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Abstract. In this survey we revise the methods and results on the existence

and construction of free groups of units in group rings, with special emphasis

in integral group rings over finite groups and group algebras. We also survey
results on constructions of free groups generated by elements which are either

symmetric or unitary with respect to some involution and other results on

which integral group rings have large subgroups which can be constructed
with free subgroups and natural group operations.

1. Introduction

All throughout this paper G denotes a group and R is a commutative ring with
identity. Most of the time G is assumed to be finite and R is either the ring of
integers Z or a field which we denote by F . In some exceptional cases R is the ring
of integers of an algebraic number field. Our main object of interest is the group
ring RG. This is a ring which contains R as a subring and G as a subgroup of
U(RG), the group of units of RG. Moreover the elements of R and G commute in
RG and G is a basis of RG as left R-module. That is R is formed by the finite formal
sums

∑
g∈G αgg, with αg ∈ R, addition defined componentwise and multiplication

extended by linearity from the multiplication in R and G, and satisfying gr = rg
for every r ∈ R and g ∈ G.

Historically, the interest to study the properties of RG came mainly from the
case R = C, the field of complex numbers and G finite, the background of complex
representations of finite groups. Soon, the subject became interesting in itself, with
the investigation of RG and its group of units U(RG) being the meeting point
of areas as group theory, algebraic number theory, ring theory, valuation theory,
combinatorial group theory, topology, and many others.

In this survey we collect results and techniques about the following problems
and other related questions.

Problem 1. For which rings R and groups G the group U(RG) contain a free
subgroup?

Problem 2. Give specific pairs (u, v) of elements of U(RG) which generate a free
group.

By a free group we always mean a free noncyclic group. By definition, a free pair
of a group U is a pair (u, v) of elements of a group U which generate a (non-abelian)
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Spain MTM2009-07373 and Fundación Séneca of Murcia 04555/GERM/06.
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free group. Clearly Problem 1 has a positive solution for R and G if and only if
U(RG) contains a free group, and Problem 2 consists in exhibiting free pairs in
U(RG) provided they exist.

Historically, the first result on the subject in ZG was obtained simultaneously
by Sehgal [49, Theorem VI 4.2] and Hartley and Pickel [27] as:

Theorem 1.1. [49, 27] If G is a finite group then U(ZG) contains a free subgroup
if and only if G is neither abelian nor a Hamiltonian 2-group.

The existence of a free subgroup in U(RG) has many consequences on the group
structure of U(RG), mostly in negative form. For example, a group containing a
free subgroup cannot be solvable. It should be pointed out that the first proof of
Theorem 1.1, in [49], appeared related with solvability questions. There are many
other examples of results on units which uses special constructions of free subgroups
as part of the arguments in the proofs (see for example Theorems 2.3 and 5.8).

If instead of ZG, we consider a group algebra FG over a field of characteristic
0 then the existence of free subgroups in U(FG) reduces, via Wedderburn’s de-
composition theorem, to the existence of free subgroups in GLn(D) for D a finite
dimensional division algebra over F . Recall that a field is said to be absolute if it
is an algebraic extension of a finite field. If D is an absolute field then every finite
subset of Mn(D) is contained in a finite ring and hence GLn(D) does not contain
free subgroups. Similarly, if F is an absolute field then U(FG) does not contain
free subgroups. Assume that D is not an absolute field. If n > 1 and D is a division
algebra over a field of characteristic zero then it is easy to construct free groups in
GLn(D) using elementary matrices as we will see soon. However, for n = 1 this is
a extremely hard question, stated as:

Lichtman’s Conjecture: [39] The multiplicative group of a non-
commutative division ring contains a free subgroup.

If G is a finite group and R is a domain, then U(RG) is a linear group. Thus it
is convenient to put the study of free subgroups of U(RG) in the context of linear
groups. In this direction we have the celebrated Tits’ Alternative: If U is a linear
group then either U is a solvable-by-locally finite or it contains a (non-abelian) free
subgroup. This was proved in the seminal paper of Tits [51] which provides some
useful techniques to prove that some pairs are free pairs. Some generalizations of
the results of Tits with applications to group rings have been obtained in [19].

The proof of Theorem 1.1 is not constructive and this raised the question of
constructing free pairs in U(ZG). Marciniak and Sehgal [40] proved that if u is
a non-trivial bicyclic unit of ZG then (u, u∗) is a free pair in U(ZG). Here ∗
denotes the natural involution in RG. This settled the question for non-abelian
non-Hamiltonian groups. The Hamiltonian case was solved by Ferraz [8] using
Bass units. (See Section 4 for the definition of bicyclic and Bass units.) This solves
Problem 2 for integral group rings of torsion groups. It also solves the same question
for group algebras of zero characteristic. However in positive characteristic bicyclic
units have finite order and hence other alternative constructions are needed.

Intimately connected to the existence of free subgroups in U(RG) is the con-
cept of involution. An involution in a group G (respectively, a non-necessarily
commutative ring S) is an anti-automorphism of order 2 of G (respectively, of
S). If ϕ is an involution of G then it induces an involution in RG, defining
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(
∑
g∈G αgg)ϕ =

∑
g∈G αgg

ϕ. A relevant involution in G is the natural involu-

tion (also known as classical or standard involution), given by x∗ = x−1, for each
x ∈ G. If u is a non-trivial bicyclic unit in ZG then (uu∗, u∗u) is a free pair formed
by symmetric units, because it is contained in the free group (u, u∗). However, if ϕ
is an arbitrary involution in G then 〈u, uϕ〉 might not be free. For example, this is
obviously the case if u is symmetric, anti-symmetric or unitary with respect to ϕ.
This poses the question of constructing free pairs of symmetric, anti-symmetric or
unitary units.

Another question that naturally emerges from the construction of free pairs of
Marciniak-Sehgal and Ferraz is when U(ZG) contains free pairs of Bass units or
free pairs formed by a bicyclic unit and a Bass unit, and when a given a Bass unit
u is part of a free pair where the “free companion” is also bicyclic or Bass.

Free groups can be considered as free products of infinite cyclic groups. This
suggest the question of constructing (non-trivial) free products as subgroups of
U(RG).

A question that naturally emerges from Theorem 1.1 is which portion of U(ZG)
can a free subgroup cover. More precisely, when does U(ZG) contain a free subgroup
of finite index or when does U(ZG) contain a subgroup of finite index constructed
from free subgroups and natural operations as for example direct or free products?

We briefly resume the contents of the paper. In Section 2 we first sketch the
proof of Theorem 1.1, and revise the characterization of when a group algebra of
a finite group contain a free subgroup and some related results. In Section 3 we
present some techniques to prove that a pair of elements of a group is free. This
includes some of the methods of Tits and some generalizations from [19], together
with some applications on the existence of free products on U(ZG). In Section 4
we give concrete constructions of free pairs in U(ZG) and U(FG). Sections 5 is
dedicated to the question of existence of free pairs which satisfy some condition
relative to an involution of a group algebra. For example, we present some results
on the existence of free symmetric or unitary pairs in a FG with respect to an
involution of G, extended to the group algebra by linearity. Most results refers to
the natural involution. Section 6 consider similar questions on ZG. In Section 7 we
consider the question of which pairs of bicyclic or Bass units are free pairs and when
U(ZG) has a free pair formed by such units. Finally in Section 8 we review some
result which characterizes the finite groups G such that U(ZG) has a subgroup of
finite index with a nice structure with respect to free subgroups, that is, that can
be obtained using natural group operations with free groups.

Before we start we establish some basic notation. We use Cn to denote the
cyclic group of order n and Cn = 〈x〉n to emphasize that x is a generator of the
cyclic group of order n. Other families of groups which will appear in the paper
are the dihedral group of order n, denoted Dn, the quaternion group of order n,
denoted Qn and the symmetric group on n letters, denoted Symn. We use standard
group and ring theoretical notation. For example, Z(X) denotes the center of X
(for X a group or a ring), G′ the commutator subgroup of the group G, NG(X)
the normalizer of a subset X in the group G, J(R) denotes the Jacobson radical
of the ring R, 〈g1, . . . , gn〉 the subgroup generated by g1, . . . , gn and N o G the
semidirect product of the N by G with respect to an action of G on N . We use
exponential notation for the action of automorphisms and involutions. This includes
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the notation gh = h−1gh, for g and h elements of a group. The commutator of g
and h is (g, h) = g−1gh = g−1h−1gh. The free product of two groups G and H
is denoted G ∗ H. If X is a set then |X| denotes its cardinality; if g is a group
element then |g| denotes its order; and if z is a complex number then |z| denotes
its absolute value. More general real absolute values will appear in Section 3 and
will be denoted also | |.

2. Existence of free subgroups

In this section we consider the question of existence of free groups in group rings,
that is, we deal with Problem 1.

