THE SCHUR GROUP OF AN ABELIAN NUMBER FIELD

ALLEN HERMAN, GABRIELA OLTEANU, AND ANGEL DEL RiO

ABSTRACT. We characterize the maximum 7-local index of a Schur algebra over an abelian
number field K in terms of global information determined by the field K, for r an arbitrary
rational prime. This completes and unifies previous results of Janusz in [Jan] and Pendergrass
in [Penl].

1. INTRODUCTION AND PRELIMINARIES

Let K be a field. A Schur algebra over K is a central simple K-algebra which is generated
over K by a finite group of units. The Schur group of K is the subgroup S(K) of the Brauer
group of K formed by classes containing a Schur algebra. By the Brauer-Witt Theorem (see e.g.
[Yam]), each class in S(K') can be represented by a cyclotomic algebra, i.e. a crossed product
of the form (L/K,«) in which L/K is a cyclotomic extension and the factor set o takes values
in the group of roots of unity W (L) of L.

In the case when K is an abelian number field; i.e. K is contained in a finite cyclotomic
extension of QQ, Benard-Schacher theory [BS] gives a partial characterization of the elements of
S(K). According to this theory, if n is the Schur index of a Schur algebra over K, then W (K)
contains an element of order n. This is known as the Benard-Schacher Theorem. Furthermore,
if £ (in lowest terms) is the local invariant of A at a prime R of K that lies over a rational
prime 7, then each of the fractions = with 1 < ¢ < n and ¢ coprime to n will occur equally often
among the local invariants corresponding to the primes of K lying above r. In particular, these
local invariants all have the same denominator n for all the primes of K lying above r, which we
call the r-local index m,(A) of A. Only finitely many of the m,(A) are greater than 1, and the
Schur index of A is the least common multiple of the m,(A) as r runs over all rational primes.

The goal of this article is to characterize the maximum r-local index of a Schur algebra over
an abelian number field K in terms of global information determined by K. The existence
of this maximum is a consequence of the Benard-Schacher Theorem. Since S(K) is a torsion
abelian group, it is enough to compute the maximum of the r-local indices of Schur algebras
over K with index a power of p for every prime p dividing the order of W (K). We will refer
to this number as p (). In [Jan], Janusz gave a formula for pP (") when either p is odd or K
contains a primitive 4-th root of unity. The remaining cases were considered by Pendergrass in
[Penl]. However, some of the calculations involving factor sets in [Penl] are not correct, and as
a consequence the formulas for 2%2(") for odd primes r that appear there are inaccurate. This

article was motivated in part to find a correct formula for p®»(") in this remaining case, and also
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because of the need to apply the formula in an upcoming work of the authors in [HOR|, where
the gap between the Schur subgroup of an abelian number field and its subgroup generated by
classes containing cyclic cyclotomic algebras is studied. Since the local index at co will be 2
when K is real and will be 1 otherwise, the only remaining case is that of r = 2. In this case, p
must be equal to 2 and we must have {4 € K. The characterization of fields K for which S(K3)
is of order 2 is given in [Penl, Corollary 3.3].

The main result of the paper (Theorem 13) characterizes p? () in terms of the position of K
relative to an overlying cyclotomic extension F' that is determined by K and p. The formulas for
P (") are stated in terms of elements of certain Galois groups in this setting. The main difference
between our approach and that of Janusz and Pendergrass is that the field F' that we use is
slightly larger, which allows us to present some of the somewhat artificial-looking calculations
in [Jan] in a more conceptual fashion. Another highlight of our approach is the treatment of
calculations involving factor sets. In Section 2 we generalize a result from [AS] which describes
the factor sets for a given action of an abelian group G on another abelian group W in terms of
some data. In particular, we give necessary and sufficient conditions that the data must satisfy
in order to be induced by a factor set. Because of the applications we have in mind, extra

attention is paid to the case when W is a cyclic p-group.

2. FACTOR SET CALCULATIONS

In this section W and G are two abelian groups and Y : G — Aut(W) is a group homomor-

phism. A group epimorphism 7 : G — G with kernel W is said to induce Y if, given u, € G

-1
g

of m (i.e. m(ug) = g for each g € G) then the map o : G x G — W defined by ugup = a4 pugh

such that 7(ug) = g, one has uqwu, " = Y(g)(w) for each w € W. If g — uy is a crossed section
is a factor set (or 2-cocycle) a € Z*(G,W). We always assume that the crossed sections are
normalized, i.e. u; = 1 and hence oy 1 = a1 4 = 1. Since a different choice of crossed section
for m would be a map g — wyuy where w: G — W, m determines a unique cohomology class in
H?(G, W), namely the one represented by a.

Given a list g1, ..., g, of generating elements of G, a group epimorphism 7 : G — G inducing
T, and a crossed section g — u, of m, we associate the elements (3;; and ~; of W, for 4,5 < n,
by the equalities:

Ug;Ug, = Pijugug;, and

(4) (@)
. t1 tz—l
Yithgy - Ug;qs

(1)
i -

(4)

where the integers ¢; and t; for 1 <i¢<nand 0 <j <1 are determined by

e ) '
(2) q; = order of g; modulo (g1,...,9i-1), gl.ql =g ---g;,, and 0< tg-z) < gj.
If a is the factor set associated to 7 and the crossed section g — ug4, then we say that « induces
the data (3;5,7:;). The following proposition gives necessary and sufficient conditions for a list
(Bij, i) of elements of W to be induced by a factor set.
The order of an element g of a group is denoted by |g|.
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Proposition 1. Let W and G = (g1, ...,gn) be abelian groups and let Y : G — Aut(W) be an

action of G on W. For every 1 <1i,j <n, let ¢; and tg-i)

everyw € W and 1 <i <mn, let

be the integers determined by (2). For

T =T(g:), Ni(w)=wYi(w)Y2w) - T w), and N; =N}

)

For every 1 < 4,5 < n, let B;; and ~; be elements of W. Then the following conditions are
equivalent:
(1) There is a factor set a € Z*(G, W) inducing the data (Bij, i)
(2) The following equalities hold for every 1 < 1i,j,k < n:
(C1) Bii = BijBji = 1.
(C2) BijBikBri = Tu(Bi) Y (B]kz) (51m) _ |
(©8) M@y = L O0NE (B (v (8T8 0 TR (B

Proof. (1) implies (2). Assume that there is a factor set o € Z?(G, W) inducing the data (3:;,v:)-
Then there is a surjective homomorphism 7 : G — G and a crossed section g — u, of m such
that the f;; and ~; satisfy (1). Condition (C1) is clear. Conjugating by ug, in ug,uy, = Bijug,ug,
yields

Bir T '(ﬁik)ﬁijuglugj = Bk Y (Bir)ug; g, = Bk, Biktig, = Ug, Uy, tguy" =
“gkﬁuugz“gg gk Tk(ﬁw)ﬁzkugzﬁjkugg = Yr(Bi;)Bir L (ﬂgk)ugzugj
Therefore, we have 3;1,Y;(Bir)Bi; = Ti(8ij)Bi Yi(B;1) and so (C2) follows from (C1).

