Mathematics for Business Administration: Multivariable Optimization

Universidad de Murcia

María Pilar Martínez-García

Chapter Three: Classical Optimization

Outline

- Extreme points
- Local extreme points

Let f be defined on a set S in \mathbb{R}^{n} then

Definition 1

A point $\mathbf{x}^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)$ is called a stationary point of f if all first-order partial derivatives evaluated on \mathbf{x}^{*} are 0 , that is

$$
\frac{\partial f}{\partial x_{i}}\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)=0 \text { for all } i=1,2, \ldots, n
$$

Theorem (Necessary first-order conditions)

Let $\mathbf{x}^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)$ be an interior point in S at which f has partial derivatives, then, a necessary condition for \mathbf{x}^{*} to be a maximum or minimum point for f is that \mathbf{x}^{*} is a stationary point for f.

Review problems for Chapter 3

Multiple choice questions

Maxima and minima

Maximum

Minimum

Learn more in http://wikipedia.org

Theorem (Sufficient conditions with concavity/convexity)

Suppose that the function f is \mathcal{C}^{1},

- if f is concave in S, then \mathbf{x}^{*} is a (global) maximum point for f in S if and only if $(\Leftrightarrow) \mathbf{x}^{*}$ is a stationary point for f
- if f is convex in S, then \mathbf{x}^{*} is a (global) manimum point for f in S if and only if $(\Leftrightarrow) \mathrm{x}^{*}$ is a stationary point for f

If f is strictly concave (convex), the global maximum (minimum) point is unique.

Definition 2

The point \mathbf{x}^{*} is a local maximum point of f in S if

$$
f(\mathbf{x}) \leq f\left(\mathbf{x}^{*}\right) \text { for all } \mathbf{x} \text { in } S \text { sufficiently close to } \mathbf{x}^{*} .
$$

If the inequality is strict then x^{*} is a strict local maximum point.
A (strict) local minimum point is defined in the obvious way. The first-order necessary conditions for a local maximum (minimum) point remain the same, that is: a local extreme point in the interior of a domain of a function with partial derivatives must be stationary.

Definition 3

A stationary point \mathbf{x}^{*} of f that is neither a local maximum point nor a local minimum point is called a saddle point of f.

Saddle Point

Learn more in http://wikipedia.org

Theorem (Necessary second-order conditions for local extreme points)

Suppose that f is \mathcal{C}^{2} and \mathbf{x}^{*} is an interior stationary point of f, then

- x^{*} is a local minimum point, then (\Rightarrow) the Hessian matrix $H f\left(\mathbf{x}^{*}\right)$ is positive definite or semidefinite
- x^{*} is a local maximun point, then (\Rightarrow) the Hessian matrix $H f\left(\mathrm{x}^{*}\right)$ is negative definite or semidefinite

Theorem (Sufficient second-order conditions for local extreme points)

Suppose that the function f is \mathcal{C}^{2} and x^{*} is an interior stationary point of f, then

- the Hessian matrix $H f\left(\mathbf{x}^{*}\right)$ is positive definite $\Rightarrow \mathbf{x}^{*}$ is a local minimum point
- the Hessian matrix $H f\left(\mathbf{x}^{*}\right)$ is negative definite $\Rightarrow \mathbf{x}^{*}$ is a local maximum point
- $\left|H f\left(\mathbf{x}^{*}\right)\right| \neq 0$ but it is not (positive or negative) definite $\Rightarrow \mathrm{x}^{*}$ is a saddle point

Example The two-variables case.

If $f(x, y)$ is a \mathcal{C}^{2} function with $\left(x^{*}, y^{*}\right)$ as an interior stationary point, then