We start giving a sketch of how Theorem 1.1 can be proved. We basically follow
the proof of Hartley and Pickel [27]. If G is abelian then obviously U(ZG) does
not contain a free group. Recall that a group is said to be Hamiltonian if it is a
non-abelian group with all its subgroups normal. Hamiltonian groups are classified
by a result of Baer and Dedekind [44]. Namely, a group G is Hamiltonian if and
only if it is isomorphic to Q8×A with Q8 the quaternion group of order 8 and A a
torsion abelian group where the 2-torsion part is elementary abelian. In particular,
if G is a finite Hamiltonian 2-group then G is isomorphic to Q8 × A with A an
elementary abelian 2-group. Then U(ZG) = ±G, by a well known result of Higman
[28, 29]. This proves the necessary part of Theorem 1.1.

The proof of the sufficient part is more involved. The first observation is that
ZG is an order in QG, i.e. it is finitely generated as Z-module and contains a basis
of QG over Q. If O is any other order in QG then U(ZG) ∩ U(O) has finite index
in both U(O) and U(ZG) (see e.g. [50, Lemma 4.2]). Thus if (u, v) is a free pair
in U(O) then (un, vn) is a free pair in U(ZG) for some integer n. By Maschke
Theorem QG is semisimple and hence, by Wedderburn’s Theorem, QG decomposes
as a direct sum of matrix rings Mni(Di) over division rings Di. If Oi is an order
in Di for each i, then O =

⊕
iMni(Oi) is an order in QG. Thus, if GLni(Oi) has

a free pair then so does U(ZG). If ni > 1 then it is easy to prove that GLni
(Oi)

contains a free subgroup using the following classical result of Sanov.

Theorem 2.1. [48] If z and w are complex numbers with |z|, |w| ≥ 2 then

(
1 z
0 1

)
and

(
1 0
w 1

)
form a free pair.

Complex numbers z for which

(
1 2
0 1

)
and

(
1 0
z 1

)
form a free pair are

called free points. For example, the unique integers which are not free points are
0, 1 and −1 by Sanov Theorem and the equality((

1 2
0 1

)(
1 0
1 1

))4

= I.

See [1] for a list of results on free points.
The above considerations proves Theorem 1.1 for the case when QG is not a

product of division rings. Otherwise all the subgroups of G are normal. Indeed,
if QG is a sum of division rings then all the idempotents of QG are central. In
particular, if H is a subgroup of G then the idempotent 1

|H|
∑
h∈H h is central in

QG. An easy calculation shows that this implies that H is normal in G as desired.
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Thus it remains to show that if G is a Hamiltonian group which is not a 2-
group then U(ZG) contains a free subgroup. As G is a Hamiltonian but it is not
a 2-group then it contains a subgroup isomorphic to Q8 × Cp with p and odd
prime integer, and we may assume without loss of generality that G = Q8 × Cp.
Then one of the components of QG is isomorphic to the Hamiltonian quaternion
algebra H(Q(ζ)), where ζ is a complex primitive p-th root of unity. Recall that
if F is field of characteristic 6= 2 then the Hamiltonian quaternion algebra H(F )
has a basis {1, i, j, k} over F subject to the following relations: i2 = j2 = −1,
k = ij = −ji. As O = H(Z[ζ]) is an order in H(Q(ζ)), to prove Theorem 1.1 it
only remains to prove that ((1 + ζi)n, (1 + ζj)n) is a free pair of U(O) for some
positive integer n. First of all observe that 1 + ζi and 1 + ζj are units in O because
(1 + ζi)(1− ζi) = (1 + ζj)(1− ζj) = 1 + ζ2 and 1 + ζ2 is a unit in Z[ζ], as can be
seen by putting X = −1 in the identity

Xp − 1

X − 1
=

p−1∏
i=1

(X − ζi)

Consider H(Q(ζ)) included in M2(C) via the map

a+ bi+ cj + dk 7→
(

a+ bi c+ di
−c+ di a− bi

)
Then the image of u = 1 + ζi and v = 1 + ζj are

S =

(
1 + ζ 0

0 1− ζ

)
and T =

(
1 ζ
−ζ 1

)
,

respectively. The eigenvalues of S are λ1 = 1+ζ and λ2 = 1−ζ and the eigenvalues
of T are µ1 = 1 + ζi and µ2 = 1 − ζi. They satisfy |λ1| 6= |λ2| and |µ1| 6= |µ2|
because the order of ζ is an odd prime p. Moreover the eigenspaces of S are T are
all different. Using this it is easy to prove that S and T satisfy the hypothesis of
Tits’ Criterion (Theorem 3.2) with respect to the standard absolute value on C.
Thus (Sn, Tn) is a free pair for n sufficiently large and hence (un, vn) is a free pair
for n sufficiently large.

Theorem 1.1 solves Problem 1 for R = Z and G a finite group. We now deal
with the same question for U(FG) with F a field and G a finite group. As in
Theorem 1.1, there are two situations where obviously U(FG) cannot contain free
groups, namely if G is abelian or F is absolute. For a prime integer p let Op(G)
denote the maximal normal p-subgroup of G. We also denote O0(G) = 1. The
solution of Problem 1 in this case is given by the following

Theorem 2.2. [9] Let FG be the group ring of the finite group G over the field F
of characteristic p ≥ 0. Then U(FG) contains a free subgroup if and only if F is
not absolute and G/Op(G) is not abelian.

We prove the sufficient part of Theorem 2.2 for the case where p > 0. The proof
uses the fact that if D is a non-commutative division algebra finite dimensional over
its center then U(D) contains a free subgroup [9]. Assume that F is a non-absolute
field of characteristic p > 0 and U(FG) does not contain a free subgroup. We have
to prove that G/Op(G) is abelian. Let K be the prime subfield of F . As F is
not absolute it contains an element t transcendental over K and we may assume
without lost of generality that F = K(t). As G is finite, FG/J(FG) is semisimple
and units of FG/J(FG) lift to units in FG. Then FG/J(FG) ∼= ⊕ki=1Mni

(Di)
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with Di a division ring for each i, each Di is finite dimensional over its center and
U(FG/J(FG)) does not contain free subgroups. Hence U(Di) does not contain a
free subgroup and thus Di is a field containing F . Let

S =

(
t 0
0 t−1

)
, P =

(
1 + t t
−t 1− t

)
T = PSP−1.

If ni > 1 for some i, then Mni
(Di) contains a subgroup isomorphic to 〈S, T 〉.

Calculating the eigenvalues of S and T we observe that they satisfy the assumptions
of Tits’s Criterion (Theorem 3.2) with respect to the absolute value

∣∣tn gh ∣∣ = 2−n for
g, h ∈ K[t] with g(t)h(t) 6= 0. Then (Sn, Tn) is a free pair in GLni

(Di) contradicting
the assumptions. Thus ni = 1 for each i = 1, . . . , k. We claim that Op(G) is a Sylow
subgroup of G. Otherwise G contains an element x such that xOp(G) has order pm

for some m ≥ 1. Since Op(G) = (1 + J(FG))∩G (see e.g. [9]), we deduce that the
natural projection of x− 1 on FG/J(FG) is non-zero and nilpotent, contradicting
the fact that FG/J(FG) is a product of fields. This proves the claim and we
conclude that F (G/Op(G)) is a semisimple ring and units of F (G/Op(G)) lift to
units in FG. Arguing as above we deduce that F (G/Op(G)) is a product of fields,
so that G/Op(G) is abelian, as desired.

The solution of Problem 1 for the case where R is the ring of integers of an
algebraic number field and G is finite is given by

Theorem 2.3. [11] Let R be the ring of integers of an algebraic number field K,
and let G be a finite group. Then

(1) If K is totally real then the following conditions are equivalent:
(a) U(RG) does not contain a free subgroup
(b) U(RG) is nilpotent
(c) U(RG) is FC
(d) U(RG) is solvable
(e) The torsion T (U(RG)) = ±G
(f) T (U(RG)) is a subgroup of U(RG)
(g) G is either abelian or a Hamiltonian 2-group.

(2) If K is not totally real, then the following conditions are equivalent:
(a) U(RG) does not contain a free subgroup
(b) G is abelian.

Having obtained the above results on the existence of free subgroups in full group
rings, we can ask which conditions on a subgroup U of U(ZG) implies the existence
of a free subgroup in U . Of course U should not be abelian-by-finite. A similar
situation in encountered in [10, Theorem 2.1], where it is proved that if D is a non-
commutative division ring finite-dimensional over its center then every non-central
subnormal subgroup of U(D) contains a free subgroup. We can ask whether this
holds for integral group rings. Formally

Problem 3. For which finite groups G, every non-central subnormal subgroup of
U(ZG) contains a free subgroup?

To partially answer this question we need to introduce the following concept. We
say that a subgroup M of the group U is almost subnormal in U if M is subnormal
in a subgroup of finite index of U .
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Theorem 2.4. [12] Let G be a finite group. Every almost subnormal subgroup of
U(ZG) containing G contains a free subgroup, unless G is an abelian or a Hamil-
tonian 2-group.

