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Efectos  de  la  variabilidad  en  parámetros  poblacionales  en  
predicciones de probabilidad de detección

Observar una fracción constante de la población a través del tiempo, 
lugares, o especies es una tarea difícil de realizar, de modo que, la 
cuantificación de este porcentaje (i.e., la probabilidad de detección) es 
una tarea importante en estudios poblacionales. A través del uso de si-
mulaciones, se evaluó el efecto de la variabilidad en parámetros po-
blacionales en la exactitud de estimadores de probabilidad de detec-
ción. Estos resultados muestran de forma consistente como diferentes 
metodologías de muestreo y estimadores, sobrepredicen la probabili-
dad de detección.  Comparaciones entre estimadores y  métodos de 
muestreo mostraron diferencias significativas entre ellos (i.e., estima-
dores que toman en cuenta la heterogeneidad en parámetros pobla-
cionales producen predicciones más precisas). El tamaño poblacional 
fue el factor que más influyo en la incertidumbre y la precisión de las 
predicciones. Nuestros resultados muestran la necesidad de incluir ca-
racterísticas de la población (ya sea como una función de corrección o 
factores en un modelo de observación) al estimar las probabilidades 
de detección. El estudio concluye sugiriendo dos métodos para el uso 
de características de la población para estimar las probabilidades de 
detección.

Palabras  clave: Probabilidad  de  detección,  Captura-recaptura, 
Tamaño poblacional, Remoción, Sensitividad, Incertidumbre

Abstract

Observing a constant fraction of the population over time, locations, or 
species is virtually impossible. Hence, quantifying this proportion (i.e. 
detection  probability)  is  an  important  task  in  quantitative  population 
ecology. In this study we determined, via computer simulations, the ef-
fect of population characteristics on estimates of detection probability. 
Simulation results showed a consistent and significant over-prediction 
of detection probability across sampling methodologies and estimators. 
Comparisons between estimators and sampling methods showed sig-
nificant differences amongst them (estimators accounting for hetero-
geneity are the most accurate). Population size was the most important 
factor influencing the uncertainty and accuracy of the estimates. Our 
results show the need to include population characteristics (either as a 
correction function or as factors in the observation model) when estim-
ating detection probabilities. The study concludes by suggesting two 
methods  for  using  population  characteristics  to  estimate  detection 
probabilities.
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Introduction

Quantitative  population  ecology  models  are  im-
portant  tools  to  prioritize  conservation  efforts, 
land  management  decisions  and  policy-making 
strategies. Additionally, the study of variation in 
abundance and occurrence has become a recurrent 
topic  in  population,  community  or  meta-com-
munity  ecology.  In  this  perspective,  identifying 
the main sources of uncertainty when estimating 
abundance and occurrence as well as establishing 
the sensitivity of these estimates is paramount for 
effective conservation planning. 

Two  important  factors  determine  the  quality 
abundance  estimates:  sample  size  and  detection 
probability. The most common way to deal with 
these difficulties is the use of statistical descrip-
tions of both the sampling (observation) and oc-
currence (state) processes The goal with this ap-
proach is to accurately estimate the variable of in-
terest by including relevant covariates (e.g. popu-
lation size, abundance, density, the spatial distri-
bution of  the species  and  the role  of  ecological 
and biological dynamics/interactions).

Classical  approaches  to  estimate  site  occu-
pancy  and/or  abundance  are  based  on  sampling 
protocols where independent and replicate obser-
vations (in time or by several observers) are made 
at  a  series  of  sample  locations.  This  allows the 
simultaneous estimation of occurrence/abundance 
and detection probability. The main limitation of 
this approach is the failure to fully incorporate the 
two types of possible observational “zeros” : true 
absence at particular sampling (also known as true 
zeros)  and  failure  to  detect  an  individual  (also 
known as false negatives).

More  recent  methods  to  estimate  site  occu-
pancy/abundance have been developed to account 
for a variety of problems in the observation pro-
cess.  These  include  variation  in  occurrence  and 
detection among seasons or  species,  unobserved 
sources of variation in detection among locations 
and the possibility of both false negative and false 
positive  errors.  Although  the  relevance  of  each 
one of these complexities is indisputable, the way 
in which variability in  population characteristics 
(such as age, size, morphological distinctiveness, 
and level of exposure in the environment) influ-
ence false negative errors is a topic still to be ex-
plored.

