
qn+1

ρ ,

and γ(
e
2) = ±1. (If p or e is odd then necessarily γ(

e
2) = 1.) Now an easy induction argument

shows

γθ = µγ
es0
q0

0 γ
es1
q1

1 · · · γ
esn
qn

n γ

esn+1
qn+1

ρ , for some µ = ±1.

Note that ν(r) + vp(rf − 1) − vp(e) ≥ a ≥ 1, by (11). Then µpν(r) rf−1
e = γ

pν(r) rf−1
e

ρ = 1,
because both µ and γρ are ±1, and they are 1 if p is odd (see (C3.e) and (C3.f)). Thus

(12) γ
pν(r) rf−1

e
θ =

n∏
i=0

γ
pν(r) (rf−1)si

qi
i

(1). Assume that G/C is cyclic. We have that ρ = 1 and vp(c − 1) = a. Note that the β’s
and γ’s are pb-th roots of unity by (8).

Let Y be an integer satisfying Y c−1
pa ≡ 1 mod pb. Since φq = σjηq with ηq ∈ Cq, we have

rf ≡ cj mod pa+b and so Y rf−1
pa = Y c−1

pa
cj−1
c−1 ≡ V (j) mod pb. Then β

Y rf−1
pa

iσ = β
V (j)
iσ .

Using that pa divides pν(r) si(r
f−1)
qi

(see (11)) and Y (c−1)
pa ≡ 1 mod pb we obtain

γ
pν(r) si(r

f−1)

qi
i = (γc−1

i )Y
pν(r)si(r

f−1)

paqi .
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Combining this with (C3.b) we have

(13)
[usi

ci
, uj

σ]p
ν(r)

γ
pν(r) si(r

f−1)

qi
i = [uci , uσ]siV (j)pν(r)

(γc−1
i )Y

pν(r)si(r
f−1)

paqi

= [uci , uσ]siV (j)pν(r)
β

Y
pν(r)si(r

f−1)

pa

iσ

= ([uci , uσ]βiσ)pν(r)siV (j) = 1,

because βiσ = [uσ, uci ] = [uci , uσ]−1. Using (12) and (13) we have

ξpν(r)

0 = [uθ, u
j
σ]p

ν(r)
γ

pν(r) rf−1
e

θ =
n∏

i=0

[usi
ci
, uj

σ]p
ν(r)

γ
pν(r) si(r

f−1)

qi
i = 1

and the lemma is proved in this case.
(2). Assume now that G/C is non-cyclic. Then pa = 2 and if d = v2(c − 1) then d ≥ 2 and

b = s + d. The data for α lie in 〈ζ2s+1〉 ⊆ 〈ζ2b〉 ⊆ 〈ζ21+s+d〉 = W (F )2. (C2.b) implies µi = ±1
and using (C3.b) and (C3.f) one has γc+1

i = βqi
iσβ

−qi
iρ . Let X and Y be integers satisfying

X c−1
2d ≡ Y c+1

2 ≡ 1 mod 21+s+d and set Z = Y rf−1
2 .

Recall that 2a = 2 divides 2ν(r) si(r
f−1)
qi

, by (11). Therefore,

(14) γ
2ν(r) si(r

f−1)

qi
i =

(
γc+1

i

)Y 2ν(r)si(r
f−1)

2qi =
(
βsi

iσβ
−si
iρ

)2ν(r)Z
.

Let j′′ ≡ j′ mod 2 with j′′ ∈ {0, 1}. Then Υ(ρj′′) = Υ(ρj′) and N j′
ρ (w) = wj′′ . Therefore,

(15)
[uθ, u

j′
ρ u

j
σ] = [uθ, u

j′
ρ ]uj′

ρ [uθ, u
j
σ]u−j′

ρ =
∏n

i=0(β
−si
iρ )j′′(β−si

iσ )V (j)(−1)j′′

=
∏n

i=0(β
−si
iρ )j′′(β−si

iσ )X c−1

2d V (j)(−1)j′′

=
∏n

i=0(β
−si
iρ )j′′(β−si

iσ )X cj−1

2d (−1)j′′

.

Using (12), (14) and (15) we obtain

(16) ξ2
ν(r)

0 = [uθ, u
j′
ρ u

j
σ]2

ν(r)
γ

2ν(r) rf−1
e

θ =

(
n∏

i=0

β−si
iρ

)2ν(r)(Z+j′′)( n∏
i=0

βsi
iσ

)2ν(r)
(
Z−X cj−1

2d (−1)j′′
)
.

