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These slides are intended for students of Business administration
whose mathematical requirements go beyond the calculus for
functions of one variable. The material includes a basic course on
multivariable optimization problems, with and without constraints,
and the tools of linear algebra needed for solving them.
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Convex Sets
Concave and convex functions

Definition 1

Let x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) be any two points
in Rn. The closed line segment between x and y is the set

[x,y] = {z / there exists λ ∈ [0, 1] such that z = λx+ (1− λ)y}

Definition 2

A set S in Rn is called convex if [x,y] ⊆ S for all x, y in S, or
equivalently, if

λx+ (1− λ)y ∈ S for all x, y in S and all λ ∈ [0, 1]

Note in particular that the empty set and also any set consisting of
one single point are convex.
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Convex Sets
Concave and convex functions

Intuitively speaking, a convex set must be ”connected” without any
”holes” and its boundary must not ”bend inwards” at any point.

Convex Not convex

Chapter One: Convex Sets. Convex and Concave Functions



Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Convex Sets
Concave and convex functions

Definition 3

A hyperplane in Rn is the set H of all points x = (x1, x2, ..., xn) in
Rn that satisfy

p1x1 + p2x2 + · · ·+ pnxn = m

where p = (p1, p2, ..., pn) 6= 0.

Proposition 4 A hyperplane in Rn is a convex set.
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Convex Sets
Concave and convex functions

Definition 5

A hyperplane H devides Rn into two sets,

H+ = {(x1, x2, ..., xn) ∈ Rn/ p1x1 + p2x2 + · · ·+ pnxn ≥ m} ,
H− = {(x1, x2, ..., xn) ∈ Rn/ p1x1 + p2x2 + · · ·+ pnxn ≤ m} ,

which are called half spaces.

Proposition 6 H+ and H− are convex sets.
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Convex Sets
Concave and convex functions

Proposition 7 If S and T are two convex sets in Rn, then their
intersection S ∩ T is also convex.
The union of convex sets is usually not convex.
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Convex Sets
Concave and convex functions

Definition 8

A function f(x) = f(x1, x2, ..., xn) defined on a convex set S is
concave on S if

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y) (1)

for all x and y in S and for all λ in [0, 1] .
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Convex Sets
Concave and convex functions

A function f(x) is convex if (1) holds with ≥ replaced by ≤ .
Note that (1) holds with equality for λ = 0 and λ = 1. If we have
strict inequality in (1) whenever x 6= y and λ ∈ (0, 1), then f is
strictly concave.

Note that a function f is convex on S if and only if −f is concave.
Furthermore, f is strictly convex if and only if −f is strictly
concave.

Proposition 9 Let f(x) = f(x1, x2, ..., xn) be defined on a convex
set S in Rn. Then

If f is concave, the set {x ∈ S / f(x) ≥ a} is convex for every
number a.

If f is convex, the set {x ∈ S / f(x) ≤ a} is convex for every
number a.
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Convex Sets
Concave and convex functions

Definition 10

Suppose that f(x) = f(x1, x2, ..., xn) is a C2 function in an open
convex set S in Rn. Then the symmetric matrix

H(x) =



∂2f

∂x21
(x)

∂2f

∂x1∂x2
(x) . . .

∂2f

∂x1∂xn
(x)

∂2f

∂x2∂x1
(x)

∂2f

∂x22
(x) . . .

∂2f

∂x2∂xn
(x)

...
...

...
...

∂2f

∂xn∂x1
(x)

∂2f

∂xn∂x2
(x) . . .

∂2f

∂x2n
(x)


is called the Hessian matrix of f at x.

Chapter One: Convex Sets. Convex and Concave Functions



Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Convex Sets
Concave and convex functions

Proposition 11 Suppose that f(x) = f(x1, x2, ..., xn) is a C2
function defined on an open, convex set S in Rn. Then
(i) The Hessian matrix is positive definite or semidefinite ⇔ f is
convex.
(ii) The Hessian matrix is negative definite or semidefinite ⇔ f is
concave.
Proposition 12 Suppose that f(x) = f(x1, x2, ..., xn) is a C2
function defined on an open, convex set S in Rn. Then
(i) If the Hessian matrix is positive definite ⇒ f is strictly convex.
(ii) If the Hessian matrix is negative definite ⇒ f is strictly
concave.
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Links to the Wolfram Demostrations Project web page

Convex sets >>

Operations on sets >>

Concavity and convexity in quadratic surfaces >>

Some pictures of convex sets in Wikipedia >>

Bibliography
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Problem 1 Answer

Draw the following sets and say if they are convex, closed and
bounded.

a A = {(x, y) ∈ R2/x2 + y2 ≤ 4}
b B = {(x, y) ∈ R2/y = 2x+ 3}
c C = {(x, y) ∈ R2/(x− 1)2 + (y − 3)2 = 9}
d D = {(x, y) ∈ R2/y > x2, y ≤ 1}
e E = {(x, y) ∈ R2/y ≥ x}
f F = {(x, y) ∈ R2/x+ y ≤ 2, x ≥ 0, y ≥ 0}
g G = {(x, y) ∈ R2/xy ≤ 1}
h H = {(x, y) ∈ R2/xy > 1, x ≥ 0, y ≥ 0}
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Problem 2

Investigate the convexity of the following sets

a A = {(x, y) ∈ R2/0 ≤ x ≤ 4, 2 ≤ y ≤ 6}
b B = {(x, y, z) ∈ R3/x+ y + 2z ≤ 24}
c C = {y ∈ Rn/y = αx with α ∈ R and x ∈ X ⊂ Rn convex}
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Problem 3 Answer

Investigate the concavity/convexity for the following functions

a f(x, y) = 3x3 − 2y2

b f(x, y) = (x− 3)3 + (y + 1)2

c f(x, y) = (x− 2)2 + y4

d f(x, y, z) = x2 + y2 + z3

e f(x, y, z) = x2 + y2 + z2 + yz

f f(x, y, z) = ex + y2 + z2

g f(x, y, z) = e2x + y2z

h f(x, y) = xy

Chapter One: Convex Sets. Convex and Concave Functions



Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Problem 4 Answer

Check the concavity/convexity of the following functions

a f(x, y) = ln y − ex

b f(x, y) = lnxy for all x, y > 0

c f(x, y) =
√
x2 + y2

d f(x, y) = x
1
2 y

1
3 for all x, y > 0
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Useful links

Review problems for Chapter 1
Multiple choice questions

Problem 5 Answer

Check the concavity/convexity of the following functions for the
different values of parameter a.

a f(x, y) = x2 − 2axy

b g(x, y, z) = ax4 + 8y − z2
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

Problem 6 Answer

Investigate the convexity of the following sets

a A = {(x, y) ∈ R2/(x− 1)2 + (y − 1)2 ≤ 2}
b B = {(x, y) ∈ R2/ex+y ≤ 12}
c C = {(x, y) ∈ R2/3x2 + 4y2 ≥ 10}
d D = {(x, y) ∈ R2/x+ y ≤ 2, x ≥ 0, y ≥ 1}
e E = {(x, y) ∈ R2/x2 + y2 − 4x− 2y ≤ 3, x ≤ 2y}
f F = {(x, y) ∈ R2/x+ y ≤ 3, 2x+ 5y = 10, x ≥ 0, y ≥ 0}
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

1 Which of the following sets is convex? Answer

a
{
(x, y) ∈ R2/x2 + y2 ≤ 1

}
b

{
(x, y) ∈ R2/x2 + y2 = 1

}
c
{
(x, y) ∈ R2/x2 + y2 ≥ 1

}
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

2 The closed line segment between (1, 1) and (−1,−1) can be
written as the set Answer

a B = {(x, y) ∈ R2/(x, y) = (2λ− 1, 2λ− 1),∀λ ∈ [0, 1]}
b B = {(x, y) ∈ R2/(x, y) = (λ, 1− λ),∀λ ∈ [0, 1]}
c B = {(x, y) ∈ R2/x = y}
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

3 Given S ⊆ R2 a convex set, the function f : S → R will be
convex if Answer

a the Hessian matrix Hf(x, y) is negative definite for all (x, y)
in S

b the sets {(x, y) ∈ S/f(x, y) ≤ k} are convex for all k in R
c f is a lineal function
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

4 The set S = {(x, y, z) ∈ R3/x+ y2 + z2 ≤ 1} Answer

a is convex because the Hessian matrix of the function
f(x, y) = x+ y + z2 is positive semidefinite

b is convex because the function f(x, y) = x+ y2 + z2 is lineal
c in not convex
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Useful links

Review problems for Chapter 1
Multiple choice questions

5 Which of the following sets is not convex? Answer

a {(x, y) ∈ R2/x ≤ 1, y ≤ 1}
b {(x, y) ∈ R2/x, y ∈ [0, 1]}
c {(x, y) ∈ R2/xy ≤ 1, x, y ≥ 0}
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

6 Which of the following Hessian matrices belongs to a concave
function? Answer

a

(
−2 2
2 −2

)
b

(
2 2
2 0

)
c

(
−2 2
2 2

)
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

7 The function f(x, y) = lnx+ ln y is concave on the set
Answer

a S = {(x, y) ∈ R2/x, y > 0}
b R2

c S = {(x, y) ∈ R2/x, y 6= 0}
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Chapter One: Convex Sets. Convex and Concave Functions
Useful links