This work focuses on the problem to estimate 

detection probabilities by investigating how popu-
lation  characteristics  (e.g.,  population  size,  age-
size structure and morphological distinctiveness) 
influence the accuracy and uncertainty of the es-
timated  detection  probabilities  and  therefore  the 
estimation  of  population  size  and  occurrence 
rates. Here we define uncertainty as the set of pos-
sible outcomes of an estimate where a probability 
of occurrence is assigned; and accuracy as the de-
gree of veracity of an estimate

The objective  of  this  work  is  to  assess  how 
population characteristics influence the estimation 
of detection probability. To do so, first we determ-
ined the effects of population characteristics (i.e. 
population size, age-size structure, morphological 
distinctiveness, and level of exposure in the envir-
onment) on the accuracy and uncertainty of detec-
tion probability estimates. Second, we formulate 
an observation model. Thirdly, we determine the 
sensitivity  of  the  predictions  by  the  observation 
model to variability in the population parameters.

Material and methods

In this study the influence of population vari-
ables on the accuracy and uncertainty of detection 
probability estimates are explored using computer 
simulations. A set of populations is generated us-
ing a specific combination of population variables 
(i.e. population size, age – size structure, morpho-
logical  distinctiveness  and  level  of  exposure) 
defined by a particular mean and range of vari-
ation. Each of these populations is then sampled 
using both a removal (RMV) and a mark–recap-
ture  (MRC)  methodology.  Individual  detection 
probabilities  are  subsequently  estimated  using 
classical  and  modified  implementations  of  the 
MRC and RMV estimators of detection probabil-
ity. The results of these experiments are analysed 
with a linear-mixed model to describe the accur-
acy  of  the  detection  probabilities  predicted  by 
MRC and RMV estimators, as a function of popu-
lation  characteristics  and  sampling  methods.  Fi-
nally, the sensitivity of the detection probability to 
population  characteristics  is  investigated.  A de-
tailed description of these steps is included as sup-
plementary information (Appendix S1).

Generating  the  test  populations  and 
estimating detection probabilities

Test  populations  with  10  and  100  individuals 
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where generated. These population sizes were se-
lected for  computational  reasons  (larger popula-
tions  increased  exponentially  the  computational 
time).  The characteristics  of  each of  these  were 
determined using different means as well as vari-
ances for population age, size, morphological dis-
tinctiveness and exposure. Details on how the test 
populations were generated, and summary of the 
characteristics of each test population is presented 
in Appendix S1. We call each unique combination 
of population size, sexual dimorphism, age-size, 
morphological distinctiveness and exposure struc-
ture  a  population  class  (i.e.,  a  unique  combina-
tions of each of these parameters). For each popu-
lation class a total of 100 realizations were gener-
ated. Each of these was then sampled 100 times 
using both a removal (RMV) and a mark–recap-
ture (MRC) approach.

Using  the  generated  observation  histories  it 
was possible to determine, for a specific popula-
tion/sample,  the  detection  probabilities  using  a 
statistical  description  of  the  observation  process 
(as described in Appendix S1). To make this cal-
culation, four types of estimators were implemen-
ted,  based  on  Borchers  et  al.  (2002): 
MRC0/RMV0,  MRCt /RMVt,  MRCh1/RMVh1 and 
MRCh2/RMVh2. The MRC0 and RMV0 models as-
sume  a  homogenous  population  with  respect  to 
capture probability  meaning that  all  animals  are 
considered  equally  catchable  (the  subscript  0 
stands for no heterogeneity). The MRCt and RMVt 

models  assume  that  capture  probability  varies 
between  capture  events  but  that  all  individuals 
within a sampling occasion are equally catchable 
(the subscript t stands for heterogeneity depending 
on time). Last, the MRCh1-2 and RMVh1-2 models 
assume  that  capture  probability  differs  between 
individuals but remains constant over all capture 
occasions.  The difference between h1 and h2 is 
the inclusion of sampling effort (measured as the 
number of observers in h2 estimations) in the es-
timation process.