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}\left(x^{*}, y^{*}\right)>0 \text { and }\left|\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}\left(x^{*}, y^{*}\right) & \frac{\partial^{2} f}{\partial y \partial x}\left(x^{*}, y^{*}\right) \\
\frac{\partial^{2} f}{\partial x \partial y}\left(x^{*}, y^{*}\right) & \frac{\partial^{2} f}{\partial y^{2}}\left(x^{*}, y^{*}\right)
\end{array}\right|>0 \Rightarrow \text { local min. at }\left(x^{*}, y^{*}\right) \\
& \frac{\partial^{2} f}{\partial x^{2}}\left(x^{*}, y^{*}\right)<0 \text { and }\left|\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}\left(x^{*}, y^{*}\right) & \frac{\partial^{2} f}{\partial y \partial x}\left(x^{*}, y^{*}\right) \\
\frac{\partial^{2} f}{\partial x \partial y}\left(x^{*}, y^{*}\right) & \frac{\partial^{2} f}{\partial y^{2}}\left(x^{*}, y^{*}\right)
\end{array}\right|>0 \Rightarrow \text { local max. at }\left(x^{*}, y^{*}\right)
\end{aligned}\left|>\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}\left(x^{*}, y^{*}\right) & \frac{\partial^{2} f}{\partial y \partial x}\left(x^{*}, y^{*}\right) \\
\frac{\partial^{2} f}{\partial x \partial y}\left(x^{*}, y^{*}\right) & \frac{\partial{ }^{2} f}{\partial y^{2}}\left(x^{*}, y^{*}\right)
\end{array}\right|<0 \Rightarrow\left(x^{*}, y^{*}\right) \text { is a saddle point }
$$

Links to the Wolfram Demostrations Project web page

- Stationary points (maximun, minimun and saddle points) >\gg>

Bibliography

Sydsaeter, K., Hammond, P.J., Seierstad, A. and Strom, A. Essential Mathematics for Economic Analysis. Prentice Hall. New Jersey. pages: 453-466. >>

Problem 1

Classify the stationary points of
(2) $f(x, y)=2 x^{2}+x y+2 y^{2}-4 x-y$
(1) $f(x, y)=\left(x^{2}+y^{2}\right) \mathrm{e}^{x^{2}-y^{2}}$
(c) $f(x, y)=2 x-2 e^{x}+3 y-y^{3}+4$
(1) $f(x, y)=x \ln (y+1)$
(0) $f(x, y, z)=e^{-x^{2}-y^{2}-x+z^{2}}$
(1) $f(x, y, z)=x^{2}-x y^{2}+y^{4}-3 y z+z^{3}$
(8) $f(x, y)=x^{3}+3 x^{2}+y^{3}+6 y^{2}$

Problem 2

Answer

A firm produces an output good using two inputs, denoted by x and y, according to the following production function

$$
Q=x^{1 / 2} y^{1 / 3}
$$

If $\mathrm{p}_{1}=2, \mathrm{p}_{2}=1$ and $\mathrm{p}_{3}=1$ are the prices of output and inputs respectively, maximize the firm's profit.

Problem 3

The output production function of a firm is

$$
Q=x^{1 / 2} y^{1 / 3}
$$

where x and y are the units for two different inputs. If p_{1}, p_{2} and p_{3} are the prices of output and inputs respectively, and the firm seeks to maximize profits
(Find the demand of inputs functions.
(D) Suppose that p_{3} rises while the rest of parameters remain constant; what is the effect upon the demand for input y ?
(c) If p_{1} rises while p_{2} and p_{3} remain constant; what is the effect upon the demand for x and y ?

Problem 4 Answer

Find the maxima and minima point of the function $f(x, y)=2 x^{3}+a y^{3}+6 x y$ for different values of parameter $a \in \mathbb{R}$.

Problem 5 Answer

A firm produces three output goods in units x, y and z respectively. If profit is given by

$$
B(x, y, z)=-x^{2}+6 x-y^{2}+2 y z+4 y-4 z^{2}+8 z-14
$$

find the units of each good that maximize profit and find the maximum profit.

Problem 6

A monopolistic firm produces two goods whose demand functions are

$$
p_{1}=12-x_{1}, \quad p_{2}=36-5 x_{2}
$$

where x_{1} and x_{2} are the quantities of the two goods produced and p_{1} and p_{2} the prices of a unit of each good. Knowing that the cost function is $C\left(x_{1}, x_{2}\right)=2 x_{1} x_{2}+15$, solve the corresponding profit maximizing problem.

Problem 7 Answer

Solve the output production maximizing problem

$$
\max Q(x, y)=-x^{3}-3 y^{2}+3 x^{2}+24 y
$$

where x and y are the necessary inputs. Find the maximum production.

Problem 8 Answer

In a competitive market, a firm produces good Q according to the function

$$
Q(K, L)=8 K^{1 / 2} L^{1 / 4}
$$

where K and L are capital and labor respectively. Given the unitary prices of $5 \mathrm{~m} . u$ for output and $2 \mathrm{~m} . \mathrm{u}$. and $10 \mathrm{~m} . \mathrm{u}$. for inputs, find the maximum profit.

