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Abstract

We prove that the group generated by the bicyclic units of ZSn has
torsion for n ≥ 4. This answer a question of [5].

Let G be a finite group. For every x ∈ G of order k let x̂ =
∑k−1

i=0 xi ∈
ZG. The bicyclic units of ZG are the units of the form

b(x, y) = 1 + x̂y(1− x)

for x, y ∈ G. The following appears in [5] as Problem 19:

Problem: Is the group 〈b(x, y) : x, y ∈ G〉, generated by the
bicyclic units of ZG, torsionfree?

As a consequence of [5, Theorem 31.3] it is easy to prove that the problem
has a positive answer for several groups, including dihedral groups.

The units of the form b′(x, y) = 1 + (1 − x)yx̂ are also called bicyclic
units and in fact the problem was stated in [5] for the group generated by the
b′(x, y)’s. It is obvious that both versions are equivalent. We have chosen
the b(x, y)’s for computational reasons.

In this paper we show that the problem has a negative answer proving
the following theorem.

Theorem 1 For every positive integer n let Sn be the symmetric group on
n letters and Bn the group generated by the bicyclic units of the symmetric
group ring ZSn. Then

Bn ∩ Sn =


1 if n ≤ 3
〈(1 2)(3 4), (1 3)(2 4)〉 if n = 4
An or Sn if n ≥ 5
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1



Since S2 is abelian and B3 is free [3] Theorem 1 is clear of n ≤ 3. We
consider Sn embedded in Sn+1 in the obvious way so that Bn ⊆ Bn+1. If
g, x, y ∈ G then g−1b(x, y)g = b(g−1xg, g−1yg). Therefore Bn is normalized
by Sn and hence Bn∩Sn is a normal subgroup of Sn. Thus to prove Theorem
1 it is enough to prove

〈(1 2)(3 4), (1 3)(2 4)〉 = B4 ∩ S4 (1)

In the remainder of the paper we prove this equality and in the way we
obtain a full description of B4 in terms of some groups of integral matrices.

Consider the following four elements of S4:

a = (1 2)(3 4), b = (1 3)(2 4), c = (1 2 3), d = (1 2).

Recall that S4 = 〈a, b〉 o 〈c, d〉 and 〈c, d〉 = S3. Let τ : S4 → S3 be the
projection given by the previous decomposition, that is τ is the identity
in 〈c, d〉 and Ker τ = 〈a, b〉. Extend τ by linearity to a homomorphism of
rational algebras QS4 → QS3, also denoted by τ . S4 has two inequivalent
representations of degree 3. We take from [1] ρ1 and ρ2 given by

ρ1(a) =

 −1 0 0
0 1 0
0 0 −1

 ρ1(b) =

 1 0 0
0 −1 0
0 0 −1



ρ1(c) =

 0 1 0
0 0 1
1 0 0

 ρ1(d) =

 0 0 1
0 1 0
1 0 0


and

ρ2(g) =
{

ρ1(g), if g ∈ A4

−ρ1(g), if g 6∈ A4.

(The representation ρ1 and ρ2 are denoted ρ and ρ′ in [1]. Note that there
is an error in the definition of ρ in [1] where ρ(a) and ρ(b) should be inter-
changed.)

Extend ρ1 and ρ2 to homomorphisms of rational algebras QS4 → M3(Q)
and let ρ : QS4 → M3(Q)2 be the direct sum of ρ1 and ρ2. It is well known
that τ ⊕ ρ : QS4 → QS3 ⊕M3(Q)2 is an isomorphism.

For an arbitrary finite group G, V (ZG) denotes the group of units of
ZG of augmentation 1. The homomorphisms τ and ρ induce group homo-
morphisms τ : V (ZS4) → V (ZS3) and ρ : V (ZS4) → SL3(Z)2. Clearly
τ(B4) = B3. Since B3 is free [3], one has that

B4 = (B4 ∩K) o B3, (2)
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where K = {α ∈ V (ZS4) : τ(α) = 1}. Moreover, ρ is an isomorphism
between K and ρ(K) (because τ ⊕ ρ is an isomorphism) and the last has
been described in [1]. Since we need this description we are going to recall
it.

Let Ê(n) denote the principal congruence group of level n, of SL3(Z),
(n ∈ Z); that is

Ê(n) = {A ∈ SL3(Z) : A ≡ 1 mod n}.