Review problems for Chapter 1
Multiple choice questions

8 Which of the following sets is convex? Answer

a A = {(x, y) ∈ R2/xy ≥ 1, x ≥ 0, y ≥ 0}
b B = {(x, y) ∈ R2/xy ≥ 1}
c C = {(x, y) ∈ R2/xy ≤ 1, x ≥ 0, y ≥ 0}
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Useful links

Review problems for Chapter 2
Multiple choice questions

Chapter Two: Multivariate Optimization. The
Extreme value theorem
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Multivariable optimization. The Extreme Value Theorem
(Weierstrass)

A graphical approach to two-variable optimization problems
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Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

Extreme points and extreme values
A graphical approach to two-variable optimization problems

An Optimization Problem is the problem of finding those points in
a domain where a function reaches its largest and its smallest
values (referred to as maximum and minimum points):

max (min) f(x) subject to x ∈ S

where max (min) indicates that we want to maximize or minimize
f and x =(x1, ..., xn) ∈ S a subset of Rn.
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Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

Extreme points and extreme values
A graphical approach to two-variable optimization problems

In most static optimization problems there are

an objective function f(x) = f(x1, x2, ..., xn), a real-valued
function of n variables whose value is to be optimized, i.e.
maximized or minimized.

an admissible set (or feasible set) S that is some subset of Rn.

Depending on the set S, several different types of optimization
problems can arise:

Classical case: if the optimum occurs at an interior point of S
(Chapter 5)

Lagrange problem: if S is the set of all points x that satisfy a
given system of equations (equality constraints) (Chapter 6)

Nonlinear programming problem: if S consists of all points x
that satisfy a system of inequality constraints

Chapter Two: Multivariate Optimization. The Extreme value theorem



Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

Extreme points and extreme values
A graphical approach to two-variable optimization problems

Definition 13

The point x∗ ∈ S is called a (global) maximum point for f in S if

f(x∗) ≥ f(x) for all x in S,

and f(x∗) is called the maximum value.

Definition 14

The point x∗ ∈ S is called a (global) minimum point for f in S if

f(x∗) ≤ f(x) for all x in S,

and f(x∗) is called the minimum value.

If the inequalities are strict then x∗ is called a strict maximum
(minimum) point for f in S.
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Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

Extreme points and extreme values
A graphical approach to two-variable optimization problems

Extreme Value Theorem: Weiestrass

Theorem

Let f(x) be a continuous function on a closed, bounded set S.
Then f has both a maximum point and a minimum point in S.

A set S is called closed if it contains all its boundary points.
Moreover, it is called bounded if it is contained in some ball around
the origin.
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Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

Extreme points and extreme values
A graphical approach to two-variable optimization problems

Example

In problems with two variables, if g(x1, x2) is a continuous function
and c is a real number, the sets

{(x, y) / g(x1, x2) ≥ c} {(x, y) / g(x1, x2) ≤ c} {(x, y) / g(x1, x2) = c}

are closed. If ≥ is replaced by >, or ≤ replaced by <, or =
replaced by 6=, then the corresponding set is not closed.

Example

Provided that p, q and m are positive parameters, the (budget) set
of points (x, y) that satisfy the inequalities

px+ qy ≤ m, x ≥ 0, y ≥ 0

is closed and bounded.
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Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

Extreme points and extreme values
A graphical approach to two-variable optimization problems

Given the general maximizing/minimizing problem with two
variables

maximize f(x, y) subject to (x, y) in S

a graphical resolution can be done by drawing the feasible set and
the level curves of the objective function.
For a graphical resolution follow the following steps:

1 Draw the feasible set

2 Draw the level curves of the objective function which lie in the
feasible set

3 In the case of a maximization problem, the maximum point is
the feasible point which lies on the highest level curve
In a minimization problem, the minimum point is the feasible
point which lies on the lowest level curve
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Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

Links to the Wolfram Demostrations Project web page

The consumer’s optimization problem >>

Level curves >>

Surfaces and level curves >>
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Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

Problem 1

Provide a graphical resolution of the following optimization
problems:

a


max . : 6x+ y
s.t. : 2x+ y ≤ 6

x+ y ≥ 1
y ≤ 3

x, y ≥ 0

b


opt. : x+ y
s.t. : x2 + y2 = 1

x, y ≥ 0
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Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

Problem 1

Provide a graphical resolution of the following optimization
problems:

c


opt. : (x− 2)2 + (y − 1)2

s.t. : x2 − y ≤ 0
x+ y ≤ 2
x, y ≥ 0

d


opt. : x− y2
s.t. : (x− 1)(y − 2) ≥ 0

2 ≤ x ≤ 4
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Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

Problem 1

Provide a graphical resolution of the following optimization
problems:

e


opt. : 3x+ 2y
s.t. : −x+ y ≤ 2

x− y ≤ 2

f


opt. : (x− 2)2 + (y − 2)2

s.t. : x+ y ≥ 1
−x+ y ≤ 1

Chapter Two: Multivariate Optimization. The Extreme value theorem



Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

Problem 1

Provide a graphical resolution of the following optimization
problems:

g


min . : x+ y
s.t. : x2 + y2 ≥ 4

x2 + y2 ≤ 1

h


max . : x+ y
s.t. : x− y2 ≥ 0

x+ y ≤ 2

Chapter Two: Multivariate Optimization. The Extreme value theorem



Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

Problem 2 Answer

A firm produces two goods. The profit obtained after the purchase
of each are 10 and 15 monetary units respectively. To produce one
unit of good 1 requires 4 hours of man-labor and 3 hours of
machine work. Each unit of good 2 needs 7 hours of man-labor
and 6 hours of machine work. The maximum man-labor time
available is 300 hours and for the machines 500 hours. Find the
quantities produced of each good which maximize the profit.
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Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

Problem 3 Answer

Maximize the utility function U(x, y) = xy, where x and y are the
quantities consumed of two goods. The price of each unit of these
goods is 2 and 1 monetary units respectively and the available
budget is 100 monetary units. Formulate the optimization problem
the consumer must solve in order to achieve the maximum utility.
Calculate the optimal consumed quantities of goods x and y.
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Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

Problem 4 Answer

Which of the following optimization problems satisfy the
Weierstrass’ theorem conditions?

a)

{
min . : x2 + y2

s.t. : x+ y = 3
b)


max. : x+ y2

s.t. : 3x2 + 5y ≤ 4
x, y ≥ 0

c)


opt. : 2x+ y
s.t. : x+ y = 1

x2 + y2 ≤ 9
d)


opt. : x+ ln y
s.t. : x− 5y2 ≥ −1

x+ y2 ≤ 1

e)


max . : x2 + y2

s.t. : x+ y ≥ 4
2x+ y ≥ 5
x, y ≥ 0

f)


min . : ex+y

s.t. : 0 ≤ x ≤ 1
0 ≤ y ≤ 1
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Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

1 Which of the following points belongs to the feasible set of
the optimization problem Answer

opt. : x2
√
y

s.t. : x+ y = 3 ?

a (1, 2)
b (−1, 2)
c (4,−1)

Chapter Two: Multivariate Optimization. The Extreme value theorem
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Useful links

Review problems for Chapter 2
Multiple choice questions

2 If the feasible set of an optimization problem is unbounded
then Answer

a no finite optimum point exists
b it has an infinite number of feasible points
c the existence of a finite optimum point cannot be assured
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Chapter Two: Multivariate Optimization
Useful links

Review problems for Chapter 2
Multiple choice questions

3 Given f(x, y) = ax+ by with a, b ∈ R and the set Answer

S = {(x, y) ∈ R2/x+ y = 2, x ≥ 0, y ≥ 0},

a f has a global maximum point and a global minimum point in
S

b f has a global maximum point in S if a and b are positive
c there is no maximum or minimum point of f in S
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Useful links

Review problems for Chapter 2
Multiple choice questions

4 Which of the following is the feasible set of the optimization
problem Answer

max . : 2x+ y

s.t. : x+ y = 1

: x2 + y2 ≤ 5 ?

a {(x, y) ∈ R2/x+ y = 1, x ≥ 0, y ≥ 0}
b {(x, y) ∈ R2/(x, y) = λ(5, 0) + (1− λ)(0, 5),∀λ ∈ [0, 1]}
c {(x, y) ∈ R2/(x, y) = λ(2,−1) + (1− λ)(−1, 2),∀λ ∈ [0, 1]}

Chapter Two: Multivariate Optimization. The Extreme value theorem



Chapter three: Classical Optimization
Useful links

Review problems for Chapter 3
Multiple choice questions

Chapter Three: Classical Optimization
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Let f be defined on a set S in Rn then

Definition 15

A point x∗ = (x∗1, x
∗
2, ..., x

∗
n) is called a stationary point of f if all

first-order partial derivatives evaluated on x∗ are 0, that is

∂f

∂xi
(x∗1, x

∗
2, ..., x

∗
n) = 0 for all i = 1, 2, ..., n.
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Theorem (Necessary first-order conditions)

Let x∗ = (x∗1, x
∗
2, ..., x

∗
n) be an interior point in S at which f has

partial derivatives, then, a necessary condition for x∗ to be a
maximum or minimum point for f is that x∗ is a stationary point
for f .
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Maxima and minima

Maximum Minimum

Learn more in http://wikipedia.org
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Theorem (Sufficient conditions with concavity/convexity)

Suppose that the function f is C1,

if f is concave in S, then x∗ is a (global) maximum point for
f in S if and only if (⇔) x∗ is a stationary point for f

if f is convex in S, then x∗ is a (global) manimum point for f
in S if and only if (⇔) x∗ is a stationary point for f

If f is strictly concave (convex), the global maximum (minimum)
point is unique.
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Definition 16

The point x∗ is a local maximum point of f in S if

f(x) ≤ f(x∗) for all x in S sufficiently close to x∗.

