Bicyclic units of $\mathbb{Z} S_{n}$

Aurora Olivieri and Ángel del Río*

Abstract

We prove that the group generated by the bicyclic units of $\mathbb{Z} S_{n}$ has torsion for $n \geq 4$. This answer a question of [5].

Let G be a finite group. For every $x \in G$ of order k let $\hat{x}=\sum_{i=0}^{k-1} x^{i} \in$ $\mathbb{Z} G$. The bicyclic units of $\mathbb{Z} G$ are the units of the form

$$
b(x, y)=1+\hat{x} y(1-x)
$$

for $x, y \in G$. The following appears in [5] as Problem 19:
Problem: Is the group $\langle b(x, y): x, y \in G\rangle$, generated by the bicyclic units of $\mathbb{Z} G$, torsionfree?

As a consequence of [5, Theorem 31.3] it is easy to prove that the problem has a positive answer for several groups, including dihedral groups.

The units of the form $b^{\prime}(x, y)=1+(1-x) y \hat{x}$ are also called bicyclic units and in fact the problem was stated in [5] for the group generated by the $b^{\prime}(x, y)$'s. It is obvious that both versions are equivalent. We have chosen the $b(x, y)$'s for computational reasons.

In this paper we show that the problem has a negative answer proving the following theorem.

Theorem 1 For every positive integer n let S_{n} be the symmetric group on n letters and \mathcal{B}_{n} the group generated by the bicyclic units of the symmetric group ring $\mathbb{Z} S_{n}$. Then

$$
\mathcal{B}_{n} \cap S_{n}= \begin{cases}1 & \text { if } n \leq 3 \\ \langle(12)(34),(13)(24)\rangle & \text { if } n=4 \\ A_{n} \text { or } S_{n} & \text { if } n \geq 5\end{cases}
$$

[^0]Since S_{2} is abelian and \mathcal{B}_{3} is free [3] Theorem 1 is clear of $n \leq 3$. We consider S_{n} embedded in S_{n+1} in the obvious way so that $\mathcal{B}_{n} \subseteq \mathcal{B}_{n+1}$. If $g, x, y \in G$ then $g^{-1} b(x, y) g=b\left(g^{-1} x g, g^{-1} y g\right)$. Therefore \mathcal{B}_{n} is normalized by S_{n} and hence $\mathcal{B}_{n} \cap S_{n}$ is a normal subgroup of S_{n}. Thus to prove Theorem 1 it is enough to prove

$$
\begin{equation*}
\langle(12)(34),(13)(24)\rangle=\mathcal{B}_{4} \cap S_{4} \tag{1}
\end{equation*}
$$

In the remainder of the paper we prove this equality and in the way we obtain a full description of \mathcal{B}_{4} in terms of some groups of integral matrices.

Consider the following four elements of S_{4} :

$$
a=(12)(34), \quad b=(13)(24), \quad c=(123), \quad d=(12)
$$

Recall that $S_{4}=\langle a, b\rangle \rtimes\langle c, d\rangle$ and $\langle c, d\rangle=S_{3}$. Let $\tau: S_{4} \rightarrow S_{3}$ be the projection given by the previous decomposition, that is τ is the identity in $\langle c, d\rangle$ and Ker $\tau=\langle a, b\rangle$. Extend τ by linearity to a homomorphism of rational algebras $\mathbb{Q} S_{4} \rightarrow \mathbb{Q} S_{3}$, also denoted by τ. S_{4} has two inequivalent representations of degree 3 . We take from [1] ρ_{1} and ρ_{2} given by

$$
\begin{array}{ll}
\rho_{1}(a)=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) & \rho_{1}(b)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
\rho_{1}(c)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) & \rho_{1}(d)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{array}
$$

and

$$
\rho_{2}(g)=\left\{\begin{aligned}
\rho_{1}(g), & \text { if } g \in A_{4} \\
-\rho_{1}(g), & \text { if } g \notin A_{4}
\end{aligned}\right.
$$

(The representation ρ_{1} and ρ_{2} are denoted ρ and ρ^{\prime} in [1]. Note that there is an error in the definition of ρ in [1] where $\rho(a)$ and $\rho(b)$ should be interchanged.)