3. Free products in linear groups

A linear group is a subgroup of GLn(F ) for F a field. If G is a finite group and F
is a field then the group algebra FG can be considered as a subalgebra of a matrix
algebra Mn(F ), with n = |G| via the regular representation and hence U(FG) is a
subgroup of GLn(F ). In other words U(FG) is a linear group. More generally if R
is a commutative domain then U(RG) is a linear group.

In this section we review some techniques on linear groups. Along the way we
will prove Sanov Theorem (Theorem 2.1) and will give a sketch of the proof of Tits
Criterion which have been used in the proof of Theorem 1.1 given in Section 2.

The first important breakthrough on free groups of linear groups appears in the
seminal paper [51] of Tits which contains the celebrated Tits’ Alternative: Every
linear group is either solvable-by-locally finite or contains a free subgroup. The
proof of Tits’ Alternative uses much beautiful and difficult mathematics which are
beyond the scope of this paper. However some of the basic ideas will appear here
in the form presented in [19]. One of the main tools is a simple but powerful lemma
with an obvious and suggestive name.

Lemma 3.1 (Ping-Pong Lemma). Let G1 and G2 be subgroups of a group G with
|G1| > 2. Assume that G acts on a set P which contains two different non-empty
subsets P1 and P2 such that g(Pi) ⊆ Pj if 1 6= g ∈ Gi and {i, j} = {1, 2}. Then
〈G1, G2〉 = G1 ∗G2.

Here G1 ∗G2 stands for the free product of G1 and G2, hence 〈G1, G2〉 = G1 ∗G2

means that if g1, . . . , gk is a list of non-trivial elements belonging to G1 and G2

alternatively then g1 · · · gk 6= 1. The proof of Lemma 3.1 is almost obvious: Let
g1, . . . , gk be as above and assume that g1 · · · gk = 1. After some conjugation, and
using that |G1| > 2 we may assume without loss of generality that the extreme
elements g1 and gk belong to G1. Then P1 = (g1 · · · gk)(P1) ⊆ P2 and if 1 6= g ∈ G2

then P2 = (gg1 · · · gkg−1)(P2) ⊆ P1. Thus P1 = P2, contradicting the hypothesis.
To illustrate the use of the Ping-Pong Lemma we now prove Theorem 2.1: Con-

sider GL2(C) acting on C∗ = C ∪ {∞}, the compactification of C with one point,
via Möebius transformations:(

a b
c d

)
· x =

ax+ b

cx+ d
.

Let z ∈ C with |z| ≥ 2 and let a(z) =

(
1 z
0 1

)
. Consider P1 = {x ∈ C : |x| ≤ 1}

and P2 = {x ∈ C : |x| ≥ 1}. Let g = a(z)n with n 6= 0. If x ∈ P1 then
g ·x = x+nz ∈ P2, because |z| ≥ 2. If x ∈ P2 then |nzx| ≤ |nzx+ 1|+ 1 and hence
|gT · x| = 1

|nz+1| ≤
1

|n|zx|−1| ≤ 1, because |zx| ≥ 2. Hence, if z and w are complex

numbers with |z|, |w| ≥ 2 then G1 = 〈a(z)〉, G2 = 〈a(w)T 〉, P1 and P2 satisfy the
hypothesis of Lemma 3.1 and hence Theorem 2.1 follows.

In the remainder of the section F is a locally compact field, i.e. a field with a
nontrivial real absolute value | | such that F is locally compact relatively to the
topology defined by | |. One of the ingredients in the proof of Tits’ Alternative is
the following theorem, known as Tits’s Criterion.
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Theorem 3.2. [51] Let F be a locally compact field with respect to a real absolute
value | |. Let S and T be diagonalizable endomorphisms of a vector space of
dimension 2 over F . Let λ1 and λ2 be the eigenvalues of S and µ1 and µ2 be the
eigenvalues of T . Assume that |λ1| 6= |λ2|, |µ1| 6= |µ2| and the eigenspaces of S and
T are all different. Then (Sn, Tn) is a free pair for n sufficiently large.

We now present some results from [19] which extends Tits’ Criterion. Let V
be a F -vector space and let T : V → V be a nonsingular diagonalizable operator.
We say that V = X+ ⊕ X0 ⊕ X− is a T -decomposition of V if there exist real
numbers r > s > 0 with X+ 6= 0 spanned by the eigenspaces of T corresponding
to the eigenvalues of absolute value ≥ r, X− 6= 0 spanned by the eigenspaces of T
corresponding to the eigenvalues of absolute values ≤ s, and with X0 the span of the
remaining eigenspaces. Observe that X+ 6= X− and, in particular dimF (V ) ≥ 2.
Moreover, T must have infinite multiplicative order for either r or s is different
from 1 and hence V has an element v with gn(v) 6= v for every n ≥ 1.

Next result extends Tits Criterion (Theorem 3.2). In fact, as explained in [19],
it is equivalent to Tits Criterion.

Theorem 3.3. [19] Let F be a locally compact field. Let V a finite dimensional
F -vector space and let S, T : V → V be two nonsingular operators. Suppose that S
and T are both diagonalizable with V = X+⊕X0⊕X− and V = Y+⊕Y0⊕Y− being
S- and T -decompositions of V , respectively. If the eight intersections X±∩(Y0⊕Y±)
and Y±∩(X0⊕X±) are trivial, then there is a positive integer n0 such that (Sm, Tn)
is a free pair for every m,n ≥ n0.

We briefly sketch the main idea of the proof of Theorem 3.3 (see [19] for details).
The action of GLn(V ) on V induces an action on the projective space P(V ). The
absolute value | | induces a distance between disjoint subsets of P(V ). The image
in P(V ) of X+ is an attractor of S. This means that the sequences (Sn(v)), with
v an element of P(V ) representing an element of V \ (X0 +X−), approximates the
projective subset represented by X+. Similarly X−, Y+ and Y− are attractors of
S−1, T and T−1, respectively. Using this one can prove that some neighborhoods
P1 of X+∪X− and P2 of Y+∪Y− satisfy the hypothesis of Lemma 3.1 with respect
to G1 = 〈S〉 and G2 = 〈T 〉.

Suppose that T : V → V is a non-trivial transvection, i.e. T = 1 + τ , with
τ : V → V a linear operator with τ2 = 0 6= τ . We are going to consider free
products in which elements T of this form are involved. Tits Criterion does not
apply for these kind of elements because they are not diagonalizable. Hence it is
convenient to have an alternative to Tits Criterion for these kind of elements. Since
Tn = 1+nτ , we see that T has infinite order if char(F ) = 0, and it has prime order p
if char(F ) = p > 0. So in the positive characteristic case the resulting free products
are not going to be free groups. We have to exclude the case p = 2. Otherwise
D∞, the infinite dihedral group can appear, and this group does not contain free
subgroups. Another restriction concerning this operators is the following. Let us use
1Z to denote the set of integer multiples of 1 in F , so that 1Z = Z if char(F ) = 0,
and 1Z = GF (p), the field with p elements, if char(F ) = p > 0. In the latter
case it is clear that |v| = 1 for every element v ∈ 1Z \ {0}. We abbreviate this
writing |1Z \ 0| = 1. However, in the former situation a number of possibilities
exist. Thus the hypothesis |1Z \ 0| ≥ 1 comes into play only in the characteristic 0
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situation. This hypothesis is really needed, as we can see in [19]. We can now state
the analogous of Theorem 3.3 for transvections, in the form of

Theorem 3.4. [19] Let F be a locally compact field with respect to an absolute value
| |. Assume that |1Z \ 0| ≥ 1, and char(F ) 6= 2. Let V be a finite-dimensional
F -vector space, and let σ, τ : V → V nonzero linear operators of square zero and
a, b ∈ F \ {0}. Write I = σ(V ), K = kerσ, J = τ(V ) and L = ker τ . If the
intersections I∩L and J∩K are both trivial, then 〈1+aσ, 1+bτ〉 = 〈1+aσ〉∗〈1+bτ〉
for |a| and |b| sufficiently large.

We consider also the mixed case of a diagonalizable operator and a transvection.

Theorem 3.5. [19] Let F be a locally compact field with respect to a absolute
value | |. Assume that |1Z \ 0| ≥ 1. Let V be a finite-dimensional F -vector
space. Let S be diagonalizable operator of V with an S-decomposition given by
V = X+ ⊕X0 ⊕X−. Furthermore, let τ : V → V be a nonzero operator of square
zero and set I = τ(V ), and K = ker τ . If the four intersections X± ∩ K and
I ∩ (X0 ⊕X±) are trivial, then 〈Sn, 1 + aτ〉 = 〈Sn〉 ∗ 〈1 + aτ〉 for sufficiently large
integers n and all a ∈ F with |a| sufficiently large.

Observe that the hypotheses of Theorem 3.3 implies dimF X+ = dimF X− =
dimF Y+ = dimF Y− and the hypotheses of Theorem 3.5 implies dimF X+ =
dimF X− = dimF I.

