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Abstract

A Z2Z4Q8-code is the binary image, after a Gray map, of a subgroup
of Zk12 × Zk24 ×Qk3

8 , where Q8 is the quaternion group on eight elements.
Such Z2Z4Q8-codes are translation invariant propelinear codes as are the
well known Z4-linear or Z2Z4-linear codes.

In the current paper, we show that there exist “pure” Z2Z4Q8-codes,
that is, codes that do not admit any abelian translation invariant prope-
linear structure. We study the dimension of the kernel and rank of the
Z2Z4Q8-codes, and we give upper and lower bounds for these parameters.
We give tools to construct a new class of Hadamard codes formed by sev-
eral families of Z2Z4Q8-codes; we classify such codes from an algebraic
point of view and we improve the upper and lower bounds for the rank
and the dimension of the kernel when the codes are Hadamard.

1 Introduction

The discovery of the existence of a quaternary structure in some relevant
families with better parameters than any linear code has raised the interest in
the study of these codes [8] and more generally on codes with a group structure.
From the Coding Theory perspective it is desired that the group operation pre-
serves the Hamming distance. This is the case, for example, of the Z2Z4-linear
codes which has been intensively studied during the last years. More generally,
the propelinear codes and, specially those which are translation invariant, are
particularly interesting because both left and right product preserves the Ham-
ming distance. Translation invariant propelinear codes has been characterized
as the image of a subgroup by a suitable Gray map of a direct product of Z2,
Z4 and Q8, the quaternion group of order 8 [14]. Hence it makes sense to call
this codes as Z2Z4Q8-codes. The aim of this paper is to study the structure and
main properties of Z2Z4Q8-codes with special focus on those that are Hadamard
codes as well.

Section 2 has been reserved for notation and preliminaries.
As far a we know there is not any example in the literature of a proper

Z2Z4Q8-code, i.e., one which is not equivalent to a Z2Z4-linear code. The first
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sitat Autònoma de Barcelona, Spain.

1



result of this paper consists in providing such an example. This result appears in
Section 3, where we also study the group-theoretical properties of the Z2Z4Q8-
codes and the relation of this structure with its rank and the dimension of its
kernel. This structure suggests associating three numerical parameters to the
group. We will show that these parameters provide bounds for the rank and
dimension of the kernel. Moreover, our example of a proper Z2Z4Q8-code shows
that these bounds are tight.

Section 4 is dedicated to Hadamard Z2Z4-linear codes. The Hadamard
Z2Z4-linear codes as well as the (extended) 1-perfect Z2Z4-linear codes are well
known [4, 9, 12]. The Hadamard linear codes are dual of extended 1-perfect
codes. However we will show that the extended 1-perfect codes, involving at
least one quaternionic component do not exist for length n ≥ 8. For every
n = 2m there is a unique Hadamard linear code, up to equivalence. If m ≤ 3 this
is the unique Hadamard code. However, there are five inequivalent Hadamard
codes of length 16. One of them is linear, another is a Z2Z4-linear code and
the other three cannot be realized as Z2Z4-linear codes. We will show that
exactly one of these three can be realized as a Z2Z4Q8-code, more specifically,
as a pure Q8-code. This provides another example of such codes. In Theo-
rem 4.11 we provide a precise description of the possible group structures of a
Hadamard Z2Z4Q8-codes and in Corollary 4.12 we obtain bounds for the rank
of a Hadamard Z2Z4Q8-code which are better than those for general Z2Z4Q8-
codes.

In the last section of the paper we introduce two constructions of Z2Z4Q8-
codes which allow to construct many Hadamard Z2Z4Q8-codes.

2 Preliminaries

Let Z2 and Z4 denote the binary field and the ring of integers modulo 4,
respectively. Let Zn2 denote the set of all binary vectors of length n and let Zn4
be the set of all n-tuples over the ring Z4. The all-zero vector in Zn2 is denoted
by 0. Let wt(v) denote the Hamming weight of a vector v ∈ Zn2 (i.e., the number
of its nonzero coordinates), and let d(v, u) = wt(v + u), the Hamming distance
between two vectors v, u ∈ Zn2 .

Any non-empty subset of Zn2 is called a binary code and a linear subspace of
Zn2 is called a binary linear code or a Z2-linear code. Similarly, any non-empty
subset of Zn4 is a quaternary code and a subgroup of Zn4 is called a quaternary
linear code [8]. Quaternary codes can be viewed as binary codes under the Gray
map defined as

ϕ(0) = (0, 0), ϕ(1) = (0, 1), ϕ(2) = (1, 1), ϕ(3) = (1, 0),

which is extended coordinatewise to a bijection φ : Zn4 → Z2n
2 . If C is a qua-

ternary linear code of length n, then the binary code C = ϕ(C) is said to be a
Z4-linear code of binary length 2n [8].

Let Q8 be the quaternion group on eight elements. The following equalities
provides a presentation and the list of elements of Q8:

Q8 = 〈a,b : a4 = a2b2 = 1,bab−1 = a−1〉
= {1,a,a2,a3,b,ab,a2b,a3b}.
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A quaternionic code C is a non-empty subgroup of Qn8 . Quaternionic codes can
also be seen as binary codes under the following Gray map: φ : Q8 −→ Z4

2,
such that

φ(1) = (0, 0, 0, 0), φ(b) = (0, 1, 1, 0),
φ(a) = (0, 1, 0, 1), φ(ab) = (1, 1, 0, 0),
φ(a2) = (1, 1, 1, 1), φ(a2b) = (1, 0, 0, 1),
φ(a3) = (1, 0, 1, 0), φ(a3b) = (0, 0, 1, 1).

(1)

We will also denote by φ the componentwise extended map from Qn8 to Z4n
2 . If

C is a quaternionic code, then we will say that C = φ(C) is a Q8-code of binary
length 4n.

Binary linear codes, Z4-linear codes and Q8-codes can be seen as particular
cases of a more general family of codes. More specifically, given non-negative
integers k1, k2 and k3 we can define the generalized Gray map

Φ : Zk12 × Zk24 ×Q
k3
8 −→ Zk1+2k2+4k3

2 ,

such that if x ∈ Zk12 , y ∈ Zk24 and z ∈ Qk38 then

Φ(x, y, z) = (x, ϕ(y), φ(z)).

A Z2Z4Q8-code is a binary code C of the form C = Φ(C) where C is a subgroup
of Zk12 × Zk24 ×Q

k3
8 .

Notice that if k1 > 0 and k2 = k3 = 0 then C is a binary linear or Z2-linear
code. If k2 > 0 and k1 = k3 = 0, then C is a Z4-linear code. If k3 > 0 and
k1 = k2 = 0, then C is a Q8-code. Finally, if k3 = 0, then C is called a Z2Z4-
linear code [3] (hence, including the cases Z2-linear and Z4-linear). We also
remark that C is abelian if and only if C is a Z2Z4-linear code.

We use additive notation for Z2 and Z4 and multiplicative notation for Q8.
Therefore, (0, k1+k2. . . , 0,1, k3. . .,1) is the identity of Zk12 × Zk24 × Q

k3
8 . We denote

this element as e. We also denote it ek1,k2,k3 or el, with l = k1 + k2 + k3, when
we want to emphasize the ambient space of e. Note that each one of the groups
Z2, Z4 and Q8 have exactly one element of order 2. So there is a unique element
u of Zk12 ×Zk24 ×Q

k3
8 which has the element of order 2 in each coordinate. This

element is also determined by the fact that Φ(u) is the all one vector. As for e,
we also denote u by uk1,k2,k3 or ul, with l = k1+k2+k3 if we want to emphasize
its ambient space.

If h ∈ Z and w = (x, y, z) ∈ Zk12 × Zk24 × Q
k3
8 , where x ∈ Zk12 , y ∈ Zk24 and

z ∈ Qk38 , then
wh = (hx, hy, zh).

The order of w is the smallest positive integer h such that wh = e.
Let Sn denote the symmetric group of permutations on the set {1, . . . , n}.

For any π ∈ Sn and any vector v = (v1, . . . , vn) ∈ Zn2 , we write π(v) to denote
the vector (vπ−1(1), . . . , vπ−1(n)).

Two binary codes C1 and C2 of length n are said to be isomorphic if there
is a coordinate permutation π ∈ Sn such that C2 = {π(x) : x ∈ C1}. They are
said to be equivalent if there is a vector y ∈ Zn2 and a coordinate permutation
π ∈ Sn such that C2 = {y+π(x) : x ∈ C1}. Although the two definitions above
stand for two different concepts, two binary linear codes are equivalent if and
only if they are isomorphic.
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A binary code C of length n is said to be propelinear [13] if for any codeword
x ∈ C there exists πx ∈ Sn satisfying the following properties for all v ∈ Zn2 and
x, y ∈ C:

1. x+ πx(y) ∈ C and

2. πx(πy(v)) = πz(v), where z = x+ πx(y).

Let C be a propelinear code and for every x ∈ C let πx ∈ Sn satisfy the above
conditions. For all x ∈ C and y ∈ Zn2 let xy = x + πx(y). This endows C with
a group structure, which is not abelian in general. Therefore, the vector 0 is
always a codeword and π0 is the identity permutation I. Hence, 0 is the identity
element in C and x−1 = π−1x (x) for all x ∈ C [13]. Notice that a binary code
may have several structures of propelinear code with different group structures.

The following lemma is straightforward [13, 14, 4].

Lemma 2.1. Let C be a propelinear code of length n. Then,

d(u, v) = d(xu, xv) for all x ∈ C and u, v ∈ Zn2 .

This means that left multiplication in a propelinear code is Hamming com-
patible [2] in the sense that d(xz, x) = wt(z) for all x ∈ C and z ∈ Zn2 .

Definition 2.2. A propelinear code C of length n is said to be translation
invariant if

d(x, y) = d(xu, yu) for all x, y ∈ C and u ∈ Zn2 .