To prove (C3), we use the obvious relation (wuy,)" = Nf(w)u! . Conjugating by ug, in
‘ (7,) t< )1
udi = %ugl -+ ug,_, results in
£y t(i) a : 4, 1 ) I
Ni(Bij)viugy -+ ug,y = N; (Bij)ug: = (Bijug,)% = Ug,Ug;Ug, = Ug,Villg, CrrlUg qUgs =

X0 RO o) KO t<z) o
T;5(7i) (Brjug )" ”'(@H)jugi_l) =N (Bgug NS (B ug
0 5 ot TR v NN T O
Ti(vi) Ny (By) T (Ny? (B25))--- T8 X L (N (ﬁ(i—l)j))ugl T Ug; -
Cancelling on both sides produces (C3). This finishes the proof of (1) implies (2).
Before proving (2) implies (1), we show that if 7 : G — G is a group homomorphism with
kernel W inducing T, g — Ug is a crossed section of m and ;; and v; are given by (1), then G

is isomorphic to the group G given by the following presentation: the set of generators of G is

{w,g; :we W,i=1,...,n}, and the relations are
o o o . ~ (z) t(”
(3)  wywn =wiws, Yi(w) = GG ", GG = BiGig;  end G =g G0

for each 1 < 4,5 < n and w,w;,wy € W. Since the relations obtained by replacing w by
w and §; by ug, in equation (3) for each x € W and each 1 < i < n, hold in G, there is a
surjective group homomorphism ¢ : G — G, which associates @ with w, for every w € W,
and g; with ug,, for every ¢ = 1,...,n. Moreover, ¢ restricts to an isomorphism W — W and
\/g\i(W,/g\l,...,/g}_l)] = ¢;. Hence [G : I//[\/'] = q1-qn =[G : W] and so |G| = |G|. We conclude
that ¢ is an isomorphism.
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(2) implies (1). Assume that the (;;’s and ;s satisfy conditions (C1), (C2) and (C3). We
will recursively construct groups Go,Gq,...,G,. Start with Go = W. Assume that G_; =
(W,ug,,...,ug, ,) has been constructed with ug,,...,uy, , satisfying the last three relations
of (3), for 1 < 4,57 < k, and that these relations, together with the relations in W, form
a complete list of relations for G;_;. To define G, we first construct a semidirect product

Hy, = Gi_1 X, (xk), where ¢y acts on Gy_; by
Ck(w) = Tk(w)7 (w € W)v Ck(ugi) = ﬂlkugz

In order to check that this defines an automorphism of G;_; we need to check that cj respects
the defining relations of Gj_1. This follows from the commutativity of G and conditions (C1),
(C2) and (C3) by straightforward calculations which we leave to the reader.

Notice that the defining relations of Hj, are the defining relations of Gj_; and the relations

(k) (k)
. _ t 'y
zpw = Tr(w)xy and zpug, = Bipug, k. Using (C3) one deduces ug, xffu, ' = ug, yrugy - ug, juy!
(k) (k)
. . - t -
for each ¢ < k — 1. This shows that y, = z, ®yug, ---ug,_ belongs to the center of Hy. Let

Gi = Hy/(yx) and ug, = zx(yx). Now it is easy to see that the defining relations of Gy are the
relations of W and the last three relations in (3), for 0 <4,j < k.

It is clear now that the assignment w +— 1 and ug, — g; for each 7 = 1,...,n defines a group
homomorphism 7 : G = G,, — G with kernel W and inducing Y. If o is the factor set associated

to m and the crossed section g — ug, then (3;;,7;) is the list of data induced by «. O

Note that the group generated by the values of the factor set « coincides with the group
generated by the data (/3;5,7;). This observation will be used in the next section.

In the case G = (g1) X --- X (gn) we obtain the following corollary that one should compare
with Theorem 1.3 of [AS].

Corollary 2. If G = (g1) X -+ X (gn) then a list D = (8;,7i)1<i,j<n Of elements of W is the
list of data associated to a factor set in Z*(G, W) if and only if the elements of D satisfy (C1),
(C2) and Ni(Bij)vi = Yj(vi), for every 1 <i,j <n.

In the remainder of this section we assume that W = ({) is a cyclic p-group, for p a prime
integer. Let p® and p®® denote the orders of W& = {x € W : T(g)(z) = « for each g € G} and
W respectively. We assume that 0 < a,b. We also set

C=Ker(Y) and D={geG:T(g)()=Cor T(g)() = C}.

Note that D is subgroup of G containing C, G/D is cyclic, and [D : C] < 2. Furthermore,
the assumption a > 0 implies that if C' # D then p® = 2.

Lemma 3. There exists a p € D and a subgroup B of C such that D = (p) x B and C = (p?) x B.

Proof. The lemma is obvious if C' = D (just take p = 1). So assume that C' # D and temporarily
take p to be any element of D\ C'. Since [D : C] = 2, one may assume without loss of generality
that |p| is a power of 2. Write C' = Cy x Cy, where Cy and Cy denote the 2-primary and

2'-primary parts of C, and choose a decomposition Co = (¢1) X -+ X {(¢,,) of Cy. By reordering
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. 2 .
the ¢;’s if needed, one may assume that p? = c{* ... cZ’“ckifl“ ...c2% with aq,...,a; odd. Then
replacing p by pe, 5t .. ¢, % one may assume that p* = cf'...¢*, with a1, ..., a5 odd. Let