Extend ρ_{1} and ρ_{2} to homomorphisms of rational algebras $\mathbb{Q} S_{4} \rightarrow M_{3}(\mathbb{Q})$ and let $\rho: \mathbb{Q} S_{4} \rightarrow M_{3}(\mathbb{Q})^{2}$ be the direct sum of ρ_{1} and ρ_{2}. It is well known that $\tau \oplus \rho: \mathbb{Q} S_{4} \rightarrow \mathbb{Q} S_{3} \oplus M_{3}(\mathbb{Q})^{2}$ is an isomorphism.

For an arbitrary finite group $G, V(\mathbb{Z} G)$ denotes the group of units of $\mathbb{Z} G$ of augmentation 1 . The homomorphisms τ and ρ induce group homomorphisms $\tau: V\left(\mathbb{Z} S_{4}\right) \rightarrow V\left(\mathbb{Z} S_{3}\right)$ and $\rho: V\left(\mathbb{Z} S_{4}\right) \rightarrow \mathrm{SL}_{3}(\mathbb{Z})^{2}$. Clearly $\tau\left(\mathcal{B}_{4}\right)=\mathcal{B}_{3}$. Since \mathcal{B}_{3} is free [3], one has that

$$
\begin{equation*}
\mathcal{B}_{4}=\left(\mathcal{B}_{4} \cap K\right) \rtimes \mathcal{B}_{3}, \tag{2}
\end{equation*}
$$

where $K=\left\{\alpha \in V\left(\mathbb{Z} S_{4}\right): \tau(\alpha)=1\right\}$. Moreover, ρ is an isomorphism between K and $\rho(K)$ (because $\tau \oplus \rho$ is an isomorphism) and the last has been described in [1]. Since we need this description we are going to recall it.

Let $\hat{E}(n)$ denote the principal congruence group of level n, of $\mathrm{SL}_{3}(\mathbb{Z})$, $(n \in \mathbb{Z})$; that is

$$
\hat{E}(n)=\left\{A \in \mathrm{SL}_{3}(\mathbb{Z}): A \equiv 1 \quad \bmod n\right\}
$$

Let

$$
X=\left\{\left(x_{i j}\right) \in \hat{E}(2): x_{12}+x_{23}+x_{31} \equiv x_{13}+x_{21}+x_{32} \quad \bmod 4\right\}
$$

and

$$
X_{1}=\left\{\left(x_{i j}\right) \in \hat{E}(2): x_{12}+x_{23}+x_{31} \equiv x_{13}+x_{21}+x_{32} \equiv 0 \quad \bmod 4\right\}
$$

Let $\mathbb{G}=\left\langle Q, R, Q^{t}, R^{t}, \hat{E}(8)\right\rangle$ where

$$
Q=\left(\begin{array}{lll}
1 & 0 & 4 \\
4 & 5 & 0 \\
0 & 0 & 5
\end{array}\right), \quad R=\left(\begin{array}{lll}
5 & 0 & 0 \\
4 & 1 & 0 \\
0 & 4 & 5
\end{array}\right)
$$

and A^{t} denotes the transpose of a matrix A. Finally let

$$
T=\left(\begin{array}{rrr}
17 & 0 & -4 \\
0 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right)
$$

(Note that the matrices Q and R are different from the corresponding matrices in [1]. This does not affect the definition of \mathbb{G} because they are congruent to them module 8.)

Now we are ready to give the description of $\rho(K)$ in terms of integral matrices.

Theorem 2 [1]
$\rho(K)=\left\{\left(A, T^{s} A G\right): A \in X, G \in \mathbb{G}, s=0\right.$, if $A \in X_{1}$ and $s=1$, otherwise $\}$
For a permutation $\sigma \in S_{n}$ and a matrix $A \in M_{n}(R)$ let A^{σ} denote the matrix obtained by permuting the rows and columns of A by σ, that is $A^{\sigma}=P_{\sigma}^{-1} A P_{\sigma}$ where P_{σ} is the permutation matrix defined by

$$
P_{\sigma}(i, j)= \begin{cases}1, & \text { if } j=\sigma(i) \\ 0, & \text { otherwise }\end{cases}
$$

For every $x, y \in S_{4}$ let

$$
\kappa_{x, y}=b(x, y) \cdot \tau(b(x, y))^{-1} \in \mathcal{B}_{4} \cap K
$$

and let K_{0} be the group generated by all the $\kappa_{x, y}$'s.
Remark 3 Let H be a group of units of $\mathbb{Z} S_{4}$ normalized by $S_{3}=\langle c, d\rangle$. Then $\rho_{i}(H)$ is normalized by $\rho_{i}\left(S_{3}\right)(i=1,2)$. This implies that $A^{\sigma} \in \rho_{i}(H)$ for every $A \in \rho_{i}(H)$ and $\sigma \in S_{3}$.