In [14], it is proven that a binary code is translation invariant propelinear if
and only if it is a Z2Z4Q8-code. Then, a translation invariant propelinear binary
code is isomorphic to C = Φ(C) for a subgroup of G = Zk12 × Zk24 × Q

k3
8 . The

permutation πx associated to each element of G is obtained by concatenation of
permutations in each Z4 or Q8 block, such that the permutation in a component
of order at most 2 is the identity; the permutation of a Z4-coordinate of order
4 is the transposition of the binary components and of a Q8-coordinate of order
4 is a product of two disjoint transpositions of the four binary components.
More precisely, if w = (x1, . . . , xk1 , y1, . . . , yk2 , z1, . . . , zk3) and w′ = Φ(w) then
πw′ = σ1 . . . σk2δ1 . . . δk3 where

σi =

{
I, if yi ∈ {0, 2};
(k1 + 2i− 1, k1 + 2i), if yi ∈ {1, 3}.

and if t = k1 + 2k2 then

δi =


I, if zi ∈ {1,a2};
(si − 3, si − 2)(si − 1, si), if zi ∈ {a,a3};
(si − 3, si − 1)(si − 2, si), if zi ∈ {b,a2b};
(si − 3, si)(si − 2, si − 1), if zi ∈ {ab,a3b},

where si = t+ 4i.
The rank of a binary code C is the dimension of the binary vector space

generated by its codewords. We denote the rank of C with r(C) or simply r.
The kernel of a binary code C of length n is

K(C) = {z ∈ Zn2 : C + z = C}.
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If C contains the all-zero vector, then K(C) is a linear subcode of C. The
dimension of K(C) is denoted with k(C) or simply k. These two parameters,
the rank and dimension of the kernel, can be used to classify binary codes, since
if two binary codes have different ranks or dimensions of the kernel, they are
non-equivalent. Note that if C is a propelinear code and x ∈ C is such that
πx = I then x ∈ K(C).

The binary code C can be partitioned by K(C)-cosets and therefore |C| is
a multiple of |K(C)|. Since the union of K(C) and anyone of its cosets is again
linear, it is clear that either C is linear or |C| > 2|K(C)|.

If C is not linear and C is the linear span of C then |K(C)| divides |C| and
|C| > |C|. Therefore, |C| ≥ 4|K(C)| and r = log2(|C|) ≥ log2(4|K(C)|) = k+2.
If moreover C is a Z2Z4Q8-code then |C| is a power of 2 and therefore, if C
is not linear then |C| ≥ 4|K(C)|. Hence, |C| ≥ 8|K(C)| and r ≥ k + 3. We
summarize this in the following lemma.

Lemma 2.3. If C is a non-linear binary code then r(C) ≥ k(C)+2. If moreover
C is a Z2Z4Q8-code then r(C) ≥ k(C) + 3.

A Hadamard matrix of order n is a matrix of size n × n with entries ±1,
such that HHT = nI. We can easily see that any two rows (columns) of a
Hadamard matrix agree in precisely n/2 coordinates. If n > 2 then any three
rows (columns) agree in precisely n/4 coordinates. Thus, if n > 2 and there is
a Hadamard matrix of orden n then n is multiple of 4. It is conjectured that
the converse holds, i.e., if n es multiple of 4 then there are Hadamard matrices
of order n [1].

Two Hadamard matrices are equivalent if one can be obtained from the
other by permuting rows and/or columns and multiplying rows and/or columns
by −1. With the last operations we can change the first row and column of
H into +1’s and we obtain an equivalent Hadamard matrix which is called
normalized. If +1’s are replaced by 0’s and −1’s by 1’s, the initial Hadamard
matrix is changed into a (binary) Hadamard matrix and, from now on, we will
refer to it when we deal with Hadamard matrices. The binary code consisting
of the rows of a (binary) Hadamard matrix and their complements is called a
(binary) Hadamard code, which is of length n, with 2n codewords, and minimum
distance n/2.

A perfect one error correcting binary code (1-perfect code) is a binary code
of length 2m − 1, minimum distance 3, and 2n−m codewords. Linear 1-perfect
codes (Hamming codes) exist for all m > 1 and also there exist Z2Z4-linear
1-perfect codes for all admissible n ≥ 15. If C is a binary 1-perfect code, the
extended code C∗ by a parity check coordinate is a code of length 2m and
minimum distance 4. When code C∗ is linear or Z2Z4-linear there exist the
dual code (C∗)⊥, which is a Hadamard code.

In general, by the dual of the (non necessarily linear) code C, which will be
denoted by C⊥, we mean the dual of the subspace spanned by C.

3 Properties of Z2Z4Q8-codes. Rank and dimen-
sion of the kernel.

In this section we study some of the group theoretical properties of Z2Z4Q8-
codes. We also present an example of a pure Q8-code, i.e., a Q8-code which is
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not equivalent to a Z2Z4-linear code.
All throughout G = Zk12 × Zk24 × Q

k3
8 . We also fix a non-trivial subgroup C

of G and let C = Φ(C). Then, the length of C is n = k1 + 2k2 + 4k3 and we set
l = k1 + k2 + k3.

We use the notation below for x, y ∈ G:

xy = y−1xy, conjugate of x ∈ C by y ∈ C,
[x, y] = x−1y−1xy, commutator of x, y ∈ C,
C′ = 〈[x, y] : x, y ∈ C〉, commutator subgroup of C,

Z(C) = {z ∈ C : zx = xz, x ∈ C}, the center of C,
T (C) = {z ∈ C : z2 = e}.

Note that
C′ ⊆ T (C) ⊆ Z(C) (2)

and hence, both C′ and T (C) are central subgroups of C. This implies that

[x, y] = [y, x] and [xy, z] = [x, z][y, z] (3)

for every x, y, z ∈ C.

Definition 3.1. We say that C is of type (σ, δ, ρ) if |T (C)| = 2σ, [Z(C) : T (C)] =
2δ and [C : Z(C)] = 2ρ.

For instance, if δ = ρ = 0 then C is a linear code and if C is a Z2Z4-linear
code then C ∼= Zγ2 × Zδ4 for some non-negative integers γ and δ. In the latter
case σ = γ + δ and ρ = 0. Note that the type depends on the group C rather
than on the binary code C. For example, if C = Z4 then the type of C is
(1, 1, 0). However the corresponding binary code is Z2

2 and henceforth, it is also
the binary code of a subgroup of Z2

2 of type (2, 0, 0). Similarly, if C = Q8 then C
has type (1, 0, 2) but C is linear and hence it is also the binary code of a group
of type (3, 0, 0).

Assume that C is of type (σ, δ, ρ). Clearly T (C) ∼= Zσ2 . Moreover, as every
element of G has order 1, 2 or 4, we have that x2 ∈ T (C) for every x ∈ C and,

therefore, C/T (C) ∼= Zδ+ρ2 , Z(C)/T (C) ∼= Zδ2 and C/Z(C) ∼= Zρ2.
Furthermore, σ ≥ δ and C is generated by σ + δ + ρ elements: x1, . . . , xσ;

y1, . . . , yδ; z1, . . . , zρ with T (C) = 〈x1〉 × · · · × 〈xσ〉 and
Z(C) = 〈x1, . . . , xσ, y1, . . . , yδ〉 ∼= Zσ−δ2 × Zδ4.

Using (2) it easily follows that any element c ∈ C can be written in a unique
way as

c =

σ∏
i=1

xαii

δ∏
j=1

y
βj
j

ρ∏
k=1

zγkk ,

where αi, βj , γk ∈ {0, 1}. Note that the elements z1, . . . , zρ do not commute
among them, but we interpret

∏ρ
k=1 z

γk
k as zγ11 · · · z

γρ
ρ . Moreover, c ∈ T (C) if

and only if βj = 0 for every j and γk = 0 for every k; and c ∈ Z(C) if and only
if γk = 0 for every k. In particular, the yj ’s and zk’s have order 4.

In the remainder of the paper when we write

C = 〈x1, . . . , xσ; y1, . . . , yδ; z1, . . . , zρ 〉 (4)

we are assuming that x1, . . . , xσ; y1, . . . , yδ; z1, . . . , zρ is a generating set of C
satisfying the above conditions.
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Lemma 3.2. Let a, b ∈ C \ T (C).

1. If [a, b] = e and a2 = b2 then ab ∈ T (C).

2. a2, b2 and [a, b] coincide in each non-trivial coordinate of [a, b]. In partic-
ular, wt(Φ([a, b]) ≤ wt(Φ(a2)).

3. If C is of type (σ, δ, ρ) then σ ≥ δ + min{1, ρ}.

Proof. 1. Assume that a2 = b2 and [a, b] = e. As a4 = e, we have b2 = a2 =
a−2 and hence (ab)2 = a2b2 = e.

2. Let a = (a1, . . . , al) and b = (b1, . . . , bl). If the commutator [ai, bi] is
non-trivial then ai and bi are two non-commuting elements of Q8 and hence
[ai, bi] = a2i = b2i .

3. We know σ ≥ δ. Thus, if ρ = 0 then the desired inequality is clear. As-
sume otherwise that ρ 6= 0 and z21 ∈ 〈y21 , . . . , y2δ 〉 then, by item 1, yα1

1 . . . yαδδ z1 ∈
T (C) for some integers α1, . . . , αδ, contradicting the construction of the gener-
ating set. Thus 〈y21 , . . . , y2δ , z21〉 is a subgroup of T (C) isomorphic to Zδ+1

2 and
hence σ ≥ δ + 1.

Definition 3.3. The swapper of x, y ∈ G is

(x : y) = Φ−1(Φ(x) + Φ(y) + Φ(xy)).

We define the swapper of C as the set,

S(C) = {(x : y) : x, y ∈ C}.

Note that if x = (x1, . . . , xl), y = (y1, . . . , yl) ∈ C then

(x : y) = ((x1 : y1) , . . . , (xl : yl)). (5)

Therefore, to compute a swapper in G it is enough to compute the swapper in
Z2, Z4 and Q8. Clearly (x : y) = e for x, y ∈ Z2. The following tables describe
the values of all the swappers in Z4 and Q8:

0,2 1,3
0,2 0 0
1,3 0 2

1,a2 a,a3 b,a2b ab,a3b
1,a2 1 1 1 1
a,a3 1 a2 a2 1

b,a2b 1 1 a2 a2

ab,a3b 1 a2 1 a2

Table 1: Swappers in Z4 and Q8

In particular (x : y) ∈ T (G) and this implies that

Φ((x : y)xy) = Φ((x : y)) + Φ(xy) = Φ(x) + Φ(y), (6)

i.e., the swapper of x and y is the element needed to pass from Φ(xy) to Φ(x) +
Φ(y).

Using (5) and the swapper tables of Z4 and Q8 one can easily prove the
following properties about swappers.
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Lemma 3.4. Let x, y, z, t ∈ G and let C = Φ(C) be a Z2Z4Q8-code.

(a) If z2 = e then (zx : y) = (x : zy) = (x : y) and (z : x) = (x : z) = e.

(b)
(
x : x−1

)
= (x : x).

(c) (x : y) (y : x) = [x, y].

(d) (x : x) = x2.

(e) (x : yz) = (x : y) (x : z) and (xy : z) = (x : z) (y : z).