Let

X = {(xij) ∈ Ê(2) : x12 + x23 + x31 ≡ x13 + x21 + x32 mod 4}

and

X1 = {(xij) ∈ Ê(2) : x12 + x23 + x31 ≡ x13 + x21 + x32 ≡ 0 mod 4}.

Let G = 〈Q,R, Qt, Rt, Ê(8)〉 where

Q =

 1 0 4
4 5 0
0 0 5

 , R =

 5 0 0
4 1 0
0 4 5


and At denotes the transpose of a matrix A. Finally let

T =

 17 0 −4
0 1 0

−4 0 1

 .

(Note that the matrices Q and R are different from the corresponding matri-
ces in [1]. This does not affect the definition of G because they are congruent
to them module 8.)

Now we are ready to give the description of ρ(K) in terms of integral
matrices.

Theorem 2 [1]

ρ(K) = {(A, T sAG) : A ∈ X, G ∈ G, s = 0, if A ∈ X1 and s = 1, otherwise}

For a permutation σ ∈ Sn and a matrix A ∈ Mn(R) let Aσ denote the
matrix obtained by permuting the rows and columns of A by σ, that is
Aσ = P−1

σ APσ where Pσ is the permutation matrix defined by

Pσ(i, j) =
{

1, if j = σ(i)
0, otherwise.
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For every x, y ∈ S4 let

κx,y = b(x, y) · τ(b(x, y))−1 ∈ B4 ∩K

and let K0 be the group generated by all the κx,y’s.

Remark 3 Let H be a group of units of ZS4 normalized by S3 = 〈c, d〉.
Then ρi(H) is normalized by ρi(S3) (i = 1, 2). This implies that Aσ ∈ ρi(H)
for every A ∈ ρi(H) and σ ∈ S3.

Some groups normalized by S3 are B4, K and Ker ρi (i = 1, 2). Another
example is K0 because τ acts as the identity in S3.

For every 1 ≤ i 6= j ≤ 3 and n an integer let eij(n) be the 3× 3 matrix
having n in the (i, j) entry and zeroes elsewhere. Set Eij(n) = I + eij(n).
Let E(n) = 〈Eij(n) : 1 ≤ i 6= j ≤ 3〉.

Lemma 4 1. SL3(Z) = E(1).

2. Ê(n) is the normal subgroup of SL3(Z) generated by E12(n).

3. E(n) = {(aij) ∈ SL3(Z) : n|aij if i 6= j and aii ≡ 1 mod n2}, in
particular Ê(n2) ⊆ E(n).

4. Ê(n) = 〈An, Ac
n, E(n)〉, (recall that c = (1 2 3)) where

An =

 1 0 0
0 1 + n n
0 −n 1− n

 .

5. X = 〈A2
σ, Bσ, Ê(4) : σ ∈ S3〉 where B = E23(2) · E12(2).

Proof. 1. See [4, 1.2.11].
2. See [4, 1.2.26] and, [2, Corollary 4.3] or the proof of [4, 4.3.1].
3. We first prove Ê(n2) ⊆ E(n). By 1 and 2 it is enough to show that

Eij(1)E12(n2)Eij(1)−1 belongs to E(n) for every i 6= j. This is obvious if
(i, j) 6= (2, 1). Finally

E21(1)E12(n2)E21(1)−1 = E21(1)[E13(n), E32(n)]E21(1)−1

= [E21(1)E13(n)E21(1)−1, E21(1)E32(n)E21(1)−1]
= [E23(n)E13(n), E31(−n)E32(n)]

Let E = {(aij) ∈ SL3(Z) : n|aij if i 6= j and aii ≡ 1 mod n2}. Plainly
Ê(n2) ⊆ E(n) ⊆ E. Now notice that if A = I + n(aij) and B = I + n(bij),
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then AB ≡ I + n(aij + bij) mod n2. Using this it is easy to see that
E(n)/Ê(n2) ' Z6

n ' E/Ê(n2), so that E(n)/Ê(n2) = E/Ê(n2) and hence
E(n) = E.

4 and 5. A trivial verification shows that Ê(n)/Ê(n2) = 〈An, Ac
n, E(n)〉/Ê(n2)

and X/Ê(4) = 〈A2
σ, Bσ, Ê(4) : σ ∈ S3〉/Ê(4).