Evaluating  the  estimates  of  detection 
probability

The estimated mean detection probability for each 
combination  of  sampling  strategy  (i.e.  MRC  or 
RMV) and estimator (i.e. Method 0, Method t, or 
Method h.1 or Method h.2) was compared to the 
known “real” mean detection probability (i.e., the 
mean  probability  used  to  build  the  full 

population).  A paired-T-test  as  well  as  a  mixed 
linear model (with estimator as a fixed effect and 
the 100 replicas, nested within the estimator, as a 
random effect) was used for this comparison. Ad-
ditionally, for the MRCh1-2 and RMVh1-2  models a 
two sample Kolmogorov–Smirnov test was used 
to evaluate the differences between the frequency 
distributions of estimated and real detection prob-
abilities. This test allowed determining the impact 
of specific population parameters on the level of 
agreement  between  estimated  and  population 
“true” detection values. 

Last, a linear model, using the mean popula-
tion characteristics (estimated from the sample) as 
predictors, was build to describe the accuracy of 
the  predicted  detection  probabilities  (i.e.,  ob-
served-known  detection  probability  differences). 
This approach was used as a first order descrip-
tion of the prediction bias, and to correct the es-
timates  of  detection  probability.  Overall  model 
quality and parameter relevance was evaluated us-
ing  respectively  the  adjusted  R2 values  and  the 
significance of model coefficients.

Evaluating  the  influence  of  population 
parameters

Using the detection probability estimates of both 
the MRC and RMV methods; a logistic observa-
tion model was generated to determine the prob-
ability  of  detecting an individual  given its  indi-
vidual level characteristics (i.e. sex, age and size 
class, morphological distinctiveness and exposure 
level).

To evaluate how the uncertainty in the estima-
tion  of  detection  probability  can  be  partitioned 
between different sources of variability a variance 
decomposition  global  sensitivity  analysis  was 
used. Variance decomposition methods are “model 
free”  approaches,  meaning  that  its  application 
does not rely on special assumptions on the beha-
viour of the model. These are based on the rank-
ing of the factors according to the amount of vari-
ance removed from the prediction when it is fixed 
to its “expected value”. Variance based measures 
are generally estimated numerically using differ-
ent methodologies. From these, SOBOL and the 
Fourier Analysis Sensitivity Test (FAST) methods 
are the most commonly used. Both of these meth-
ods allow a simultaneous computation of the first 
and  total  effect  indices  for  a  given  factor  and 
hence the impact of fixing it on the output vari-
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ance. We applied both SOBOL and FAST for vari-
ance decomposition. Both methods give first order 
and  total  order  sensitivities  for  each  parameter. 
First order effects (S1) measure the individual and 
linear effects of a particular parameter on the vari-
ability of a prediction while the other variables re-
main constant at their means. Total order effects 
(St) measure the effects of the interaction between 
a particular parameter (held constant at its mean 
value) and the remaining predictors (left  free to 
vary within their variation range).

Results

The mean real and estimated detection probabilit-
ies, in addition to test determining the reliability 
of detection probabilities are presented in Table 1. 
A significant over prediction (predicted>real) by 
both sampling methodologies and estimators was 
observed (5 to 51% for MRC estimators and 5 to 
33% for  RMV estimators  as  shown  in  Fig.  1). 
There is a significant differentiation between the 
estimators (0, t, h.1 and h.2) as pointed out by lin-
ear-mixed  models  (MRC:  F(3,800) =  5.9;  p<0.001 
and RMV: F(3,800) = 30.312; p<0.001). Simple es-
timators (MRC0, RMV0, MRCt and RMVt) had sig-
nificantly different detection probability estimates 
than  those  methods  considering  individual  level 
detection  probabilities  (MRCh1-2 and  RMVh1-2 

models). 
When evaluating the drivers of estimates un-

certainty, population size had the strongest influ-
ence. This trend was consistent across estimators 
and sampling methodologies. Observed trends on 
predictions  uncertainty  showed  how  estimates 
from small size populations had consistently lar-
ger, although no significantly different, ranges of 
variation (that is 95% trustable intervals) than its 
larger population size counter part (MRC: F(3,800) = 
0.0356; p = 0.99 and RMV: F(3,800) = 0.0293; p = 
0.993). When the level of variability in the popu-
lation parameters was incorporated in the analysis 
(Fig 2.),  ranges of variation became consistently 
larger  and  the  accuracy  of  the  predictions  de-
creased.

Contrasts between sampling methodologies in-
dicated how RMV estimates are on average signi-
ficantly (F(3,800) = 434.68; p < 0.001) closer to the 
real  detection  probability  than  MRC  estimates 
(Fig. 1).  When  sampling  methodologies  were 
compared  across  different  population  sizes  and 
levels of variability in population parameters (Fig. 