H = {p,c1,...,c). Then |p|/2 = |p?| = exp(H N C), the exponent of H N C, and so p is an
element of maximal order in H. This implies that H = (p) x H; for some H; < H. Moreover,
if h € Hy \ C then 1 # plPl/2 = plel/2 ¢ (p) N Hy, a contradiction. This shows that H; C C.
Thus Cy = (H N Cy) x (cpr1) X -+ x (cn) = (p?) x Hy X {cj41) X -+ x {cp). Then p and
B = Hy X (cp41) X -+ X {¢n) x Co satisfy the required conditions. O

By Lemma 3, there is a decomposition D = B x (p) with C = B x (p?), which will be fixed
for the remainder of this section. Moreover, if C = D then we assume p = 1. Since G/D is
cyclic, G/C = (pC) x (oC) for some o € G. It is easy to see that o can be selected so that if
D = G then 0 =1, and o(¢) = (¢ for some integer c satisfying

a if G/C is cyclic and G # D,
(4) vp(c?” —1)=a+0b, and vp(c—1) =4 a+b if G/C is cyclic and G = D, and
d>2 for some integer d, if G/C is not cyclic,

where ¢, = |0C| and the map v, : Q — Z is the classical p-adic valuation. In particular, if G/C

is non-cyclic (equivalently C' # D # G) then p® =2, b > 2, p(¢) = (! and 0((2%1) =2
For every positive integer ¢t we set

-1

c—1"

Now we choose a decomposition B = (¢1) X - - - X {¢,) and adapt the notation of Proposition 1

Vit)=14c+c 4+t =

for a group epimorphism f : G — G with kernel W inducing Y and elements u, , . . . , U, , U, Uy €
G with f(ue,) = ¢, f(up) = p and f(uy,) = o, by setting

ﬁij = [ucj-vuciL ﬁip = ﬁp_zl = [upu uci]a ﬂicr = ﬁ;l'l = [quuci]a and ﬁap = p_al = [/897/80']'

We also set

()

Qi:|Ci|, qu\p], and a%:c’il,

where 0 < t; < ¢; and 0 < t, < [p?.

tn 2t
e pte,

With a slightly different notation than in Proposition 1, we have, for each 1 <1¢ < n, ty) =0
for each 0 < j < 1, tgp) =0, tga) =t;, and t,(oo) = 2t,. Furthermore, q, = 1 if C' = D and g, is
even if C'# D. Continuing with the adaptation of the notation of Proposition 1 we set

t1 —tn

2t,
Cn .

— % — 9 — -
Yi =ud, v, =y, and v, = ulu . ug Mup

We refer to the list {3, Bio, Bips Bops Vi Vps Vo = 0 < i < j < n}, which we abbreviate as
(8,7), as the data associated to the group epimorphism f : G — G and choice of crossed section
Ueys - -+ Uy, Ugy Up, OF as the data induced by the corresponding factor set in Z2(G,W).

Furthermore, for every w € W, 1 <+i <n and ¢t > 0 one has

wh, if p=1;
Ni(w) =w!, Ni(w)=w"® and N;(w) =4 1, ifp#1andtiseven;
w, if p# 1 and tis odd.
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In particular, for every w € W one has
Ni(w) = w%, Ny(w)=w"0)  and Ny(w) = 1.
Rewriting Proposition 1 for this case we obtain the following.

Corollary 4. Let W be a finite cyclic p-group and let G be an abelian group acting on W with
G={c1,...,cn,0,p), B={(c1)x---x{cp), D= Bx{p) and C = Bx (p*) as above. Let g;,q,,qo
and the t;’s be given by (5). Let Bop,Vp, Ve € W and for every 1 < i,j < n let Bij, Bic, Bip and

v; be elements of W. Then the following conditions are equivalent:

(1) The given collection (3,7) = {Bij, Vi Bicr Yo Vps Bop} 15 the list of data induced by some
factor set in Z*(G,W).

(2) The following equalities hold for every 1 < i,j < n:
(C1) Bii = BijBji = 1.
(C2) (a) Bij € WC.

(C3) () B% =1.

)
)
) o1,
(c) B, 1) =gl gt
)
)
)

£) If p# 1 then Blin? = 1, By 772 = B11 ... Bl and ~, € WC.

Proof. By completing the data with §,; = ﬂi:rl, Bpi = ﬁi;l and fys = B, = 1 we have that (C1)
is a rewriting of condition (C1) from Proposition 1.

(C2) is the rewriting of condition (C2) from Proposition 1 because this condition vanishes
when 1 < 4,7,k < n and when two of the elements ¢, j, k are equal. Furthermore, permuting
i, 7,k in (C2) yields equivalent conditions. So we only have to consider three cases: substituting
i=1j=j,andk=0;1=14,7=7j,and k =p; and i =14, j = p, and k = 0. In the first
two cases one obtains o(3;;) = p(Bi;) = Bij, or equivalently §;; € W&, For p =1 the last case
vanishes, and for p # 1 (C2) yields 52, = ﬁilp_c.

Rewriting (C3) from Proposition 1 we obtain: (a) for i =14, j = j; (b) for i = ¢ and j = o;
(c) for i = o and j =4; and (d) for i = o and j = 0.

We consider separately the cases p = 1 and p # 1 for the remaining cases for rewriting (C3).
Assume first that p = 1. When i is replaced by p and j replaced by i (respectively, by o)
we obtain 3;, = 1 (respectively 35, = 1). On the other hand the requirement of only using
normalized crossed sections implies v, = 1 in this case. When j = p the conditions obtained are
trivial.

Now assume that p # 1. For ¢ = ¢ and j = p one obtains Bg;'yf = 1. For ¢+ = p and
J = i one obtains a trivial condition because N,(z) = 1. For ¢ = 0 and j = p, we obtain
ﬁ(‘,/p(q")yg = ﬁi;...ﬁf{;}. For i = p and j = o one has o(y,) = 7,, and for i = p and j = p one
obtains p(7,) = 7,. The last two equalities are equivalent to v, € we&. g
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Corollary 5. With the notation of Corollary 4, assume that G/C is non-cyclic and qi and ty,
are even for some k < n. Let (8,7) be the list of data induced by a factor set in Z*(G,W).
Then the list obtained by replacing Brs by —Ors and keeping the remaining data fixed is also
induced by a factor set in Z*(G,W).