(f) If Φ(x) ∈ K(C) then (x : y) ∈ C for any y ∈ C.

The following lemma is a consequence of the definition of swapper and the
above properties.

Lemma 3.5 (Lower bound for k(C)). Let C = φ(C) be a Z2Z4Q8-code of type
(σ, δ, ρ). Then Φ(T (C)) ⊆ K(C) and hence σ ≤ k(C).

Proof. Let x ∈ T (C), where T (C) is the subgroup of the elements x ∈ C such
that x2 = e. We want to show that Φ(x) ∈ K(C). To do this, we check if Φ(x)+
Φ(y) ∈ C for any y ∈ Φ(C). From Lemma 3.4 (a) we have (x : y) = (y : x) = e
and so, from (6) we have Φ(x) + Φ(y) = Φ(xy) + Φ((x : y)) = Φ(xy) ∈ C. This
proves the statement.

Whenever we have a quotient group G/N , with G a group and N a normal
subgroup of G, and the meaning is clear from the context we use the standard
bar notation for the N -coset containing g, i.e., if g ∈ G then g = gN .

Lemma 3.6 (Upper bound for r(C)). Let C be a subgroup of Zk12 × Zk24 ×Q
k3
8

with l = k1 +k2 +k3 such that C = Φ(C) is of type (σ, δ, ρ). Let D = 〈C ∪S(C)〉,
the group generated by C and the swappers of the elements of C. Then

1. Φ(D) is the binary linear span of C;

2. r(C) = σ + δ + ρ+ h with h ≤ min
{(

δ+ρ
2

)
, l − σ

}
;

Proof. By (6), it is clear that Φ(D) is included in the linear span of C. To
prove the inverse it is enough to show that Φ(D) is closed under addition. To
see this let x1, x2 ∈ D. As all the swappers have order at most 2 we have
x1 = b1c1 and x2 = b2c2 with b1, b2 ∈ C and c1, c2 ∈ 〈(c : c′) : c, c′ ∈ C〉.
Then, by (6) and Lemma 3.4(a), we have Φ(x1) + Φ(x2) = Φ(x1x2 (x1 : x2)) =
Φ(b1b2c1c2 (b1 : b2)) ∈ Φ(D). Item 1 is proved.

Let C = 〈K(C), a1, . . . , at〉, where t is minimal and K(C)) = Φ−1(K(C)).
Since T (C) ⊆ K(C), we have a2i ∈ K(C) for every i and t ≤ δ + ρ. Let c, c′ ∈ C.
Then, using (2) it follows that c = xaα1

1 · · · a
αt
t and c′ = x′aβ1

1 · · · a
βt
t with

x, x′ ∈ K(C) and each αi, βi ∈ {0, 1}. Using Lemma 3.4 we have

(
c : c′

)
=

(
x : x′

) t∏
i=1

(x : ai)
βi
(
ai : x′

)αi ∏
1≤i,j≤t

(ai : aj)
αiβj .

Again, by Lemma 3.4 (f), all (x : x′) , (x : ai) , (ai : x′) belong to C and we can
conclude that D ⊆ 〈C, (ai : aj) : 1 ≤ i < j ≤ t〉. The reverse inclusion is obvious,
hence D = 〈C ∪ {(ai : aj) : 1 ≤ i < j ≤ t}〉.
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Now, having in mind that |S(C)| ≤ |T (G)| ≤ 2k1+k2+k3 = 2l we have that
D is of type (σ + h, δ, ρ) and, from Lemma 3.5, r(C) = σ + δ + ρ + h with
h ≤

(
t
2

)
≤
(
δ+ρ
2

)
and h ≤ l − σ. This proves item 2.

Lemma 3.7. Let C be a Z2Z4-linear code. If |C| ≤ 8, then C is also a Z2-linear
code.

Proof. Assume that C is of type (σ, δ, ρ). As C is commutative ρ = 0. If C is
not linear then 8 ≥ 2σ+δ = |C| > 2|K(C)| = 2k(C)+1. Hence, by Lemma 3.5,
we have δ ≤ σ ≤ k(C) ≤ 1 and so σ + δ ≤ 2. Thus, k(C) + 1 < δ + σ ≤ 2 and
so k(C) = δ = σ = 0, a contradiction. Hence, C is Z2-linear.

We now present a “pure” Q8-code.

Proposition 3.8. Let C be the quaternionic code C = 〈(a,a), (ab,b)〉 ≤ Q2
8.

Let C = Φ(C) be the corresponding Q8-code. Then, C is not a Z2Z4-linear code.

Proof. C has eight elements, namely C = {(1,1), (a,a),
(a2,a2), (a3,a3), (ab,b), (a2b,ab), (a3b,a2b), (b,a3b)}.

The swapper ((a,a) : (ab,b)) = (a2,1) 6∈ C and hence, by Lemma 3.6, C is
not linear. Finally, by Lemma 3.7, C is not Z2Z4-linear.

Remark 3.9. The type of the group C of Proposition 3.8 is (σ, δ, ρ) = (1, 0, 2).
Let C = Φ(C) and let k = k(C) and r = r(C). By Lemma 2.3 we have r ≥ k+3;
by Lemma 3.5 we have k ≥ σ = 1; by Lemma 3.6 we have r ≤ σ+δ+ρ+

(
δ+ρ
2

)
= 4

and by statement 3 of Lemma 3.2 we have σ ≥ δ + min{1, ρ} = 1. In this
example the previous bounds on σ, the rank and the dimension of the kernel
are absolutely tight, we have σ = k = 1 and r = 4.

4 Hadamard Z2Z4Q8-codes

In this section we focus on Hadamard Z2Z4Q8-codes. But, first of all, we
shall begin seeing that the usual companions of the Hadamard codes, that is
the (extended) 1-perfect codes which are Z2Z4Q8-codes, do not exist for binary
length n > 8, except for those which are Z2Z4-linear codes. However we will
present a number of Hadamard Z2Z4Q8-codes. The main result of this section
is Theorem 4.11 which provides a classification of Hadamard Z2Z4Q8-codes in
terms of its structure. For Hadamard Z2Z4Q8-codes we also refine the upper
bound for the rank given in Lemma 4.10 for arbitrary Z2Z4Q8-codes. As an
application we classify the Hadamard codes of length 16 which are Z2Z4Q8-
codes. More precisely, for any n = 2m, there is an unique (up to isomorphism)
extended Hamming code of length n and, since the dual of an extended Ham-
ming code is a Hadamard code [10], for the same length n it always exists a
unique Hadamard binary linear code. But, there are much more non isomor-
phic Hadamard codes. As an example, there are exactly five non isomorphic
Hadamard codes of length 16 [1]. One of them is the linear Hadamard code.
The other four have the following parameters for the rank r and the dimension
of the kernel k: (r, k) ∈ {(6, 3), (7, 2), (8, 2), (8, 1)} [11]. The Hadamard code
with parameters (r, k) = (6, 3) is a Z2Z4-linear code, and the other three non-
linear Hadamard codes are not Z2Z4-linear [12]. In Proposition 4.5, we show
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that the one with parameters (r, k) = (7, 2) is a Q8-code. Moreover, we will see
that the remaining two codes, the ones with parameters (8, 2) and (8, 1), are
not Z2Z4Q8-codes (see Example 4.14). This is a consequence of an analysis of
the structure, type and parameters of Hadamard Z2Z4Q8-codes.

It is well known that there exist Z2Z4-linear extended 1-perfect codes and
Z2Z4-linear Hadamard codes [4, 9], but now we are interested in extended 1-
perfect Z2Z4Q8-codes where the quaternion group is involved.

Lemma 4.1. Let C be a subgroup of Zk12 ×Z
k2
4 ×Q

k3
8 with k3 6= 0 and C = Φ(C).

Then, the dual code C⊥ has a codeword of weight 4.

Proof. We can assume that the last coordinate of any vector in C correspond to
an element in Q8. Since the binary image of all the elements in Q8 is even, we
conclude that (0, . . . , 0, 1, 1, 1, 1) ∈ C⊥.

The next lemma was stated for Steiner triple systems [6] and, later, for
Steiner quadruple systems [15]. We give a version for perfect and extended
perfect codes which is useful for Theorem 4.3.

Lemma 4.2. [6, 15] The dual of a 1-perfect code C of length 2m − 1 (respec-
tively, an extended 1-perfect code C∗ of length 2m) is a subcode of the dual of
a Hamming code of length 2m − 1 (respectively, linear Hadamard code of length
2m).

Theorem 4.3. Let C = Φ(C), where C is a subgroup of Zk12 × Zk24 ×Q
k3
8 , with

k3 > 0 and n = k1 + 2k2 + 4k3.

1. If C is a 1-perfect code then n = 7 and (k1, k2, k3) = (3, 0, 1).

2. If C is an extended 1-perfect code then either n = 8 and (k1, k2, k3) ∈
{(4, 0, 1), (0, 2, 1), (0, 0, 2)}, or n = 4 and (k1, k2, k3) = (0, 0, 1).

Proof. Although item 1 about 1-perfect codes was already proven in [4] we give
a new proof which includes both items.

By Lemma 4.2 all the codewords in C⊥ (respectively, C∗⊥) should have
weight 2m−1 (respectively, should have weight 2m or 2m−1) and by Lemma 4.1
this is only possible when 2m−1 = 4 (respectively, when 2m = 4 or 2m−1 = 4).
Hence, the non existence of 1-perfect Z2Z4Q8-codes (respectively, extended 1-
perfect Z2Z4Q8-codes) is proved for codes of length n > 7 (respectively, n > 8).

To finish the proof, let us go to the specific codes of length 7 (respectively,
length 8 for the extended case). The extended Hamming code of length 8 can not
have the parameters (k1, k2, k3) = (2, 1, 1), otherwise, after puncturing, there
would exist a 1-perfect code with parameters (k1, k2, k3) = (1, 1, 1) which does
not exist. Indeed, vector with quaternionic coordinate aj ∈ {a3,ab,a2b} ⊂ Q8

(1) and all the other coordinates equal to zero should be at distance one apart
from the code, so we obtain three codewords v1, v2, v3, depending on the value of
aj . The distance from vivi to other vjvj (i, j ∈ {1, 2, 3}) is zero or two, a contra-
diction. Therefore, the extended Hamming code of length 8 can be constructed
as a Z2Z4Q8-code C = Φ(C) in the following three ways: taking C as the sub-
group of Z4

2 ×Q8 generated by (1, 1, 0, 0,a3), (1, 0, 1, 0,a2b) and (1, 1, 1, 1,a2);
taking C as the subgroup of Z2

4 × Q8 generated by (2, 0,a3), (1, 3,a2b) and
(2, 2,a2); and taking C as the subgroup of Q2

8 generated by (a,a), (b,b) and
(1,a2). Puncturing the first one in the first coordinate we obtain the Hamming
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code of length 7 which is the binary code associated to the subgroup of Z3
2×Q8

generated by (1, 0, 0,a3), (0, 1, 0,a2b) and (1, 1, 1,a2). The extended Hamming
code of length 4 can be constructed as the binary code of the subgroup of Q8

generated by a2.

