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Abstract

We prove that the group generated by the bicyclic units of ZS,, has
torsion for n > 4. This answer a question of [5].

Let G be a finite group. For every x € G of order k let & = Z?:_ol zt €

ZG. The bicyclic units of ZG are the units of the form
b,y) = 1+ (1 — )
for z,y € G. The following appears in [5] as Problem 19:

Problem: Is the group (b(z,y) : =,y € G), generated by the
bicyclic units of ZG, torsionfree?

As a consequence of [5, Theorem 31.3] it is easy to prove that the problem
has a positive answer for several groups, including dihedral groups.

The units of the form ¥ (z,y) = 1+ (1 — z)yZ are also called bicyclic
units and in fact the problem was stated in [5] for the group generated by the
b'(z,y)’s. Tt is obvious that both versions are equivalent. We have chosen
the b(z,y)’s for computational reasons.

In this paper we show that the problem has a negative answer proving
the following theorem.

Theorem 1 For every positive integer n let Sy, be the symmetric group on
n letters and B,, the group generated by the bicyclic units of the symmetric
group ring Z.Sy,. Then

1 ifn<3
B,NS,=1<¢ ((12)(34),(13)(24)) ifn=4
A, or S, ifn>5
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Since Sy is abelian and Bs is free [3] Theorem 1 is clear of n < 3. We
consider S,, embedded in S, 1 in the obvious way so that B, C B,4+1. If
9,7,y € G then g~ 1b(x,y)g = b(g *xg, g~ 'yg). Therefore B, is normalized
by S, and hence B,,NS,, is a normal subgroup of .S,,. Thus to prove Theorem
1 it is enough to prove

(12)(34), (13)(24)) = BN S, (1)
In the remainder of the paper we prove this equality and in the way we

obtain a full description of By in terms of some groups of integral matrices.

Consider the following four elements of Sy:
a=(12)(34), b=(13)(24), c¢=(123), d=(12).
Recall that Sy = (a,b) x (¢,d) and (¢,d) = S3. Let 7 : Sy — S3 be the

projection given by the previous decomposition, that is 7 is the identity
in (c¢,d) and Ker 7 = (a,b). Extend 7 by linearity to a homomorphism of
rational algebras QS; — QS3, also denoted by 7. Sy has two inequivalent
representations of degree 3. We take from [1] p; and pa given by

-1 0 0 1 0 0
@ = | 01 o] pe) = [0 -1 o0
0 0 -1 0 0 -1
010 0 0 1
p(e) = (001 p(d = (010
1 00 1 0 0

and . if )
p1(g), 1L ge Ag
) { —m(g), ifg ¢ As
(The representation p; and po are denoted p and p’ in [1]. Note that there
is an error in the definition of p in [1] where p(a) and p(b) should be inter-
changed.)

Extend p; and ps to homomorphisms of rational algebras QS; — M3(Q)
and let p: QS; — M3(Q)? be the direct sum of p; and ps. It is well known
that 7 @ p : QSy — QS5 @& M3(Q)? is an isomorphism.

For an arbitrary finite group G, V(ZG) denotes the group of units of
Z.G of augmentation 1. The homomorphisms 7 and p induce group homo-
morphisms 7 : V(ZSy) — V(ZSs) and p : V(ZSy) — SL3(Z)?. Clearly
7(B4) = Bs. Since B3 is free [3], one has that

84:(840[() X Bs, (2)



where K = {a € V(ZS4) : 7(a) = 1}. Moreover, p is an isomorphism
between K and p(K) (because T @ p is an isomorphism) and the last has
been described in [1]. Since we need this description we are going to recall
it.
Let E(n) denote the principal congruence group of level n, of SL3(Z),
(n € Z); that is
E(n)={AeSL3(Z): A=1 mod n}.

Let
X = {(LEU) S E(Q) : X192 + To3 + X371 = 213 + Xo1 + 32 mod 4}
and

X1 = {(zij) € E(2) : 212 + 23 + w31 = 213 + 221 + 232 =0 mod 4}
Let G = (Q, R,Q", R', E(8))

4 50 0
0|, R=[41 0
5 0 4 5

and A! denotes the transpose of a matrix A. Finally let

17 0 —4
T = 01 O
-4 0 1

(Note that the matrices @ and R are different from the corresponding matri-
ces in [1]. This does not affect the definition of G because they are congruent
to them module 8.)