If the inequality is strict then x∗ is a strict local maximum point.

A (strict) local minimum point is defined in the obvious way.
The first-order necessary conditions for a local maximum
(minimum) point remain the same, that is: a local extreme point
in the interior of a domain of a function with partial derivatives
must be stationary.
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Definition 17

A stationary point x∗ of f that is neither a local maximum point
nor a local minimum point is called a saddle point of f .
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Theorem (Necessary second-order conditions for local extreme
points)

Suppose that f is C2 and x∗ is an interior stationary point of f ,
then

x∗ is a local minimum point, then (⇒) the Hessian matrix
Hf(x∗) is positive definite or semidefinite

x∗ is a local maximun point, then (⇒) the Hessian matrix
Hf(x∗) is negative definite or semidefinite
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Theorem (Sufficient second-order conditions for local extreme
points)

Suppose that the function f is C2 and x∗ is an interior stationary
point of f , then

the Hessian matrix Hf(x∗) is positive definite⇒ x∗ is a local
minimum point

the Hessian matrix Hf(x∗) is negative definite⇒ x∗ is a local
maximum point

|Hf(x∗)| 6= 0 but it is not (positive or negative) definite
⇒ x∗ is a saddle point
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Example The two-variables case.
If f(x, y) is a C2 function with (x∗, y∗) as an interior stationary
point, then

∂2f

∂x2
(x∗, y∗) > 0 and

∣∣∣∣∣∣∣∣
∂2f

∂x2
(x∗, y∗)

∂2f

∂y∂x
(x∗, y∗)

∂2f

∂x∂y
(x∗, y∗)

∂2f

∂y2
(x∗, y∗)

∣∣∣∣∣∣∣∣ > 0⇒ local min. at (x∗, y∗)

∂2f

∂x2
(x∗, y∗) < 0 and

∣∣∣∣∣∣∣∣
∂2f

∂x2
(x∗, y∗)

∂2f

∂y∂x
(x∗, y∗)

∂2f

∂x∂y
(x∗, y∗)

∂2f

∂y2
(x∗, y∗)

∣∣∣∣∣∣∣∣ > 0⇒ local max. at (x∗, y∗)

∣∣∣∣∣∣∣∣
∂2f

∂x2
(x∗, y∗)

∂2f

∂y∂x
(x∗, y∗)

∂2f

∂x∂y
(x∗, y∗)

∂2f

∂y2
(x∗, y∗)

∣∣∣∣∣∣∣∣ < 0⇒ (x∗, y∗) is a saddle point
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Problem 1 Answer

Classify the stationary points of

a f(x, y) = 2x2 + xy + 2y2 − 4x− y
b f(x, y) = (x2 + y2)ex

2−y2

c f(x, y) = 2x− 2ex + 3y − y3 + 4

d f(x, y) = x ln(y + 1)

e f(x, y, z) = e−x
2−y2−x+z2

f f(x, y, z) = x2 − xy2 + y4 − 3yz + z3

g f(x, y) = x3 + 3x2 + y3 + 6y2
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Problem 2 Answer

A firm produces an output good using two inputs, denoted by x
and y, according to the following production function

Q = x1/2y1/3.

If p1 = 2, p2 = 1 and p3 = 1 are the prices of output and inputs
respectively, maximize the firm’s profit.
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Problem 3 Answer

The output production function of a firm is

Q = x1/2y1/3.

where x and y are the units for two different inputs. If p1, p2 and
p3 are the prices of output and inputs respectively, and the firm
seeks to maximize profits

a Find the demand of inputs functions.

b Suppose that p3 rises while the rest of parameters remain
constant; what is the effect upon the demand for input y?

c If p1 rises while p2 and p3 remain constant; what is the effect
upon the demand for x and y?
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Problem 4 Answer

Find the maxima and minima point of the function
f(x, y) = 2x3 + ay3 +6xy for different values of parameter a ∈ R.
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Problem 5 Answer

A firm produces three output goods in units x, y and z
respectively. If profit is given by

B(x, y, z) = −x2 + 6x− y2 + 2yz + 4y − 4z2 + 8z − 14,

find the units of each good that maximize profit and find the
maximum profit.
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Problem 6 Answer

A monopolistic firm produces two goods whose demand functions
are

p1 = 12− x1, p2 = 36− 5x2

where x1 and x2 are the quantities of the two goods produced and
p1 and p2 the prices of a unit of each good. Knowing that the cost
function is C(x1, x2) = 2x1x2 + 15, solve the corresponding profit
maximizing problem.
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Problem 7 Answer

Solve the output production maximizing problem

maxQ(x, y) = −x3 − 3y2 + 3x2 + 24y

where x and y are the necessary inputs. Find the maximum
production.
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Problem 8 Answer

In a competitive market, a firm produces good Q according to the
function

Q(K,L) = 8K1/2L1/4

where K and L are capital and labor respectively. Given the
unitary prices of 5 m.u for output and 2 m.u. and 10 m.u. for
inputs, find the maximum profit.
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Problem 9 Answer

The output production function of a firm and its cost function are
given, respectively, by

Q(x, y) = 7x2 + 7y2 + 6xy

C(x, y) = 4x3 + 4y3

where x and y are the productive inputs. Knowing that the selling
price of a unit of good is 3 m.u., find the maximum point for both
productive inputs, x and y, and find the maximum profit.
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1 The function f(x, y) = x2 + y2 Answer

a has no stationary point
b has a stationary point at (0, 0)
c has a stationary point at (1, 1)
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2 The function f(x, y, z) = (x− 2)2 + (y − 3)2 + (z − 1)2 has,
at point (2, 3, 1), Answer

a a global maximum point
b a global minimum point
c a saddle point
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3 The function f(x, y) = xy2(2− x− y) has, at point (0, 2),
Answer

a a local maximum point
b a local minimum point
c a saddle point
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4 The function f(x, y) = x2y + y2 + 2y has Answer

a a local maximum point
b a local minimum point
c a saddle point
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5 The function f(x, y) =
ln(x3 + 2)

y2 + 3
: Answer

a has a stationary point at (1, 0)
b has a stationary point at (0, 0)
c has no stationary points
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6 If the determinant of the Hessian matrix of f(x, y) on a
stationary point is negative, then Answer

a the stationary point is a saddle point
b the stationary point is a local minimum point
c the stationary point is a local maximum
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7 If (a, b) is a stationary point of the function f(x, y) such that

∂2f(a, b)

∂x2
= −2 and |Hf(a, b)| = 3

then Answer

a (a, b) is a local maximum point
b (a, b) is a local minimum point
c (a, b) is a saddle point
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8 If (2, 1) is a stationary point of the function f(x, y) such that

∂2f(2, 1)

∂x2
= 3 and |Hf(2, 1)| = 1

then Answer

a (2, 1) is a local maximum point
b (2, 1) is a local minimum point
c (2, 1) is a saddle point
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9 The Hessian matrix of function f(x, y, z) is

Hf(x, y, z) =

 1 0 0
0 2 0
0 0 3

 .

If the function had a stationary point, this would be Answer

a a local maximum point
b a global maximum point
c a global minimum point
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10 Let B(x, y) be the profit function of a firm which produces
two output goods in quantities x and y. If (a, b) is a
stationary point of function B(x, y), for it to be a global
maximum point it must occur that Answer

a the profit function is concave for all (x, y) in R2

b the profit function is convex for all (x, y) in R2

c the profit function is concave in a neighborhood of the point
(a, b)
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11 The Hessian matrix of function f(x, y) is given by Answer

Hf(x, y) =

(
x2 + 2 −1
−1 1

)
.

If f(x, y) had a stationary point then this point would be

a a global maximum point
b a global minimum point
c a local minimum point that couldn’t be global
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12 If (2, 1) is a stationary point of the function f(x, y), which of
the following conditions assures that (2, 1) is a global
maximum point of the function? Answer

a Hf(2, 1) is negative definite
b Hf(x, y) is negative definite fort all (x, y) in R2

c Hf(2, 1) is positive definite
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Introduction

The Lagrange Multiplier Method (the two-variable case)

The Lagrange Multiplier is a shadow price

The Lagrange method applied to the general multivariable
case
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Introduction
The Lagrange Multiplier Method.
The Lagrange Multiplier is a shadow price
The Lagrange method applied to the general multivariable case.

consumer’s optimization problem

maxU(x, y) subject to p · x+ y = b. (P)

Note that:

The point (x∗, y∗) that solves problem (P) is not necessarily a
maximum point (global or local) of the function U(x, y)

In this case y = b− p · x, ⇒ Max f(x) = U(x, b− px)
unconstrained optimization problem with one variable less

If the substitution method is difficult or impossible to carry
out in practise ⇒ Lagrange Method

Chapter Four: Constrained Optimization. The Lagrange Multiplier Method
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Introduction
The Lagrange Multiplier Method.
The Lagrange Multiplier is a shadow price
The Lagrange method applied to the general multivariable case.