1),  differences between estimates increased with 
increasing  population  variability,  but  remained 
constant across the same population size class. 

Accuracy for MRCh1-2 and RMVh1-2 was signi-
ficantly influenced by population size (the most 
important component determining estimation ac-
curacy  as  shown  in  Table  2).  While  detection 
probability estimates from large populations con-
sistently differed from the real frequency distribu-
tion; estimations from population with fewer indi-
viduals agreed with the real frequency distribution 
on average 19 to 65% of the comparisons. This 
trend  was  persistent  for  comparisons  across 
sampling  methodologies,  and  across  levels  of 
variability in population factors. 

Given the consistent overestimation of detec-
tion probabilities  by all  analysed estimators;  the 
need  to  develop  a  methodological  approach  to 
correct  these  inaccuracies  becomes  evident.  For 
this a linear model was build using the analysed 
population  variables  as  predictors,  and  the  dis-
crepancy between real value and estimate as the 
dependent variable. 

When  the  patterns  of  deviation  of  detection 
probability estimates were analysed (Fig. 1) dif-
ference on the influence from population variables 
was  clear.  In  particular,  simple  estimators 
(MRC/RMV0 and  MRC/RMVt)  had  a  stochastic 
behaviour (as population heterogeneity and sam-
pling error  were  not  evaluated).  Meanwhile,  es-
timators  that  consider  individual  heterogeneity 
(MRC/RMVh1-2) showed a systematic overestima-
tion of detection probability. Defining an adequate 
correction function that uses the population vari-
ables was only possible for simple estimators (as 
adjusted R2 and coefficients  indicated,  Table  2). 
The use of this correction functions significantly 
improved  the  accuracy  and  reduced  the  uncer-
tainty of detection probability estimations. 

When analysing the sensitivity of all the mod-
els predicting detection probability to the variabil-
ity  in  the  population  parameters,  there  was  an 
equal contribution of each parameter to the uncer-
tainty  of  the  variance  on  detection  probability 
(Fig.  2).  On average,  each  factor  accounted  for 
23%  of  the  variance  on  detection  probability 
(23.22–23.91%  for  MRC  methods  and  23.67–
23.67% for RMV methods). The influence of each 
factor, measured by both first (Si) and total order 
indices (St) are very close for both FAST (Fig. 2) 
and  SOBOL (results  not  shown)  indicating  the 
consistency of this equal partitioning of variability
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across all  the parameters factor as the most im-
portant in determining the variability on the detec-
tion probability estimation.

Discussion

As population and metapopulation studies fo-
cus on abundance and occurrence, there is a clear

motivation  for  establishing  a  functional  link 
between these variables and the observation pro-
cess. Royle et al. (2005) showed the importance 
of this link, and stated how estimation of the para-
meters  in  most  ecological  models  is  limited  by 
imperfect detection. This work pursued this idea 
aiming to establish and explicitly link between the 
effects  of  population  variability  and  detection 
probability estimates. 

Estimator
Detection probability

(Mean ± SD)
T-test Linear mixed model ANOVA

Kolmogorov-
Smirnov

M
R

C

Method 0 0.559±0.118 t = 151.53 ** F(99,1600) = 23703.211 ** D = 1 **

Method t 0.559±0.118 t = 155.2 ** F(99,4800) = 9637.176 ** D = 1 **

Method h.1 0.561±0.138 t = 79.81 ** F(99,45807) = 1267.932 ** D = 1 **

Method h.2 0.561±0.138 t = -30.33 ** F(99,45807) = 60.42 ** D = 1 **

R
M

V

Method 0 0.562±0.117 t = 15.63 ** F(99,1600) = 124.576 ** D = 0.89 **

Method t 0.562±0.117 t = 51.81 ** F(99,4800) = 1053.683 ** D = 1 **

Method h.1 0.572±0.136 t = 44.65 ** F(99,41439) = 255.52 ** D = 1 **

Method h.2 0.572±0.136 t = -31.67 ** F(99,41439) = 51.846 ** D = 1 **

Tabla 1. Resumen de la media de probabilidad de detección real y estimada por métodos de captura-recaptura (MRC) y extracción (RMV).  
Los valores promedios se compararon mediante un T-test pareado para determinar la  significación de la  desviación de la  estima de la  
probabilidad de detección. Adicionalmente, las predicciones y los valores reales se compararon con un modelo mixto, donde se utiliza el  
estimador (i.e., Método 0, Método t, Método h.1 o Método h.2) como de efectos fijos y réplica (anidado dentro del estimador) como un 
efecto aleatorio. Diferencias significativas marcadas como p <0.001 (***), p <0.01 (**), p <0.05 (**), y P> 0.5 (NS).