Now we are ready to give the description of p(K) in terms of integral
matrices.

Theorem 2 [1]
p(K)={(A,T°AG): A€ X,G € G,s=0,if A€ X, and s = 1, otherwise}

For a permutation o € S, and a matrix A € M,(R) let A? denote the
matrix obtained by permuting the rows and columns of A by o, that is
A% = P;1AP, where P, is the permutation matrix defined by

1 i =0(i)
Po(i,j) = { 0, otherwise.



For every z,y € Sy let
Koy = b(z,y) - 7(b(z,y) "' € B4NK
and let K be the group generated by all the k; ,’s.

Remark 3 Let H be a group of units of ZS; normalized by S5 = (c,d).
Then p;(H) is normalized by p;(S3) (¢ = 1,2). This implies that A% € p;(H)
for every A € p;(H) and o € Ss.

Some groups normalized by S3 are By, K and Ker p; (i = 1,2). Another
example is Ky because 7 acts as the identity in Ss3. I

For every 1 <i # j < 3 and n an integer let e;;(n) be the 3 x 3 matrix
having n in the (4, j) entry and zeroes elsewhere. Set E;j(n) = I + e;;(n).
Let E(TL) = <Ez](n) 01 < ) 75 ] < 3>.

Lemma 4 1. SL3(Z) = E(1).
2. E(n) is the normal subgroup of SL3(Z) generated by Eia(n).

3. E(n) = {(aij) € SL3(Z) : nlai; ifi # j and a;; = 1 mod n?}, in
particular E(n?) C E(n).

4. E(n) = (A, A, E(n)), (recall that ¢ = (123)) where

1 0 0
A, = 0 1+n n
0 -n 1—n

5. X = (Ay°,B?, E(4) : 0 € S3) where B = Ey3(2) - E12(2).

Proof. 1. See [4, 1.2.11].

2. See [4, 1.2.26] and, [2, Corollary 4.3] or the proof of [4, 4.3.1].

3. We first prove E(n?) C E(n). By 1 and 2 it is enough to show that
E;;(1)E12(n?)E;;(1)~! belongs to E(n) for every i # j. This is obvious if
(1,7) # (2,1). Finally

E91(1)E1a(n®*)Exn(1)™" = Ea1(1)[E13(n), Esa(n)] Ear (1)~
= [Exn(1)E13(n)Ea1 (1)1, Ea1(1) Ezp(n) Ear (1) 7]
= [Ea3(n)Er3(n), E31(—n)Es2(n)]

~ Let B = {(ai;) € SL3(Z) : nla;; if i # j and a;; =1 mod n?}. Plainly
E(n?) C E(n) C E. Now notice that if A =TI+ n(a;;) and B = I + n(b;;),
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then AB = I + n(a;; + b;;) mod n?. Using this it is easy to see that
E(n)/E(n?) ~ 78 ~ E/E(n?), so that E(n)/E(n?) = E/E(n?) and hence
E(n) =E.

4and 5. A trivial verification shows that E(n)/E(n?) = (A,, A%, E(n))/E(n?)
and X/E(4) = (A2, B°, E(4) : 0 € S3)/E(4). 1

Remark 5 Let H be as in Remark 3. By Lema 4 to prove that E(n) C
pi(H) it is enough to show that Ej;(n) € p;(H) for some i # j and to prove
that E(n) C p;(H) it is enough to prove additionally that A,, € p;(H). I

Lemma 6 p;(Kj) = X.

Proof. By Theorem 2, p;1(Ky) C X. To prove the other inclusion we are
going to use Lemma 4 and Remarks 3 and 5 several times without specific
mention.

Note that p1(kacd) = Fa1(4) and Ay = pi(kpe2qq). Since Ay = A3,
E(4) C 1 (Ky).