Some groups normalized by S_{3} are \mathcal{B}_{4}, K and $\operatorname{Ker} \rho_{i}(i=1,2)$. Another example is K_{0} because τ acts as the identity in S_{3}.

For every $1 \leq i \neq j \leq 3$ and n an integer let $e_{i j}(n)$ be the 3×3 matrix having n in the (i, j) entry and zeroes elsewhere. Set $E_{i j}(n)=I+e_{i j}(n)$. Let $E(n)=\left\langle E_{i j}(n): 1 \leq i \neq j \leq 3\right\rangle$.

Lemma 4 1. $S L_{3}(\mathbb{Z})=E(1)$.
2. $\hat{E}(n)$ is the normal subgroup of $S L_{3}(\mathbb{Z})$ generated by $E_{12}(n)$.
3. $E(n)=\left\{\left(a_{i j}\right) \in \mathrm{SL}_{3}(\mathbb{Z}): n \mid a_{i j}\right.$ if $i \neq j$ and $\left.a_{i i} \equiv 1 \bmod n^{2}\right\}$, in particular $\hat{E}\left(n^{2}\right) \subseteq E(n)$.
4. $\hat{E}(n)=\left\langle A_{n}, A_{n}^{c}, E(n)\right\rangle$, (recall that $c=(123)$) where

$$
A_{n}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1+n & n \\
0 & -n & 1-n
\end{array}\right)
$$

5. $X=\left\langle A_{2}{ }^{\sigma}, B^{\sigma}, \hat{E}(4): \sigma \in S_{3}\right\rangle$ where $B=E_{23}(2) \cdot E_{12}(2)$.

Proof. 1. See [4, 1.2.11].
2. See $[4,1.2 .26]$ and, [2, Corollary 4.3] or the proof of [4, 4.3.1].
3. We first prove $\hat{E}\left(n^{2}\right) \subseteq E(n)$. By 1 and 2 it is enough to show that $E_{i j}(1) E_{12}\left(n^{2}\right) E_{i j}(1)^{-1}$ belongs to $E(n)$ for every $i \neq j$. This is obvious if $(i, j) \neq(2,1)$. Finally

$$
\begin{aligned}
E_{21}(1) E_{12}\left(n^{2}\right) E_{21}(1)^{-1} & =E_{21}(1)\left[E_{13}(n), E_{32}(n)\right] E_{21}(1)^{-1} \\
& =\left[E_{21}(1) E_{13}(n) E_{21}(1)^{-1}, E_{21}(1) E_{32}(n) E_{21}(1)^{-1}\right] \\
& =\left[E_{23}(n) E_{13}(n), E_{31}(-n) E_{32}(n)\right]
\end{aligned}
$$

Let $E=\left\{\left(a_{i j}\right) \in \mathrm{SL}_{3}(\mathbb{Z}): n \mid a_{i j}\right.$ if $i \neq j$ and $\left.a_{i i} \equiv 1 \bmod n^{2}\right\}$. Plainly $\hat{E}\left(n^{2}\right) \subseteq E(n) \subseteq E$. Now notice that if $A=I+n\left(a_{i j}\right)$ and $B=I+n\left(b_{i j}\right)$,
then $A B \equiv I+n\left(a_{i j}+b_{i j}\right) \bmod n^{2}$. Using this it is easy to see that $E(n) / \hat{E}\left(n^{2}\right) \simeq \mathbb{Z}_{n}^{6} \simeq E / \hat{E}\left(n^{2}\right)$, so that $E(n) / \hat{E}\left(n^{2}\right)=E / \hat{E}\left(n^{2}\right)$ and hence $E(n)=E$.