Table 1. Summary of mean real and estimated detection probability for mark recapture (MRC) and removal (RMV) sampling strategies.  
Mean values were compared using a paired-T-test to determine the deviation of the estimation to the real population detection probability.  
Additionally, predictions and real values were compared using a mixed design, where the estimator (i.e. Method 0, Method t, or Method h.1  
or Method h.2) is used as fixed effect and replica (nested within the estimator) is used as a random effect. Significant differences marked as  
p<0.001 (***), p<0.01 (**), p<0.05 (*), and p>0.5 (N.S.).

Estimator Intercept Age class Size class Exposure
Morphological 

variability
Adjusted R2

M
R

C

Method 0 0.146±0.053 ** -0.095±0.024 *** -0.028±0.025 NS -0.072±0.059 NS -0.016±0.06 NS 0.234

Method t 0.285±0.135 * -0.042±0.06 NS -0.069±0.064 NS -0.13±0.148 NS 0.02±0.152 NS 0.007

Method h.1 0.114±0.221 NS -0.014±0.098 NS 0.109±0.105 NS -0.122±0.244 NS 0.192±0.25 NS -0.012

Method h.2 0.183±0.152 NS -0.04±0.067 NS -0.055±0.072 NS -0.228±0.167 NS -0.246±0.171 NS 0.008

R
M

V

Method 0 -0.058±0.318 NS 0±0.141 NS -0.016±0.15 NS -0.445±0.35 NS 0.303±0.359 NS 0

Method t 0.194±0.25 NS -0.212±0.111 NS 0.131±0.118 NS -0.178±0.275 NS 0.019±0.282 NS 0.001

Method h.1 0.319±0.203 NS -0.07±0.09 NS 0.036±0.096 NS -0.206±0.223 NS -0.202±0.229 NS -0.024

Method h.2 -0.249±0.146 NS -0.191±0.065 ** 0.026±0.069 NS 0.128±0.161 NS 0.208±0.165 NS 0.084

Tabla 2. Resumen de los modelos de regresión comparando la desviación de estimados MRCh1-2 y RMVh1-2 (precedida menos la probabilidad 
de  detección  real)  en  función  de  parámetros  poblacionales  específicos  (rango  de  edad,  rango  de  tamaño,  exposición  y  variabilidad 
morfológica). Los datos representan la influencia de cada parámetro de nivel de población en la precisión de la estimación. Significación de 
los coeficientes de regresión marcada como p <0.001 (***), p <0.01 (**), p <0.05 (**), y P> 0.5 (NS).

Table  2.  Summary  of  regression  models  comparing  the  deviation  in  MRCh1-2  and  RMVh1-2  estimations  (predicted  –  real  detection  
probability) to particular population parameters (Age class, size class, exposure and morphological variability). Data represent the influence  
of each population level parameter on the estimation accuracy. Significance of regression coefficients marked as p<0.001 (***), p<0.01 (**),  
p<0.05 (**), and p>0.5 (N.S.).
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As our results showed, estimates of detection 
probability are strongly influenced by population 
variables  determining  an  individual  “detectabi-
lity” (i.e., the probability of observing a specific 
organisms in  a  surveyed area)  regardless  of  the 

used sampling methodology or estimator. In par-
ticular, it is clear that actual population size, and 
the level of variability in the population paramet-
ers have a strong effect on the accuracy of the es-
timation.

Figura 1. Las diferencias entre la probabilidad de detección predicha por estimadores MRC y RMV, y la probabilidad de detección real; estas 
diferencias muestran si un individuo se muestreado o no (es decir, la probabilidad de detección “real”). La línea horizontal gris indica que no  
hay una desviación significativa. Caja muestran la variabilidad intequantil y las líneas discontinuas del rango de los datos. Símbolos blancos  
representa las estimaciones MRC y grises estimaciones RMV.