The two-variables case: Lagrange function

Definition 18

Given the optimization problem

Opt. : f(x, y)

s.t : g(x, y) = b

we define the Lagrange function L by

L(x, y, λ) = f(x, y)− λ(g(x, y)− b)

where λ is called the Lagrange multiplier.
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Introduction
The Lagrange Multiplier Method.
The Lagrange Multiplier is a shadow price
The Lagrange method applied to the general multivariable case.

The two-variables case: Lagrange function

Lagrange function

L(x, y, λ) = f(x, y)− λ(g(x, y)− b)

Note that the partial derivatives of L(x, y, λ) with respect to x
and y are

∂L
∂x

(x, y, λ) =
∂f

∂x
(x, y)− λ∂g

∂x
(x, y),

∂L
∂y

(x, y, λ) =
∂f

∂y
(x, y)− λ∂g

∂y
(x, y),

respectively. Moreover,
∂L
∂λ

(x, y, λ) = −[g(x, y)− b]

which must be 0 when the constraint is satisfied. In fact
L(x, y, λ) = f(x, y) for all (x, y) that satisfy the constraint
g(x, y) = b
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Introduction
The Lagrange Multiplier Method.
The Lagrange Multiplier is a shadow price
The Lagrange method applied to the general multivariable case.

First-order necessary conditions for optimality

Opt. : f(x, y) (2)

s.t : g(x, y) = b

Theorem (Lagrange)

If (x∗, y∗) is a maximum or a minimum point of problem (2) then
there exists a Lagrange multiplier λ∗ such that (x∗, y∗, λ∗) is a
stationary point of the Lagrange function.
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Introduction
The Lagrange Multiplier Method.
The Lagrange Multiplier is a shadow price
The Lagrange method applied to the general multivariable case.

First-order necessary conditions for optimality

The following equalities will be then satisfied:

∂L
∂x

(x∗, y∗, λ∗) =
∂f

∂x
(x∗, y∗)− λ∗ ∂g

∂x
(x∗, y∗) = 0, (3)

∂L
∂y

(x∗, y∗, λ∗) =
∂f

∂y
(x∗, y∗)− λ∗ ∂g

∂y
(x∗, y∗) = 0, (4)

∂L
∂λ

(x∗, y∗, λ∗) = −[g(x∗, y∗)− b] = 0. (5)

The conditions (3)-(5) are called the first-order necessary
conditions
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Introduction
The Lagrange Multiplier Method.
The Lagrange Multiplier is a shadow price
The Lagrange method applied to the general multivariable case.

The two-variable case with lineal constraint

The general utility maximizing problem with two goods:

maximize U(x, y) subject to p · x+ q · y = b

where U(x, y) is concave as stated by economic theory.

Follow the following steps:

Write the Lagrangian

L(x, y, λ) = U(x, y)− λ [p · x+ q · y − b]

where λ is a constant
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Introduction
The Lagrange Multiplier Method.
The Lagrange Multiplier is a shadow price
The Lagrange method applied to the general multivariable case.

Differentiate L with respect to x, y and λ and equate the
partial derivatives to 0, the first order necessary conditions are

∂L
∂x

=
∂U

∂x
(x, y)− λp = 0 ⇒ λ =

∂U(x, y)/∂x

p

∂L
∂y

=
∂U

∂y
(x, y)− λq = 0 ⇒ λ =

∂U(x, y)/∂y

q

∂L
∂λ

= g(x, y)− b = 0

Solve these equation simultaneously for the three unknowns x,
y and λ⇒ (x∗, y∗, λ∗)
Since function U(x, y) is concave then the obtained point
(x∗, y∗) is a global maximum point (Theorem 3).1

Note that the maximum point (x∗, y∗) satisfies that

∂U(x∗, y∗)/∂x

∂U(x∗, y∗)/∂y
=
p

q
(6)

1In the case of a convex function, the stationary point would be a global minimum

point Chapter Four: Constrained Optimization. The Lagrange Multiplier Method
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Introduction
The Lagrange Multiplier Method.
The Lagrange Multiplier is a shadow price
The Lagrange method applied to the general multivariable case.

Geometric interpretation

A geometric interpretation is that the consumer should choose the
point on the budget line at which the slope of the level curve of
the utility function is equal to the slope of the budget line

∂U(x∗, y∗)/∂x

∂U(x∗, y∗)/∂y
=
p

q
(7)

Thus, at the optimal point the budget line is tangent to a level
curve of the utility function
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Introduction
The Lagrange Multiplier Method.
The Lagrange Multiplier is a shadow price
The Lagrange method applied to the general multivariable case.

Opt. : f(x, y) (8)

s.t : g(x, y) = b

Theorem (Sufficient conditions for Global Optimality when the
constraint is lineal)

If (x∗, y∗, λ∗) is a stationary point of the Lagrange function
associated to problem (8), then:
If the constraint is lineal and function f is concave in the feasible
set, (x∗, y∗) is a global maximum of problem (8).
If the constraint is lineal and function f is convex in the feasible
set, (x∗, y∗) is a global minimum of problem (8).
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Introduction
The Lagrange Multiplier Method.
The Lagrange Multiplier is a shadow price
The Lagrange method applied to the general multivariable case.

Opt. : f(x, y) (9)

s.t : g(x, y) = b

Theorem (Sufficient conditions for Global Optimality)

If (x∗, y∗, λ∗) is a stationary point of the Lagrange function
associated to problem (9), then:
If the Lagrangian L(x, y, λ∗) is concave in (x, y) then (x∗, y∗) is a
global maximum of problem (9).
If the Lagrangian L(x, y, λ∗) is convex in (x, y) then (x∗, y∗) is a
global minimum of problem (9).
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Opt. : f(x, y) (10)

s.t : g(x, y) = b

Theorem (Sufficient conditions for Local Optimality)

Let (x∗, y∗, λ∗) be a stationary point of the Lagrange function
associated to problem (10). Define

D(x, y, λ) =

∣∣∣∣∣∣∣
0 ∂g

∂x
(x, y) ∂g

∂y
(x, y)

∂g
∂x

(x, y) ∂2L
∂x2 (x, y)

∂2L
∂y∂x

(x, y)
∂g
∂y

(x, y) ∂2L
∂x∂y

(x, y) ∂2L
∂y2 (x, y)

∣∣∣∣∣∣∣
If D(x∗, y∗, λ∗) < 0 then (x∗, y∗) is a local maximum of problem (10).
If D(x∗, y∗, λ∗) > 0 then (x∗, y∗) is a local maximum of problem (10).
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The Lagrange method applied to the general multivariable case.

The Lagrange multiplier is a shadow price

λ =
∂f∗

∂b
(b)

the Lagrange multiplier λ is the rate at which the optimal value of
the objective function changes with respect to changes in the
constraint constant b.

Suppose, for instance, that f∗(b) is the maximum profit that a
firm can obtain from a production process when b is the available
quantity of a resource. Then ∂f∗(b)/∂b is the marginal profit that
the firm can earn per extra unit of the resource, which is therefore
the firm’s marginal willingness to pay for this resource.

In Economics this measure is known as the shadow price.
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The Lagrange multiplier is a shadow price

Proof.

Let (x∗, y∗, λ∗) be a stationary point of the Lagrange function, then, the
first order necessary conditions must be satisfied, that is

∂L
∂x

(x∗, y∗, λ∗) =
∂f

∂x
(x∗, y∗)− λ∗ ∂g

∂x
(x∗, y∗) = 0, (11)

∂L
∂y

(x∗, y∗, λ∗) =
∂f

∂y
(x∗, y∗)− λ∗ ∂g

∂y
(x∗, y∗) = 0. (12)

Note that x∗ = x(b) and y∗ = y(b). Let

f∗(b) = f(x∗, y∗) = f(x(b), y(b))

be the optimum (maximun or minimum) value function, which is a
function of b.
Using the change rule and (14)-(15), the following arises
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Proof.

∂f∗

∂b
(b) =

∂f

∂x
(x∗, y∗)

∂x

∂b
(b) +

∂f

∂y
(x∗, y∗)

∂y

∂b
(b)

= λ∗
∂g

∂x
(x∗, y∗)

∂x

∂b
(b) + λ∗

∂g

∂y
(x∗, y∗)

∂y

∂b
(b)

= λ∗
[
∂g

∂x
(x∗, y∗)

∂x

∂b
(b) +

∂g

∂y
(x∗, y∗)

∂y

∂b
(b)

]
Moreover,

g(x(b), y(b)) = g(x∗, y∗) = b

then
∂g

∂x
(x(b), y(b))

∂x

∂b
(b) +

∂g

∂y
(x(b), y(b))

∂y

∂b
(b) = 1.

Which implies that
∂f∗

∂b
(b) = λ∗
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The Lagrange method applied to the general multivariable
case.