Finally, another situation for which we found an interesting application is

Theorem 3.6. [19] Let F be a locally compact field with respect to a real absolute
value | |. Assume that |1Z \ 0| ≥ 1. Let V be a finite-dimensional F -vector
space, and let G be a nonidentity finite subgroup of the general linear group GL(V ).
Assume, in fact, that |G| ≥ 3 when char(F ) = 2. Furthermore, let τ : V → V be a
nonzero linear transformation of square zero, and write K = ker τ and I = τ(V ).
If gI ∩K = 0 for all 1 6= g ∈ G. Then for all a ∈ F of sufficiently large absolute
value, we have 〈G,T 〉 ∼= G ∗ 〈T 〉 where T = 1 + aτ .

We can consider a free group of rank 2 as a free product of two infinite cyclic
groups. So, it is natural to ask when U(ZG) contain a free product of the form
Zp ∗ Z, with p prime. In this direction, making use of Theorem 3.6, one can prove
the following

Theorem 3.7. [18] Let G be a finite group. Then U(ZG) contains the free product
Zp ∗ Z for some prime p, if and only if G has a noncentral element of order p.
Moreover, when this occurs, there exists u ∈ U(ZG) and a noncentral element y of
G of order p such that 〈y, u〉 = 〈y〉 ∗ 〈u〉 ∼= Zp ∗ Z.

It is also possible to extend the above for p = 2 and G torsion.

Theorem 3.8. [18] Let G be a torsion group. Then U(ZG) contains the free product
Z2 ∗ Z if and only if G has a noncentral element of order 2. Moreover, when this
occurs, there exists u ∈ U(ZG) and a noncentral element y of G of order 2 such
that 〈y, u〉 = 〈y〉 ∗ 〈u〉 ∼= Z2 ∗ Z.

The unit u which appears in Theorem 3.7 and Corollary 3.8 is a kind of “bicyclic”
unit, that is, it has the form u = 1 + µ, with µ ∈ ZG, µ2 = 0.
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4. Constructing free pairs

The proof of Theorem 1.1 is not constructive. This raises the question of giving
specific generic constructions of free pairs in U(ZG). This was solved by Marciniak
and Sehgal [40] for non-commutative non-Hamiltonian groups and by Ferraz [8] for
the remaining cases. To present these free pairs we need to introduce two of the
most relevant construction of units.

Let g be an element of G of order n. Then let ĝ =
∑n−1
k=0 g

k, an element of ZG.
If k and m are integers such that km ≡ 1 mod n, then

uk,m(g) = (1 + g + g2 + · · ·+ gk−1)m +
1− km

n
ĝ

is a unit of ZG. Units of this form were introduced by Bass in [2] and are called
Bass cyclic units, or simply Bass units. We also say that uk,m(g) is based on g.

If h is another element of G then form µ = (1 − g)hĝ. It is clear that µ2 = 0
and hence 1 + µ = 1 + (1 − g)hĝ is a unit of ZG with inverse 1 − µ. Similarly,
1 + ĝh(1− g) is a unit of ZG. These units where introduced by Ritter and Sehgal
in [46] and are called bicyclic units. Moreover µ 6= 0 if, and only if x 6∈ NG〈g〉, the
normalizer of 〈g〉 in G.

In a groundbreaking work, Marciniak and Sehgal proved:

Theorem 4.1. [40] Let ∗ be the natural involution in G. If ZG contains a nontrivial
bicyclic unit u, then (u, u∗) is a free pair of U(ZG).

An easy consequence of this theorem is the following extension of Theorem 1.1.

Corollary 4.2. If G is a group such that U(ZG) does not contain a free subgroup
then every finite subgroup of G is normal and the torsion elements of G form a
subgroup of G which is either abelian or Hamiltonian 2-group. In particular, if G is
a torsion group then U(ZG) contains a free subgroup, unless G is either an abelian,
or a Hamiltonian 2-group.

Proof. Assume that U(ZG) does not contain a free subgroup. If G has a non-normal
finite subgroup then it has a non-normal cyclic subgroup 〈g〉. If h ∈ G \ NG(〈g〉
then u = 1 + (1 − g)hĝ is a non-trivial bicyclic unit. Thus (u, u∗) is a free pair
of U(ZG), by Theorem 4.1, contradicting the hypothesis. Let g and h be two
torsion elements of orders n and m respectively. Then gh = gr for some integer

r. Therefore (gh)m = g1+r+···+rm−1

and hence gh is torsion. This proves that the
torsion elements form a subgroup T of G. Moreover, every subgroup of T is normal
and hence T is either abelian or Hamiltonian. In the second case T ∼= Q8×A with
A abelian and A is a 2-group by Theorem 1.1. �

A similar argument, using now Theorem 2.2, proves the following

Corollary 4.3. Let FG be the group algebra of the torsion group G over the field
F of characteristic 0. Then U(FG) contains a free subgroup, unless G is abelian.

Problem 1, for R = Z, is still open for non-abelian non-torsion groups. Observe
that for torsion-free groups the question is related with the still unsolved Unit
Conjecture (sometimes known as Kaplanski Conjecture): If G is a torsion-free
group and F is a field then every unit of FG is of the form ug with u ∈ U(F )
and g ∈ G. If the Unit Conjecture has a positive solution for a torsion-free group
G then the U(ZG) has a free subgroup if and only if so does G.
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Theorem 4.1 gives an answer to the question of producing free pairs for non-
Hamiltonian 2-groups. If G is a Hamiltonian non 2-group then it contains Q8×Cp
for p an odd prime. Thus the following theorem of Ferraz provides a construction
of free pairs for the case not covered by Theorem 4.1. In the following theorem, φ
stands for Euler totient function.

Theorem 4.4. [8] Let G = Q8×〈g〉 with Q8 = 〈x, y〉 the quaternion group of order
8 and g and element of odd prime order p.

(1) If p = 3 then (u5,4(xg), u5,4(yg)) is a free pair in U(ZG).
(2) If p > 3 then (u3,φ(4p)(xg), u3,φ(4p)(yg)) is a free pair in U(ZG).

Somehow the proofs of Theorem 4.1 and Theorem 4.4 are parallel to the proof
of Theorem 1.1 for the Hamiltonian and non-Hamiltonian cases, respectively. For
example, the proof of Theorem 4.4 consists in proving that the natural image in
H(Z[ζ]) of the given units form a free pair. For that one uses similar arguments
than those of Section 2 for the pair (1 + ζi, 1 + ζj). For the proof of Theorem 4.1
one construct a group homomorphism 〈u, u∗〉 → GL2(C) which maps u and u∗ to

a(z) =

(
1 z
0 1

)
and a(z)T with |z| ≥ 2. Then Sanov Theorem (Theorem 2.1)

applies.
The treatment of [40] raised the following question.

Problem 4. Let R be a torsion-free ring and let a, b ∈ R with a2 = b2 = 0. When
does 1 + a and 1 + b generate a free subgroup?

In this direction Salwa has obtained the following result.

Theorem 4.5. [47] Let R be a torsion free ring. Let a, b ∈ R such that a2 = b2 = 0
and ab is not nilpotent. Then (1 + ma, 1 + mb) is a free pair of U(R) for every
sufficiently large m.

The non-nilpotence assumption in Theorem 4.5 is needed. For example, if R is
a finite dimensional F -algebra with F a subfield of C and a and b are elements of
R with a2 = b2 = 0 and ab is nilpotent then 〈1 + a, 1 + b〉 is nilpotent [36].

Now we deal with Problem 2 for a group algebra FG of a finite group G. So
assume that U(FG) contains a free subgroup and the goal is to construct a concrete
free pair in U(FG). This is easy in zero characteristic. Indeed, if G is not Hamil-
tonian then the free pair of Theorem 4.1 belongs to U(FG). If G is Hamiltonian
then it contains Q8 and hence it is enough to construct a free pair in U(QQ8). We
claim that if Q8 = 〈a, b〉 then (u = 1 + 2a, v = 1 + 2b) is a free pair in U(QQ8).
Indeed, we have an isomorphism f = (f1, f2) : QQ8

∼= Q(G/〈a2〉) × H(Q) where
the restriction of f1 to G is the natural projection Q8 → Q8/〈a2〉 and f2(a) = i
and f2(b) = j. Then f1(u)f1(1 − 2a) = f1(v)f1(1 − 2b) = −3 and f2(u) = 1 + 2i
and f2(v) = 1 + 2j. Then u and v are units of QQ8 and (f2(u), f2(v)) is a free
pair in H(Q) because it satisfies the hypothesis of the following theorem for R = Z,
a = b = −1, α = β = 2 and ν the p-adic valuation on Q(i) with p = 1 + 2i.