Remark 4.4. From Lemma 4.1 a binary code with no codewords of weight 4
in its dual can not be Z2Z4Q8-codes with k3 > 0. There are good binary codes
without the dual weight 4. For instance, the extended Preparata-like code and
its additive dual, the Kerdock-like code, are Z4-linear codes but they are not
Z2Z4Q8-codes with k3 6= 0. Indeed, the minimum distance of both codes is
greater than 4. Also note that it was already proven in [5] that both codes are
not Z2Z4-linear codes with k1 6= 0.

In the following, we use the notation N oH for a semidirect product, i.e., a
group such that as a set N oH = N ×H with multiplication given by

(n1, h1)(n2, h2) = (n1αh1
(n2), h1h2)

where (n1, n2 ∈ N,h1, h2 ∈ H) and h→ αh is a group homomorphism α : H →
Aut(N). The direct product N ×H is the semidirect product with αh = I for
every h ∈ H.

Proposition 4.5. Consider the quaternionic code

C = 〈(a,a,a,a), (b,ab,b,ab), (a2,1,a,a3)〉 ≤ Q4
8 (7)

and let C = Φ(C). Then C is of type (2, 0, 3) and C is a Hadamard code of
length 16, rank 7 and dimension of the kernel 2.

Proof. Let a = (a,a,a,a), b = (b,ab,b,ab) and c = (a2,1,a,a3). Then a,
b and c have order 4, a2b2 = e, ab = a−1, ca = c and cb = c−1. Moreover
〈c〉 ∩ 〈a, b〉 = {e}. Therefore, C is a semidirect product 〈c〉 o 〈a, b〉 ∼= Z4 o
Q8. Hence, T (C) = Z(C) = 〈a2, c2〉 ∼= Z2

2. Thus, C has type (2, 0, 3) and
G/T (C) = 〈a〉×〈b〉×〈c〉. Furthermore, a straightforward calculation shows that
Φ−1(K(C)) = T (C) and every element of C has weight 0, 8 or 16. Therefore, C
is a Hadamard code. The dimension of its kernel is 2. By Lemma 3.6 the linear
span of C is Φ(〈C, (a : b) = (a2,1,a2,1), (a : c) = e, (b : c) = (1,1,1,a2)〉).
Thus, the rank of C is 7.

Lemma 4.6. Let C be a subgroup of Zk12 × Zk24 × Qk38 such that Φ(C) is a
Hadamard code. Let a, b, c ∈ C \ T (C). Then

1. either [a, b] ∈ 〈a2〉 or a2 = u;

2. if a2 = b2 = c2 6= u then |〈a, b, c, T (C)〉/T (C)| ≤ 4

3. if a2 = b2 = [a, b] 6= c2 then
|〈(a : c) , (b : c) , T (C)〉/T (C)| ≤ 2.

Proof. We know that the binary all ones vector belongs to any Hadamard code
and hence u ∈ C.

1. If y ∈ C \ {1,u} then wt(Φ(y)) = n
2 . Thus, by item 2 of Lemma 3.2, if

a2 6= u and [a, b] 6= e then [a, b] = a2.
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2. Assume |〈a, b, c, T (C)〉/T (C)| > 4 and a2 = b2 = c2 = t 6= u. Then
{ab, ac, bc, abc} ∩ T (C) = ∅. Therefore, by items 1 and 2 of Lemma 3.2, [a, b] =
[a, c] = [b, c] = t. Hence (abc)2 = [a, b][a, c][b, c]a2b2c2 = t6 = e. Thus abc ∈
T (C), a contradiction.

3. Suppose |〈(a : c) , (b : c) , T (C)〉/T (C)| > 2 and a2 = b2 = [a, b] 6= c2.
Then 〈(a : c) , (b : c)〉 is isomorphic to Z2

2 and intersects T (C) trivially. Write
a = (a1, . . . , al), b = (b1, . . . , bl) and c = (c1, . . . , cl).

Suppose [a, c] = [b, c] = e. Then a2 6= u for otherwise 〈ai, bi〉 = Q8 for every
i and hence c has order 2, contradicting the fact that (a : c) 6= e. Therefore,
after reordering the coordinates we may assume that a2 = (ul1 | el2). Hence, if
i ≤ l1 then 〈ai, bi〉 = Q8 and ci has order at most two and when i > l1, ai and
bi have order at most two and ci has order four. Then (a : c) = e, contradicting
the assumption.

Thus either [a, c] 6= e or [b, c] 6= e. By symmetry we may assume that
[a, c] 6= e. If [b, c] = e then [ab, c] 6= e, (ab)2 = a2 and (ab : c) = (a : c) (b : c),
so that 〈(a : c) , (b : c)〉 = 〈(a : c) , (ab, c :〉). Therefore, we can replace b by ab
and so we may assume that [b, c] 6= e. Then, by item 1, either a2 = u and
[a, c] = [b, c] = c2 or c2 = u and [a, c] = [b, c] = a2.

Suppose that a2 = u. Then 〈ai, bi〉 ∼= Q8 for every i, so that G = Ql8
and wt(c2) = 2l = n

2 . Then l is even and after reordering the coordinates
we may assume that c2 = (u l

2
| e l

2
). Then each ai and bi have order 4 and

ci has order 4 if and only if i ≤ l
2 . Let A1 = {a,a3}, A2 = {b,a2b} and

A3 = {ab,a3b}. If r ∈ Ai and s ∈ Aj then [r, s] = e if and only if i = j;
and (r : s) = e if and only if i − j ≡ 1 mod 3 (see Table 1). Each ai, bi
and ci, with i ≤ l

2 , belongs to some Ai and [ai, bi] = [ai, ci] = [bi, ci] = a2.
Therefore ai, bi and ci belong to different Ai’s. This implies that for every
i ≤ l

2 , {(ai : ci) , (bi : ci)} = {1,a2}. On the other hand, [ai, ci] = [bi, ci] = 1

for every i > l
2 . Therefore (a : c) (b : c) = (u l

2
| e l

2
) = c2 ∈ T (C) which yields a

contradiction. A slight modification of this argument, with the roles of a and c
interchanged, yields also a contradiction in the case c2 = u. This finishes the
proof of item 3.

The following corollary is a straightforward consequence of Lemma 3.2 and
Lemma 4.6.

Corollary 4.7. Let C be a subgroup of Zk12 × Zk24 ×Q
k3
8 such that C = Φ(C) is

a Hadamard code and let x1, . . . , xσ; y1, . . . , yδ; z1, . . . , zρ be a set of generators
of C.

1. For every t ∈ T (C) with t 6= u, the cardinality of {i = 1, . . . , ρ : z2i = t} is
at most 2.

2. If [zi, zj ] 6= e then either z2i = u or [zi, zj ] = z2i .

3. If [zi, zj ] = e then z2i 6= z2j .

Corollary 4.7 implies that if C is a subgroup of G such that Φ(C) is a
Hadamard code and t 6= u then a generating set of C has at most two zi’s
with square equal to t. Moreover if z2i = z2j 6= u then [zi, zj ] = z2i , by item 1 of
Lemma 3.2 and item 1 of Lemma 4.6. For our purposes it is convenient to use
a generating set for which this property also holds for zi’s with square u.
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Definition 4.8. Let C be a subgroup of Zk12 ×Zk24 ×Q
k3
8 such that C = Φ(C) is

a Hadamard code and let x1, . . . , xσ; y1, . . . , yδ; z1, . . . , zρ be a set of generators
of C. We say that this generating set is normalized if z2i = u for at most two
i = 1, . . . , ρ and if z2i = z2j = u with i 6= j then [zi, zj ] = u.

Lemma 4.9. Every Hadamard Z2Z4Q8-code C has a normalized set of gener-
ators.

Proof. Let x1, . . . , xσ; y1 . . . , yτ ; z1, . . . , zρ be a generating set of C. We may
assume without loss of generality that z2i = u if and only if i ≤ k and either
[z1, zi] 6= u for every 2 ≤ i ≤ k or [z1, z2] = u. If k ≤ 1 there is nothing to
prove. Otherwise, for every i = 1, . . . , ρ we define

z′i =


z1zi, if 2 ≤ i ≤ k and [z1, zi] 6= u;
z2zi, if 3 ≤ i ≤ k, [z1, zi] = u 6= [z2, zi];
z1z2zi, if 3 ≤ i ≤ k, [z1, zi] = u = [z2, zi];
zi, otherwise.

Then x1, . . . , xσ; y1 . . . , yτ ; z′1, . . . , z
′
ρ is a generating set of C and we claim that

it is normalized. Indeed, if i > k then z′2i = z2i 6= u. Assume 3 ≤ i ≤ k.
If [z1, zi] 6= u then z′2i = (z1zi)

2 = [z1, zi]z
2
1z

2
2 = [z1, zi] 6= u. Assume that

[z1, zi] = u. Then, by construction, [z1, z2] = u. Therefore, if [z2, zi] 6= u
then z′2i = (z2zi)

2 = [z2, zi]z
2
2z

2
i = [z2, zi] 6= u, and if [z2, zi] = u then z′2i =

(z1z2zi)
2 = [z1, z2][z1, zi][z2, zi]z

2
1z

2
2z

2
i = u6 = 1 6= u. Finally, assume that

i = 2 ≤ k. If [z1, z2] = u then z′2 = z2 and so [z1, z
′
2] = u and otherwise

z′22 = (z1z2)2 = [z1, z2] 6= u.

In the remainder of the section x1, . . . , xσ; y1, . . . , yδ; z1, . . . , zρ is a normal-
ized generating set of C. Moreover, let ε denote the number of pairs of different
zi’s with the same squares, We reorder the zi’s in such a way that two zi’s with
the same square are consecutive and placed at the beginning of the list, i.e.,
z21 = z22 , . . . , z

2
2ε−1 = z22ε and z22 , z

2
4 , . . . , z

2
2ε, z

2
2ε+1, . . . , z

2
ρ are pairwise different.