Proof. 1t is enough to show that [y, appears in all the conditions of Corollary 4 with an even
exponent. Indeed, it only appears in (C2.b) with exponent 2; in (C3.b) with exponent gi; in
(C3.c) with exponent —V (¢,); and in (C3.d) and (C3.f) with exponent ¢;. By the assumption
it only remains to show that V(g,) is even. Indeed, v2(V(¢s)) = va(c? — 1) —wva(c — 1) =
1+b—wvy(c—1)>1because ¢ Z 1 mod 21+ O

The data (3, ) induced by a factor set are not cohomologically invariant because they depend
on the selection of 7 and of the u,’s, us and u,. However, at least the (3;; are cohomologically
invariant. For every a € H?(G, W) we associate a matrix 3, = (Bij)i<i,j<n of elements of we&
as follows: First select a group epimorphism 7 : G — G realizing a and u,, ..., u., € G such
that m(uc,) = ¢;, and then set i = [uc;, uc,]. The definition of 3, does not depend on the choice

of ™ and the u,,’s because if wy,wy € W and uy,us € G then [wyuy, wous] = [ug,us)].

Proposition 6. Let 3 = (8ij)i<ij<n be a matriz of elements of WS and for every 1 <i,5<n
let aj; = 0 and a;; = min(a, vy(qi), vp(qy)), if i # 5.

Then there is an o € H*(G, W) such that 3 = B, if and only if the following conditions hold
for every 1 <i,j <n:

(6) BijBji = ﬂfjaij =1

Proof. Assume first that 3 = 3, for some o € Z2(G, W). Then (6) is a consequence of conditions
(C1), (C2.a) and (C3.a) of Corollary 4.

Conversely, assume that 3 satisfies (6). The idea of the proof is that one can enlarge 3 to a list
of data (,7) that satisfies conditions (C1)-(C3) of Corollary 4. Hence the desired conclusion
follows from the corollary.

Condition (C1) follows automatically from (6). If i, j < n then g;; € WY follows from the
fact that a > a;; and so (6) implies that ﬁf’; = 1. Hence (C2.a) holds. Also (C3.a) holds
automatically from (6) because p®J divides g;. Hence, we have to select the Bi,’s, Bi,’s, Vi’s,
Bops Yo, and 7y, for (C2.b) and (C3.b)—(C3.f) to hold.

Assume first that D = G. In this case we just take B = Bip = Bop = Vi = Yo = 7p = 1 for
every i. Then (C2.b), (C3.b), (C3.d) and (C3.f) hold trivially by our selection. Moreover, in
this case 0 = 1 and so t; = 0 for each ¢ = 1,...,n, hence (C3.c) also holds.

In the remainder of the proof we assume that D # G. First we show how one can assign values
to Byi and 7;, for i < n for (C3.b)—(C3.d) to hold. Let d = vp(c—1) and e = v,(V(g,)) = a+b—d.
(see (4)). Note that d =aif C =D and a=1<2<d <bif C # D (because we are assuming
that D # G). Let X1, X5,Y; and Y5 be integers such that ¢ — 1 = p?Xy, V(g,) = p®Xa, and
X1Yi = Xo¥% = 1 mod p**. By (6), 877 =1 and so gi; € W»"" "7

7. Therefore there are
integers bi]’, for 1 < 4,7 < n such that b; = bij + bij =0 and 52’]' = Cbijp

a+b—a;; .
Y. For every i < n
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set
& - pd—a - q; )
2 =Ya» tibip" %, By = (TP yi = Y1Ys thbjiﬁa and ;= (¥
j=1 Jj=1
Then V(gy)p?%z; = p°X2Yo > tibjipt Ui = > t;bjip®*P=%i mod pt? and therefore

n
Vigs) n_gappt T t;
/Bo'i 7= Czj_l 7 = Hﬂji’
i=1

that is (C3.c) holds. Moreover ¢;p®%z; = p?Ys Z?Zl tjbﬂ]% = p?X1y; = (¢c—1)y; and therefore
Bl = 771 that is (C3.b) holds.

We now compute

n n+1
(1) D tiwi=Yy Y titjbyp™ " =Yy Y t7bip" " +Yy Y titj(biy + bji)p" ™ =0,
i=1 1<i,j<n i=1 1<i<j<n

Then setting 7, = 1, one has

e L8l = [T ¢ ™ = ¢ Shatn =
i=1 i=1
and (C3.d) holds. This finishes the assignments of 3;, and 7; for i < n and of ~,.

If C = D then a quick end is obtained assigning 3;, = 35, = 7, = 1.

So it only remains to assign values to 3;,, 3+, and 7y, under the assumption that C' # D. Set
Bip = ¢~Y1%i In this case p® = 2 and therefore 2pd_aaji = pdaji = (¢ — 1)Yqz; and ¢;Y1z; = 2y;.
Thus ﬁfaﬁfp_l = (" wic(=M7i — 1 hence (C2.b) holds, and ﬁgg’y? = (41429 — 1 hence
the first relation of (C3.f) follows.

Finally, using (7) one has

Biy- By = (Bl Brp) T =1 =17
and the last two relations of (C3.f) hold when (35, =, = 1. O

Let 8 = (fij) be an n x n matrix of elements of W satisfying (6). Then the map ¥ : Bx B —
W& given by
W((cft ... et i) = H ﬂfjiyj
1<i,j<n
is a skew pairing of B over W¢ in the sense of [Jan]; that is, it satisfies the following conditions

for every x,y, z € B:
(1) VY(z,z)=Y(z,y)V(y,z) =1, (V2) Y(z,yz) =V(z,y)¥(z,2).

Conversely, every skew pairing of B over W is given by a matrix § = (Bij = Y(ci,¢5))1<i,j<n

satisfying (6). In particular, every class in H?(G, W) induces a skew pairing ¥ = ¥, of B

-1

g for all z,y € B, for any cocycle « representing the given

over W& given by ¥(z,y) = foe!
cohomology class.

In terms of skew pairings, Proposition 6 takes the following form.
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Corollary 7. If ¥ is a skew pairing of B over W then there is an o € H*(G,W) such that
U =7,.

Corollary 7 was obtained in [Jan, Proposition 2.5] for p® # 2. The remaining cases were
considered in [Penl, Corollary 1.3], where it is stated that for every skew pairing ¥ of C' over
WY there is a factor set a € Z2(G, W) such that ¥(z,y) = am’ya;}, for all x,y € C. However,
this is false if p> # 1 and B has nontrivial elements of order 2. Indeed, if ¥ is the skew pairing of
B over W¢ given by the factor set o then W(z, p?) = 1 for each x € C. To see this we introduce
a new set of generators of G, namely G = {(c1,...,¢n, Cni1, p, o) With ¢, 1 = p?. Then condition
(C3) of Proposition 1, for i = p and j = i reads f(,41); = 1 which is equivalent to ¥(c;, ) =1
for all 1 <1i < n. Using this it is easy to give a counterexample to [Penl, Corollary 1.3].