Theorem 4.6. [13] Let R be an integral domain of characteristic 6= 2 and let F be
the field of fraction of R. Let 0 6= a, b, α, β ∈ R and suppose that there is a valuation
ν on the field F (

√
a,
√
b), such that ν(a) = ν(b) = ν(α) = ν(β) = 0, ν(1 + α

√
a) 6=

ν(1−α
√
a) and ν(1+β

√
b) 6= ν(1−β

√
b). Then (1+αi, 1+βj) is a free pair in the

group of units of the quaternion F -algebra
(
a,b
F

)
= F [i, j : i2 = a, j2 = b, ji = −ij].
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If F has positive characteristic then bicyclic units cannot be used to construct
free pairs in FG because, in this case, they have order p (or 1). This is also true for
Bass units because they have coefficients in the prime field. With this limitations
in mind one can ask if some version of Corollary 4.3 holds in positive characteristic.
The answer was obtained in

Theorem 4.7. [15] Let F be a field of characteristic p > 0 containing an element
t transcendental over its prime field. Let G be a group which has two elements
x and y such that x has finite order, y does not normalize 〈x〉, and the subgroup
〈x, y−1xy〉 has no p-torsion. If we let

a = (1− x)yx̂, b = x̂y−1(1− xδ)

where δ = (−1)p, then

〈1 + ta, 1 + tbab, 1 + t(1− b)aba(1 + b)〉 ∼= Zp ∗ Zp ∗ Zp

Theorem 4.7 solves Problem 2 in some cases. Indeed, let x, y and t be as in
Theorem 4.7 and let u1 = 1 + ta, u2 = 1 + tbab and u3 = 1 + t(1 − b)aba(1 + b).
Then u = u1u2 and v = u2u3 is a free pair in U(FG). Problem 2 is still open for
non-absolute fields F of characteristic p > 0 and torsion groups G such that G/Op
is not abelian but G does not contain elements x and y satisfying the hypotheses
of Theorem 4.7.

Another way of constructing free pairs in U(FG) was obtained in [17], as we
describe below.

Assume that G is a finite group and F is a nonabsolute field. Let p be a prime
integer and x ∈ G of p-power order. We say that ux ∈ U(FG) is a special unit with
respect to x, if one of the following three conditions is satisfied:

(1) char(F ) = 0 and ux = (x− r)(x− s)−1, for suitable integers r and s, with
r, s ≥ 2.

(2) p 6= char(F ) > 0 and ux = (x− tr)(x− ts)−1, for suitable integers r and s
and t ∈ F is transcendental over the prime subfield of F .

(3) char(F ) = p and ux = 1 + tx̂, where t ∈ F is transcendental over the prime
subfield of F .

Theorem 4.8. [17] Let G be a finite group and F a field such that U(FG) con-
tains a free subgroup. Then G has two elements of prime power order x and y
and a free pair (ux, uy) form by special units with respect to x and y respectively.
Moreover, if Char(F ) 6= 0 then ux and uy are constructed with the same preselected
transcendental element.

5. Free groups and involutions in group algebras

In this section we consider free pairs in U(RG) formed by elements which are
either symmetric or unitary with respect to some involution ϕ. These pairs are
called free symmetric pairs and free unitary pairs respectively. In the first part of
the section ϕ = ∗, the natural involution. In the last part of the section we consider
other types of involutions on G extended linearly to an involution in RG.

The usual setting is to consider char(K) = p 6= 2, G finite with p not dividing
|G|, and apply Wedderburn Theorem. But this will lead us to study involutions in
full matrix rings over division rings, a difficult task. An alternative is to use a group
theoretical approach, guessing the result and proving the theorem by induction. In
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this case we look for the minimal counterexample and show that, in fact it does not
exists, constructing concrete free pairs, either of symmetric or unitary units.

We start recalling some definitions for an arbitrary involution ϕ in an arbitrary
ring R. An element x ∈ R is said to be symmetric (respectively, unitary) with
respect to ϕ if xϕ = x (respectively, xxϕ = xϕx = 1). A pair (u, v) of elements of
R is stable under ϕ if {u, v} is stable under ϕ (i.e. either u and v are symmetric or
v = uϕ). If R has a free symmetric pair then it is a stable free pair. Conversely,
if (u, v) is a stable free pair which is not symmetric then v = uϕ and hence then
(uuϕ, uϕu) is a free symmetric pair.

Theorem 5.1. [14] Let G be a finite group and F a nonabsolute field of character-
istic p 6= 2. Assume that G/Op(G) is neither abelian nor a Hamiltonian 2-group.
Then U(FG) contains a stable free pair with respect to the natural involution in
FG.

If U(FG) has a free symmetric pair then the symmetric units of FG do not
commute. This only happens in special cases as the following Theorem shows.

Theorem 5.2. [3] Let G be a torsion group and R a commutative ring of charac-
teristic different from 2. Then the symmetric units of RG commute if and only if
G is either abelian or Hamiltonian 2-group.

Combining Theorems 5.1 and 5.2 we can characterize the the group algebras over
finite groups which contain free symmetric pairs.

Corollary 5.3. Let G be a finite group and F a field of characteristic p 6= 2.
Then U(FG) contains a symmetric free pair with respect to the natural involution
if and only if F is nonabsolute and G/Op(G) is neither abelian nor a Hamiltonian
2-group.

Proof. Indeed, if F and G satisfy the given conditions then U(FG) contains a stable
free pair (u, v) by Theorem 5.1. Then either (u, v) or (uu∗, u∗u) is a free symmetric
pair. Assume otherwise that F and G do not satisfy the hypothesis of Theorem 5.1.
We claim that then U(FG) does not have free symmetric pairs. This is clear if F
is an absolute field. Otherwise G = G/Op(G) is either abelian or a Hamiltonian

2-group and hence the symmetric units of FG commute by Theorem 5.2. Thus, if
u and v are symmetric units of FG then uv − vu belong to the kernel K of the
natural map FG→ FG. Moreover, K is nilpotent, and hence the elements of 1+K
form a nilpotent subgroup of U(FG). Thus, the group generated by the symmetric
units is nilpotent-by-abelian and hence it does not contain a free subgroup. �

The existence of free unitary pairs with respect to the natural involution was
accomplished in

Theorem 5.4. [16] Let G be a finite group, F a nonabsolute field of characteristic
p 6= 2, P = Op(G) and G = G/P . Then the group of unitary units with respect to
the natural involution of U(FG) does not contain a free subgroup if, and only if:

(1) p = 0 or, p > 0 and P is a Sylow p-subgroup of G; and
(2) either G is abelian, or it has an abelian subgroup A of index 2 and, if the

latter occurs, then either G = A o 〈y〉 is dihedral, or A is an elementary
abelian 2 group.
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We now sketch the proof of Theorem 5.4. The initial difficulty is to have enough
unitary units. If R is a ring with an involution ∗ and if α ∈ R commutes with α∗,
then α(α∗)−1 is a unitary unit provided, of course, that α and α∗ are invertible.
If R is a F -algebra, then it is convenient to introduce a second parameter. More
precisely, if α commutes with α∗ and k ∈ F , then we have that

uk(α) = (k − α)(k − α∗)−1

is a unitary element of U(FG), provided that k−α (equivalently, k−α∗) is invertible
in R. Using this, unitary units in FG, with respect to the natural involution, are
constructed and then Tits’s Criterion (Theorem 3.2) is applied to show that a
convenient power of these elements generate a free group. But setting the stage
to apply Tits’ Criterion is not so easy. We need to begin with a locally compact
field F with respect to a real absolute value. This appears in the following lemma,
with the real absolute value determined by the non-archimedean valuation ν by
|x| = 2−ν(x).

Lemma 5.5. [51, Lemma 2.2] Let G be a finite group of order n and let F be either
Q or K(t), the rational function field in one variable over a finite prime field K.
In the latter case we also assume that the characteristic of K does not divide n.
Then there exists a field extension E of F , containing all n-th roots of unity, such
that E is locally compact with respect to the topology induced by a non-archimedean
valuation ν. Let Σ = {x ∈ E : xn = 1} and F ′ = F (Σ).

(1) If F = Q and ε ∈ Σ then there exist infinitely many integers k such that
ν(k − ε) > 0 and ν(k − δ) = 0 for every δ ∈ Σ \ {ε}.

(2) If F = K(t) and 0 6= ε ∈ F ′ then there exist infinitely many integers k such

that ν(tk − ε) > 0 and ν(tk − δ) = 0 for every δ ∈ F ′ \ {ε}.

The proof of Theorem 5.4 (the necessity part) is then reduced to a finite number
of types of groups. In each one we consider a convenient representation of G, apply
Tits’ Criterion and Lemma 5.5 to construct a free group of unitary units. For
example, one important step in it is

Theorem 5.6. [16, Proposition 2.4] Let F be a nonabsolute field of characteristic
6= 2. If G is any of the groups listed below, then the U(FG) contains a free unitary
pair with respect to the natural involution.

(1) G = Cq oCr, with q and r odd primes different, Char(F ) 6= q and Cr acts
faithfully on Cq.