Problem 9 Answer

The output production function of a firm and its cost function are given, respectively, by

$$
\begin{aligned}
& Q(x, y)=7 x^{2}+7 y^{2}+6 x y \\
& C(x, y)=4 x^{3}+4 y^{3}
\end{aligned}
$$

where x and y are the productive inputs. Knowing that the selling price of a unit of good is $3 \mathrm{~m} . \mathrm{u}$., find the maximum point for both productive inputs, x and y, and find the maximum profit.
(1) The function $f(x, y)=x^{2}+y^{2}$ Answer
© has no stationary point
(D) has a stationary point at $(0,0)$
© has a stationary point at $(1,1)$
(2) The function $f(x, y, z)=(x-2)^{2}+(y-3)^{2}+(z-1)^{2}$ has, at point $(2,3,1)$,

- a global maximum point
- a global minimum point
© a saddle point
(3) The function $f(x, y)=x y^{2}(2-x-y)$ has, at point $(0,2)$,
- a local maximum point
(0 a local minimum point
© a saddle point
(9) The function $f(x, y)=x^{2} y+y^{2}+2 y$ has Answer
© a local maximum point
(1) a local minimum point
© a saddle point
(6) The function $f(x, y)=\frac{\ln \left(x^{3}+2\right)}{y^{2}+3}$: Answer
- has a stationary point at $(1,0)$
© has a stationary point at $(0,0)$
- has no stationary points
(0) If the determinant of the Hessian matrix of $f(x, y)$ on a stationary point is negative, then
(- the stationary point is a saddle point
(b) the stationary point is a local minimum point
(c) the stationary point is a local maximum
(3) If (a, b) is a stationary point of the function $f(x, y)$ such that

$$
\frac{\partial^{2} f(a, b)}{\partial x^{2}}=-2 \text { and }|H f(a, b)|=3
$$

- (a, b) is a local maximum point
(0) (a, b) is a local minimum point
- (a, b) is a saddle point
(3) If $(2,1)$ is a stationary point of the function $f(x, y)$ such that

$$
\frac{\partial^{2} f(2,1)}{\partial x^{2}}=3 \text { and }|H f(2,1)|=1
$$

- $(2,1)$ is a local maximum point
(0) $(2,1)$ is a local minimum point
- $(2,1)$ is a saddle point
(0) The Hessian matrix of function $f(x, y, z)$ is

$$
H f(x, y, z)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

If the function had a stationary point, this would be
© a local maximum point
(b) a global maximum point
© a global minimum point
(10) Let $B(x, y)$ be the profit function of a firm which produces two output goods in quantities x and y. If (a, b) is a stationary point of function $B(x, y)$, for it to be a global maximum point it must occur that Answer

- the profit function is concave for all (x, y) in \mathbb{R}^{2}
(0) the profit function is convex for all (x, y) in \mathbb{R}^{2}
(-) the profit function is concave in a neighborhood of the point (a, b)
(1) The Hessian matrix of function $f(x, y)$ is given by

$$
H f(x, y)=\left(\begin{array}{cc}
x^{2}+2 & -1 \\
-1 & 1
\end{array}\right) .
$$

If $f(x, y)$ had a stationary point then this point would be

- a global maximum point
© a global minimum point
- a local minimum point that couldn't be global
(12) If $(2,1)$ is a stationary point of the function $f(x, y)$, which of the following conditions assures that $(2,1)$ is a global maximum point of the function?
- $H f(2,1)$ is negative definite
(1) $H f(x, y)$ is negative definite fort all (x, y) in \mathbb{R}^{2}
- $H f(2,1)$ is positive definite

Answers to Problems

Answers to Problems

Problem 1

(2) $(1,0)$ is a local minimum point.
(D) $(0,0)$ is a local minimum point and $(0,1)$ and $(0,-1)$ are saddle points.
(c) $(0,1)$ is a local maximum point and $(0,-1)$ is a saddle point.
(a) $(0,0)$ is a saddle point.
(e) $(-1 / 2,0,0)$ is a saddle point.
(1) $(1 / 2,1,1)$ is a local minimum and $(0,0,0)$ is a saddle point.
(8) $(-2,-4)$ is a local maximum.

Problem 2

The maximum point is $x=4 / 9$ and $y=8 / 27$.