Definition 19

Given the problem

Opt. : f(x1, x2, · · · , xn) (13)

s.t. : g(x1, x2, · · · , xn) = b

we define the Lagrange function, or Lagrangian, by

L(x1, x2, · · · , xn, λ) = f(x1, x2, · · · , xn)−λ(g(x1, x2, · · · , xn)−b)

where λ is called Lagrange multiplier.
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Theorem (Lagrange)

If x∗ = (x∗1, x
∗
2, · · · , x∗n) is a maximum (or minimum) point of the

problem with one equality restriction (13), then there exists one
Lagrange multiplier λ∗ such that (x∗1, x

∗
2, · · · , x∗n, λ∗) is a

stationary point of the Lagrange function. That is

∂L
∂xj

(x∗1, x
∗
2, · · · , x∗n, λ∗) =

∂f

∂xj
(x∗1, x

∗
2, · · · , x∗n)− λ∗

∂g

∂xj
(x∗1, x

∗
2, · · · , x∗n) = 0

(14)

for all j = 1, .2, ..., n and

∂L
∂λ

(x∗1, x
∗
2, · · · , x∗n, λ∗) = g(x∗1, x

∗
2, · · · , x∗n)− b = 0 (15)
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Theorem (Sufficient conditions for Global Optimality when the
constraint is lineal)

If (x∗1, x
∗
2, · · · , x∗n, λ∗) is a stationary point of the Lagrange

function associated to problem (13), then
If the constraint is lineal and function f is concave in the feasible
set, (x∗1, x

∗
2, · · · , x∗n) is a global maximum of problem (13).

If the constraint is lineal and function f is convex in the feasible
set, (x∗1, x

∗
2, · · · , x∗n) is a global minimum of problem (13).
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Introduction
The Lagrange Multiplier Method.
The Lagrange Multiplier is a shadow price
The Lagrange method applied to the general multivariable case.

Theorem (Sufficient conditions for Global Optimality)

If (x∗1, x
∗
2, · · · , x∗n, λ∗) is a stationary point of the Lagrange

function associated to problem (13), then
If the Lagrangian L(x1, x2, · · · , xn, λ∗) is concave in
(x1, x2, · · · , xn) then (x∗1, x

∗
2, · · · , x∗n) is a global maximum of

problem (13).
If the Lagrangian L(x1, x2, · · · , xn, , λ∗) is convex in
(x1, x2, · · · , xn, ) then (x∗1, x

∗
2, · · · , x∗n) is a global minimum of

problem (13).

Chapter Four: Constrained Optimization. The Lagrange Multiplier Method



Chapter Four: Constrained Optimization
Useful links

Review problems for Chapter 4
Multiple choice questions Chapter 4

Links to the Wolfram Demostrations Project web page

Constrained Optimization >>

Bibliography

Sydsaeter,K., Hammond, P.J., Seierstad, A. and Strom, A. Essential

Mathematics for Economic Analysis. Prentice Hall. New Jersey. pages:

489-494. >>

Return to Contents

Chapter Four: Constrained Optimization. The Lagrange Multiplier Method

http://demonstrations.wolfram.com/ConstrainedOptimization/
http://books.google.es/books?id=ZliZosMpub8C&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0


Chapter Four: Constrained Optimization
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Problem 1 Answer

Solve the following problems using the substitution method and
also the Lagrange multipliers method (the understanding of the
problems can be improved using a graphical resolution approach).

a Min. f(x, y) = (x− 1)2 + y2 subject to y − 2x = 0.

b Max. f(x, y) = xy subject to 2x+ 3y = 6.

c Opt. f(x, y) = 2x+ 3y subject to xy = 6.
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Problem 2 Answer

Solve the following problems:

a Opt. f(x, y, z) = x2 + (y − 2)2 + (z − 1)2 subject to
4x+ y + 4z = 39.

b Opt. f(x, y) = exy subject to x2 + y2 = 8.

c Opt. f(x, y) = x1/4y1/2 subject to x+ 2y = 3.

d Opt. f(x, y) = ln(xy) subject to x2 + y2 = 8.
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Problem 3 Answer

A multinational refreshments firm has 68 monetary units available
to produce the maximum possible number of bottles. Its
production function is q(x, y) = 60x+ 90y − 2x2 − 3y2 where x
and y are the required inputs. The inputs prices are px = 2 m.u.
and py = 4 m.u. repectively. Given the budget restriction,
maximize the production of bottles. By means of the Lagrange
multiplier, how will the maximum number of bottles produced be
modified if the budget is increased in one unit (or if it is
decreased)?
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Problem 4 Answer

A worker earns 20 monetary units for each labor hour. The
worker’s utility, U(x, y) = x1/3y1/3, depends on the consumption
of goods, x, and also on the free time, y. Knowing that each unit
of consumption costs 80 m.u, and that the worker does not save
any of the earned money for the future, find the values of x and y
that maximize his utility.
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Problem 5 Answer

A European research program has 600 thousand euros available to
finance research projects on renewable energies. Two teams
present their projects and their estimated incomes (derived from
the property rights of new discoveries) are given by I1(x) = 2x1/2

and I2(y) =
4

3
y3/4 where x is the monetary assignation to the first

team (in hundreds of thousands of euros) and y is second team s
assignation. The program seeks to determine the optimal
distribution of quantities x and y to maximize the joint income.
Formulate and solve the problem. What happens to the maximum
joint income if the budget is increased by 50 thousand euros? Is it
worth it?
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Problem 6 Answer

A firm’s output production function,
f(K,L) = 4(K + 1)1/2(L+ 1)1/2, depends on the employed
capital and labor. Its costs function is C(K,L) = 2K + 8L. Find
the optimal values for K and L which minimize the cost of
producing 32 units of output. If the production increased by one
unit, what would be the effect on the cost?
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Problem 7 Answer

The output of an industry depends on a sole resource whose
quantity is limited to b and it is mandatory to use it up. There are
two production processes available for which the resource must be
distributed. The derived incomes from each one of the productions
processes are

f(x) = 1200−
(x
2
− 12

)2
g(y) = 1400− (y − 1)2

where x and y are the employed resource in each production
process.

a How can the distribution between x and y be done so as to
maximize the total income?

b Assuming that b = 22 and that there is the possibility of using
one additional unit of the resource with a cost of 0,8 m.u, Is is
worth it? And, is it worth it if b = 28?
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Problem 8 Answer

The function U(x, y) = 100x+ xy + 100y represents a
representative consumer’s utility depending on the consumption of
two goods, x and y. Knowing that the consumer spends her whole
income, 336 monetary units, purchasing these goods at prices
px = 8 m.u. and py = 4 m.u respectively, maximize the consumer’s
utility.

Chapter Four: Constrained Optimization. The Lagrange Multiplier Method



Chapter Four: Constrained Optimization
Useful links

Review problems for Chapter 4
Multiple choice questions Chapter 4

Problem 9 Answer

The costs function of a firm is:

C(x, y) = (x− 1)2 + 6y + 8

where x and y are the quantities of the two productive inputs
needed to produce. If Q(x, y) = (x− 1)2 + 3y2 is the output
production function, find the input quantities to produce 12 units
of product at the minimum cost.
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1 The Lagrange function associated with the problem Answer

Opt.f(x, y, z) subject to g(x, y, z) = c is

a L(x, y, λ) = f(x, y)− λ(g(x, y)− b)
b L(x, y, λ) = f(x, y)− λ(g(x, y) + b)
c L(x, y, λ) = g(x, y)− λ(f(x, y)− b)
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2 The maximum production of a firm is 500 units of a certain
good and the shadow price of the available resource is 3.
What would be the effect on the maximum production level if
the resource were increased by one unit? Answer

a The maximum production level would not be affected
b The maximum production level would reduce by 3 units
c The maximum production level would increase by 3 units
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3 Given the optimization problem Answer

min f(x, y) subject to 3x− 6y = 9. (P)

If (x, y, λ) = (1,−1, 3) is a stationary point of the associated
Lagrange function, it can be assured that (1,−1) is a global
minimum of problem (P) when the function f(x, y) is

a convex
b concave
c neither convex nor concave
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4 Given the following optimization problem Answer

min f(x, y) subject to x2 + y = 5. (P)

Let (x, y, λ) = (1, 4, 3) be is a stationary point of the
associated Lagrange function L(x, y, λ). Then, if the Hessian
matrix of function L(x, y, 3) is positive semidefinite then
(1, 4) is a

a is a global maximum point of problem (P)
b is a global minimum point of problem (P)
c It can’t be assured that it is a global extreme point for problem

(P)
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5 The Hessian matrix of the Lagrange function L(x, y, z, λ∗) is
given by Answer

H(L(x, y, z, λ∗)) =

 −1 2 0
2 −5 0
0 0 −4

 ,

then, a stationary point is a
a global maximum
b global minimum
c neither of the above
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6 Given the optimization problem

Opt.f(x, y, z) subject to g(x, y, z) = c

and given (1, 2, 3, 4), a stationary point of the Lagrange
function (λ = 4 is the Lagrange multiplier) if the Hessian
matrix of L(x, y, z, 4) is

HL(x, y, z, 4) =

 x2 + 1 0 0
0 2 0
0 0 4y2 + 3

 .

then Answer

a the problem has no solution
b point (1, 2, 3) is a global minimum point
c (1, 2, 3) is a global maximum point
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7 Given the optimization problem

Opt.f(x, y, z) subject to g(x, y, z) = c,

it is known that the Hessian matrix of the Lagrange function
when λ = 4 is given by

HL(x, y, z, 4) =

 −x2 − 7 0 0
0 −2 0
0 0 −4

 .

