Mathematics for Business Administration: Multivariable Optimization

Universidad de Murcia

María Pilar Martínez-García

Universidad de Murcia Mathematics for Business Administration: Multivariable Optim

Chapter Three: Classical Optimization

Chapter Three: Classical Optimization

(ロ) (部) (注) (注) (注)

Outline

- Extreme points
- Local extreme points

Chapter Three: Classical Optimization

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

Extreme points Local Extreme Points

Let f be defined on a set S in \mathbb{R}^n then

Definition 1

A point $\mathbf{x}^* = (x_1^*, x_2^*, ..., x_n^*)$ is called a *stationary point* of f if all first-order partial derivatives evaluated on \mathbf{x}^* are 0, that is

$$\frac{\partial f}{\partial x_i}(x_1^*, x_2^*, ..., x_n^*) = 0 \text{ for all } i = 1, 2, ..., n.$$

Chapter Three: Classical Optimization

Extreme points Local Extreme Points

Theorem (Necessary first-order conditions)

Let $\mathbf{x}^* = (x_1^*, x_2^*, ..., x_n^*)$ be an interior point in S at which f has partial derivatives, then, a necessary condition for \mathbf{x}^* to be a maximum or minimum point for f is that \mathbf{x}^* is a stationary point for f.

Chapter three: Classical Optimization Useful links Review problems for Chapter 3

Multiple choice questions

Extreme points Local Extreme Points

Maxima and minima

Learn more in http://wikipedia.org

Chapter Three: Classical Optimization

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (Sufficient conditions with concavity/convexity)

Suppose that the function f is C^1 ,

- if f is concave in S, then x^{*} is a (global) maximum point for f in S if and only if (⇔) x^{*} is a stationary point for f
- if f is convex in S, then x* is a (global) manimum point for f in S if and only if (⇔) x* is a stationary point for f

If f is strictly concave (convex), the global maximum (minimum) point is unique.

<ロ> (四) (四) (注) (注) (注) (三)

Extreme points Local Extreme Points

Definition 2

The point \mathbf{x}^* is a *local maximum point* of f in S if

 $f(\mathbf{x}) \leq f(\mathbf{x}^*)$ for all \mathbf{x} in S sufficiently close to \mathbf{x}^* .

If the inequality is strict then x^* is a strict local maximum point.

A (*strict*) *local minimum point* is defined in the obvious way. The first-order necessary conditions for a local maximum (minimum) point remain the same, that is: a *local extreme point in the interior of a domain of a function with partial derivatives must be stationary.*

Chapter three: Classical Optimization Useful links

Review problems for Chapter 3 Multiple choice questions Extreme points Local Extreme Points

Definition 3

A stationary point \mathbf{x}^* of f that is neither a local maximum point nor a local minimum point is called a *saddle point* of f.

Chapter Three: Classical Optimization

Chapter three: Classical Optimization

Useful links Review problems for Chapter 3 Multiple choice questions Extreme points Local Extreme Points

Saddle Point

Learn more in http://wikipedia.org

Chapter Three: Classical Optimization

(□) (□) (□) (Ξ) (Ξ) (Ξ) (Ξ)

Extreme points Local Extreme Points

Theorem (Necessary second-order conditions for local extreme points)

Suppose that f is C^2 and \mathbf{x}^* is an interior stationary point of f, then

- \mathbf{x}^* is a local minimum point, then (\Rightarrow) the Hessian matrix $Hf(\mathbf{x}^*)$ is positive definite or semidefinite
- \mathbf{x}^* is a local maximun point, then (\Rightarrow) the Hessian matrix $Hf(\mathbf{x}^*)$ is negative definite or semidefinite

Extreme points Local Extreme Points

Theorem (Sufficient second-order conditions for local extreme points)

Suppose that the function f is C^2 and \mathbf{x}^* is an interior stationary point of f, then

- the Hessian matrix $Hf(\mathbf{x}^*)$ is positive definite $\Rightarrow \mathbf{x}^*$ is a local minimum point
- the Hessian matrix $Hf(\mathbf{x}^*)$ is negative definite $\Rightarrow \mathbf{x}^*$ is a local maximum point
- $|Hf(\mathbf{x}^*)| \neq 0$ but it is not (positive or negative) definite $\Rightarrow \mathbf{x}^*$ is a saddle point

<ロ> (四) (四) (注) (注) (注) (三)