(2) G = Q4r, the quaternion group of order 4r with r is relatively prime to the
characteristic of F .

(3) G = (〈x〉4 × 〈w〉4) o 〈y〉2 with xy = xw and wy = x2w.
(4) G = A o C4, where A is abelian of odd order relatively prime to Char(F )

and C4 acts in a fixed point free manner on A.
(5) G is nonabelian of order relatively prime to the characteristic of F , the

center of G is not elementary abelian 2-group, and all irreducible represen-
tations of G over the algebraic closure of F have degree at most 2.

In the remainder of the section ϕ is an arbitrary involution of the group G
extended by linearity to an involution on RG, for R a commutative ring. Again a
necessary condition for U(RG) to admit a free symmetric pair with respect to ϕ
is that symmetric units should not commute and, in particular, RG should have



SURVEY ON FREE SUBGROUPS IN GROUP RINGS 15

non-commuting symmetric elements. Group rings with non-commuting symmetric
elements with respect to an involution in G have been characterized in [35]. We
include here the case of characteristic different of 2.

Theorem 5.7. [35] Let G be a non-abelian group with an involution ϕ and R a
commutative ring of characteristic 6= 2. Then the following are equivalent:

(1) The symmetric elements of RG with respect to ϕ commute.
(2) G/Z(G) ∼= C2 × C2 and the involution is given by

gϕ =

{
g, if g ∈ Z(G);
sg, if g 6∈ Z(G);

where G′ = {1, s}.

Recall that a ring R is Von Neumman regular if for every x ∈ R there is y ∈ R
with x = xyx. It is well known that a group algebra FG is Von Neumann regular
if and only if G is locally finite and the characteristic of F is either 0 or it is p and
G has no elements of order p [4, 52] (see also [41, Theorem 1.5]). A far reaching
result on the existence of symmetric units is the following.

Theorem 5.8. [7] Let FG be a Von Neumann regular group algebra over a non-
absolute field F and let ϕ be an involution of G. Let ϕ be an involution of G
and suppose that either F is uncountable or for every finite subgroup H of G, every
division ring in the Wedderburn components of FH is either a field or a quaternion
algebra. Then the following conditions are equivalent.

(1) The symmetric elements of FG commute (see Theorem 5.7).
(2) The symmetric units of FG satisfy a group identity.
(3) U(FG) does not admit a free symmetric pair with respect to ϕ.

A more precise result was obtained in [25]. At the beginning of this section we
mentioned that we avoid a direct attack to the existence of free symmetric or unitary
pairs via Wedderburn Theorem, due to our lack of knowledge on the structure of a
division ring with an involution. This gap was filled in [24]. This was used in the
proof of the following result.

Theorem 5.9. [25] Let FG be a non-commutative Von Neumann regular group
algebra over a non-absolute field F and let ϕ be an involution of G. Then FG
contains free symmetric pairs and free unitary pairs with respect to ϕ unless G has
an abelian subgroup A of index 2 such that Aϕ = A, and one of the following holds:

(1) aϕ = a for all a ∈ A. Then U(FG) contains free symmetric pairs, but no
free unitary pairs.

(2) For all a ∈ A and all g ∈ G \A we have aϕ = ag and gϕ = g. Then U(FG)
contains free symmetric pairs, but no free unitary pairs.

(3) There exist central elements u 6= v of order 2 such that G
′

= 〈u〉, {a−1aϕ|a ∈
A} = 〈v〉, C = {(a−1)gaϕ|a ∈ A} = 〈uv〉, and g−1gϕ ∈ C for all g ∈ G \A.
Then U(FG) contains free symmetric pairs, but no free unitary pairs.

(4) G
′

= 〈u〉 is central of order 2, and for all a ∈ A and all g ∈ G \A we have
aϕ = ag and gϕ = gu. Then U(FG) contains free unitary pairs, but no free
symmetric pairs.

It is also possible to say something in the modular case, as
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Theorem 5.10. [25] Let G be a locally finite group, let ϕ be an involution of G,
and let F be a nonabsolute field of positive characteristic p 6= 2. Then the group
ring FG contains free symmetric pairs and free unitary pairs with respect to ϕ,
except when for every finite, ϕ-stable subgroup X of G, the group G = X/Op(X) is
either abelian or one of the exceptions listed in Theorem 5.9

6. Free groups and involutions in integral group rings

In this section ϕ is an involution on the group G and we consider free pairs in
U(ZG) satisfying same condition with respect to ϕ. The first natural question is
whether Theorem 4.1 still holds true for an arbitrary involution. The answer is
negative and this can be easily deduced from Theorem 5.7. Indeed, if G/Z(G) ∼=
C2 ×C2 and ϕ satisfies the conditions of Theorem 5.7 then U(ZG) does not admit
free symmetric pairs and hence it does not admits stable free pairs either. So (u, uϕ)
is not a free pair for any non-trivial unit. In particular, if G is not Hamiltonian
(for example, G = Q8 ×C4) then ZG has non-trivial bicyclic units u but (u, uϕ) is
not a free group for any of them.

Unfortunately, there is no general result as Theorem 4.1 for an arbitrary invo-
lution of ZG, even in the case when symmetric elements do not commute as the
following example shows.

Example 6.1. [20] Let p be an odd prime and let P be an extra-special p-group, i.e.
Z(P ) = P ′ and it has order p. Let ϕ be an involution of P such that xϕx−1 ∈ Z(G)
for every x ∈ G. Then ZP has no free bicyclic pairs of the form (u, uϕ).

The bulk of the proof of the statement of Example 6.1 consist in proving that
for all integers i, j either ui(uϕ)i and uj(uϕ)j , or (uϕ)iui and (uϕ)juj commute,
and so (u, uϕ) is not a free pair.

Thus the question of possible generalizations of Theorem 4.1 should be reformu-
lated in a different form. We propose the following.

Problem 5. For a non-Hamiltonian group G, classify the involutions ϕ of G and
the bicyclic units u of ZG such that (u, uϕ) is a free pair.

Problem 6. For a non-Hamiltonian group G, classify the involutions ϕ of G such
that ZG admits a free pair of the form (u, uϕ) for some bicyclic unit u.

The following result gives an answer to Problem 5 for the finite groups G with
G/Z(G) ∼= C2 × C2 (i.e. the groups appearing in Theorem 5.2.)

Theorem 6.2. [6] Let ϕ be an involution on a finite group G such that G/Z(G) ∼=
C2 ×C2 and let s be the unique non-trivial commutator of G. Let x, y ∈ G be such
that u = 1 + (1− x)yx̂ is a non-trivial bicyclic unit of ZG. Put

T =

{
〈x2, xϕx−1〉, if xϕx−1 ∈ Z(G);
〈x2, (xϕ)2〉, otherwise.

Then (u, uϕ) is a free pair in U(ZG) if and only if s ∈ T . Otherwise, 〈u, uϕ〉 is a
torsion-free abelian group.

A more general situation is considered in [20]. For example we have

Theorem 6.3. [20] Let G a group with an involution ϕ and let x, y ∈ G such that
u = 1 + (1− x)yx̂ is a non-trivial bicyclic unit of ZG. Assume that 〈xϕ〉 = 〈x〉 and
xy 6∈ 〈x〉.
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(1) If yϕxy ∈ 〈x〉, then (u, uϕ) is a free pair.
(2) Assume that yϕy ∈ 〈x〉. Then (u, uϕ) is a free pair, unless xϕ = x and
|x| = 3. In the exceptional case (u2, (uϕ)2) is a free pair.

Statement (2) of Theorem 6.3 generalizes Theorem 4.1 because for the natural
involution both x∗ = x−1 and y∗y = 1 belong to 〈x〉 and if |x| = 3, then x∗ 6= x.

In contrast with Example 6.1 we have the following affirmative answer to Prob-
lem 6 in a less general setting.

Theorem 6.4. [20] Let G be a finite nonabelian group and ϕ an involution on G.
If all Sylow subgroups of G are abelian, then U(ZG) contains a free pair (u, uϕ) for
some bicyclic unit u.

We briefly sketch the proof of Theorem 6.4. Let σ be the composition of ϕ and the
natural involution. Then σ is automorphism of G such that σ2 = 1 and a subgroup
G is σ invariant if and only if it is ϕ-invariant. Observe that the hypothesis about
the Sylow subgroups of G is inherited by subgroups and quotients of G. Hence,
arguing by induction on the order of G one may assume that every σ-invariant
proper subgroup of G is abelian. It can be also proved that one may assume that
G/N is abelian for every non-trivial σ-stable normal subgroup of G because if u
is a bicyclic unit of G/N then un is the image of a bicyclic unit of G for some
integer n. Thus we may assume that every σ-invariant proper subgroup of G is
abelian and every proper quotient G/N , with N a normal σ-invariant subgroup of
G, is abelian. This is a strong restriction on G as Lemma 6.5 below shows. As G
cannot be a p-group we conclude that G = AoX as in case (2) of Lemma 6.5. The
proof concludes by proving that some concrete bicyclic unit u satisfy the desired
condition. The form of u varies depending on whether |G| is even and A contains
a non-trivial element a such that aϕ = a and 〈a〉�G or not.