Before finishing this section we mention two lemmas that will be needed in next section. The

first is elementary and so the proof has been omitted.

Lemma 8. Let S be the set of skew pairings of B with values in WY. If B = B’ x B" and
b1,by € B’ and bs € B” then

max{W(by - b3, bz) : ¥ € S} = max{W(by,be) : ¥ € S} - max{W¥(bs,b2) : ¥ € S}.

Lemma 9. Let B = Bx (g) be an abelian group and let h € B. If k = ged{p®, |g|} and t = |hB¥|

then t is the mazimum possible value of U(h, g) as ¥ runs over all skew pairings ofE over ((pa).

Proof. Since k divides p®, the hypothesis ¢t = |h.B*| implies that there is a group homomorphism
X : B — ((ye) such that x(B¥) = 1 and x(h) has order ¢. Let ¥ : Bx B — (Cpe) be given by
U(zg', yg’) = x(@7y~") = x(z)ix(y) 7, for z,y € B. If ¢ = ¢g", then i = ¢ mod |g| and hence
i =i mod k. Therefore, z' B¥ = 2% B¥ which implies that x(z) = x()". This shows that ¥
is well defined. Now it is easy to see that ¥ is a skew pairing and ¥(h, g) = x(h) has order ¢.
Conversely, if U is any skew pairing of B over (Cpa), then U(z,g)P" = 1 and ¥(z, g)l*l =
U(1,9) = 1 for all x € B. This implies that ¥(z*, g) = ¥(x,g)* = 1 for all x € B, and so
U(B* g) = 1. Therefore ¥(h,g)! = U(h',g) € ¥(B*,g) = 1, so the order of ¥(h,g) divides

t. O

3. LOCAL INDEX COMPUTATIONS

In this section K denotes an abelian number field, p a prime, and r an odd prime. Our goal
is to find a global formula for 3(r) = B,(r), the maximum nonnegative integer for which p?(") is
the r-local index of a Schur algebra over K.

We are going to abuse the notation and denote by K, the completion of K at a (any) prime of
K dividing r. If F/K is a finite Galois extension, one may assume that the prime of E dividing
r, used to compute F,, divides the prime of K over r, used to compute K,.. We use the classical
notation:

e(E/K,r) = e(FE,/K,)=ramification index of E,/K,.
f(E/K,r) = f(FE,/K,)=residue degree of E,/K,.
my(A) = Index of K, @k A, for a Schur algebra A over K.
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By Benard-Schacher Theory and because E/K is a finite Galois extension, e(E/K,r), f(E/K,r)
and m,(A) do not depend on the selection of the prime of K dividing r (see [Ser] and [BS]).
By the Benard-Schacher Theorem and because |S(K, )| divides  — 1 [Yam], if either ¢, ¢ K or
r# 1 mod p then B(r) = 0. So to avoid trivialities we assume that ¢, € K and r =1 mod p.

Suppose K C F = Q(¢,) for some positive integer n and let n = r*~(n/. Then Gal(F/Q)
contains a canonical Frobenius automorphism at r which is defined by ¥, ((,wr(n)) = Cuorn) and
Yr(Cnr) = ¢,. We can then define the canonical Frobenius automorphism at r in Gal(F/K) as
op = Z(K/Q’T). On the other hand, the inertia subgroup at r in Gal(F/K) is by definition the
subgroup of Gal(F/K) that acts as Gal(F,/K,((,)) in the completion at 7.

We use the following notation.

Notation 10. First we define some positive integers:
m = minimum even positive integer with K C Q((n),
a = minimum positive integer with (pe € K,

s = vp(m) and

s, if pis odd or {4 € K,
b=1q s+vp([KNQ(Gs) : Q) +2, if Gal(K(pea+s)/K) is not cyclic, and
s+1, otherwise.

We also define
L=Q(Cmn), C¢=Cpr, W=(Q), F=L(C),
G =Gal(F/K), C=Gal(F/K((), and D= Gal(F/K(+¢").

Since (p € K, the automorphism Y : G — Aut(W) induced by the Galois action satisfies the
conditions of Section 2 and the notation is consistent. As in that section we fix elements p and
o in G and a subgroup B = (c1) x --- X (¢,) of C such that D = B x (p), C = B x (p?) and
G/C = (pC) x (cC). Furthermore, o(() = (¢ for some integer ¢ chosen according to (4). Notice
that by the choice of b, G # B.

We also fix an odd prime r and set
e=e(K()/K,r), f=fK/Qr) and v(r)=max{0,a+vy(e) —vy(rf —1)}.
Let ¢ € G be the canonical Frobenius automorphism at r in G, and write
o=p'oly, withneB, 0<j < lp| and 0<j<|oC|.

Let q be an odd prime not dividing m. Let G, = Gal(F((;)/K), Cqy = Gal(F({y)/K(()) and
let ¢y denote a generator of Gal(F((,)/F). Finally we fix
0 = 04, a generator of the inertia group of r in G4 and

g =’ = cgonpjlaj = nqulaj, the canonical Frobenius automorphism at r in G,.

Observe that we are considering G as a subgroup of G, by identifying G with Gal(F'((,)/K(,))-
Again the Galois action induces a homomorphism Y, : G, — Aut(W) and W% = ((). So this

action satisfies the conditions of Section 2 and we adapt the notation by settting

B, = (co) x B, Cy=Gal(F(¢;)/K(()) =Ker(Y,) and Dy;= Gal(F({)/K(+ h).
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Notice that Cy = (co) x C = By x (p?) and D, = D x {(cp). Hence G/C ~ G,/C,.

If ¥ is a skew pairing of B over W& then ¥ has a unique extension to a skew pairing ¥ of C
over W& which satisfies ¥(B, p?) = ¥(p?, B) = 1. So we are going to apply skew pairings of B
to pairs of elements in C' under the assumption that we are using this extension.

Since p # r, 8 € Cy. Moreover, if r = ¢ then 6 is a generator of Gal(F'(¢,)/F') and otherwise
6 € C. Notice also that if G/C' is non-cyclic then p* = 2 and K N Q((2s) = Q({ya + C;ll), where
d=wv,(c—1),and so b= s+d.