4 and 5. A trivial verification shows that $\hat{E}(n) / \hat{E}\left(n^{2}\right)=\left\langle A_{n}, A_{n}^{c}, E(n)\right\rangle / \hat{E}\left(n^{2}\right)$ and $X / \hat{E}(4)=\left\langle A_{2}{ }^{\sigma}, B^{\sigma}, \hat{E}(4): \sigma \in S_{3}\right\rangle / \hat{E}(4)$.

Remark 5 Let H be as in Remark 3. By Lema 4 to prove that $E(n) \subseteq$ $\rho_{i}(H)$ it is enough to show that $E_{i j}(n) \in \rho_{i}(H)$ for some $i \neq j$ and to prove that $\hat{E}(n) \subseteq \rho_{i}(H)$ it is enough to prove additionally that $A_{n} \in \rho_{i}(H)$.

Lemma $6 \rho_{1}\left(K_{0}\right)=X$.
Proof. By Theorem 2, $\rho_{1}\left(K_{0}\right) \subseteq X$. To prove the other inclusion we are going to use Lemma 4 and Remarks 3 and 5 several times without specific mention.

Note that $\rho_{1}\left(\kappa_{a, c d}\right)=E_{21}(4)$ and $A_{2}=\rho_{1}\left(\kappa_{b c^{2} d, a}\right)$. Since $A_{4}=A_{2}^{2}$, $\hat{E}(4) \subseteq \rho_{1}\left(K_{0}\right)$.

The proof is completed by showing that $B \in \rho_{1}\left(K_{0}\right)$. Let $C=\rho_{1}\left(\kappa_{a b c d, a c^{2}}\right)$ and $D=\rho_{1}\left(\kappa_{a c^{2}, a b c^{2} d}\right)$. Consider $B_{1}=C \cdot\left(D \cdot A_{2}\right)^{c}$. Then $B \in B_{1} \hat{E}(4)$ and therefore $B \in \rho_{1}\left(K_{0}\right)$. This finish the proof.

Lemma $7 \mathbb{G}=\rho_{2}\left(K_{0} \cap \operatorname{Ker} \rho_{1}\right)$
Proof. Let $N=K_{0} \cap$ Ker ρ_{1}. By Theorem $2, \rho_{2}(N) \subseteq \rho_{2}\left(K \cap \operatorname{ker} \rho_{1}\right) \subseteq \mathbb{G}$. We obtain the other embedding by proving $\hat{E}(8) \subseteq \rho_{2}(N)$ and $Q, Q^{t}, R, R^{t} \in$ $\rho_{2}(N)$. Again we are going to use Lemma 4 and Remarks 3 and 5 without specific mention.

Note that N is normalized by S_{3} and $\rho\left(\kappa_{b, b c} \cdot \kappa_{b, c d}^{-1}\right)=\left(1, E_{12}(8)\right)$, so that $E(8) \subseteq \rho_{2}(N)$. Let $b=\left(\kappa_{b c^{2}, a d} \cdot \kappa_{a b c d, a}^{-1}\right)^{2} \cdot\left(\kappa_{a b, a d} \cdot \kappa_{a b, a c^{2}}\right)^{-1} \in N$ and $B=\rho_{2}(b)$. Then

$$
B \equiv\left(\begin{array}{ccc}
41 & 48 & 0 \\
48 & 25 & 0 \\
56 & 16 & 1
\end{array}\right) \quad \bmod 64
$$

and hence $A_{8} \in\left(B^{3}\right)^{c^{2} d} E(8)$. Thus $A_{8} \in \rho_{2}(N)$ and we conclude $\hat{E}(8) \subseteq$ $\rho_{2}(N)$.

Consider the following elements of $\rho_{2}(N)$:

$$
\begin{aligned}
Q_{1} & =\rho_{2}\left(\kappa_{c^{2} d, a c^{2}} \cdot \kappa_{a c^{2} d, a d}^{-1}\right) \\
Q_{2} & =\rho_{2}\left(\kappa_{d, a c^{2}} \cdot \kappa_{d, b}^{-1}\right), \\
Q_{3} & =\rho_{2}\left(\kappa_{c d, a c^{2} d} \cdot \kappa_{b c d, a c^{2}}^{-1}\right)
\end{aligned}
$$

Then

$$
R \equiv Q_{1} \cdot Q_{2} \quad \bmod 8 \quad \text { and } \quad R^{t} \equiv Q_{2} \cdot Q_{3} \quad \bmod 8
$$

and hence $R, R^{t} \in \rho_{2}(N)$. Since $Q=R^{c^{-1}}$, we have that $Q, Q^{t} \in \rho_{2}(N)$.