We claim that Z+j′′ ≡ 0 mod 2d−1. On the one hand Y ≡ 1 mod 2d−1. On the other hand,
φq = ρj′σjηq, with ηq ∈ Cq and so rf ≡ (−1)j′cj mod 21+s+d. Hence rf ≡ (−1)j′ = (−1)j′′

mod 2d and therefore Z + j′′ = Y rf−1
2 + j′′ ≡ (−1)j′′−1

2 + j′′ mod 2d−1. Considering the two

possible values of j′′ ∈ {0, 1} we have (−1)j′′−1
2 + j′′ = 0 and the claim follows.

From d = v2(c − 1) one has c ≡ 1 + 2d−1 mod 2d and hence Y ≡ 1 + 2d−1 mod 2d and
rf ≡ (−1)j′cj ≡ (−1)j′(1 + j2d) mod 21+s+d. Then

Z+j′′

2d−1 = Y (rf−1)+2j′′

2d ≡ Y ((−1)j′′ (1+j2d)−1)+2j′′

2d = Y (
(−1)j

′′
−1

2
+(−1)j′′j2d−1)+j′′

2d−1

≡ (1+2d−1)(−j′′+(−1)j′′j2d−1)+j′′

2d−1 = −j′′−j′′2d−1+(−1)j′′j2d−1+(−1)j′′j22(d−1)+j′′

2d−1

≡ −j′′ + (−1)j′′j ≡ j + j′′ ≡ j + j′ mod 2.

Using this, the equality β
1−c
2

iρ = µiβiσ and the fact that µi = ±1 we obtain

β
−(Z+j′′)
iρ = β

−X c−1

2d (Z+j′′)

iρ = β
−X c−1

2
Z+j′′

2d−1

iρ = µ
X Z+j′′

2d−1

i β
X Z+j′′

2d−1

iσ = µj+j′

i β
X Z+j′′

2d−1

iσ .
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Combining this with (16) we have

ξ2
ν(r)

0 =
∏n

i=0 µ
2ν(r)(j+j′)si

i

∏n
i=0(β

si
iσ)2

ν(r)
[
Z−X cj−1

2d (−1)j′′+X(Z+j′′)
2d−1

]

=
∏n

i=0 µ
2ν(r)(j+j′)si

i

∏n
i=0(β

si
iσ)

2ν(r)

[
2dZ+X(cj−1)(−1)j

′′
+2X(Z+j′′)

2d

]
.

To finish the proof it is enough to show that the exponent of each βiσ in the previous expression
is a multiple of 21+s. Indeed, 2d ≡ X(c− 1) mod 21+s+d and so

2dZ +X(cj − 1)(−1)j′′ + 2X(Z + j′′) ≡ ZX(c− 1)−X(cj − 1)(−1)j′′ + 2X(Z + j′′) =
X(Y rf−1

2 (c+ 1) + (cj − 1)(−1)j′′ + 2j′′) = X((rf − 1)Y c+1
2 − cj(−1)j′′ + (−1)j′′ + 2j′′) ≡

X(rf − 1− cj(−1)j′′ + 1) ≡ 0 mod 21+s+d

as required. This finishes the proof of the lemma in Case 2. �

We need the following Proposition from [Jan].

Proposition 12. For every odd prime q 6= r not dividing m let d(q) = min{a, vp(q− 1)}. Then

(1) |ckq

0 C/C
pd(q) | ≤ |θf

qC/Cpa |, and
(2) the equality holds if q ≡ 1 mod pa and r is not congruent with a p-th power modulo q.

There are infinitely many primes q satisfying these conditions.

Proof. See Proposition 4.1 and Lemma 4.2 of [Jan]. �

We are ready to prove the main result of the paper.

Theorem 13. Let K be an abelian number field, p a prime and r an odd prime. If either ζp 6∈ K
or r 6≡ 1 mod p then βp(r) = 0. Assume otherwise that ζp ∈ K and r ≡ 1 mod p, and use
Notation 10 including the decomposition φ = ηρj′σj with η ∈ B.

(1) Assume that r does not divide m.
(a) If G/C is non-cyclic and j 6≡ j′ mod 2 then βp(r) = 1.
(b) Otherwise βp(r) = max{ν(r), vp(|ηBpd(r) |)}, where d(r) = min{a, vp(r − 1)}.

(2) Assume that r divides m and let q0 be an odd prime not dividing m such that q0 ≡ 1
mod pa and r is not a p-th power modulo q0. Let θ = θq0 be a generator of the inertia
group of Gq0 at r.
(a) If G/C is non-cyclic, j 6≡ j′ mod 2 and θ is not a square in D then βp(r) = 1.
(b) Otherwise βp(r) = max{ν(r), h, vp(|θfCpa |)}, where h = maxΨ{vp(|Ψ(θ, η)|)} as Ψ

runs over all skew pairings of B over 〈ζpa〉.