It follows from results of Janusz [Jan, Proposition 3.2] and Pendergrass [Pen2, Theorem 1] that
p?(") always occurs as the r-local index of a cyclotomic algebra of the form (L(¢q)/L, ) where
q is either 4 or a prime not dividing m and « takes values in W (L((,)),, with the possibility of
q = 4 occurring only in the case when p* = 2. By inflating the factor set a to F'(¢;) (which will
be equal to F when p® = 2), we have that p?(") = m,.(A), where

A = (F({)/K, o) (we also write « for the inflation),
(8) q is an odd prime not dividing m, and

o takes values in <§p4> if p* = 2 and in ((ps) otherwise.
So it suffices to find a formula for the maximum r-local index of a Schur algebra over K of this
form.

Write A = @ cq, F(Cq)ug, with uytzug = g(x) and ugup = agpugy, for each 2 € F(¢,) and

g,h € Gy. After a diagonal change of basis one may assume that if g = ¢°c]* ... i p®r0° with
0<si<g=|cl,0<s,<|pland 0 < s, < g = |0C| then ug = ulu! ... ufru us.

co Y1
It is well known (see [Yam] and [Jan, Theorem 1]) that

o ror(e) (©(nf
(9) mT‘(A) = ‘§|, Where § = {O& — <Oiqz> u;ﬂ I3 (7‘ _1)'
q»

This can be slightly simplified as follows. If r|e then (¢) has an element 6% of order r. Since 6
fixes every root of unity of order coprime with 7, necessarily 2 divides m and the fixed field of
0% in L is Q(Cmyr)- Then K C Q(Gpyr), contradicting the minimality of m. Thus r { e and so

rffl rffl

Q0,0 rfo1 _ 0,9 e

10 E=—"uy = —"Zy, ¢ =lug,ue, |V, ¢ , where g = ug.
( ) g, 6 0 A0 0 [ ¢>q] 9 0

With our choice of the {u, : g € G4}, we have

[U97u¢q] = [u9’unqu{) ugr] = \I’(G’UQ)[U%’“% ug]v

where ¥ = W, is the skew pairing associated to o. Therefore,

-1

E=&W(0,n,) with & = oo = [ug,u)ully, <
Let (3,7) be the data associated to the factor set « (relative to the set of generators ¢y, . . ., ¢, p, 0).

Lemma 11. Let A = (F((;)/K, ) be a cyclotomic algebra satisfying the conditions of (8) and
use the above notation. Let 6 = cgoc‘il--wfﬁp%nﬂ, with 0 < s; < q; for 0 < i < n, and
0 < snt1 < |p7)-

(1) If G/C is cyclic then fgym =1.
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_ v(r)
wl. Then p; = £1 and £p =

1;
(2) Assume that G/C is non cyclic and let p; = B}

n 20 (G5 )81
Hz OM

Proof. For the sake of regularity we write c,11 = p?. Since e = ||, we have that ¢; divides es;

for each i. Furthermore, v,(e) is the maximum of the v, (m) fori=1,...,n. Then

vple) — vp(rf — 1) :max{’up <gcd(qi,5§;(rf—1)> i = 1n}

Hence

v(r) = max{0,vy(e) +a—uv,(rf —1)}

(11) si(rf — )
qi

= min {a; > 0: p® divides p”® - for each i = 1,. n} .

Now we compute 7y in terms of the previous expression of . Set v = uiﬁﬁ and y =

ugdugr - - ugr. Then
ug = yv =yvy, with =", 0t ... ).
Thus ¢ = ¥( ff_ﬁ Yegtelt ... eir) = 1. Using that [y, ] = 1, one easily proves by induction on
m that
(o)™ = A(B)ymom.
Hence
€Sn+1

(yo)® = +&)yeve = 4 )yeUEi’Hl = yB)yeq, et

and 'y(g) = +1. (If p or e is odd then necessarily 7(3) = 1.) Now an easy induction argument

shows
eSO esl esn €Sn41
Yo = 1Y 7" ow™ T, for some p= £1.
,,(r)r -1 pV(T)Q
Note that v(r) + v,(rf — 1) —wv,(e) > a > 1, by (11). Then pP = v < =1,
because both ;1 and v, are &1, and they are 1 if p is odd (see (C3.e) and (C3.f)). Thus
7'f71)s-

pu(r)L‘;l n p”(f‘)(iil

(12) Yo =117 ’
=0

(1). Assume that G/C is cyclic. We have that p = 1 and v,(c — 1) = a. Note that the 3’s
and 7’s are p’-th roots of unity by (8).

cfl —

'nq with n, € Cy4, we have
f S
rf =¢ mod ptt and so er :Yc_1 d-1 — V(j) mod p°. Then 3, :ﬁV(J).

pe 10
Sq (r —1)

(See( )) dY( U =1 mod pb we obtain

Let Y be an integer satisfying Y

Using that p® divides p¥(")

v(r) Si(rffl) pV(T)Si(rffl)
p q; _ c—1 T pdq,
i =) t
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Combining this with (C3.b) we have

S; T'f7 v(r
v(r) p”(’")% ( )si(rf—l)

B . N (1) _1.YZ2 L
[ uU]P v, _ [ucijua]szV(J)P (¢ 1) peq;

(13) ey Y se o
= [ucwuﬂ]slvu)p ﬁia .

= ([ucwua}ﬂig)pu(r)siv(j) =1,

because Bi; = [Ug, Ue;] = [Ue;, us] L. Using (12) and (13) we have
S5 rf—l)
v(r) o v(r) V(’I‘)Tf;l n V(r) pl’("”)l(%
S R | [
and the lemma is proved in this case.
(2). Assume now that G/C is non-cyclic. Then p* = 2 and if d = va(c — 1) then d > 2 and
b = s+ d. The data for « lie in (Cos+1) C (Cp) C (Cor4s+a) = W(F)2. (C2.b) implies p; = £1
and using (C3.b) and (C3.f) one has 7/ = ﬁfgﬁ;qi. Let X and Y be integers satisfying
CQd = Y@ =1 mod 2514 and set Z = Y—TfQ_I.
Recall that 2% = 2 divides 2”(”%, by (11). Therefore,

ov(r) Si(rf_l) QV(T)si(rffl)

y y-——7>=>=~~/ g vz
(14) e =0t = (ﬁfgﬁmsl) .
Let 5/ = j/ mod 2 with j” € {0,1}. Then Y(p"") = Y (") and NJ (w) = wi”. Therefore,