Extreme points Local Extreme Points

Example The two-variables case. If f(x,y) is a C^2 function with (x^*,y^*) as an interior stationary point, then

$$\begin{split} \frac{\partial^2 f}{\partial x^2}(x^*, y^*) &> 0 \text{ and } \begin{vmatrix} \frac{\partial^2 f}{\partial x^2}(x^*, y^*) & \frac{\partial^2 f}{\partial y \partial x}(x^*, y^*) \\ \frac{\partial^2 f}{\partial x \partial y}(x^*, y^*) & \frac{\partial^2 f}{\partial y \partial x}(x^*, y^*) \end{vmatrix} > 0 \Rightarrow \text{local min. at } (x^*, y^*) \\ \frac{\partial^2 f}{\partial x^2}(x^*, y^*) &< 0 \text{ and } \begin{vmatrix} \frac{\partial^2 f}{\partial x^2}(x^*, y^*) & \frac{\partial^2 f}{\partial y \partial x}(x^*, y^*) \\ \frac{\partial^2 f}{\partial x \partial y}(x^*, y^*) & \frac{\partial^2 f}{\partial y \partial x}(x^*, y^*) \end{vmatrix} > 0 \Rightarrow \text{local max. at } (x^*, y^*) \\ \begin{vmatrix} \frac{\partial^2 f}{\partial x^2}(x^*, y^*) & \frac{\partial^2 f}{\partial y \partial x}(x^*, y^*) \\ \frac{\partial^2 f}{\partial x \partial y}(x^*, y^*) & \frac{\partial^2 f}{\partial y \partial x}(x^*, y^*) \end{vmatrix} > 0 \Rightarrow \text{local max. at } (x^*, y^*) \\ \end{vmatrix}$$

~<u>^</u>

Chapter Three: Classical Optimization

Links to the Wolfram Demostrations Project web page

• Stationary points (maximun, minimun and saddle points) >> >>

Bibliography

Sydsaeter,K., Hammond, P.J., Seierstad, A. and Strom, A. Essential Mathematics for Economic Analysis. Prentice Hall. New Jersey. pages: 453-466. >>

Chapter Three: Classical Optimization

Problem 1 Answer

Classify the stationary points of

Chapter Three: Classical Optimization

(ロ) (部) (注) (注) (注)

Problem 2 Answer

A firm produces an output good using two inputs, denoted by x and y, according to the following production function

$$Q = x^{1/2} y^{1/3}.$$

If $p_1 = 2$, $p_2 = 1$ and $p_3 = 1$ are the prices of output and inputs respectively, maximize the firm's profit.

Chapter Three: Classical Optimization

Problem 3 Answer

The output production function of a firm is

$$Q = x^{1/2} y^{1/3}.$$

where x and y are the units for two different inputs. If p_1 , p_2 and p_3 are the prices of output and inputs respectively, and the firm seeks to maximize profits

- Find the demand of inputs functions.
- Suppose that p₃ rises while the rest of parameters remain constant; what is the effect upon the demand for input y?
- **9** If p_1 rises while p_2 and p_3 remain constant; what is the effect upon the demand for x and y?

Problem 4 Answer

Find the maxima and minima point of the function $f(x,y) = 2x^3 + ay^3 + 6xy$ for different values of parameter $a \in \mathbb{R}$.

Chapter Three: Classical Optimization

イロン スロン スロン スロン 一日

Problem 5 Answer

A firm produces three output goods in units x, y and z respectively. If profit is given by

$$B(x, y, z) = -x^{2} + 6x - y^{2} + 2yz + 4y - 4z^{2} + 8z - 14,$$

find the units of each good that maximize profit and find the maximum profit.

Problem 6 Answer

A monopolistic firm produces two goods whose demand functions are

$$p_1 = 12 - x_1, \quad p_2 = 36 - 5x_2$$

where x_1 and x_2 are the quantities of the two goods produced and p_1 and p_2 the prices of a unit of each good. Knowing that the cost function is $C(x_1, x_2) = 2x_1x_2 + 15$, solve the corresponding profit maximizing problem.

Problem 7 Answer

Solve the output production maximizing problem

$$\max Q(x,y) = -x^3 - 3y^2 + 3x^2 + 24y$$

where \boldsymbol{x} and \boldsymbol{y} are the necessary inputs. Find the maximum production.

Problem 8 Answer

In a competitive market, a firm produces good \boldsymbol{Q} according to the function

$$Q(K,L) = 8K^{1/2}L^{1/4}$$

where K and L are capital and labor respectively. Given the unitary prices of 5 m.u for output and 2 m.u. and 10 m.u. for inputs, find the maximum profit.

Problem 9 Answer

The output production function of a firm and its cost function are given, respectively, by

$$Q(x,y) = 7x^{2} + 7y^{2} + 6xy$$

$$C(x,y) = 4x^{3} + 4y^{3}$$

where x and y are the productive inputs. Knowing that the selling price of a unit of good is 3 m.u., find the maximum point for both productive inputs, x and y, and find the maximum profit.