Proof. For simplicity we write β(r) = βp(r). We already explained why if either ζp 6∈ K or r 6≡ 1
mod p then βp(r) = 0. So in the remainder of the proof we assume that ζp ∈ K and r ≡ 1
mod p, and so K, p, and r satisfy the condition mentioned at the beginning of the section. It
was also pointed out earlier in this section that pβ(r) is the r-local index of a crossed product
algebra A of the form A = (F (ζq)/K,α) with q and α taking values in 〈ζps〉 or in 〈ζ4〉. Moreover,
since pν(r) is the r-local index of the cyclic Schur algebra (K(ζr)/K, c0, ζpa) [Jan], we always have
ν(r) ≤ β(r).
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In case 1 one may assume that q = r, because (F (ζq)/K,α) has r-local index 1 for every
q 6= r. Since Gal(F (ζr)/F ) is the inertia group at r in Gr, in this case one may assume that
θ = θr = c0. On the contrary, in case 2, q 6= r, and θ = cs1

1 . . . csn
n ρ

2sn+1 , for some s1, . . . , sn+1.
In cases (1.a) and (2.a), G/C is non-cyclic and hence pa = 2. Then β(r) ≤ 1, by the Benard-

Schacher Theorem, and hence if ν(r) = 1 then β(r) = 1. So assume that ν(r) = 0. Furthermore,
in case (2.a), si is odd for some i ≤ n, because θ 6∈ D2. Now we can use Corollary 5 to produce
a cyclotomic algebra A′ = (F (ζq)/K,α′) so that ξα = −ξα′ . Indeed, there is such an algebra
such that all the data associated to α are equal to the data for A, except for β0σ, in case (1.a),
and βkσ, case (2.a). Using Lemma 11 and the assumptions ν(r) = 0 and j 6≡ j′ mod 2, one has
ξ0,α = −ξ0,α′ and Ψα = Ψα′ . Thus ξα = −ξα′ , as claimed. This shows that β(r) = 1 in cases
(1.a) and (2.a).

In case (1.b), ξ = ξ0Ψ(c0, η). By Lemma 11, ξ0 has order dividing pν(r) in this case and, by
Lemma 9, max{|Ψ(θ, η)| : Ψ ∈ S} = |ηBpd(r) |, where S is the set of skew pairings of Br with
values in 〈pa〉. Using this and ν(r) ≤ β(r) one deduces that β(r) = max{ν(r), vp(|ηBpd(r) |)}.

The formula for case (2.b) is obtained in a similar way using the equality ξ = ξ0Ψ(θ, η)Ψ(θ, cs0
0 )

and Lemmas 8 and 9. �

4. Examples

As we indicated in the introduction, the authors’ main motivation for Theorem 13 is the study
the gap between the Schur group of an abelian number field K and its subgroup generated by
classes containing cyclic cyclotomic algebras over K, a problem which reduces to studying the
gaps between the integers νp(r) and βp(r) for all finite primes p and odd primes r. (For details,
see [HOR].) What Theorem 13 really allows one to do is to compute βp(r) in terms of the
number of p-th power roots of unity in K and the embedding of Gal(F/K) in Gal(F/Q). In this
section, we will provide some examples of abelian number fields K to illustrate the computations
involved in the various cases of Theorem 13. We use the notation of the previous sections in all
of these examples.

Example 14. Let K = Q(ζm), with m minimal. Let p be a prime for which ζp ∈ K, and let
r be an odd prime which is ≡ 1 mod p. Let a be the maximal integer for which ζpa ∈ K, and
let s = vp(m). If we are not in the case when b = s, then p = 2, s = 0, and K(ζp2a+s) = K(ζ4),
so we will be in the case where b = s + 1 = 1. Since K = L, we have that F = K(ζpa+b), so C
is trivial. Also, G = Gal(K(ζpa+b)/K) will be cyclic for either case of b. Therefore, either case
(1b) or (2b) of Theorem 13 applies, and it is immediate from C = B = 1 that βp(r) = νp(r) for
each choice of p and r.