Then, if (1, 2, 3, 4) is a stationary point of the Lagrange
function, Answer

a the problem has no solution
b the problem has a global maximum point
c the problem has a global minimum point
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8 Given the optimization problem

Opt.f(x, y) subject to g(x, y) = c,

it is known that the Hessian matrix of the Lagrange function
when λ = 4 is given by

HL(x, y, 4) =
(
−x2 0
0 −2

)
.

Then, if (1, 2, 4) is a stationary point of the Lagrange
function, Answer

a the minimum value of the objective function is 4
b (1, 2) is a global minimum point
c (1, 2) is a global maximum point
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9 In the maximization of profits with a linear constraint on costs
x+ y + z = 89, the Lagrange multiplier is −0, 2. Is it worth
increasing the level of cost? Answer

a No. The maximum profit would decrease
b Yes, since the maximum profit would increase
c Yes, because we would continue with positive profits
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Definition of matrix

A matrix is simply a rectangular array of numbers considered as an
entity. When there are m rows and n columns in the array, we
have an m-by-n matrix (written as m× n). In general, an m× n
matrix is of the form

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 ,

or, equivalently
A = (aij)m×n .
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Definition 20

A matrix with only one row is also called a row vector, and a
matrix with only one column is called a column vector. We refer to
both types as vectors.

Definition 21

If m = n, then the matrix has the same number of columns as
rows and it is called a square matrix of order n and is denoted by
A = (aij)n.

Definition 22

If A = (aij)n is a square matrix, then the elements a11, a22, a33,
..., ann constitute the main diagonal.
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Definition 23

The identity matrix of order n, denoted by In (or by I), is the n×n
matrix having ones along the main diagonal and zeros elsewhere:

I =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1


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Addition of Matrices

A+B = (aij)m×n + (bij)m×n = (aij + bij)m×n
Rules

(A+B) + C = A+ (B + C)
A+B = B +A
A+ 0 = A

Matrix Algebra



Matrix algebra
Review Problems for Matrix algebra

Multiple Choice Questions

Matrices and matrix operations
Determinants

Multiplication by a real number

αA = α (aij)m×n = (αaij)m×n
Rules

(α+ β)A = αA+ βA
α(A+B) = αA+ βB

A+ (−A) = 0
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Matrix Multiplication

A ·B = (aij)m×n · (bij)n×p = (cij)m×p such that

cij =
∑n

r=1 airbrj = ai1b1j + ai2b2j + · · ·+ ainbnj

Rules

(AB)C = A(BC)
A(B + C) = AB +AC
(A+B)C = AC +BC
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The transpose

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⇒ A′ = At =


a11 a21 · · · am1

a12 a22 · · · am2

...
...

...
a1n a2n · · · amn


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Symmetric matrix

Definition 24

Square matrices with the property that they are symmetric with
respect the main diagonal are called symmetric.

The matrix A = (aij)n is symmetric ⇔ aij = aji ∀i, j = 1, 2, ..., n.
A matrix A is symmetric ⇔ A = A′.
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Determinants

Definition 25

Let A be an n× n matrix. Then det(A) or |A| is a sum of n!
terms where:

1 Each term is the product of n elements of the matrix, with
one element (and only one) from each row, and one (and only
one) element from each column.

2 The sign of each term is + or − depending on whether the
permutation of row subindexes is of the same class as the
permutation of the column subindices or not.

Matrix Algebra



Matrix algebra
Review Problems for Matrix algebra

Multiple Choice Questions

Matrices and matrix operations
Determinants

Determinants of order 2

A =

(
a11 a12
a21 a22

)
⇔ |A| =

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21
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Determinants of order 3

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


|A| = a11a22a33 + a12a23a31 + a13a21a32− a13a22a31− a12a21a33− a11a23a32.
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Determinants of diagonal matrices

Diagonal matrix:∣∣∣∣∣∣∣∣∣


a11 0 · · · 0
0 a22 · · · 0
...

...
...

0 0 · · · ann


∣∣∣∣∣∣∣∣∣ = a11a22 · · · ann
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Determinants of triangular matrices

upper triangular matrix:∣∣∣∣∣∣∣∣∣


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
...

0 0 · · · ann


∣∣∣∣∣∣∣∣∣ = a11a22 · · · ann

The same occurs to lower triangular matrices.
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Rules for determinants

Let A be an n× n matrix. Then

|A| = |A′| .
If all the elements in a row (or column) of A are 0 then
|A| = 0.

If all the elements in a single row (or column) of A are
multiplied by a number α, the determinant is multiplied by α.

If two rows (or two columns) of A are interchanged, the sign
of the determinant changes, but the absolute value remains
unchanged.
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Let A be an n× n matrix. Then

|A| = |A′| .
If all the elements in a row (or column) of A are 0 then
|A| = 0.

If all the elements in a single row (or column) of A are
multiplied by a number α, the determinant is multiplied by α.

If two rows (or two columns) of A are interchanged, the sign
of the determinant changes, but the absolute value remains
unchanged.
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Rules for determinants

If two rows (or columns) of A are equal or proportional, then
|A| = 0.

The value of the determinant of A is unchanged if a multiple
of one row (or column) is added to a different row (or
column) of A.

The determinant of the product of two matrices A and B is
the product of the determinants of each of the factors:

|AB| = |A| |B| .

Is α is a real number

|αA| = αn |A| .
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The value of the determinant of A is unchanged if a multiple
of one row (or column) is added to a different row (or
column) of A.

The determinant of the product of two matrices A and B is
the product of the determinants of each of the factors:

|AB| = |A| |B| .

Is α is a real number

|αA| = αn |A| .
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Review Problems for Matrix algebra

Multiple Choice Questions

Matrices and matrix operations
Determinants

Rules for determinants

If two rows (or columns) of A are equal or proportional, then
|A| = 0.

The value of the determinant of A is unchanged if a multiple
of one row (or column) is added to a different row (or
column) of A.

The determinant of the product of two matrices A and B is
the product of the determinants of each of the factors:

|AB| = |A| |B| .

Is α is a real number

|αA| = αn |A| .

Matrix Algebra



Matrix algebra
Review Problems for Matrix algebra

Multiple Choice Questions

Matrices and matrix operations
Determinants

Practical methods to calculate |A|

In practice, there are two methods to calculate the determinants of
a square matrix (mainly used when its order is higher than 3):

Triangularization: Rule number 6 allows us to convert matrix
A into one that is (upper or lower) triangular. Because the
determinant will remain unchanged (as is stated by the
property) its value will be equal to the product of the
elements in the main diagonal of the triangular matrix.
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Review Problems for Matrix algebra

Multiple Choice Questions

Matrices and matrix operations
Determinants

Practical methods to calculate |A|

Expansion of |A| in terms of the elements of a row:

det(A) =
n∑

j=1

(−1)i+jaij det(Aij)

= ai1(−1)i+1 det(Ai1) + ai2(−1)i+2 det(Ai2) + · · ·+ ain(−1)i+n det(Ain).

where ai1, ai2, · · · ain are the elements of the row i and Aij is the determinant

of order n− 1 which results from deleting row i and column j of matrix A (it is

called a minor).
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Review Problems for Matrix algebra

Multiple Choice Questions

Matrices and matrix operations
Determinants

Practical methods to calculate |A|

Expansion of |A| in terms of the elements of a column:

det(A) =

n∑
i=1

(−1)i+jaij det(Aij)

= a1j(−1)1+j det(A1j) + a2j(−1)2+j det(A2j) + · · ·+ anj(−1)n+j det(Anj).

where a1j , a2j , · · · anj are the elements of the column j and Aij is the

determinant of order n− 1 which results from deleting row i and column j of

matrix A (it is called a minor).
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Review Problems for Matrix algebra

Multiple Choice Questions

Matrices and matrix operations
Determinants

Definition 26

The product (−1)i+j det(Aij) is called the adjoint element of aij .

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

Problem 1 Answer

Given the following matrices

A =

(
1 1
1 1

)
B =

(
0 1
−1 1

)
C =

(
−2 1
0 0

)
confirm that the following properties are true

a (A+B)C = AC +BC.

b (AB)t = BtAt.

c (A−B)2 = A2 +B2 −AB −BA.

d (AB +A) = A(B + I), where I is the identity matrix of order
2.

e (BA+A) = (B + I)A, where I is the identity matrix of order
2.

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

Problem 2 Answer

Calculate AB and BA, where

a A =

(
4 1 2
1 0 −5

)
and B =

 3 0
8 4
−2 3


b A =

 −1 2 0
2 0 1
1 1 1

 and B =

 2 3 1
0 2 4
1 5 3


c A =

(
1 0 1

)
and B =

 1 2
3 0
5 7


Can we say that the product of matrices has the commutative
property?
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Review Problems for Matrix algebra

Multiple Choice Questions

Problem 3 Answer

Let A and B be square matrices. Prove that the property
(A+B)2 = A2 +B2 + 2AB is false.