1 The function
$$f(x,y) = x^2 + y^2$$
 Answer

- a has no stationary point
- **(b)** has a stationary point at (0,0)
- **(**) has a stationary point at (1,1)

Chapter Three: Classical Optimization

イロト イポト イヨト イヨト 二日

- 2 The function $f(x, y, z) = (x 2)^2 + (y 3)^2 + (z 1)^2$ has, at point (2, 3, 1), Answer
 - a global maximum point
 - o a global minimum point
 - a saddle point

イロン スピン スピン スピン 一日

3 The function $f(x,y) = xy^2(2-x-y)$ has, at point (0,2),

Answer

- a local maximum point
- o a local minimum point
- a saddle point

Chapter Three: Classical Optimization

イロン 不良 とうほう 不良 とうせい

④ The function
$$f(x,y) = x^2y + y^2 + 2y$$
 has • Answer

- a local maximum point
- o a local minimum point
- a saddle point

Chapter Three: Classical Optimization

・ロト ・回ト ・ヨト ・ヨト ・ヨ

• has no stationary points

Chapter Three: Classical Optimization

◆□> ◆□> ◆臣> ◆臣> ―臣 …のへで

- **()** If the determinant of the Hessian matrix of f(x, y) on a stationary point is negative, then Answer
 - the stationary point is a saddle point
 - the stationary point is a local minimum point
 - O the stationary point is a local maximum

Q If (a, b) is a stationary point of the function f(x, y) such that

$$rac{\partial^2 f(a,b)}{\partial x^2} = -2 \, \, {
m and} \, \, |Hf(a,b)| = 3$$

then • Answer

- **(a**, b) is a local maximum point
- (a,b) is a local minimum point
- **o** (a,b) is a saddle point

Chapter Three: Classical Optimization

() If (2,1) is a stationary point of the function f(x,y) such that

$$\frac{\partial^2 f(2,1)}{\partial x^2} = 3 \text{ and } |Hf(2,1)| = 1$$

- $\textbf{0} \quad (2,1) \text{ is a local maximum point}$
- (2,1) is a local minimum point
- \mathbf{O} (2,1) is a saddle point

Chapter Three: Classical Optimization

イロト スポト スヨト スヨト 三日

9 The Hessian matrix of function f(x, y, z) is

$$Hf(x, y, z) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

If the function had a stationary point, this would be Answer

- a local maximum point
- o a global maximum point
- o a global minimum point

- **(**) Let B(x, y) be the profit function of a firm which produces two output goods in quantities x and y. If (a, b) is a stationary point of function B(x, y), for it to be a global maximum point it must occur that • Answer
 - **(**) the profit function is concave for all (x, y) in \mathbb{R}^2
 - **()** the profit function is convex for all (x, y) in \mathbb{R}^2
 - ${\it \bigcirc}\,$ the profit function is concave in a neighborhood of the point (a,b)

(1) The Hessian matrix of function f(x, y) is given by Answer

$$Hf(x,y) = \begin{pmatrix} x^2 + 2 & -1 \\ -1 & 1 \end{pmatrix}.$$

If f(x,y) had a stationary point then this point would be

- a global maximum point
- o a global minimum point
- **o** a local minimum point that couldn't be global

Chapter Three: Classical Optimization

(日) (周) (目) (日) (日)

- **2** If (2,1) is a stationary point of the function f(x,y), which of the following conditions assures that (2,1) is a global maximum point of the function? Answer
 - (a) Hf(2,1) is negative definite
 - **()** Hf(x,y) is negative definite fort all (x,y) in \mathbb{R}^2
 - Hf(2,1) is positive definite

イロン スピン スピン スピン 一日

Answers to Problems

Answers to Problems

Problem 1 • Return

- 0(1,0) is a local minimum point.
- $\textcircled{0}\ (0,0)$ is a local minimum point and (0,1) and (0,-1) are saddle points.
- (0,1) is a local maximum point and (0,-1) is a saddle point.
- **(**0,0) is a saddle point.
- $\bigcirc (-1/2,0,0) \text{ is a saddle point.}$
- 0 (1/2,1,1) is a local minimum and (0,0,0) is a saddle point.
- (3) (-2, -4) is a local maximum.

Problem 2 Return

The maximum point is x = 4/9 and y = 8/27.

Answers to Problems

Problem 3 Return

• The maximum point is
$$x=\left(rac{p_1^3}{12p_2^2p_3}
ight)^2$$
 and $y=\left(rac{p_1^2}{6p_2p_3}
ight)^3$.