Figure 1. Differences between predicted detection probability using MRC RMV estimations, and the known detection probability used to 
specify if a given individual was sampled or not (i.e., the “real” detection porbabiity). Horizontal grey line indicates no deviation from the 
population mean real value. Box are inter-quintile variability and dashed lines the maximum-minimum deviation range. White box represent  
MRC estimations and grey symbols RMV estimations.
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Figura 2. Mediciones de la sensibilidad del modelo de observación en la variabilidad en los parámetros de la población. Barras representan el  
efecto acumulativo de cada variable (índices de 1er orden - negro) y de la interacción entre factores (orden total - blanco) en las predicciones  
de cada modelo. Paneles organizados en columnas de acuerdo a la metodología de muestreo (MRC y RMV), y el estimador (Método h.1 y  
h.2 método, véase el texto para más detalles); filas representan el tamaño de la población (véase el texto para más detalles). Índices ilustrados  
(i.e., 1er y total) son los resultados de un análisis de descomposición de la varianza utilizando el método FAST. Tamaños poblaciones (filas)  
de arriba a abajo son 1, 2, 3, 4, 5, 6, 7 y 8. Columnas de izquierda a derecha son: MRCh.1, MRCh.2, RMVh.1 y RMVh.2.

Figure  2.  Measurement  of  sensitivity  of  the  observation  model  to  the  variability  on  population  parameters.  Staked  bars  represent  the  
cumulative effect of the individual (1st order index-black) and the interaction variables (total order-white) on model predictions. Panels 
organized in columns according to sampling methodology (MRC and RMV) and estimator (Method h.1 and Method h.2); rows represent 
population class (see text for details). Plotted indices (i.e. first and total order) are the results of a variance decomposition analysis using the  
FAST methods. Rows form top to bottom are population 1, 2, 3, 4, 5, 6, 7 and 8. Columns form left to right are: MRC h.1, MRCh.2, RMVh.1 and 
RMVh.2.
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Additionally,  it  was  found that  there  are  not 
single most important population parameters de-
termining the detection probability estimate accur-
acy. Nevertheless, it is important to emphasize the 
relevance of certain parameters (e.g. exposure and 
morphology  for  low  population  variability  and 
age and size for high population variability) if we 
aim to determine the most important factors shap-
ing  the  detection  function.  Additionally,  under-
standing how population parameter(s) variability 
influences the detection function demands an ex-
tensive knowledge of the auto ecology of the stud-
ied species.

It is also of importance to highlight the minor 
influence of the sampling protocol (MRC versus 
RMV) on the accuracy of the predictions. Based 
on our results, it is evident that there are no clear 
benefits, regarding only the accuracy of the estim-
ation, of choosing one sampling protocol over the 
other.  Therefore,  selecting  a  sampling  methodo-
logy should be based on the imposed constrains of 
resource availability and time. An important issue 
to  emphasize  here  is  that  our  evaluations  only 
took into account two of the most commonly used 
sampling  methods  (mark  recapture  and  removal 
sampling) hence extrapolation to  other  sampling 
strategies should be done with caution. 

Our  results  are  in  line  with  Dorazio  (2007), 
who established how the population available to 
be sampled should be considered in analyses of 
site occupancy given the interaction between site-
specific abundance and detection frequency. Other 
works have also found such a strong inverse asso-
ciation between population size and detection fre-
quencies (that is the realization of the observation 
process given the individual detection probabilit-
ies).  All  of  them explain  the  low detection  fre-
quencies as a result of either (or both) practical 
limitations in the spatial extent of the survey or 
the variability on individual detection probabilit-
ies due to population heterogeneity.

 So these studies point to the idea that probab-
ilities of animal detection and occurrence could be 
estimated more accurately if the models used in 
analysis accounted for heterogeneity in population 
parameters  and  population  size.  Given  this,  and 
the levels of accuracy and uncertainty on the es-
timates  of  detection  probability  reported  in  this 
work,  the  need  to  correct  any  estimates  of  this 
variable is evident. This becomes of special relev-
ance for estimators that do not consider individual 

level heterogeneity. 

From the formulated correction models, only 
those for estimators that do not include population 
variability (MRC/RMV0 and MRC/RMVt) did ad-
equately increase the estimation accuracy. In the 
case  of  estimations  where  individual  detection 
probabilities are predicted (MRCh1-2 and RMVh1-2), 
the formulation of an observation model did prove 
to be the most adequate approach to increase the 
accuracy of the detection probability prediction. It 
is important to emphasize here that our observa-
tion model formulation does not include all pos-
sible sources of variability in the observation pro-
cess.  A complete  observation  model  should  in-
clude, as Borchers et al. (2002) proposed, a series 
of survey level parameters (e.g. number of observ-
ers, area cover, sampling intensity) in addition to 
the population characteristics analysed here.