Note that for each i = 1, . . . , ρ there is j = 1, . . . , ρ such that [zi, zj ] 6= e. In that
case, either z2i = u or z2j = u or z2i = z2j . In the last case {i, j} = {2t − 1, 2t}
for some t ≤ ε.

Lemma 4.10. Let C be a subgroup of Zk12 × Zk24 × Qk38 such that Φ(C) is a
Hadamard code and let x1, . . . , xσ; y1, . . . , yδ; z1, . . . , zρ be a normalized set of
generators of C. Let ε and the zi’s be as in the previous paragraph. Then the
following assertions hold:

1. ε ≤ 2.

2. If ε = 2 then δ = 0 and ρ = 4. In the case when z21 , z
2
3 and u are pairwise

different we have [zi, zj ] = e and z2i z
2
j = u for i ∈ {1, 2}, j ∈ {3, 4}.

3. If z2i = u with i ≤ 2ε then δ = 0.

4. Let V = {y1, . . . , yδ, z1, z3, . . . , z2ε−1, z2ε+1, z2ε+2, . . . , zρ}, W = {w2 :
w ∈ V } and U = {u ∈ V : u2 6= u}. Then |〈W 〉| ≥ 2δ+ρ−ε−1, and hence
σ ≥ δ + ρ − ε − 1. If moreover u /∈ 〈U〉 then |〈W 〉| = 2δ+ρ−ε, and hence
σ ≥ δ + ρ− ε.
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5. (Upper bound for r(C)) If D = 〈C ∪ S(C)〉 (as in Lemma 3.6) then D is
of type (σ + h, δ, ρ) and r(C) ≤ σ + δ + ρ+ h with

h ≤
{
ε+

(
δ+ρ−ε

2

)
, if ε ≤ 1;

3, if ε = 2

Proof. Item 3. Assume z2i = u for some i ≤ 2ε. Then we may assume without
loss of generality that z21 = z22 = [z1, z2] = u. (Recall that our generating set is
normalized.) Then the projection of 〈z1, z2〉 onto each coordinate is Q8, so that
k1 = k2 = 0, and no element of C of order 4 is central, i.e., δ = 0.

For every i = 1, . . . , ρ let Xi = {j : the jth coordinate of zi has order 4}.
We claim that if z2i , z

2
j and u are pairwise different for some i, j ≤ 2ε then

k1 = k2 = δ = 0, Xi and Xj form a partition of {1, . . . , l}, z2i z2j = u and

{z21 , . . . , z2ρ} ⊆ {z2i , z2j ,u}. For simplicity we also assume that i = 1 and j = 3.

We know that z21 = z22 and z23 = z24 , and, by Lemma 3.2, [z1, z2] 6= e 6= [z3, z4].
Hence, by Corollary 4.7, [z1, z2] = z21 = z22 and [z3, z4] = z23 = z24 , and the
images of these elements by Φ have weight n

2 . This implies that X1 = X2, the
projections of z1 and z2 on the coordinates of X1 generates Q8 and |X1| = n

8 .
Similarly X3 = X4, the projections of z3 and z4 on X3 generate Q8 and |X3| =
|X4| = n

8 . Moreover, by Corollary 4.7, [zi, zj ] = e for i = 1, 2 and j = 3, 4.
Therefore the projection of z3 and z4 on the coordinates of X1 have order 2.
This implies that X1 and X3 are disjoint. Therefore 4(|X1| + |X3|) = n and
hence k1 = k2 = 0. Furthermore, no element of C of order 4 can commute with
each zi with i = 1, 2, 3, 4. This implies that δ = 0 and, by item 1 of Lemma 4.6,
z2k = u for every k 6= 1, 2, 3, 4. This finishes the proof of the claim.

Items 1 and 2. Assume first that z2i , z
2
j and u are pairwise different for some

i, j ≤ 2ε. Observe that this holds if ε > 2. By the claim, we may assume without
loss of generality that X1 is formed by the first n

8 coordinates and X3 is formed
by the last n

8 coordinates. Moreover, if ρ > 5, then by the claim z25 = u = z21z
2
3 .

Then there are z′1 ∈ 〈z1, z2〉 and z′3 ∈ 〈z3, z4〉 such that z′1 and z5 coincide in
the first coordinate and z′3 and z5 coincide in the last coordinate. As all the
coordinates of z5 have order 4, and both the last l

2 coordinates of z21 and the first
l
2 coordinates of z23 are e, we deduce that the first l

2 coordinates of z′1 and the

last coordinates l
2 of z′3 have order 4. Moreover [z′1, z5] 6= z′1

2
and [z′3, z5] 6= z′3

2
.

So, z′21 z
′2
3 = z25 and [z′1, z5] = [z′3, z5] = e. Then (z′1z

′
3z5)2 = z′21 z

′2
3 z

2
5 = e,

contradicting the fact that z′1z
′
3z5 6∈ T (C). This finishes the proof of 1, and

proves 2 in case z21 6= u 6= z23 .
Suppose that ε = 2 and z21 = u. As above, we may assume that 〈z3, z4〉

projects to Q8 in the first n
8 coordinates and projects to an element of order at

most 2 in the remaining coordinates. Suppose ρ > 4. By Corollary 4.7, [z3, z5] =
[z4, z5] = e, so that the projection of z5 in the first n

8 coordinates has order at
most 2 and the projection on the remaining coordinates has order 4. Therefore
(z3z5)2 = (z4z5)2 = z23z

2
5 = z24z

2
5 = u. Moreover, by the same argument as in

the previous paragraph, we could take z′1 ∈ 〈z1, z2〉 and z′3 ∈ 〈z3, z4〉 such that
[z′1, z5] = [z′3, z5] = [z′1, z

′
3] = e. This implies that (z′1z

′
3z5)2 = z′21 z

′2
3 z

2
5 = e,

contradicting the fact that z1z3z5 6∈ T (C). This finishes the proof of 2.
Item 4. Let t = |U | and set U = {u1, . . . , ut}. Observe that t = δ +

ρ − ε − 1 if u ∈ W and otherwise t = δ + ρ − ε. From item 2 of Corol-
lary 4.7, the elements of U commute. Moreover the map Zt2 → C/T (C) given
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by (α1, . . . , αt) 7→ uα1
1 . . . uαtt T (C) is injective. Then, by item 1 of Lemma 3.2,

the rule (α1, . . . , αt) 7→ u2α1
1 . . . u2αtt defines a bijection Zt2 → T (U). Then

|〈W 〉| ≥ |T (〈U〉)| = 2t ≥ 2δ+ρ−ε−1. If u 6∈ 〈U〉 then either u 6∈ W and hence
t = δ + ρ − ε, W = T (U) and |W | = |T (U)| = 2δ+ρ−ε or 〈W 〉 = 〈T (U),u〉 and
then |W | = 2|T (U)| = 2δ+ρ−ε. In both cases |W | = 2δ+ρ−ε.

Item 5. Using the argumentation in the proof of Lemma 3.6 the span
of C is Φ(D) where D is the group generated C and the swappers of A =
{y1, . . . , yδ, z1, . . . , zρ}, where we only take one of the two swappers (a : b) or
(b : a) for a 6= b ∈ A. If i ≤ ε then |〈(z2i−1 : a) , (z2i : a) , T (C)〉/T (C)| ≤ 2
(Lemma 4.6), for every a ∈ A \ {z2i−1, z2i}. Therefore, in order to gener-
ate D modulo C it is enough to take the swappers of the form (zj : zk) with
2ε < j < k ≤ ρ, the swapper (z2i−1 : z2i) for each i ≤ ε and one out of the two
swappers (z2i−1 : zj) or (z2i : zj) for each i ≤ ε and 2i < j ≤ ρ. This gives a

total of s =
(
δ+ρ−2ε

2

)
+ ε+

∑ε
i=1(δ+ρ−2i) swappers. Thus r(C) = σ+δ+ρ+h

with h ≤ s. If ε = 0 then s =
(
δ+ρ
2

)
. If ε = 1 then α = 1+

(
δ+ρ−2

2

)
+(δ+ρ−2) =

1 +
(
δ+ρ−1

2

)
. Finally, assume that ε = 2. Then δ = 0, ρ = 4 and h ≤ s = 4.

We claim that in this case we may assume that z21 = u. Otherwise, by item 2
in this Lemma, [zi, zj ] = e and (zizj)

2 = u for every i = 1, 2 and j = 3, 4, and
therefore (z1z3)2 = (z2z4)2 = u and [z1z3, z2z4] = [z1, z2][z3, z4] = z21z

2
3 = u.

Thus, replacing z1 and z2 by z1z3 and z2z4, respectively, we obtain the de-
sired claim. To finish the proof it remains to prove that h ≤ 3. In this
case D = 〈C, (z1 : z2) , (z3 : z4) , s1, s2〉 where {s1, s2} = {(z1 : z3) , (z2 : z4)} or
{s1, s2} = {(z1 : z4) , (z2 : z3)}. After reordering z3 and z4, if necessary, one
may assume that D = 〈C, (z1 : z2) , (z3 : z4) , (z1 : z3) , (z2 : z4)〉. By means of
contradiction assume that h = 4. This means that

A = 〈(z1 : z2) , (z3 : z4) , (z1 : z3) , (z2 : z4) , T (C)〉/T (C) (8)

is of order 16. By [z1, z2] = u we have k1 = k2 = 0. After a suitable reordering
we may assume that z23 = (u l

2
, e l

2
). Write z1 = (a1, . . . , al), z2 = (b1, . . . , bl),

z3 = (c1, . . . , cl) and z4 = (d1, . . . , dl). As [a1, b1] = a2 and c1 has order 4, c1
does not commute with either a1 or b1. If [a1, c1] = 1 then replacing z1 by z1z2
we may assume that [a1, c1] = [b1, c1] = a2.

We argue similarly if [b1, c1)] = e to deduce that we may always assume that
[a1, c1)] = [b1, c1)] = a2. Then [z1, z3] = [z2, z3] = z23 . For every x ∈ Q8 of
order 4 let l(x) ∈ {1, 2, 3} with x ∈ Al(x), where A1 = {a,a3}, A2 = {b,a2b}
and A3 = {ab,a3b}. Then {l(ai), l(bi), l(ci)} = {1, 2, 3} for every i ≤ l

2 . As
[c1, d1] 6= 1, l(c1) 6= l(d1). If l(b1) = l(d1) then [b1, d1] = 1 and therefore
[z2, z4] = e. Then l(bi) = l(di) for every i ≤ l

2 and hence s4 = (z2 : z4) =
(u l

2
, e l

2
) = z23 ∈ C, contradicting the assumption. Thus l(b1) 6= l(d1) and hence

[z2, z4] = z23 . Then l(bi) 6= l(di) for every i ≤ l
2 . So, for these indexes we

have {l(bi), l(ci), l(di)} = {1, 2, 3}, hence l(ai) = l(di) and (ai : ci) (ci : di) =
(ai : ci) (di : ci) [ci, di] = (aidi : ci) [ci, di] = [ci, di].