[ug, ud ud] = [ug,ud |uf [ug, ud]uy? =[] 0By (8,7 DD
= I (5,7)7" (B, 3 VO 7 T35 (8 Y
Using (12), (14) and (15) we obtain

v(r) i’ v(r) _ J—
v(r) 21/(7‘) oV (ryrd =1 'rf 1 N 2 (Z+.7 ) n . 2 (Z X 2d
(16) &7 = luo,up vy H 8," 15
1=0

We claim that Z+j” =0 mod 27!, On the one hand Y =1 mod 247!, On the other hand,

bq = p’'aIn,, with n, € C, and so 7/ = (=1)7'¢/ mod 2'*+*+4. Hence r/ = (-1)7 = (-1)7"

1!

mod 2¢ and therefore Z + j” = Y’“ff + ]” = L + 5" mod 2%-1. Considering the two

possible values of j” € {0,1} we have L

-/l

(15)

L(-1i")

+ 7" = 0 and the claim follows.
From d = va(c — 1) one has ¢ = 1 + 2d ! mod 2¢ and hence Y = 1 + 297! mod 2¢ and
rf = (=1)7"¢d = (=1)7(1 + j24) mod 2!+, Then

) i e .
245" _ Y )t _ v aged-n4e _ Y(EE (1 t 4g
2d—1 - 2d — 2 - 2d—1
SENELERICRC TG4 g ()2 o ()2
- 2d—1

= —j,/+(—1)/j_j+]//:j+] mod 2.

1—c
Using this, the equality g, p2 = u;Bir and the fact that u; = +1 we obtain

. _ye—l 1 _ye—1 Z+j" Z+5" zZ+j5" Z+
ﬂ—(Z—&—]”) _ /8 X od (Z+j ) _ /8 X 2 od—1 __ X 2d—1 6X od—T ]+]/ﬁX 2d l
ip = Pip = Pip = Ky io .
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Combining this with (16) we have

v(r) ov(r) i+35") s i ov(r) Z_Xc]—l(_l)
200 e 2 (o) T

v
J

X(Z2+5")
+ Qd—{ :|

9v (") (j44')s gv(n | 22X pax (244"
n i n S

= [Licom [[i=0(Bi5) ’

To finish the proof it is enough to show that the exponent of each §;, in the previous expression
is a multiple of 2'+%. Indeed, 2 = X (¢ — 1) mod 2'***¢ and so

297 + X(8 —1)(=1)" +2X(Z+j") = ZX(c—1) = X(J —=1)(=1)7" +2X(Z +j") =
X(YTfT_l(c—i— 1)+ (¢ — 1)(_1)J/’ +2§") = X((rf — 1)y% _ cj(—l)j" 4 (_1>j/’ + 24"y =

-1/

X(rf —1-¢7(=1)7" +1)=0 mod 2M+5+d
as required. This finishes the proof of the lemma in Case 2. O

We need the following Proposition from [Jan].

Proposition 12. For every odd prime q # r not dividing m let d(q) = min{a,v,(¢ —1)}. Then
(1) |eg'C/CP™™| < 16§C/CP"|, and
(2) the equality holds if ¢ =1 mod p® and r is not congruent with a p-th power modulo q.

There are infinitely many primes q satisfying these conditions.
Proof. See Proposition 4.1 and Lemma 4.2 of [Jan]. O
We are ready to prove the main result of the paper.

Theorem 13. Let K be an abelian number field, p a prime and v an odd prime. If either (, & K
orr # 1 mod p then By(r) = 0. Assume otherwise that (, € K and r = 1 mod p, and use
Notation 10 including the decomposition ¢ = npj/aj with n € B.

(1) Assume that r does not divide m.
(a) If G/C is non-cyclic and j # j° mod 2 then [By(r) = 1.
(b) Otherwise By(r) = max{u(r),vp(|and(T>\)}, where d(r) = min{a, v,(r — 1)}.

(2) Assume that v divides m and let qo be an odd prime not dividing m such that qo = 1
mod p® and r is not a p-th power modulo qo. Let 0 = 0,4, be a generator of the inertia
group of Gy, at r.

(a) If G/C is non-cyclic, j # j' mod 2 and 0 is not a square in D then B,(r) = 1.
(b) Otherwise By(r) = max{v(r), h,v,(|6/CP"|)}, where h = maxg{v,(|¥(0,n))} as ¥

runs over all skew pairings of B over ((pa).

Proof. For simplicity we write 3(r) = 8,(r). We already explained why if either ¢, ¢ K or r # 1
mod p then Sy(r) = 0. So in the remainder of the proof we assume that ¢, € K and r = 1
mod p, and so K, p, and r satisfy the condition mentioned at the beginning of the section. It
was also pointed out earlier in this section that p®() is the r-local index of a crossed product
algebra A of the form A = (F({;)/K, ) with ¢ and « taking values in ((ps) or in ((4). Moreover,
since p”(") is the r-local index of the cyclic Schur algebra (K (¢.)/K, co, (pe) [Jan], we always have

v(r) < B(r).
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In case 1 one may assume that ¢ = r, because (F((;)/K,a) has r-local index 1 for every
g # r. Since Gal(F((.)/F) is the inertia group at r in Gy, in this case one may assume that
6 = 6, = co. On the contrary, in case 2, ¢ # r, and § =" ... csnpsn+i ] for some 81, ..., 5n41.

In cases (1.a) and (2.a), G/C is non-cyclic and hence p® = 2. Then f(r) < 1, by the Benard-
Schacher Theorem, and hence if v(r) = 1 then §(r) = 1. So assume that v(r) = 0. Furthermore,
in case (2.a), s; is odd for some i < n, because § ¢ D?. Now we can use Corollary 5 to produce
a cyclotomic algebra A’ = (F({;)/K, ) so that £, = —&,. Indeed, there is such an algebra
such that all the data associated to « are equal to the data for A, except for [y, in case (1.a),
and ., case (2.a). Using Lemma 11 and the assumptions v(r) = 0 and j # j/ mod 2, one has
€00 = =0, and ¥ = V. Thus {, = —&y, as claimed. This shows that 3(r) = 1 in cases
(L.a) and (2.a).