Lemma 6.5. [20] Let G be a finite nonabelian group and σ and automorphism of
G with σ2 = 1. Assume that every proper σ-stable subgroup of G is abelian and
every quotient G/N with N a non-trivial σ-stable normal subgroup of G is abelian.
Then one of the following conditions hold.

(1) G is a p-group for some prime p, |G′| = p and |G : Z(G)| = p2, or
(2) G is the semidirect product G = AoX, where A is an elementary abelian q-

group for some prime q, X is cyclic of prime order p, p 6= q, and Z(G) = 1.

Another interesting question that can be asked it the following: Is there an
analogous of Theorem 4.1 for Bass units? We can see immediately that the answer
is no for the natural involution, since in this case, u = uk,m(x) is a polynomial
in x and hence u and u∗ commute. In this situation we also have the additional
complication that not all element x of G produces a noncentral Bass unit of infinite
order. This yields the following question.

Problem 7. Let ϕ be an involution of G and u = uk,m(x) a Bass unit of infinite
order such that x and xϕ do not commute (in particular xϕ 6∈ 〈x〉 and hence ϕ is
not the natural involution). Under which conditions (u, uϕ) is a free pair?

We have the following partial solution which provides stable free pairs of Bass
units.

Theorem 6.6. [21] Let G be a finite nonabelian group of order prime to 6 and ϕ
an involution of G. Then, for some prime p and appropriate parameters k and m,
we have either:
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(1) There exist two p-elements x and y such that (uk,m(x), uk,m(y)) is a free
ϕ-symmetric pair of Bass units, or

(2) There exists a p-element x such that (uk,m(x), uk,m(xϕ)) is a free pair.

For symmetric groups we have.

Theorem 6.7. [21] Let n be an odd integer with n ≥ 5. Let ϕ be an involution on
the symmetric group Symn other than the natural involution. Then Symn has a
d-cycle x and suitable parameters k and m such that (uk,m(x), uk,m(xϕ)) is a free
pair.

7. Free pairs formed by bicyclic or Bass units

Bass units and bicyclic units have had a relevant role in the history of units in
integral group rings. For example, Bass proved that if G is a cyclic group then the
group generated by the Bass units of ZG has finite index in U(ZG) [2]. This result
was extended by Bass and Milnor to arbitrary abelian groups (see [50]). For non-
abelian groups, Sehgal and Ritter and Jespers and Leal have proved that the group
generated by Bass and bicyclic units have finite index in U(ZG) for many groups
(see [45, 46, 32, 50]). Furthermore Bass units and bicyclic units have been important
ingredients of many results in the previous sections. The following questions arise
naturally

Problem 8. Find conditions for two arbitrary Bass units (respectively, two bicyclic
units, one bicyclic unit and a Bass unit) to form a free pair.

Problem 9. Construct free pairs formed by two bicyclic units, two Bass units or
one bicyclic and one Bass unit.

Of course some minimum requirements for the group should be imposed. For
instance, the group should not be abelian and in the versions of Problem 9 where
bicyclic unit are involved the group should not be Hamiltonian. With this assump-
tion Theorem 4.1 solves Problem 9 for the case of two bicyclic units of different type
(i.e one bicyclic of the form 1 + (1− g)hĝ and the other of the form 1 + ĝh(1− g)).
For bicyclic units of the same type we have the following example

Example 7.1. [36, 37] Let G = D2n, be the dihedral group of order 2n. Assume
that n is not multiple of 12. Let u and v bicyclic units of ZG of the same type.
Then either u and v commute or form a free pair.

It is not clear what happens if 12 divides n. In fact the statement of Example 7.1
holds true if 12 divides n if and only if

√
3 is a free point. Apparently this is a hard

question. The requirement of only using bicyclic units of the same type is necessary.
For example, if D6 = 〈a〉3 o 〈b〉2 and we take the bicyclic units of different type
u = 1 + (1− b)a(1 + b) and v = 1 + (1 + ab)a(1− ab) then 〈u, v〉 contains a [5].

Non-trivial Bass units may have finite order. More precisely, consider the Bass
unit uk,m(g) and let n be the order of g. If k ≡ 1 mod n then uk,m(g) = 1;
if k ≡ −1 mod n then uk,m(g) = g−m; otherwise (i.e. if k 6≡ ±1 mod n) then
uk,m(g) has infinite order. Thus, if there is a Bass unit of infinite order based on
g then |g| 6= 1, 2, 3, 4 and 6. Therefore the version of Problem 9 which involves a
Bass unit requires some condition on the order of the group. This partially justify
the assumption on the order of G in the following theorem.

Theorem 7.2. Let G be a finite nonabelian group of order prime to 6. Then
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(1) [19] ZG has a free pair formed by Bass units based on elements of prime
power order.

(2) [22] ZG has a bicyclic unit u and a Bass unit v such that (un, v) is a free
pair, for sufficiently large positive integer n.

The proof of Theorem 7.2 is a real “tour de force”, and it is done by induction on
the order of the group to reduce to a few cases and for these cases one uses represen-
tation theory to be able to apply Theorem 3.3 for statement (1) and Theorem 3.5
for statement (2). . In [42], the interested reader can find a gentle introduction to
the proof of (1). We now present an overview of the proof of Theorem 7.2.

Using the induction argument as in the sketch of the proof of Theorem 6.4 one
may assume without loss of generality that every proper subgroup and every proper
quotient of G is abelian. By [43], it follows that G = A oX, where X is cyclic of
prime order p and one of the following condition hold for A:

(1) A is cyclic of prime power order.
(2) A is elementary abelian of order p2

(3) A is elementary abelian q-group for some prime q 6= p and X acts faithfully
and irreducible on A.

Now enters the non-linear complex irreducible representations of the group G =
AoX as above. They are all induced from the C-linear representations of A and, in
particular, they have degree p. Our objective is to apply Theorem 3.3 on S = ρ(u)
and T = ρ(v) and Theorem 3.5 on S = ρ(u) and τ = ρ(w − 1) for suitable Bass
units u and v and a bicyclic unit w and ρ a non-linear irreducible representation
of G. If u = uk,m(g), with |g| = d, then S is diagonalizable and the eigenvalues
of ρ(u) are of the form uk,m(εi) with ε a primitive d-root of unity. Thus we need
to have some control of the maximum and minimum values of uk,m(ε). This is
accomplished with the following

Lemma 7.3. [42] Let p ≥ 5 be a prime, set d = pn, and let ε be a primitive complex
d-th root of unity. Assume that k 6≡ 0,±1 (mod p).

(1) |uk,m(εa)| = |uk,m(εb)| if and only if a ≡ ±b (mod d).
(2) uk,m(εa) = uk,m(εb) if and only if either a ≡ b (mod d), or a ≡ −b

(mod d), and d divides ma.

This lemma tells that if we are restricted to Bass units of ZG, with G as above,
based on elements of order pn, in our case p ≥ 5, then the maximum r (respectively,
the minimum s) of |uk,m(εa)| is reached by two values of a modulo pn. So, with
the notation of Theorem 3.3, it is necessary to verify that the eight intersections
X± ∩ (Y0 ⊕ Y±) and Y± ∩ (X0 ⊕X±) are all trivial. The proof of statement (1) is
now complete by checking this for suitable Bass units, which are chosen differently
in the three cases (1), (2) and (3). For the proof of statement (2) we should check
that the four intersection K ∩X± = I ∩ (X0 ⊕X±) are trivial (now we are using
the notation of Theorem 3.5). Unfortunately this does not hold in some cases. This
difficulty is surpassed by observing that W = (X+ ∩ K) + (X− ∩ K) is invariant
by the endomorphisms S and τ (provided that u is selected in an appropriated
way). Thus they induce endomorphisms S and µ in V = V/W . The proof finishes
checking the hypothesis of Theorem 3.5 for S and µ.

Stretching Problem 9 we have the following
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Problem 10. Given a bicyclic (respectively, Bass) unit u in ZG. Construct a
bicyclic or Bass cyclic unit v such that (u, v) is a free pair, or at least (un, vn) is a
free pair for some n.

Again we should impose some minimal condition on the unit u. At least u should
be non-trivial. This is enough for bicyclic units, by Theorem 4.1, provided that one
allows using bicyclic units of different type. However we do not know the answer
for the following question.

Problem 11. Does for every non-trivial bicyclic unit u in ZG exist a bicyclic unit
v of the same type such that (u, v) is a free pair?

If u = uk,m(g) and n = |g|, one should require at least that k 6≡ ±1 mod n, for
otherwise u have finite order. However, this is not enough. For example, if G is
a dihedral group then some power of u is central in ZG. Thus, we at least should
require that u has infinite order modulo the center. In the positive side we have
the following result.