Example 15. Let p and r be odd primes with vp(r−1) = 2. LetK be the extension of Q(ζp) with
index p in L = Q(ζpr), and consider βp(r). We have a = s = b = 1, and F = Q(ζp2r). We have
that G = 〈θ〉 ×C is elementary abelian of order p2, so we are in case (2b) of Theorem 13. Since
Gal(F/Q) has an element ψ such that ψp generates C, letting q0 and θ be as in Theorem 13(2),
we find that vp(|ψG|) = 1. It follows that pf = p, so νp(r) = 0 and vp(|θfCpa |) = 1. Since φ
generates C, we have that φ = η and so h = 1 by Lemma 9. So βp(r) = 1 in this case.
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Example 16. Let q be a prime greater than 5, and let K = Q(ζq,
√

2). Let p = 2, and let r be
any prime for which r2 ≡ 1 mod q and r ≡ 5 mod 26. In computing β2(r), one sees that a = 1
and L = Q(ζ8q), so s = 3. Since Gal(K(ζ25)/K) is not cyclic, we set b = 5+v2([Q(

√
2) : Q]) = 6,

so F = Q(ζ64q). Since Q(ζq) ⊂ K, we have C = Gal(F/K(ζ64)) = 1. For our generators of
Gal(F/K), we may choose ρ, σ such that ρ(ζq) = ζq, ρ(ζ64) = ζ−1

64 , σ(ζq) = ζq, and σ(ζ64) = ζ9
64.

By our choice of r, we have that ψr 6∈ G, but 52 ≡ 93 mod 64 implies that ψ2
r = σ3. This means

that we are in case (1a) of Theorem 13 with νp(r) = 0 and j 6≡ j′ mod 2, so β2(r) = 1.

Example 17. Let r be a prime for which r ≡ 5 mod 64. Let K ′ be the unique subfield of index
2 in Q(ζr), and let K = K ′(

√
2). Consider β2(r) for the field K. As in the previous example, we

have L = Q(ζ8r), F = Q(ζ64r) and we choose ρ, σ ∈ G satisfying ρ(ζ64) = ζ−1
64 and σ(ζ64) = ζ9

64.
Using Proposition 12, choose an odd prime q0 for which r in not a square modulo q0. If ψr is the
Frobenius automorphism in Gal(F (ζq0)/Q), then ψr 6∈ Gq0 , and φr = ψ2

r sends ζ64 to ζ52

64 = ζ93

64 .
Therefore, φr = σ3ηq0 , where ηq0 ∈ Cq0 fixes ζ64r. Since ζr 6∈ K, θ = θq0 generates a direct
factor of Gq0 and so it cannot be a square in D. It follows that the conditions of case (2a) of
Theorem 13 hold, and so we can conclude β2(r) = 1.

Example 18. Let p be an odd prime and let q and r be primes for which vp(q−1) = vp(r−1) = 2,
vq(rp − 1) = 0, and vq(rp2 − 1) = 1. The existence of such primes q and r for each odd prime
p is a consequence of Dirichlet’s Theorem on primes in arithmetic progression. Indeed, given p

and q primes with vp(q − 1) = 2, there is an integer k, coprime to q such that the order of k
modulo q2 is p2. Choose a prime r for which r ≡ k + q mod q2 and r ≡ 1 + p2 mod p3. Then
p, q and r satisfy the given conditions.

LetK be the compositum ofK ′ andK ′′, the unique subextensions of index p in Q(ζp2q)/Q(ζp2)
and Q(ζp2r)/Q(ζp2) respectively. Then m = p2rq, a = 2 and L = Q(ζm) = K(ζq) ⊗K K(ζr).
Therefore, F = Q(ζp4qr), and G = Gal(F/K(ζqr))×Gal(F/K(ζp4q))×Gal(F/K(ζp4r)). We may
choose σ so that 〈σ〉 = Gal(F/K(ζqr)) ∼= G/C has order p2. The inertia subgroup of r in G is
Gal(F/K(ζp4q)), which is generated by an element θ of order p.

Since K = K ′ ⊗Q(ζp2 ) K
′′ and K ′′/Q(ζp2) is totally ramified at r, we have that K ′

r is the

maximal unramified extension of Kr/Qr. It follows from vq(rp2 − 1) = 1 and vq(rp− 1) = 0 that
[Qr(ζq) : Qr] = p2, and so [K ′

r : Qr] = p = f(K/Q, r). Therefore vp(|W (Kr)|) = vp(|W (Qr)|) +
f(r) = vp(r − 1) + 1 = 3, and so we have ν(r) = max{0, a + vp(|θ|) − vp(|W (Kr)|)} = 0. Since
|C| = p and θ has order p, we also see that θf(r)Cp2

is trivial, so vp(|θf(r)Cp2 |) = 0.
Let ψr be the Frobenius automorphism of r in Gal(F/Q). Then ψp

r = σpη, where η ∈ B

generates Gal(F/K(ζp4r)). Since 〈θ〉 ∩ 〈η〉 = 1, it follows from Lemma 9 that h = vp(|θ|) = 1.
So case (2b) of Theorem 13 applies to show that βp(r) = h = 1.
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