In case (1.b), £ = &W¥(co,n). By Lemma 11, & has order dividing p¥(") in this case and, by
Lemma 9, max{|¥(0,n)| : ¥ € S} = inBr"”
values in (p®). Using this and v(r) < §(r) one deduces that §5(r) = max{y(r),vp(\and(T)D}.

The formula for case (2.b) is obtained in a similar way using the equality £ = (6, 7)¥ (6, ¢i°)
and Lemmas 8 and 9. g

|, where S is the set of skew pairings of B, with

4. EXAMPLES

As we indicated in the introduction, the authors’ main motivation for Theorem 13 is the study
the gap between the Schur group of an abelian number field K and its subgroup generated by
classes containing cyclic cyclotomic algebras over K, a problem which reduces to studying the
gaps between the integers v, (r) and 3,(r) for all finite primes p and odd primes r. (For details,
see [HOR].) What Theorem 13 really allows one to do is to compute (p(r) in terms of the
number of p-th power roots of unity in K and the embedding of Gal(F/K) in Gal(F/Q). In this
section, we will provide some examples of abelian number fields K to illustrate the computations
involved in the various cases of Theorem 13. We use the notation of the previous sections in all

of these examples.

Example 14. Let K = Q((y,), with m minimal. Let p be a prime for which ¢, € K, and let
r be an odd prime which is =1 mod p. Let a be the maximal integer for which (p« € K, and
let s = vy(m). If we are not in the case when b = s, then p = 2, s = 0, and K ((p2a+s) = K((a),
so we will be in the case where b = s +1 = 1. Since K = L, we have that ' = K ((ya+t), so C
is trivial. Also, G = Gal(K ((a+s)/K) will be cyclic for either case of b. Therefore, either case
(1b) or (2b) of Theorem 13 applies, and it is immediate from C'= B = 1 that 3,(r) = v,(r) for

each choice of p and r.

Example 15. Let p and r be odd primes with v,(r—1) = 2. Let K be the extension of Q((,) with
index p in L = Q((pr), and consider By(r). We have a = s = b =1, and F' = Q((2,). We have
that G = () x C is elementary abelian of order p?, so we are in case (2b) of Theorem 13. Since
Gal(F/Q) has an element 1 such that ¢P generates C, letting go and 6 be as in Theorem 13(2),
we find that v,(|¢G|) = 1. Tt follows that p/ = p, so v,(r) = 0 and v,(|6/CP"|) = 1. Since ¢
generates C, we have that ¢ =7 and so h = 1 by Lemma 9. So (,(r) = 1 in this case.
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Example 16. Let ¢ be a prime greater than 5, and let K = Q((,,v/2). Let p = 2, and let r be
any prime for which 72 =1 mod ¢ and r =5 mod 25. In computing (2(r), one sees that a = 1
and L = Q(Cgq), s0 s = 3. Since Gal(K ((y5)/K) is not cyclic, we set b = 5+v2([Q(v/2) : Q]) = 6,
so F' = Q({eaq)- Since Q(¢;) C K, we have C' = Gal(F/K((s1)) = 1. For our generators of
Gal(F/K), we may choose p, o such that p((y) = (4, p(C6a) = C(;;17 o(¢y) = ¢y, and o(Cea) = G5y
By our choice of 7, we have that 1, € G, but 52 = 93 mod 64 implies that 12 = . This means
that we are in case (1a) of Theorem 13 with v,(r) =0 and j # j mod 2, so fa(r) = 1.

Example 17. Let r be a prime for which » =5 mod 64. Let K’ be the unique subfield of index
2 in Q(¢,), and let K = K'(1/2). Consider 35(r) for the field K. As in the previous example, we
have L = Q((sy), F' = Q((p4r) and we choose p,o € G satisfying p((ss) = C(;ll and o (Cea) = C3y-
Using Proposition 12, choose an odd prime gg for which 7 in not a square modulo ¢gy. If ¥, is the
Frobenius automorphism in Gal(F((y,)/Q), then ¢, € Gy, and ¢, = ¥?2 sends (g4 to ¢S = ¢
Therefore, ¢, = 0377q0, where 1y, € Cy, fixes (g4r. Since ¢, & K, 0 = 0,, generates a direct
factor of G, and so it cannot be a square in D. It follows that the conditions of case (2a) of

Theorem 13 hold, and so we can conclude (2(r) = 1.

Example 18. Let p be an odd prime and let ¢ and r be primes for which v,(¢g—1) = v,(r—1) = 2,
vg(r? — 1) = 0, and vq(rp2 — 1) = 1. The existence of such primes ¢ and r for each odd prime
p is a consequence of Dirichlet’s Theorem on primes in arithmetic progression. Indeed, given p
and ¢ primes with v,(¢ — 1) = 2, there is an integer k, coprime to ¢ such that the order of k&
modulo ¢? is p?. Choose a prime r for which r = k + ¢ mod ¢? and » = 1 + p?> mod p>. Then
p, q and r satisfy the given conditions.

Let K be the compositum of K" and K", the unique subextensions of index p in Q((y2,)/Q((y2)
and Q((p2,)/Q(¢y2) respectively. Then m = p*rq, a = 2 and L = Q(¢n) = K({) ®x K({).
Therefore, F' = Q((y14), and G = Gal(F/K ((gr)) x Gal(F/ K ((pa,)) X Gal(F/ K (G, ). We may
choose o so that (o) = Gal(F/K((,)) = G/C has order p?. The inertia subgroup of r in G is
Gal(F/K (Cp4)), which is generated by an element ¢ of order p.

Since K = K’ BQ(¢,2) K" and K"/Q((y2) is totally ramified at r, we have that K is the
maximal unramified extension of K, /Q,. It follows from vq(rp2 —1) =1 and vy(r? — 1) = 0 that
(@0(¢) : Q) = p?, and so [KL: Q] = p = F(K/Q, ). Therefore uvp(|W (Ky)]) = u(IW/(Q)]) +
f(r) = vp(r —1) 4+ 1 = 3, and so we have v(r) = max{0,a + v,(|0]) — v,(|W(K,)|)} = 0. Since
|C| = p and 0 has order p, we also see that 6/(CP” is trivial, so vp(wf(")C'i”2 ) =0.

Let v, be the Frobenius automorphism of 7 in Gal(F/Q). Then ¢! = oPn, where n € B
generates Gal(F/K ((y,)). Since (0) N (n) = 1, it follows from Lemma 9 that h = v,(|0]) = 1.
So case (2b) of Theorem 13 applies to show that §,(r) = h = 1.
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