Theorem 7.4. [23] Let G be a solvable group. If u is a Bass unit of ZG based on
an element of prime order then ZG contains a Bass unit, or a bicyclic unit v, such
that (un, vn) is free pair for some integer n.

We observe that there are finite solvable groups G having a Bass unit u satisfying
the hypothesis of Theorem 7.4 which does not admit free pairs (un, vn) with v a
Bass unit [23, Example 2.2] and other examples which does not admit free pairs
(un, vn) with v a bicyclic unit [23, Example 2.3].

Another type of unit to which we can draw our attention are the alternating
units. They are defined as follows. For an odd integer consider the polynomial

fc =

c−1∑
i=0

(−1)iXi.

For g a group element of finite odd order n and c a positive integer with (c, n) = 1,
the alternating unit based on g with parameter c is

uc(g) =

{
fc(g), if c is odd;
fc+n(g), if c is even.

See [50, Lemma 10.6] for a proof that uc(g) is a unit in Z〈g〉. Notice uc+2n(g) =
uc(g), so that it is enough to use 1 < c < n. Moreover, if n < 5 then the only
existing alternating units are trivial.

We can ask if there is a result analogous to Theorem 7.4 for alternating units.
In this direction we have

Theorem 7.5. [26] Let G be a group of odd order with a non-central element x ∈ G.
Assume that the order of x is either prime ≥ 5 or of the form 3l, with l ≥ 2. Then
there exist an alternating unit u = uc(x) and a unit v, being either a bicyclic or an
alternating unit, such that (um, vm) is a free pair for all sufficiently large integers
m.

8. Subgroups of finite index constructed from free subgroups

There is very little information available on the structure of U(ZG) for G a finite
non-abelian group. Basically the only general results known on U(ZG) is that it
is finitely presented and has a torsion-free subgroup of finite index. Given the
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ubiquity of free subgroups in U(ZG) it is natural to ask whether one can construct
large subgroups of U(ZG) using free subgroups as building blocks and some natural
operations with this groups. A somehow naive question is whether U(ZG) might
have a free subgroup of finite index. The answer is kind of disappointing:

Theorem 8.1. [30] Let G be a finite group. Then U(ZG) has a (non-abelian) free
subgroup of finite index if and only if G is isomorphic to either D6, D8, Q12 or
C4 o C4.

A more satisfactory result is the following theorem. In the remainder of the
section free groups include cyclic or even trivial groups.

Theorem 8.2. [31, 38, 35] The following conditions are equivalent for a finite group
G:

(1) U(ZG) has a subgroup of finite index which is a (finite) direct product of
free products of (finitely many finitely generated) abelian groups.

(2) U(ZG) has a subgroup of finite index which is a (finite) direct product of
(finitely generated) free groups.

(3) Every non-abelian simple quotient of QG is isomorphic to either M2(Q),(
−1,−3

Q

)
or H(K) with K = Q,Q(

√
2) or Q(

√
3).

(4) G is either abelian or isomorphic to H×Ck2 , where H is one of the following
groups:
• 〈x, y | x4 = y4 = (x2, y) = (x, y2) = (x, (x, y)) = (y, (x, y)) = 1〉,
• 〈x, y1, . . . , yn | x4 = y2

i = (yi, yj) = (x2, yi) = ((x, yi), yj) = ((x, yi), x) =
1〉,

• 〈x, y1, . . . , yn | x4 = y4
i = y2

i (x, yi) = (yi, yj) = (x2, yi) = (y2
i , x) = 1〉,

• 〈x, y1, . . . , yn | x2 = y2
i = (yi, yj) = ((x, yi), yj) = (x, yi)

2 = 1〉,
• 〈x, y1, . . . , yn | x2 = y4

i = y2
i (x, yi) = (yi, yj) = ((x, yi), x) = 1〉,

• 〈x, y1, . . . , yn | x4 = y4
i = x2y2

1 = y2
i (x, yi) = (yi, yj) = (y2

i , x) = 1〉,
• 〈x, y1, . . . , yn | x4 = x2y4

i = y2
i (x, yi) = (yi, yj) = 1〉,

• Z o 〈x〉 where Z is an elementary abelian 3-group, x has order 2 or 4
and zx = z−1 for every z ∈ Z,

• Z o 〈x, y〉 where Z is an elementary abelian 3-group, Q8
∼= 〈x, y〉 and

zx = zy = z−1 for every z ∈ Z.

Finally the following theorem classify the finite groups G such that U(ZG) con-
tains a subgroup of finite index which is a direct product of free-by-free groups.
A group U if free-by-free if it has a normal free subgroup F such that U/F is
free, equivalently U is a semidirect product of a free normal subgroup by a free
subgroup. The notation N : A used in the following theorem represents a group
G with a normal subgroup N such that G/N ∼= A. In all the cases N and A is
abelian and are represented as direct product of cyclic groups and some additional
information is provided to completely describe G. The natural image of an element
of x ∈ G in G/N ∼= A is denoted x.

Theorem 8.3. [33] For a finite group G the following statements are equivalent.

(1) U(ZG) has a subgroup of finite index which is a direct product of free-by-free
groups.

(2) Every simple quotient of QG is either a field, a totally definite quaternion
algebra or M2(K), where K is either Q, Q(i), Q(

√
−2) or Q(

√
−3).
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(3) G is either abelian or an epimorphic image of A ×H, where A is abelian
and one of the following conditions holds:
(a) A has exponent 6 and H is one of the following groups:

• W =
(
〈t〉2 × 〈x2〉2 × 〈y2〉2

)
: (〈x〉2 × 〈y〉2), with t = (y, x) and

Z(W ) = 〈x2, y2, t〉.

• W1n =

(
n∏
i=1

〈ti〉2 ×
n∏
i=1

〈yi〉2
)
o〈x〉4, with ti = (yi, x) and Z(W1n) =

〈t1, . . . , tn, x2〉.

• W2n =

(
n∏
i=1

〈yi〉4
)
o 〈x〉4, with ti = (yi, x) = y2

i and Z(W2n) =

〈t1, . . . , tn, x2〉.
(b) A has exponent 4 and H is one of the following groups:

• V =
(
〈t〉2 × 〈x2〉4 × 〈y2〉4

)
: (〈x〉2 × 〈y〉2), with t = (y, x) and

Z(W ) = 〈x2, y2, t〉.

• V1n =

(
n∏
i=1

〈ti〉2 ×
n∏
i=1

〈yi〉4
)
o〈x〉8, with ti = (yi, x) and Z(V1n) =

〈t1, . . . , tn, y2
1 , . . . , yn, x

2〉.

• V2n =

(
n∏
i=1

〈yi〉8
)
o 〈x〉8, with ti = (yi, x) = y4

i and Z(V2n) =

〈ti, x2〉.

• U1 =

( ∏
1≤i<j≤3

〈tij〉2 ×
3∏
k=1

〈y2
k〉2

)
:

(
3∏
k=1

〈yk〉2
)

, with tij = (yj , yi)

and Z(U1) = 〈t12, t13, t23, y
2
1 , y

2
2 , y

2
3〉

• U2 =
(
〈t23〉2 × 〈y2

1〉2 × 〈y2
2〉4 × 〈y2

3〉4
)

:

(
3∏
k=1

〈yk〉2
)

, with tij =

(yj , yi), y
4
2 = t12, y4

3 = t13 and Z(U2) = 〈t12, t13, t23, y
2
1 , y

2
2 , y

2
3〉.

(c) A has exponent 2 and H is one of the following groups:
• T = (〈t〉4 × 〈y〉8) : 〈x〉2, with t = (y, x) and x2 = t2 = (x, t).

• T1n =

(
n∏
i=1

〈ti〉4 ×
n∏
i=1

〈yi〉4
)
o 〈x〉8, with ti = (yi, x), (ti, x) = t2i

and Z(T1n) = 〈t21, . . . , t2n, x2〉.

• T2n =

(
n∏
i=1

〈yi〉8
)
o 〈x〉4, with ti = (yi, x) = y−2

i and Z(T2n) =

〈t21, . . . , t2n, x2〉.

• T3n =

(
n∏
i=2

〈y2
1t1〉2 × 〈y1〉8 ×

n∏
i=2

〈yi〉4
)

: 〈x〉2, with ti = (yi, x),

(ti, x) = t2i , x
2 = t21, Z(T3n) = 〈t21, y2

2 , . . . , y
2
n, x

2〉 and, if i ≥ 2
then ti = y2

i ).
(d) H = M o P = (M × Q) : 〈u〉2, where M is an elementary abelian

3-group, P = Q : 〈u〉2, mu = m−1 for every m ∈ M , and one of the
following conditions holds:
• A has exponent 4 and P = C8.
• A has exponent 6, P = W1n and Q = 〈y1, . . . , yn, t1, . . . , tn, x

2〉.
• A has exponent 2, P = W21 and Q = 〈y2

1 , x〉.
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