If the price of y rises with other parameters remaining constant, the quantity demanded of input y will decrease in order to maximize profits. By contrast, if the selling price of output rises, the quantity demanded of input y will increase.

Problem 4 Return

(0,0) is a saddle point for all of the values of parameter a. $\left(-\sqrt[3]{\frac{2}{a}},-\sqrt[3]{\frac{4}{a^2}}\right)$ is a local minimum point if a<0 and, a local maximum point if a>0.

Problem 5 Return

The maximum point is x = 3, y = 4, z = 2 and the maximum profit is $B_{\text{max}} = 11$ m.u.

Answers to Problems

Problem 6 Return

The maximum point is $x_1 = x_2 = 3$, whose prices are, respectively, $p_1 = 9, p_2 = 21$.

Answers to Problems

Problem 7 Return

The maximum produced quantity is $Q_{\max}(2,4) = 52$ units.

Answers to Problems

Problem 8 Return

The maximum profit is $B_{\max}(1.000, 100) = 1.000$ m.u.

Answers to Problems

Problem 9 • Return

The maximum point is x = y = 5 and the maximum profit $B_{\max}(5,5) = 500$ m.u.

Answers to Problems

Answers to Multiple choice questions

Answers to Multiple choice questions

・ロト ・回ト ・ヨト ・ヨト ・ヨ

1 The function
$$f(x,y) = x^2 + y^2$$

- a has no stationary point
- **b** has a stationary point at (0,0)
- **(**) has a stationary point at (1,1)

イロン イロン イヨン イヨン 三日

- 2 The function $f(x, y, z) = (x 2)^2 + (y 3)^2 + (z 1)^2$ has, at point (2, 3, 1), (Back
 - a global maximum point
 - a global minimum point
 - a saddle point

イロン 不良 とうほう 不良 とうせい

3 The function $f(x,y) = xy^2(2-x-y)$ has, at point (0,2), Back

- a local maximum point
- o a local minimum point
- a saddle point

イロン 不良 とくほど 不良とう ほう

④ The function
$$f(x,y)=x^2y+y^2+2y$$
 has \checkmark Back

- a local maximum point
- 6 a local minimum point
- a saddle point

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Answers to Multiple choice questions

- () If the determinant of the Hessian matrix of f(x,y) on a stationary point is negative, then (Back)
 - the stationary point is a saddle point
 - the stationary point is a local minimum point
 - O the stationary point is a local maximum

Q If (a, b) is a stationary point of the function f(x, y) such that

$$rac{\partial^2 f(a,b)}{\partial x^2} = -2 \, \, {
m and} \, \, |Hf(a,b)| = 3$$

then Back

(a, b) is a local maximum point
(a, b) is a local minimum point
(a, b) is a saddle point

Answers to Multiple choice questions

イロン スピン スピン スピン 一日

() If (2,1) is a stationary point of the function f(x,y) such that

$$\frac{\partial^2 f(2,1)}{\partial x^2} = 3 \text{ and } |Hf(2,1)| = 1$$

then Back

- $\textbf{0} \quad (2,1) \text{ is a local maximum point}$
- **(**(2,1) is a local minimum point
- \mathbf{O} (2,1) is a saddle point

Answers to Multiple choice questions

イロン スピン スピン スピン 一日

9 The Hessian matrix of function f(x, y, z) is

$$Hf(x, y, z) = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array}\right)$$

If the function had a stationary point, this would be

- a local maximum point
- o a global maximum point
- a global minimum point

- **(**) Let B(x, y) be the profit function of a firm which produces two output goods in quantities x and y. If (a, b) is a stationary point of function B(x, y), for it to be a global maximum point it must occur that **(**Back
 - (a) the profit function is concave for all (x,y) in \mathbb{R}^2
 - **()** the profit function is convex for all (x, y) in \mathbb{R}^2
 - ${\it \bigcirc}\,$ the profit function is concave in a neighborhood of the point (a,b)

イロン スピン スピン スピン 一日

(1) The Hessian matrix of function f(x, y) is given by **(Back**)

$$Hf(x,y) = \begin{pmatrix} x^2 + 2 & -1 \\ -1 & 1 \end{pmatrix}$$

If f(x,y) had a stationary point then this point would be

- a global maximum point
- a global minimum point
- **o** a local minimum point that couldn't be global

Answers to Multiple choice questions

- **2** If (2,1) is a stationary point of the function f(x,y), which of the following conditions assures that (2,1) is a global maximum point of the function? **Clack**
 - (a) Hf(2,1) is negative definite
 - Hf(x,y) is negative definite fort all (x,y) in \mathbb{R}^2
 - Hf(2,1) is positive definite

イロン スピン スピン スピン 一日