Although, the notion that detection probability 
should be included in the  abundance/occurrence 
estimation process has been generally  proposed, 
just  a  few studies  have actually  focused  on  the 
role of population parameters in this context. This 
work focuses on this  idea,  and explicitly  shows 
the effects of population variability on detection 
probability estimates. In particular, it shows how 
the  variability  on  population  variables  (i.e.  age, 
size,  morphological  distinctiveness,  and level  of 
exposure in the environment) influence the rate of 
“false  negative”  errors.  From the evaluated fac-
tors, population size proves to be the most relev-
ant factor shaping the accuracy and uncertainty of 
the estimates. Additionally, two methods are pro-
posed to correct for the errors in estimated detec-
tion probabilities by using population variables.

The  results  from  this  study  support,  jointly 
with results from several other studies, the need to 
incorporate all possible information regarding the 
observation process (i.e. population level paramet-
ers  and survey  level  characteristics)  in  the  con-
struction of an observation model. Such observa-
tion models improve the detection probability es-
timates considerably, which in return helps to ob-
tain  correct  estimates  of  animal  abundance  and 
occurrence.
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Appendix:  Supplementary  material:  Extended  description  of  the  simulation, 
sampling and estimation procedure

Generating a test population: Population parameters: five population parameters were selected to determ-
ine the detection probability of an individual; these where: sex, age, size, morphological distinctiveness and 
exposure. These parameters have a known, and strong, influence on individual detection probabilities; this 
is as they represent key population, ecological and behavioural aspects that shape the detection function 
(Borchers et al., 2002;MacKenzie and Kendall, 2002;Royle and Nichols, 2003;Dorazio, 2007).

As age and size are factors known to be associated in live individuals (that is, older individuals have lar-
ger sizes), these two variables where modelled as correlated normally distributed variables drawn form a 
multi-normal distribution. For all generated populations the level of correlation between variables was set 
to 0.5; and three preselected levels of variables mean (-1,0,1) and standard deviations (0.1,1,10) were de-
termined. This allowed the evaluation of different age and size population structures and variable levels of  
variation.

Morphological distinctiveness describes the degree at which the morphology of a given individual fits 
the species “type phenotype” (given by the species description). This was modelled as a function of age and  
was represented with a value in the range between 0 and 1 (with 1 meaning a complete agreement). The 
idea of modelling this a function of age arises from the conception that the “type description” of an indi -
vidual is usually given for a sexually mature and reproductive active individual, meaning that younger non-
reproductive active (e.g. they may not have the sexual ornaments needed for court ship and mating) and old 
individuals (e.g. degradation of the ornaments) may not fit this physical description of the specie. To model  
this value a normal distribution centered in the mean population age and with a variable standard deviation 
(set to 3 levels: 0.1,1 and 10) was assumed to represent the behaviour of the spread of morphological vari-
ability in the modelled population.

Exposure level was assumed to represent the level of visibility of an individual as a result of both its be -
havioural (determined by age) and morphological characteristics (determined by size). Size was assumed to 
be the best variable to capture both factors and used to determine the level of exposure as the probability of  
being seen given it’s size. This variable was modelled by assuming that the process had a normal probabil-
ity density function (PDF) with mean 0 and three possible levels of standard deviation (0.1,1 and 10).

Determining  individual  detection  probabilities:  After  generating  the  individual  level  characteristics,  
based on the specified population level variables (as specified on the previous section) an individual detec-
tion probability was determined based on the linear combination, without interactions, of the individual 
generated parameters in a logistic function (see Eq(a)).

Eq(a) p i=
ex i θ

1−ex i θ

here pi represent the detection probability if individual i given it’s population level variables, xi is the vector 
of population level characteristics (i.e. age, size, morphological distinctiveness, exposure) for the  i indi-
vidual, and θ represents the individual contribution of each parameter to the detection function (or function 
parameters). Is clear that many other options are possible to model the detection probability (e.g. normal 
exponential, gamma beta, etc.) and the selection of a particular one depends on the context and type of sur -
vey. Here a logistic function was selected as the functional form to model individual detection probabilities. 