Proposition $8 \quad \mathcal{B}_{4}=K \rtimes \mathcal{B}_{3}$.
Proof. By (2), it is enough to show that $K \subseteq \mathcal{B}_{4}$. Since $K_{0} \subseteq \mathcal{B}_{4} \cap K \subseteq K$ and the restriction of ρ to K is injective it is enough to prove that $\rho(K) \subseteq$ $\rho\left(K_{0}\right)$. By Theorem 2, any element of $\rho(K)$ is of the form $\left(A, T^{s} A G\right)$ with $A \in X, G \in \mathbb{G}$ and $s=0$ if $A \in X_{1}$ and $s=1$ otherwise. By Lemma 6, $A \in \rho_{1}\left(K_{0}\right)$. Thus, by Theorem 2, we have that $\left(A, T^{s} A G_{1}\right) \in \rho\left(K_{0}\right)$ for some $G_{1} \in \mathbb{G}$. By Lemma $7,(1, G)$ and $\left(1, G_{1}\right)$ belong to $\rho\left(K_{0}\right)$. Then

$$
\left(A, T^{s} A G\right)=\left(A, T^{s} A G_{1}\right) \cdot\left(1, G_{1}\right)^{-1} \cdot(1, G) \in \rho\left(K_{0}\right)
$$

Proposition 8 contains the announced description of \mathcal{B}_{4}. Indeed, \mathcal{B}_{3} is isomorphic to the congruence subgroup of level 3 of $\mathrm{SL}_{2}(\mathbb{Z})$, which is free of rank 3 [3]. Moreover we have already mention that ρ is an isomorphism between K and $\rho(K)$ and the last has been described in Theorem 2.

Proof of (1). By Proposition $8,\langle a, b\rangle \subseteq K \cap S_{4} \subseteq \mathcal{B}_{4} \cap S_{4}$. Since the last is a normal subgroup of S_{4} then $\mathcal{B}_{4} \cap S_{4}$ is either $\langle a, b\rangle, A_{4}$ or S_{4}. We prove $\mathcal{B}_{4} \cap S_{4}=\langle a, b\rangle$ by proving that \mathcal{B}_{4} has only 2 -torsion (that is, every torsion element of \mathcal{B}_{4} has order ≤ 2).

By Proposition $8, \mathcal{B}_{4}=\left(K \cap \mathcal{B}_{4}\right) \rtimes \mathcal{B}_{3}$. Let b be a torsion element of \mathcal{B}_{4}. Then $b=g h$ with $g \in K \cap \mathcal{B}_{4}$ and $h \in \mathcal{B}_{3}$. However, h is a torsion element of \mathcal{B}_{3} and hence $h=1$, because \mathcal{B}_{3} is torsionfree. Therefore $b=g$ is a torsion element of K. Since $K \simeq \rho(K) \subseteq \hat{E}(2)^{2}$, the order of $b=g$ is ≤ 2.

References

[1] P.J. Allen and C. Hobby, A characterization of units of $\mathbb{Z} S_{4}$, Comm. in Algebra 16 (1988) 1479-1505.
[2] H. Bass, J. Milnor and J.P. Serre Solution of the congruence subgroup problem for $\mathrm{SL}_{n}(n \geq 3)$ and $\mathrm{Sp}_{2 n}(n \geq 2)$, Publ. Math. IHES 33 (1967), 59-137.
[3] E. Jespers and M.M. Parmenter, Bicyclic units in $\mathbb{Z} S_{3}$, Bull. Belg. Math. Soc. 44 (1992) 141-146.
[4] A.J. Hahn and O.T. O'Meara, The classical groups and K-Theory, Springer-Verlag, 1989.
[5] S.K. Sehgal, Units of integral group rings, Longman Scientific and Technical Essex, 1993.

Departamento de Matemáticas, Universidad Simón Bolívar, Apartado Postal 89000, Caracas 1080-A, Venezuela. olivieri@usb.ve
Departamento de Matemáticas, Universidad de Murcia, 30100 Murcia, Spain. adelrio@um.es

[^0]: *Partially supported by the D.G.I. of Spain and Fundación Séneca of Murcia