We conclude with (z1 : z3) (z3 : z4) = [z3, z4] ∈ T (C), a contradiction.

Next theorem describes the group structure of Hadamard Z2Z4Q8-codes and
specify the bounds for the rank and dimension of the kernel in each case.

Theorem 4.11. Let C be a subgroup of Zk12 × Zk24 × Q
k3
8 such that C = Φ(C)

is a Hadamard code of length n = 2m with rank r = r(C) and dimension of the
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kernel k = k(C). Then C has a normalized generating set x1, . . . , xσ; y1, . . . , yδ;
z1, . . . , zρ , where m = σ + δ + ρ− 1, satisfying one of the following conditions.

1. ρ = 0. Then C ∼= Zσ−δ2 × Zδ4 and C is a Z2Z4-linear code (which could be
Z4-linear code or not), with length n = 2m and m = σ + δ − 1.

(a) If C is Z4-linear then either δ ∈ {1, 2} and C is linear, or δ ≥ 3,
k = σ + 1; r = σ + δ +

(
δ−1
2

)
.

(b) If C is not Z4-linear then σ > δ and either δ ∈ {0, 1} and C is linear,
or δ ≥ 2, k = σ and r = σ + δ +

(
δ
2

)
.

2. δ = 0, z21 = z22 = [z1, z2] = u, [zi, zj ] = z2j and [zj , zk] = e for every

i ∈ {1, 2} and 3 ≤ j, k ≤ ρ. Then C ∼= Zσ−ρ+1
2 ×(Zρ−24 oQ8), k ≥ σ ≥ ρ−1

and r ≤ σ + ρ+ 1 +
(
ρ−1
2

)
.

3. δ = 0, z21 = u 6∈ 〈z22 , . . . , z2ρ〉 ∼= Zρ−12 , [z1, zi] = z2i and [zi, zj ] = e, for

every i 6= j in {2, . . . , ρ}. Then C ∼= Zσ−ρ2 × (Zρ−14 o Z4), k ≥ σ ≥ ρ and
r ≤ σ + ρ+

(
ρ
2

)
.

4. ρ = 2, δ ≤ 1 and z21 = z22 = [z1, z2] 6= u. Then C ∼= Zσ−δ−12 × Zδ4 × Q8,
k ≥ σ ≥ δ + 1 and r ≤ σ + δ + ρ+ 1 ≤ σ + 4.

5. δ = 0, ρ = 4, z21 = z22 = [z1, z2] = u 6= z23 = z24 = [z3, z4] and [zi, zj ] ∈ 〈z2j 〉
for every i ∈ {1, 2} and j ∈ {3, 4}. Then C ∼= Zσ−22 × (Q8 o Q8) and
k ≥ σ ≥ 2; r ≤ σ + 7.

Proof. If C is abelian then condition 1 holds and the values for the rank and
dimension of the kernel are already known [12]. So, in the remainder of the
proof we assume that C is non-abelian and therefore ρ ≥ 2.

We fix a normalized generating set x1, . . . , xσ; y1, . . . , yδ; z1, . . . , zρ of C
which will be modified throughout the proof to be adapted to one of the cases.
Let ε be as in Lemma 4.10 and reorder the zi’s such that those with equal square
are consecutive and placed at the beginning of the list. Then z22i−1 = z22i =
[z2i−1, zi] for every i = 1, . . . , ε (see the comment after Corollary 4.7). Also, as
in Lemma 4.10 we set V = {y1, . . . , yδ, z1, z3, . . . , z2ε−1, z2ε+1, z2ε+2, . . . , zρ} and
U = {u ∈ V : u2 6= u}.

1. Assume ε = 2. Then δ = 0 and ρ = 4 (Lemma 4.10). If either z21 or z23
equals u we can assume that z21 = u. If z21 , z23 and u are pairwise different
we can take z′1 = z1z3 and z′2 = z2z4 which is a new normalized generating

set z′1, z
′
2, z3, z4 with z′1

2
= u. By Corollary 4.7, [zi, zj ] = 〈z2j 〉, for i = 1, 2

and j = 3, 4. Hence, condition 5 holds and u /∈ 〈U〉, so σ ≥ δ + ρ− ε = 2.

2. Assume ε = 1 and z21 = u. Then δ = 0 (Lemma 4.10).

If ρ = 2 then condition 2 holds. In this case u /∈ 〈U〉, so σ ≥ δ+ρ−ε = ρ−1.

Assume ρ ≥ 3. Then U = {z3, . . . , zρ}. By Corollary 4.7, for every
3 ≤ i, j ≤ ρ we have [zi, zj ] = e and therefore 〈[z1, zi], [z2, zi]〉 = 〈z2i 〉.
By changing the generators z1 and z2 if necessary, we may assume that
[z1, zρ] = [z2, zρ] = z2ρ. The new generating set is still normalized. We
have two options: u 6∈ 〈U〉 or u ∈ 〈U〉. In the first case, [z1, zi] = z2i for
every i ≥ 3 for otherwise [z1, zizρ] = z2ρ 6∈ 〈(zizρ)2〉 in contradiction with
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Lemma 4.6. Similarly [z2, zi] = z2i . Then condition 2 holds. We claim
that in the second case, so when u ∈ 〈U〉, we have [z1, zi] = e, [z2, zi] = z2i
for some i ≥ 3. Otherwise [z1, zi] = [z2, zi] = z2i for every i = 3, . . . , ρ.
Then [z1z2, zi] = e for every j ≥ 3. After reordering the zi’s we may
assume that (z3 · · · zk)2 = u. Then (z1z2z3 · · · zk)2 = e contradicting
the fact that z1 . . . zk 6∈ T (C). This proves the claim. So assume that
u ∈ 〈U〉 and (after reordering the zi’s) [z1, z3] = e and [z2, z3] = z23 . Then
[z1, z3zρ] = z2ρ 6∈ 〈(z3zρ)2〉 and therefore (z3zρ)

2 = u. If 4 ≤ i < ρ then
(zizρ)

2 6= (z3zρ)
2 = u and therefore [z1, zi] = [z2, zi] = z2i . Thus (z3zi)

2 =
u = (z3zρ)

2 which is not possible. This proves that ρ = 4. Now we can
construct a new generating set {z′1 = z1z2, z

′
2 = z′2, z

′
3 = z1z3, z

′
4 = z4}

and it is easy to check that z′21 = z′22 = [z′1, z
′
2] = u 6= z′23 = z′24 = [z′3, z

′
4]

and [z′i, z
′
j ] = z′23 , for every i = 1, 2 and j = 3, 4. Thus, ε = 2 which has

been treated before.

3. Assume ε = 1 and z21 6= u. We can have ρ ≥ 3 or ρ = 2.

In the first case, so if ρ ≥ 3 then [zi, zj ] = [zj , zk] = e for every i 6= 2 and
every j, k ≥ 3 such that z2j = e, by Corollary 4.7. As each zj is not central,

z2j = u for some j ≥ 3 and we may assume that z23 = u. After reordering
coordinates one also may assume that 〈z1, z2〉 projects to Q8 in the first
n
8 coordinates. Then either [z1, z3] 6= e or [z2, z3] 6= e. By symmetry we
may assume that [z1, z3] 6= e. If [z2, z3] = e then replacing z2 by z1z2, we
can always assume that [z2, z3] 6= e. Then [zi, z3] = z2i for i = 1, 2, by
Lemma 4.6. If it were 3 < ρ then z4 projects to an element of order at most
2 in the first n

8 coordinates and to an element of order 4 in the remaining
coordinates and [z3, z4] = z24 . Then x1, . . . , xσ; y1, . . . , yδ; z1, z2, z3, z

′
4 =

z1z4 is a new generating set such that z′4
2

= z21z
2
4 = u = [z3, z

′
4], with

ε = 2, which is out of our initial assumption about ε = 1. Hence, we
have ρ = 3 with z23 = u and [zi, z3] = z2i for every i = 1, 2. Then
[z1z2z3, z1] = [z1z2z3, z2] = [z1z2z3, z3] = e. Therefore z1z2z3 ∈ Z(C), a
contradiction.

In the second case, so when ρ = 2, assume δ > 1. We can reorder the
coordinates in such a way that 〈z1, z2〉 projects to Q8 in the first n

8 coor-
dinates and then take two elements y1, y2 of order four which commutes
with z1 and z2. The first n

8 coordinates of both yi must be of order at
most two and so, y1y2 is of order two, contradicting the fact that y1, y2
are elements of a generating set. Hence, δ ≤ 1. In this case, note that if
we take A = 〈x1, . . . , xσ; y1; z1〉 then A = Φ(A) is a linear code. Indeed,
the value of all swappers is e except for (y1 : y1) = y21 and (z1 : z1) = z21 ,
which are also values belonging to A. Code C = 〈A, z2〉 has only one pos-
sible swapper given by (z2 : z1) and so, r(C) ≤ m+ 2. Then, condition 4
holds.

4. Finally assume ε = 0. Necessarily z2i = u for some i, since [zi, zj ] =
e if z2i , z

2
j and u are pairwise different. We may assume that z21 = u.

Then [z1, zi] = z2i and [zi, zj ] = e for every i, j = 2, . . . , ρ. We have

U = {z2, . . . , zρ} and 〈U〉 is isomorphic to Zρ−12 . We have two options:
u ∈ 〈U〉 or u 6∈ 〈U〉. In the first case, reordering z2, . . . , zρ, we may
assume that z22z

2
3 . . . z

2
k = u for some 2 < k ≤ ρ. Then we change the set
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of generators by replacing z2 by z2 . . . zk. Observe that we have passed
from a normalized generating set with ε = 0 to a normalized one with
ε = 1 and [z1, z2] = z21 = z22 = u. This case is already studied. If u /∈ 〈U〉
then δ = 0 and condition 3 holds. Otherwise, there exists an element
of order four, y commuting with z1 and z2. But [z1, z2] = z22 6= u, so
the coordinates of order four in z2 should coincide with the coordinates
of order at most two in y and then y2z22 = u or, the same (yz1)2 =
z22 . Then x1, . . . , xρ; y1, . . . , yδ; z

′
1 = yz1, z2, z3, . . . , zρ is a new normalized

generating set with ε = 1, and (z′1)2 = z22 = [z′1, z2] 6= u, a case which has
been treated before. This finishes the proof.