The proof is completed by showing that B € p1(Ko). Let C = p1(Kaped,ac?)
and D = p1(Kge2 gbe2q). Consider By = C'- (D - A2)¢. Then B € B E(4) and
therefore B € p1(Kp). This finish the proof. |

Lemma 7 G = pa(Ko N Ker pp)

Proof. Let N = KoNKer p;. By Theorem 2, pa(N) C pa(K Nker p;) C G.
We obtain the other embedding by proving E(S) C p2(N)and Q,Q% R, R €
p2(N). Again we are going to use Lemma 4 and Remarks 3 and 5 without
specific mention.

Note that N is normalized by S3 and p(kppe - /-@I;cld) = (1, E12(8)), so
that E(8) C p2(INV). Let b = (kpe2 g - m;blcd,a)z - (Kabjad * Kabacz) + € N and
B = pa(b). Then

41 48 0
B=| 48 25 0 mod 64
56 16 1

and hence Ag € (B3)®?E(8). Thus Ag € pa(N) and we conclude E(8) C
p2(IN).
Consider the following elements of pa(IV):

“1
Q1 = p2(’€02d7ac2 ’ ,iac2d,ad)’
Q2 = p2(’€d,a02"€¢;’11))’

-1
Qs = p2 (ch7a62d'ﬂbcd7a02)'
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Then
R=Q;-Q2 mod8 and R'=Q;-Q3 mod38

and hence R, R' € pa(N). Since Q = R, we have that Q, Q! € p2(N). 1

Proposition 8 By = K x Bs.

Proof. By (2), it is enough to show that K C B,. Since Ko C B4NK C K
and the restriction of p to K is injective it is enough to prove that p(K) C
p(Kp). By Theorem 2, any element of p(K) is of the form (A, T°AG) with
AeX,GeGand s=0if A € X; and s = 1 otherwise. By Lemma 6,
A € p1(Kp). Thus, by Theorem 2, we have that (A4, T*AG1) € p(Kp) for
some G; € G. By Lemma 7, (1,G) and (1,G1) belong to p(Kp). Then

(A, TSAG) = (A, T°AGy) - (1,G1) ™ - (1,G) € p(Ky).

Proposition 8 contains the announced description of B4. Indeed, Bs is
isomorphic to the congruence subgroup of level 3 of SLy(Z), which is free
of rank 3 [3]. Moreover we have already mention that p is an isomorphism
between K and p(K) and the last has been described in Theorem 2.

Proof of (1). By Proposition 8, (a,b) C K NSy C By N Sy. Since the last
is a normal subgroup of Sy then B4 NSy is either (a,b), A4 or Sy. We prove
B4N Sy = {a,b) by proving that B4 has only 2-torsion (that is, every torsion
element of By has order < 2).

By Proposition 8, By = (K N By) x Bs. Let b be a torsion element of By.
Then b = gh with g € KNBy and h € Bs. However, h is a torsion element of
Bs and hence h = 1, because B3 is torsionfree. Therefore b = g is a torsion
element of K. Since K ~ p(K) C E(2)?, the order of b= g is < 2. 1

References

[1] P.J. Allen and C. Hobby, A characterization of units of Sy, Comm. in
Algebra 16 (1988) 1479-1505.

[2] H. Bass, J. Milnor and J.P. Serre Solution of the congruence subgroup
problem for SL, (n > 3) and Spy, (n > 2), Publ. Math. ITHES 33
(1967), 59-137.



[3] E. Jespers and M.M. Parmenter, Bicyclic units in ZSs, Bull. Belg.
Math. Soc. 44 (1992) 141-146.

[4] A.J. Hahn and O.T. O’Meara, The classical groups and K-Theory,
Springer-Verlag, 1989.

[5] S.K. Sehgal, Units of integral group rings, Longman Scientific and Tech-
nical Essex, 1993.

Departamento de Mateméticas, Universidad Simén Bolivar, Apartado Postal
89000, Caracas 1080-A, Venezuela. olivieriQusb.ve

Departamento de Matematicas, Universidad de Murcia, 30100 Murcia, Spain.
adelrio@Qum.es