Remark 5 Let H be as in Remark 3. By Lema 4 to prove that E(n) ⊆
ρi(H) it is enough to show that Eij(n) ∈ ρi(H) for some i 6= j and to prove
that Ê(n) ⊆ ρi(H) it is enough to prove additionally that An ∈ ρi(H).

Lemma 6 ρ1(K0) = X.

Proof. By Theorem 2, ρ1(K0) ⊆ X. To prove the other inclusion we are
going to use Lemma 4 and Remarks 3 and 5 several times without specific
mention.

Note that ρ1(κa,cd) = E21(4) and A2 = ρ1(κbc2d,a). Since A4 = A2
2,

Ê(4) ⊆ ρ1(K0).
The proof is completed by showing that B ∈ ρ1(K0). Let C = ρ1(κabcd,ac2)

and D = ρ1(κac2,abc2d). Consider B1 = C · (D ·A2)c. Then B ∈ B1Ê(4) and
therefore B ∈ ρ1(K0). This finish the proof.

Lemma 7 G = ρ2(K0 ∩Ker ρ1)

Proof. Let N = K0 ∩Ker ρ1. By Theorem 2, ρ2(N) ⊆ ρ2(K ∩ ker ρ1) ⊆ G.
We obtain the other embedding by proving Ê(8) ⊆ ρ2(N) and Q,Qt, R, Rt ∈
ρ2(N). Again we are going to use Lemma 4 and Remarks 3 and 5 without
specific mention.

Note that N is normalized by S3 and ρ(κb,bc · κ−1
b,cd) = (1, E12(8)), so

that E(8) ⊆ ρ2(N). Let b = (κbc2,ad · κ−1
abcd,a)

2 · (κab,ad · κab,ac2)−1 ∈ N and
B = ρ2(b). Then

B ≡

 41 48 0
48 25 0
56 16 1

 mod 64

and hence A8 ∈ (B3)c2dE(8). Thus A8 ∈ ρ2(N) and we conclude Ê(8) ⊆
ρ2(N).

Consider the following elements of ρ2(N):

Q1 = ρ2(κc2d,ac2 · κ−1
ac2d,ad

),
Q2 = ρ2(κd,ac2 .κ

−1
d,b),

Q3 = ρ2(κcd,ac2d.κ
−1
bcd,ac2

).
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Then
R ≡ Q1 ·Q2 mod 8 and Rt ≡ Q2 ·Q3 mod 8

and hence R, Rt ∈ ρ2(N). Since Q = Rc−1
, we have that Q,Qt ∈ ρ2(N).

Proposition 8 B4 = K o B3.

Proof. By (2), it is enough to show that K ⊆ B4. Since K0 ⊆ B4 ∩K ⊆ K
and the restriction of ρ to K is injective it is enough to prove that ρ(K) ⊆
ρ(K0). By Theorem 2, any element of ρ(K) is of the form (A, T sAG) with
A ∈ X, G ∈ G and s = 0 if A ∈ X1 and s = 1 otherwise. By Lemma 6,
A ∈ ρ1(K0). Thus, by Theorem 2, we have that (A, T sAG1) ∈ ρ(K0) for
some G1 ∈ G. By Lemma 7, (1, G) and (1, G1) belong to ρ(K0). Then

(A, T sAG) = (A, T sAG1) · (1, G1)−1 · (1, G) ∈ ρ(K0).

Proposition 8 contains the announced description of B4. Indeed, B3 is
isomorphic to the congruence subgroup of level 3 of SL2(Z), which is free
of rank 3 [3]. Moreover we have already mention that ρ is an isomorphism
between K and ρ(K) and the last has been described in Theorem 2.

Proof of (1). By Proposition 8, 〈a, b〉 ⊆ K ∩ S4 ⊆ B4 ∩ S4. Since the last
is a normal subgroup of S4 then B4 ∩ S4 is either 〈a, b〉, A4 or S4. We prove
B4 ∩S4 = 〈a, b〉 by proving that B4 has only 2-torsion (that is, every torsion
element of B4 has order ≤ 2).

By Proposition 8, B4 = (K ∩B4) oB3. Let b be a torsion element of B4.
Then b = gh with g ∈ K∩B4 and h ∈ B3. However, h is a torsion element of
B3 and hence h = 1, because B3 is torsionfree. Therefore b = g is a torsion
element of K. Since K ' ρ(K) ⊆ Ê(2)2, the order of b = g is ≤ 2.
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