If C is a subgroup of Zk12 × Zk24 × Qk3 such that C = Φ(C) is a Hadamard
code and with a normalized set of generating vectors satisfying condition i (i ∈
{1, . . . , 5}) in Theorem 4.11 we will say that C is of shape i.

Corollary 4.12. Let C be a subgroup of Zk12 ×Zk24 ×Qk3 of length 2m and type
(σ, δ, ρ) such that C = Φ(C) is a Hadamard code. Let k = k(C) and r = r(C).
Then the following statements hold:

1.
⌈
m
2

⌉
≤ σ ≤ k ≤ m+1 ≤ r ≤ m+1+

(
δ+ρ
2

)
and δ+ρ = m+1−σ ≤

⌊
m+2
2

⌋
,

with one exception for a code with parameters m = 5, σ = 2, δ = 0, ρ = 4.

2. r ≤

{
m+ 1 +

(m+1
2
2

)
, if m is odd;

m+ 2 +
(m

2
2

)
, if m is even.

More precisely:

r − (m+ 1) ≤



(m−1
2
2

)
, ı́f m odd, sh(C) = 1;

1 +
(m−1

2
2

)
, ı́f m odd, sh(C) = 2;(m+1

2
2

)
, ı́f m odd, sh(C) = 3;(m

2
2

)
, ı́f m even, sh(C) = 1;

1 +
(m

2
2

)
, ı́f m even, sh(C) = 2;(m

2
2

)
, ı́f m even, sh(C) = 3;

1, ı́f sh(C) = 4;
3, ı́f sh(C) = 5.

Proof. Item 1. It is clear that k ≤ m+ 1 = σ + δ + ρ ≤ r. From Lemma 3.5 we
have σ ≤ k and Lemma 3.6 gives r ≤ m + 1 +

(
δ+ρ
2

)
. Moreover σ ≥ δ + ρ − 1,

except for the case ε = 2, which is shape 5. In this last case we also have δ = 0
and ρ = 4, so σ still fulfils the inequality σ ≥ δ + ρ − 1, with the exception of
(m = 5, σ = 2, δ = 0, ρ = 4). Hence m+ 1 = σ+ δ+ ρ ≤ 2σ+ 1 (with the above
exception) and therefore

⌈
m
2

⌉
≤ σ ≤ k. Then δ+ ρ = m+ 1−σ ≤ m+ 1− m

2 =
m+2
2 .

Item 2. Let h = r − (m+ 1).
For shape 1(a), m + 1 = σ + δ ≥ 2δ, hence δ − 1 ≤

⌊
m−1
2

⌋
. Therefore,

h = r − (m + 1) = (σ + δ +
(
δ−1
2

)
− (m + 1) =

(
δ−1
2

)
. Thus, if m is odd then

h ≤
(m−1

2
2

)
and if m is even h ≤

(m−2
2
2

)
<
(m

2
2

)
.

For shape 1(b), m + 1 = σ + δ ≥ 2δ + 1, so δ ≤
⌊
m
2

⌋
and h =

(
δ
2

)
. Thus, if

m is odd then h ≤
(m−1

2
2

)
and if m is even h ≤

(m
2
2

)
.
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For shape 2, m+1 = σ+ρ ≥ 2ρ−1, so that ρ−1 ≤
⌊
m
2

⌋
, and h ≤ 1+

(
ρ−1
2

)
.

Hence, if m is odd then h ≤ 1 +
(m−1

2
2

)
and if m is even h ≤ 1 +

(m
2
2

)
.

For shape 3, σ ≥ ρ and m + 1 = σ + ρ ≥ 2ρ, so ρ ≤
⌊
m+1
2

⌋
. Moreover,

h ≤
(
ρ
2

)
. Hence, if m is odd then h ≤

(m+1
2
2

)
and if m is even h ≤

(m
2
2

)
.

For shape 4, r ≤ σ + δ + ρ+ 1 ≤ m+ 2. Hence, h = r − (m+ 1) ≤ 1.
Finally, the bound for shape 5, comes from Lemma 4.10.

Example 4.13 (A Hadamard Z2Z4Q8-code fulfilling the exception of Corol-
lary 4.12). By item 1 in Corollary 4.12, there are no Hadamard Z2Z4Q8-codes
of length 2m such that neither

⌈
m
2

⌉
< k nor m+1−σ >

⌊
m+2
2

⌋
, except perhaps

for a code of parameters (m = 5, σ = 2, δ = 0, ρ = 4). We present one example
of such a code.

Consider the subgroup C of Q8
8 generated by

z1 = (a,a,a,a,a,a,a,a),

z2 = (b,b,ab,ab,b,b,ab,ab),

z3 = (a,a,a3,a3,1,1,a2,a2),

z4 = (b,b3,ab,a3b,1,a2,1,a2).

Then C is of type (2, 0, 4), z1, z2, z3, z4 is a normalized generating system of C,
which is of shape 5 and Φ(C) is a Hadamard code. Note that k(C) = 2 = m−1

2 <
3 =

⌈
m
2

⌉
, r(C) = 8 = m+ 3 and m+ 1− σ = 4 > 3 =

⌊
m+2
2

⌋
.

Example 4.14 (The Hadamard codes of length 16). Let C be a Hadamard
code of length 16 and let r = r(C) and k = k(C). As it was explained at the
beginning of this section (r, k) = {(5, 5), (6, 3), (7, 2), (8, 1), (8, 2)}. Of course
if (r, k) = (5, 5) then C is Z2-linear. If (r, k) = (6, 3) then C is Z2Z4-linear
and if (r, k) ∈ {(7, 2), (8, 1), (8, 2)} then C is not a Z2Z4-linear linear code [12].
In Proposition 4.5 we have exhibited a Hadamard Q8-code of length 16 with
(r, k) = (7, 2) and from item 2 of Corollary 4.12 the upper bound for the rank
of Z2Z4Q8-codes of length 24 is 7. Hence, the Hadamard codes of length 16 and
rank 8 are not Z2Z4Q8-codes.

5 Recursive constructions of Hadamard Z2Z4Q8-
codes

In this section we present some methods to construct quaternionic Hada-
mard codes from a given Hadamard code.

The complement of a binary vector v is denoted (v)c. Observe that if x ∈ G
then (Φ(c))c = Φ(uc).

5.1 From Z2Z4-linear Hadamard codes to Hadamard Z4Q8-
codes

It is known [12] that for any m we have bm−12 c nonequivalent Z4-linear
Hadamard codes of binary length n = 2m. These codes can be characterized by
the parameter δ. Note that δ ∈ {1, 2, . . . , bm+1

2 c}, but the values δ = 1, 2
give codes equivalent to the linear Hadamard. The Z2Z4-linear Hadamard
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codes (which are not Z4-codes) are described in [12]. For any m there are
bm2 c nonequivalent such codes of binary length n = 2m. As with the Z4-linear
case, these codes can be characterized by the parameter δ ∈ {0, 1, 2, . . . , bm2 c}
and the values δ = 0, 1 give codes equivalent to the linear Hadamard.

We begin by taking a Z2Z4-linear Hadamard code to obtain a Hadamard
Z4Q8-code. Let C = Φ(C) be a Z2Z4-linear code, where C is a subgroup of

Zα2 ×Zβ4 . Let ξ1 : Z2 −→ Z4 be the homomorphism defined by ξ1(i) = 2i and let
ξ2 : Z4 −→ 〈a〉 ⊆ Q8 be the homomorphism defined by ξ2(i) = ai and generalize

those to a componentwise group homomorphism ξ : Zα2 × Zβ4 → Zα4 × Qβ8 .
Let Cq = Φ(Cq) be the Z4Q8-code obtained from Cq = ξ(C) of binary length
2(α+ 2β) = 2n. Code Cq is a Z4Q8-code of the same type as C.

Assume additionally that Φ(C) is a Hadamard code. Then the length of
Φ(Cq) is 2n and all the codewords of Φ(Cq) have length 0, n or 2n. However
Φ(Cq) is not a Hadamard code since |Cq| = |C| = 2n. Hence, to obtain a
Hadamard code we need to double the cardinality of this code. We do that by
taking C(x) = 〈Cq, x〉 for an appropriate element x ∈ Zα4 ×Q

β
8 of order 2 modulo

Cq which normalizes Cq and C(x) = Φ(C(x)). Then C(x) = Cq ∪ xCq and to make
sure that C(x) is a Hadamard code we must choose x so that

wt(Φ(xc)) = n, for every c ∈ C (9)

If x has order 2 then, after reordering the coordinates we may assume that
x = (el1 |ul2), where we separate the coordinates with value e and u, respec-
tively. Then C(x) = Φ(Cq) ∪ {(c1|(c2)c) : (c1|c2) ∈ C}, where both c1 and c2
have length n. Indeed, wt(c1|(c2)c) = wt(c1) + n − wt(c2) and so, for C(x) to
be a Hadamard code it is necessary that wt(c1) = wt(c2) for every (c1|c2) ∈ C.

One way to ensure that C(x) is a Hadamard code is taking x = (x1, . . . , xn2 )
with each xi ∈ Q8 \〈a〉. Condition (9) above is satisfied because for every c ∈ C,
all the coordinates of xc have order 4 and therefore wt(Φ(xc)) = n, as desired.
The rank and dimension of the kernel of C(x) depends on the election of x.

Example 5.1. Take C = 〈(1, 1, 1, 1), (2, 0, 1, 3)〉 ⊂ Z4
4. If we choose x =

(b,b,b,b) then C(x) is the (unique up to equivalence) binary linear code of
length 16. If we take x = (b,ab,b,ab) then C(x) is the group of Proposition 4.5
and hence C(x) is the Hadamard Q8-code of length 16 with rank 7 and dimen-
sion of the kernel 2. Finally, if we choose y = (b,b,b,a3b) then C(y) is a
Hadamard Q8-code of length 16, with rank 6 and dimension of kernel 3. Hence
the three Hadamard Z2Z4Q8-codes of length 16 can be obtained applying our
construction to C.

The following theorem shows that most Hadamard Z2Z4Q8-codes can be
obtained with this construction.

Theorem 5.2. Let C ′ be a Hadamard Z2Z4Q8-code. Assume that C ′ is either
of shape 2 or 3. Then C ′ is equivalent to C(z) for C a Z2Z4-linear code and
some z.