Problem 3 Return

(0) The maximum point is $x=\left(\frac{p_{1}^{3}}{12 p_{2}^{2} p_{3}}\right)^{2}$ and $y=\left(\frac{p_{1}^{2}}{6 p_{2} p_{3}}\right)^{3}$.
(0) If the price of y rises with other parameters remaining constant, the quantity demanded of input y will decrease in order to maximize profits. By contrast, if the selling price of output rises, the quantity demanded of input y will increase.

Problem 4

$(0,0)$ is a saddle point for all of the values of parameter a. $\left(-\sqrt[3]{\frac{2}{a}},-\sqrt[3]{\frac{4}{a^{2}}}\right)$ is a local minimum point if $a<0$ and, a local maximum point if $a>0$.

Problem 5

The maximum point is $x=3, y=4, z=2$ and the maximum profit is $B_{\max }=11 \mathrm{~m} . \mathrm{u}$.

Problem 6

The maximum point is $x_{1}=x_{2}=3$, whose prices are, respectively, $p_{1}=9, p_{2}=21$.

Problem 7 Return

The maximum produced quantity is $Q_{\max }(2,4)=52$ units.

Problem 8

The maximum profit is $B_{\max }(1.000,100)=1.000 \mathrm{~m} . \mathrm{u}$.

Problem 9 Return

The maximum point is $x=y=5$ and the maximum profit $B_{\text {max }}(5,5)=500$ m.u.

Answers to Multiple choice questions

(1) The function $f(x, y)=x^{2}+y^{2}$ (1Back
© has no stationary point
(-) has a stationary point at $(0,0)$
(- has a stationary point at $(1,1)$
(2) The function $f(x, y, z)=(x-2)^{2}+(y-3)^{2}+(z-1)^{2}$ has, at point $(2,3,1)$,

- a global maximum point
(1) a global minimum point
© a saddle point
(3) The function $f(x, y)=x y^{2}(2-x-y)$ has, at point $(0,2)$,
- a local maximum point
- a local minimum point
© a saddle point
(9) The function $f(x, y)=x^{2} y+y^{2}+2 y$ has Back
- a local maximum point
© a local minimum point
O a saddle point
(6) The function $f(x, y)=\frac{\ln \left(x^{3}+2\right)}{y^{2}+3}$: (1Back
- has a stationary point at $(1,0)$
© has a stationary point at $(0,0)$
- has no stationary points
(0) If the determinant of the Hessian matrix of $f(x, y)$ on a stationary point is negative, then ©Back
(© the stationary point is a saddle point
(b) the stationary point is a local minimum point
(c) the stationary point is a local maximum
(3) If (a, b) is a stationary point of the function $f(x, y)$ such that

$$
\frac{\partial^{2} f(a, b)}{\partial x^{2}}=-2 \text { and }|H f(a, b)|=3
$$

```
then 1Back
```

- (a, b) is a local maximum point
(1) (a, b) is a local minimum point
- (a, b) is a saddle point
(3) If $(2,1)$ is a stationary point of the function $f(x, y)$ such that

$$
\frac{\partial^{2} f(2,1)}{\partial x^{2}}=3 \text { and }|H f(2,1)|=1
$$

- $(2,1)$ is a local maximum point
(0) $(2,1)$ is a local minimum point
- $(2,1)$ is a saddle point
(0) The Hessian matrix of function $f(x, y, z)$ is

$$
H f(x, y, z)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

If the function had a stationary point, this would be
© a local maximum point
(b) a global maximum point
© a global minimum point
(10) Let $B(x, y)$ be the profit function of a firm which produces two output goods in quantities x and y. If (a, b) is a stationary point of function $B(x, y)$, for it to be a global maximum point it must occur that \subset Back

- the profit function is concave for all (x, y) in \mathbb{R}^{2}
(0) the profit function is convex for all (x, y) in \mathbb{R}^{2}
(-) the profit function is concave in a neighborhood of the point (a, b)
(1) The Hessian matrix of function $f(x, y)$ is given by

$$
H f(x, y)=\left(\begin{array}{cc}
x^{2}+2 & -1 \\
-1 & 1
\end{array}\right)
$$

If $f(x, y)$ had a stationary point then this point would be

- a global maximum point
(1) a global minimum point
- a local minimum point that couldn't be global
(12) If $(2,1)$ is a stationary point of the function $f(x, y)$, which of the following conditions assures that $(2,1)$ is a global maximum point of the function?
- $H f(2,1)$ is negative definite
(1) $H f(x, y)$ is negative definite fort all (x, y) in \mathbb{R}^{2}
- $H f(2,1)$ is positive definite