The contribution of each parameter to the detection probability estimation was established a priori so the 
lineal combination of function parameters added up to one. All possible combinations of five possibilities 
(i.e. 0, 0.25,0.5,0.75,1) that summed up to one were evaluated. This allowed determining the effects of dif-
ferential weights of the evaluated parameters, on the estimation of detection probability. In the text only the 
results of equal weighs (that is a 0.25 contribution of each parameter) was analysed and discussed.

Sampling process: As described in the methods section, two spatial implicit approaches (e.g. MRC and 
RMV) were used both to sample and determine the detection probability of the target population. 
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Here MRC sampling was modelled as a series of independent random binomial process (each sampling 
event is considered as unrelated processes and individuals are observed independently of one form another) 
determined by the individual detection probability. For RMV experiments, the capture process was mod-
elled as a series of independent binomial process for each individual, but for each of them it was a binomial  
process conditional on the fact that the individual was not seen on a previous event (individual detection  
probabilities where kept constant until an individual was observed; at this point the detection probability of 
that particular individual was set to 0 for the subsequent sampling events).

Detection probability estimation: If the set of individuals detected on a particular sample occasion consti-
tute a representative sub-population of known size, the proportion of observed individuals (and the ratio of  
recapture in MRC) is an obvious estimator of the probability of observing an individual. Obviously the as-
sumption of representatively is stringent, but regardless of this, it was decided to be uses as it is implemen-
ted  in  most  population  census  surveys  and  the  most  commonly  used  software  packages  (White  and 
Burnham, 1999;Thomas et al., 2006).

The conceptual framework for the estimation of detection probability using either a RMV or MRC ap-
proach fundament is the idea that the complete sampling process can be modelled as a multinomial process 
(with each sampling event being a binomial process) where neither population size (N) or detection probab-
ility (p) are known (Borchers et al., 2002).

For both the MRC and RMV method the same general the basic likelihood functions can be used to de-
scribe the observation process (in literature this is described as the observation model). When no considera-
tion is taken on the sampling history, and only the detection frequencies are considered Eq(b) describes the 
observation process, where the estimation of detection probability (and abundance) is based on the number 
of removals or observations on each sampling event: 

Eq(b) L( N pop , p)=∏
s=1

s

(N s

ns
) pn s(1−p)N s−ns

here  Npop represent the total population size (estimated as the total number of observed individuals (N tot) 
plus the total missed individuals (n0) in the surveyed area); ns is the number of individuals detected; Ns are 
the number of individuals on survey event s (this number is constant in MRC surveys but changes in RMV 
experiments as individuals are observed and removed); p represents the overall detection probability for all 
individuals in all sampling events (e.g. a mean value of detection probability) and s are the number of sur-
vey events.

Is important to highlight that the calculation of Ntot differs between RMV and MRC approaches so that:

If sampling RMV

N tot=∑
s=1

s

ns

N s=N tot−∑
s=1

s

n s=N tot−∑
s=1

s

r s

where  rs is the number of removed indi-
viduals in sample event s

If sampling MRC

N tot=N s

N s=∑
s=1

s

ms

where  ms is the number marked individu-
als on sample event s

An alternative approach for the estimation of the detection probability is evaluating the process individually 
for each sampling event. This allows estimating a detection probability for each sampling occasion. A like -
lihood function to describe this process is presented in Eq(c), where the estimation of sampling event detec-
tion probabilities (ps) is based on the sampling event history of event s (this is the ws vector). The sampling 
history vector ws is a vector of 1 and 0 of length Ns, in which 1 represent that animal i was captured in the 
evaluated sampling event.
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Eq(c) L( N pop , ps)=∏
s=1

s

(N s

ns
) ps

ws (1− ps)
1−ws

A more complex approach is based on the idea of detection heterogeneity between individuals within a 
study area. Equation Eq(d) describes a maximum likelihood on which individual capture histories (that is 
wis, a vector of 1 and 0 of length s, in which 1 represent that animal i was captured in the sampling event s) 
are used to determine the individual detection probabilities’ (pi) of the observed individuals.

Eq(d) L( N pob , pi)=∏
i=1

N tot

p i
w is(1− pi)

1−w is

using the estimates of pi is possible to determine the influence of a set of population parameters, vector θ in 
Eq(a), in determining the individual detection probabilities. The vector θ was estimated using a generalized 
lineal model (i.e. a logistic regression) using the individual level characteristics of the observed individuals  
and the estimated pi individual detection probabilities.