Proof. Assume that C ′ = φ(C′) with C′ a subgroup of Zk12 × Zα4 × Qβ8 and
let x1, . . . , xσ; y1, . . . , yδ; z1, . . . , zρ a normalized generating set of C′ satisfying
either condition 2 or 3 of Theorem 4.11. As z21 = u, we have k1 = 0. Moreover,
for shape 2, [z1, z2] = u and therefore α = 0. Let

C′′ =

{
〈x1, . . . , xσ; z1z2, z3, . . . , zρ〉, for shape 2;
〈x1, . . . , xσ; z2, z3, . . . , zρ〉, for shape 3.
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Then C′′ is an abelian subgroup of C of index 2. Moreover, the projection on
the Z4 part is contained in {0, 2}. This is clear for shape 2. For shape 3, it is
a consequence of [z1, zi] = z2i for i ≥ 2. After a suitable permutation on the
Q8-coordinates we may assume that C ⊆ 2Zα4 × 〈a〉β and therefore C′′ = ξ(C)
for a suitable subgroup C of Zα2 × Zβ4 such that C = Φ(C) is a Hadamard code.
Then C′ = 〈C, z1〉 and so C ′ = C(z1).

Note that if C′ is of shape 2, then α = 0 and so it is equivalent to C(z1) for
C a Z4-linear code.

Notice that if C is of shape 5 then C has no abelian subgroup of index 2 and
therefore C can not be obtained with this type of construction.

The Z2Z4-linear codes C used in Theorem 5.2 have length n = 2m, where
m + 1 = σ + δ and σ > δ in the case we are dealing with Z2Z4-linear (non
Z4-linear) codes (see [12]). The parameters of the obtained code C ′ after the
construction in Theorem 5.2 are m′ = m+ 1, ρ′ = δ+ 1 and σ′ = σ. Therefore,
m′ = m + 1 = σ + δ = σ′ + ρ′ − 1. The rank of C ′ can be computed from the
rank of C adding vector z1 and all the swappers (z1 : zi), where i ∈ {1, ρ}. Thus

r(C ′) ≤ r(C)+1+ρ′ = σ+δ+
(
δ
2

)
+1+ρ′ = σ′+ρ′+

(
ρ′−1
2

)
+ρ′ = σ′+ρ′+

(
ρ′

2

)
.

From Corollary 4.12, if m is odd then the upper bound r ≤ m+ 1 +
(m+1

2
2

)
can only be reached for Hadamard Z2Z4Q8-codes of shape 3 or shape 5 , with
m = 5. For m even the upper bound r ≤ m+2+

(m
2
2

)
only can be obtained with

Hadamard Z2Z4Q8-codes of shape 2. For instance, for m = 4 this maximum is 7
and it is reached by the code of Proposition 4.5 which is of shape 2. For m = 5,
the upper bound for the rank of a Z2Z4Q8-code is 9. In the next example we will
show a Z2Z4Q8-code with m = 5 and rank 9, by using the latest construction.

Example 5.3. Take the Hadamard Z2Z4-linear code C = Φ(C), with m =
4 and parameter δ = 2. This code C is generated by (1, 1, 1, 1 2, 2, 2, 2, 2, 2),
(0, 1, 0, 1, 0, 2, 1, 1, 1, 1), (0, 0, 1, 1, 1, 1, 0, 1, 2, 3) ∈ Z4

2 × Z6
4.

Now, construct ξ(C) ⊂ Z4
4 ×Q6

8 generated by

x1 =(2, 2, 2, 2,a2,a2,a2,a2,a2,a2)

z2 =(0, 2, 0, 2,1,a2,a,a,a,a)

z3 =(0, 0, 2, 2,a,a,1,a,a2,a3)

If we choose z1 = (1, 1, 1, 1,b,ab,b,ab,ab,a3b) then C(z1) is a Hadamard
code of length 32, type (3, 0, 3), shape 3, rank r = 9 and dimension of the kernel
k = 3.

5.2 The generalized Kronecker construction

We give a generalization of the Kronecker construction of Hadamard matrices
in the context of Hadamard Z2Z4Q8-codes.

If H is a Hadamard matrix then the Kronecker matrix of H is K(H) =(
H H
H −H

)
, which is another Hadamard matrix. If C is the Hadamard code

associated to H and K(C) is the Hadamard code associated to K(H) then K(C)
is formed by concatenation of vectors so, the vectors in K(C) are of the form
(c|c) and (c|(c)c), with c ∈ C.

21



Let ∆ : G → G × G be the diagonal map, i.e., ∆(x) = (x|x) for each x ∈ G.
Assume that C = Φ(C), for C a subgroup of G. Then K(C) = Φ(K(C)) where

K(C) = 〈∆(C), (1|u)〉. Moreover k(K(C)) = k(C) + 1, r(K(C)) = r(C) + 1 and
if C is of type (σ, δ, ρ) then K(C) is of type (σ + 1, δ, ρ).

More generally, let g be an element of G of order 2 modulo C which normalizes
C, i.e.,

Cg = C and g2 ∈ C.

Consider the subgroup Kg(C) = 〈∆(C), (g|gu)〉 of G × G. For instance, Kg(C) =
K(C) if and only if g ∈ C. We claim that Φ(Kg(C)) is a Hadamard code.

First we have that ∆(C) is a subgroup of G ×G of cardinality 2n. Moreover,
(g|gu)2 = (g2|g2) ∈ ∆(C); Cg = C and c ∈ C then (g|gu)−1(c|c)(g|gu) =
(gcg−1|gcg−1). Therefore Kg(C) = ∆(C) ∪ {(gc|guc) : c ∈ C} is a subgroup of
G × G of cardinality 4n. Furthermore, for every c ∈ C we have wt(Φ(c|c)) =
2wt(Φ(c)) ∈ {0, n, 2n} and wt(Φ(cg|cug)) = wt(Φ(cg)|(Φ(cg))c) = wt(Φ(cg)) +
2n− wt(Φ(cg)) = 2n.

Moreover, r(Kg(C)) = r(C) + 1 and k(Kg(C)) ≤ k(C) + 1. Assume that
C is of type (σ, δ, ρ). If g has order 2 then Kg(C) is of type (σ + 1, δ, ρ). If g
has order 4 and commutes with all the elements of Z(C) then Kg(C) is of type
(σ, δ + 1, ρ). Finally, if CZ(C)(g) = {x ∈ Z(C) : xg = gx} is of order σ + δ1 with
δ1 < δ then Kg(C) is of type (σ, δ1, ρ+ δ − δ1 + 1).

Example 5.4. As an example of the above construction, from the code C
constructed in Proposition 4.5 and taking g = (b,ab,1,1) ∈ Q4

8 we obtain a
new code Kg(C) of binary length 32, which is a quaternionic Hadamard, non
Z2Z4-linear code, with dimension of the kernel 2 and rank 8. It is equivalent to
the code of Example 4.13.

Example 5.5. Note that in some cases, when the size of the kernel of C is
strictly greater than the size of the center of C it could happen that using the
above generalized Kronecker construction the dimension of the kernel of the new
code Kg(C) is lower than the original. As an example, take C the subgroup of
Q8

8 generated by

z1 =(a,a,a,a,a,a,a,a, )

z2 =(b,ab,b,ab,b,ab,b,ab)

z3 =(a2,1,a2,1,a2,1,a2,1)

z4 =(a2,a2,1,1,a,a,a3,a3)

The corresponding binary code C = Φ(C) is a Hadamard, non Z2Z4-linear code
of length 32, type (3, 0, 3), shape 3, rank 7 and dimension of the kernel 4.

Take g = (a2,a2,1,1,b,ab,b,ab) ∈ Q8
8 and construct Kg(C), which turn

out to be a Hadamard, non Z2Z4-linear, code of length 64, type (3, 0, 4), shape 2,
rank 8 and dimension of the kernel 3.

5.3 Some final remarks

Using the above constructions from an initial well known code (linear or
Z2Z4-linear ) we can construct several infinite families of Z2Z4Q8-codes, which
are not Z2Z4-linear .
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We already mentioned that the Hadamard codes of length 16 can be com-
pletely classified using the invariants given by the rank and the dimension of
the kernel. However, in general, for larger lengths, we can find nonisomorphic
Hadamard Z2Z4Q8-codes with the same invariants.

Example 5.6. As an example, consider the code C in Example 5.5. It is a
binary Hadamard, non Z2Z4-linear code of length 32, rank 7 and dimension
of the kernel 4. We also know a Z2Z4-linear code of length 32, rank 7 and
dimension of the kernel 4 (item 1 of Theorem 4.11). It is the code C ′, where
C ′ = Φ(C′) and C′ is a subgroup of Z8

2 × Z12
4 generated by:

x1 =(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

x2 =(0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2)

y1 =(0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1)

y2 =(0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 2, 3, 1, 1, 0, 1, 2, 3)

Note that the examples we wrote into the paper achieve almost all the shapes
according Theorem 4.11. For instance, shape 1 is satisfied for all well known
Z2Z4-linear and Z4-linear Hadamard codes; the code in Proposition 4.5 is of
shape 2; the code in Example 5.3 is of shape 3 and the code in Example 4.13
is of shape 5. However, we have not yet found any examples of shape 4. We
supply such an example below.

Example 5.7. Let C be the code 〈(1, 1, 0, 0,a), (1, 0, 1, 0,b),
(1, 1, 1, 1,a2)〉. The code C is of shape 4 and the binary Z4

2×Q8-code C = Φ(C)
is a linear Hadamard code.

We can use a slight variation of the Kronecker construction to obtain a
shape 4 non linear code with the maximum rank allowed for this shape.

First of all, we use the Kronecker construction to obtain the code D = K(C),
which is generated by

x1 =(1, 1, 1, 1, 1, 1, 1, 1,a2,a2)

x2 =(0, 0, 0, 0, 1, 1, 1, 1,1,a2)

z1 =(1, 1, 0, 0, 1, 1, 0, 0,a,a)

z2 =(1, 0, 1, 0, 1, 0, 1, 0,b,b)

The code D = Φ(D) is a (linear) binary code of length 16, shape 4 and dimension
of the kernel and rank equal to the dimension of D, which is 5.

Finally, take the code D̄ with generators x1, x2, z1 and

z̄2 = (1, 0, 1, 0, 1, 0, 1, 0,ab,b).

It is straightforward to check that D̄ is of shape 4 and the binary code D̄ = Φ(D̄)
is of rank 6. Indeed, the code D̄ has a new swapper (z1 : z̄2) = (0, . . . , 0,a2,1)
which did not exist in D.
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