Matrix Algebra



Matrix algebra
Review Problems for Matrix algebra

Multiple Choice Questions

Problem 4 Answer

Calculate the following determinants:

a)

∣∣∣∣∣∣
1 3 2
−1 3 1
2 0 −3

∣∣∣∣∣∣ b)

∣∣∣∣∣∣∣∣
3 1 −1 1
−1 2 0 3
2 3 4 7
−1 −1 2 −2

∣∣∣∣∣∣∣∣
c)

∣∣∣∣∣∣∣∣
3 1 2 −1
−4 1 0 3
4 −3 0 −1
−5 2 0 −2

∣∣∣∣∣∣∣∣ d)

∣∣∣∣∣∣∣∣
1 −3 5 −2
2 4 −1 0
3 2 1 −3
−1 −2 3 0

∣∣∣∣∣∣∣∣
Matrix Algebra



Matrix algebra
Review Problems for Matrix algebra

Multiple Choice Questions

Problem 5

Without computing the determinants, show that

a

∣∣∣∣∣∣
1 x1 x2
1 y1 x2
1 y1 y2

∣∣∣∣∣∣ = (y1 − x1)(y2 − x2)

b

∣∣∣∣∣∣∣∣
1 x1 x2 x3
1 y1 x2 x3
1 y1 y2 x3
1 y1 y2 y3

∣∣∣∣∣∣∣∣ = (y1 − x1)(y2 − x2)(y3 − x3)

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

Problem 6 Answer

Without computing the determinants, find the value of :

a)

∣∣∣∣∣∣∣∣
1 1 1 1
1 1 + a 1 1
1 1 1 + b 1
1 1 1 1 + c

∣∣∣∣∣∣∣∣ b)

∣∣∣∣∣∣∣∣
1 4 4 4
4 2 4 4
4 4 3 4
4 4 4 4

∣∣∣∣∣∣∣∣ c)

∣∣∣∣∣∣∣∣∣∣
1 2 3 4 5
−1 0 3 4 5
−1 −2 0 4 5
−1 −2 −3 0 5
−1 −2 −3 −4 0

∣∣∣∣∣∣∣∣∣∣
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Review Problems for Matrix algebra

Multiple Choice Questions

Problem 7

Without computing the determinants, show that∣∣∣∣∣∣∣∣
a 1 1 1
1 a 1 1
1 1 a 1
1 1 1 a

∣∣∣∣∣∣∣∣ = (a+ 3)(a− 1)3
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Multiple Choice Questions

Problem 8 Answer

Given the matrices

A =


1 2 0 0
0 2 0 0
0 2 1 0
0 2 0 1

 and B =


1 0 0 3
0 4 0 4
0 0 0 −1
1 1 2 8


Compute:

a) |AB| b)
∣∣(BA)t∣∣ c) |2A3B| d) |A+B|

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

Problem 9 Answer

Let A and B be matrices of order n. Knowing that |A| = 5 and
|B| = 3, compute:

a)
∣∣BAt

∣∣ b) |3A| c)
∣∣(2B)2

∣∣ , B of order 3
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Review Problems for Matrix algebra

Multiple Choice Questions

Problem 10 Answer

Compute |AB|,
∣∣(BA)t∣∣, |2A3B|, knowing that

A =


1 2 0 0
0 2 0 0
0 2 1 0
0 2 0 1

 B =


1 0 0 3
0 4 0 4
0 0 0 −1
1 1 2 8



Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

Problem 11 Answer

If A2 = A, what values can |A| have?
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Review Problems for Matrix algebra

Multiple Choice Questions

Problem 12

Let A be a square matrix of order n such that A2 = −I. Prove
that |A| 6= 0 and that n is an even number.
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Review Problems for Matrix algebra

Multiple Choice Questions

Problem 13

Let A be a square matrix of order n. Prove that AAt is a
symmetric matrix.
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Review Problems for Matrix algebra

Multiple Choice Questions

Problem 14 Answer

Given the following matrices:

A =

(
1 1
1 1

)
B =

(
0 1
−1 1

)
C =

(
−2 1
0 0

)
solve the matrix equation 3X + 2A = 6B − 4A+ 3C.

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

Problem 15 Answer

Suppose that A.B and X are matrices of orden n, solve the
following matrix equations:

a 3(At − 2B) + 5Xt = −B.
b (At +X)t −B = 2A.

Matrix Algebra



Matrix algebra
Review Problems for Matrix algebra

Multiple Choice Questions

1 The matrix A =

 4 1 −3
0 −1 1
0 0 7

 is Answer

a. a lower triangular matrix
b. an upper triangular matrix
c. a diagonal matrix

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

2 Which of the following is the true definition of a symmetric
matrix? Answer

a. A square matrix A is said to be symmetric if A = −A
b. A square matrix A is said to be symmetric if A = −At

c. A square matrix A is said to be symmetric if A = At

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

3 Given A and B matrices of order m× n and n× p, (AB)t

equals to: Answer

a. BtAt

b. AtBt

c. AB

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

4 Let A be a matrix such that A2 = A then, if B = A− I,
then: Answer

a. B2 = B
b. B2 = I
c. B2 = −B

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

5 Let A and B be square matrices of order 3. If |A| = 3| and
|B| = −1 then: Answer

a. |2A � 4B| = (−4)23
b. |2A � 4B| = (−3)23
c. |2A � 4B| = (−3)29

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

6 Which of the following properties is NOT always true? Answer

a.
∣∣A2
∣∣ = |A|2

b. |A+B| = |A|+ |B| .
c. |AtB| = |A| |B|

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

7 Given the 3 by 3 matrices A, B, C such that |A| = 2, |B| = 4

and |C| = 3, compute
∣∣∣ 1
|A|B

tC−1
∣∣∣: Answer

a. 2
3

b.
1
6

c. 6

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

8 Let A and B be matrices of the same order, which of the
following properties is always true? Answer

a. (A−B)(A+B) = A2 −B2

b. (A−B)2 = A2 − 2AB +B2

c. A(A+B) = A2 +AB

Matrix Algebra



Matrix algebra
Review Problems for Matrix algebra

Multiple Choice Questions

9 Which of the following properties is NOT true? Answer

a.
∣∣A2
∣∣ = |A|2

b. |−A| = |A|
c. |At| = |A|

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

10 Let A and B be symmetric matrices, then which of the
following is also a symmetric matrix: Answer

a. BA
b. A+B
c. AB

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

11 Let A be an n by n real matrix. Then, if k ∈ R one has that
Answer

a. |kA| = k |A|
b. |kA| = |k| |A|, being |k| the absolute value of the real number
k

c. |kA| = kn |A|

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

12 Given the matrices

A =

(
1 1
1 1

)
B =

(
0 1
−1 1

)
C =

(
−2 1
0 0

)
the solution to the matrix equation
3X + 2A = 6B − 4A+ 3C is Answer

a. X =

(
1 0
0 1

)
b. X =

(
−4 1
−4 0

)
c. X =

(
4 1
4 1

)

Matrix Algebra



Matrix algebra
Review Problems for Matrix algebra

Multiple Choice Questions

13 Let A,B be matrices of order n. Then: Answer

a. (AB)
2
= A2B2

b. (AB)
2
= B2A2

c. (AB)
2
= A(BA)B

Matrix Algebra
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Review Problems for Matrix algebra

Multiple Choice Questions

14 Given the matrix A =

1 2 3
3 1 2
2 3 1

, the adjoint element a12 is:

Answer

a. −1
b. 1
c. −2
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Review problems for Quadratic forms
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Definiteness of a quadratic form
The sign of a quadratic form attending the principal minors
Quadratic forms with linear constraints

Quadratic forms: The general case

Definition 27

A quadratic form in n variables is a function Q of the form

Q(x1, x2, ..., xn) = x′Ax = (x1, x2, ..., xn)


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




x1
x2
...
xn


where x′ = (x1, x2, ..., xn) is a vector and A = (aij)n×n is a
symmetric matrix of real numbers.

Then A is called the symmetric matrix associated with Q.
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Review problems for Quadratic forms

Multiple choice questions

Definiteness of a quadratic form
The sign of a quadratic form attending the principal minors
Quadratic forms with linear constraints

Matrix and Polynomial form
1 Matrix form of a quadratic form.

Q(x1, x2, ..., xn) =
(
x1 x2 · · · xn

)


a11 a12 . . . a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




x1
x2
...
xn


2 Polynomial form of a quadratic form. Expanding the matrix

multiplication we obtain a double sum such as

Q(x1, x2, ..., xn) = x′Ax =

n∑
i=1

n∑
j=1

aijxixj

Function Q is a homogeneous polynomial of degree two
where each term contains either the square of a variable or a
product of exactly two of the variables. The terms can be
grouped as follows

Q(x) =

n∑
i=1

biix
2
i +

n∑
i,j=1,i<j

bijxixj

where bii = aii and, since A is a symmetric matrix with
aij = aji ∀i, j = 1, 2, ..., n, where bij = 2aij .
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Multiple choice questions

Definiteness of a quadratic form
The sign of a quadratic form attending the principal minors
Quadratic forms with linear constraints

Q(x1, x2, ..., xn) = (x1, x2, · · · , xn)


a11 a12 . . . a1n
a21 a22 · · · a2n

.

.

.

.

.

.
. . .

.

.

.
an1 an2 · · · ann




x1
x2

.

.

.
xn

 =
n∑

i=1

biix
2
i+

n∑
i,j=1,i<j

bijxixj

There exits a relationship between the elements in the symmetric
matrix associated with Q and the coefficients of the polynomial.
Note that

The elements in the main diagonal of matrix A are
the coefficients of the quadratic terms of the
polynomial.

The elements outside the main diagonal of matrix A
(aij = aji i 6= j) are half of the coefficients of the
non quadratic terms of the polynomial.
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Definiteness of a quadratic form
The sign of a quadratic form attending the principal minors
Quadratic forms with linear constraints

Definition 28

A quadratic form Q(x) = x′Ax (as well as its associated
symmetric matrix A) is said to be

1 Positive definite if Q(x) > 0 for all x 6= 0.

2 Negative definite if Q(x) < 0 for all x 6= 0

3 Positive semidefinite if Q(x) ≥ 0 for all x 6= 0

4 Negative semidefinite if Q(x) ≤ 0 for all x 6= 0

5 Indefinite if there exist vectors x and y such that Q(x) < 0
and Q(y) > 0. Thus, an indefinite quadratic form assumes
both negative and positive values.
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Definiteness of a quadratic form
The sign of a quadratic form attending the principal minors
Quadratic forms with linear constraints

Definition 29

A principal minor of order r of an n× n matrix A = (aij) is the
determinant of a matrix obtained by deleting n− r rows and n− r
columns such that if the ith row (column) is selected, then so is
the ith column (row).

In particular, a principal minor of order r always includes exactly r
elements of the main (principal) diagonal. Also, if matrix A is
symmetric, then so is each matrix whose determinant is a principal
minor. The determinant of A itself, |A|, is also a principal minor
(No rows or colmns are deleted)

Definition 30

A principal minor is called a leading principal minors of order r
(1≤ r ≤ n) if it consists of the first (”leading”) r rows and
columns of |A|.
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Definiteness of a quadratic form
The sign of a quadratic form attending the principal minors
Quadratic forms with linear constraints

Theorem

Let Q(x) = x′Ax be a quadratic form of n variables and let

|A1| = a11, |A2| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ , |A3| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ ..., |An| = |A|

be the leading principal minors of matrix A. Then

Q(x) positive definite ⇔ |A1| > 0, |A2| > 0, ..., |An| > 0
Q(x) negative definite ⇔ the leading principal minors of even order
are positive and those of odd order are negative..
If |A| = 0 and the remaining leading principal minors are positive
⇒ Q is positive semidefinite.
If |A| = 0 and the remaining leading principal minors of even order
are positive and those of odd order are negative =⇒ Q is negative
semidefinite.
If |A| 6= 0 and the leading principal minors do not behave as in a) or
b) ⇒ Q is indefinite.
If |A| = 0 and |Ai| 6= 0 i = 1, 2, ..., n− 1 and the leading principal
minors do not behave as in c) or d)⇒ Q is indefinite.Quadratic forms
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Theorem

Let Q(x) = x′Ax be a quadratic form of n variables such that
|A| = 0. Then

All the principal minors are positive or zero ⇔ Q is positive
semidefinite

All the principal minors are of even order are positive or zero
and those of odd order are negative or zero ⇔ Q is negative
semidefinite.
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Definiteness of a quadratic form
The sign of a quadratic form attending the principal minors
Quadratic forms with linear constraints

Definition 31

It is said that the quadratic form Q(x) = xtAx is constrained to a
linear constraint when

(x1, x2, ..., xn) ∈ {(x1, x2, ..., xn) ∈ Rn/b1x1 + b2x2 + ...+ bnxn = 0}

To find the sign of a constrained quadratic form, follow the
following steps:

1 Analyze the sign of Q(x) = xtAx without any constraint. If it
is definite (positive or negative), then the constrained
quadratic form is of the same sign.

2 If the unconstrained quadratic form is not definite, we solve
the linear constraint for one variable and substitute it into the
quadratic form. The result is an unconstrained quadratic form
with n− 1 variables. We study the sign with the principal
minors.
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Review problems for Quadratic forms

Multiple choice questions

Problem 1 Answer

Without computing any principal minor, determine the definiteness
of the following quadratic forms:

a Q(x, y, z) = (x + 2y)2 + z2

b Q(x, y, z) = (x + y + z)2 − z2

c Q(x, y, z) = (x− y)2 + 2y2 + z2

d Q(x, y, z) = −(x− y)2 − (y + z)2

e Q(x, y, z) = (x− y)2 + (y − 2z)2 + (x− 2z)2
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Multiple choice questions

Problem 2 Answer

Write the following quadratic forms in matrix form with A
symmetric and determine their definiteness.

a Q(x, y, z) = −x2 − y2 − z2 + xy + xz + yz

b Q(x, y, z) = y2 + 2z2 + 2xz + 4yz

c Q(x, y, z) = 2y2 + 4z2 + 2yz

d Q(x, y, z) = −3x2 − 2y2 − 3z2 + 2xz

e Q(x1, x2, x3, x4) = x21 − 4x23 + 5x24 + 4x1x3 + 2x2x3 + 2x2x4
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Multiple choice questions

Problem 3 Answer

Investigate the definiteness of the following quadratic forms
depending on the value of parameter a.

a Q(x, y, z) = −5x2 − 2y2 + az2 + 4xy + 2xz + 4yz

b Q(x, y, z) = 2x2 + ay2 + z2 + 2xy + 2xz

c Q(x, y, z) = x2 + ay2 + 2z2 + 2axy + 2xz
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Multiple choice questions

Problem 4 Answer

Find the value of a which makes the quadratic form
Q(x, y, z) = ax2 + 2y2 + z2 + 2xy + 2xz + 2yz be semidefinite. For
such a value, determine its definiteness when it is subject to
x− y − z = 0?
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Multiple choice questions

Problem 5 Answer

If A =

 0 0 −1
0 1 −2
−1 −2 3

 then

a investigate its definiteness.

b Write the polynomial and matrix forms of the quadratic form
Q(h1,h2, h3) which is associated with matrix A.

c determine its definiteness when it is subject to
h1 + 2h2 − h3 = 0.
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Multiple choice questions

Problem 6 Answer

Investigate the definiteness of the following matrices. Write the
polynomial and matrix form of the associated quadratic forms:

A =

 −2 1 1
1 −2 1
1 1 −2

 B =

 2 −3/2 1/2
−3/2 1 −1/2
1/2 −1/2 0


C =

 1 −1 1
−1 1 −1
1 −1 3

 D =


−5 2 1 0
2 −2 0 2
1 0 −1 0
0 2 0 −5


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Problem 7 Answer

Determine the definiteness of the following constrained quadratic
forms.

a Q(x, y, z) = (x, y, z)

 −2 1 1
1 −2 1
1 1 −2

  x
y
z

 s. t x + y − 2z = 0

b Q(x, y, z) = (x, y, z)

 2 −3/2 1/2
−3/2 1 −1/2
1/2 −1/2 0

  x
y
z

 s. t x− y = 0

c Q(x, y, z) = (x, y, z)

 1 −1 1
−1 1 −1
1 −1 3

  x
y
z

 s. t x + 2y − z = 0

d Q(x1, x2, x3, x4) = (x1, x2, x3, x4)


−5 2 1 0
2 −2 0 2
1 0 −1 0
0 2 0 −5




x1
x2
x3
x4

 s. t

2x1 − 4x4 = 0

Quadratic forms



Quadratic Forms
Review problems for Quadratic forms

Multiple choice questions

Problem 8 Answer

Let Q(x, y, z) = −x2 − 2y2 − z2 + 2xy − 2yz be a quadratic form

a write its matrix form and investigate its definiteness.

b Investigate its definiteness if it is constrained to
2x− 2y + az = 0 for the different values parameter a can
have.
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Review problems for Quadratic forms

Multiple choice questions

Problem 9 Answer

Determine the definiteness of the Hessian matrix of the following
functions

a f(x, y, z) = 2x2 + y2 − 2xy + xz− yz + 2x− y + 8

b f(x, y) = x4 + y4 + x2 + y2 + 2xy

c f(x, y, z) = ln(x) + ln(y) + ln(z)

Quadratic forms



Quadratic Forms
Review problems for Quadratic forms

Multiple choice questions

Problem 10 Answer

Determine the definiteness of the Hessian matrix of the following
production functions when K,L > 0.

a) Q(K,L) = K1/2L1/2 b) Q(K,L) = K1/2L2/3
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Review problems for Quadratic forms

Multiple choice questions

Problem 11 Answer

The production function Q(x, y, z)=ax2 + 4ay2 + a2z2−4axy, with
a > 0, relates the produced quantity of a good to three raw
materials (x, y and z) used in the production precess.

a Determine the definiteness of Q(x, y, z).

b Knowing that if x = y = z = 1 then six units of a good are
produced, find the value of parameter a.

c Using the value of a found in (b), determine the definiteness
of Q(x, y, z) when the raw materials x and y are used in the
same quantity.
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Quadratic Forms
Review problems for Quadratic forms

Multiple choice questions

1 Which of the following is a quadratic form? Answer

a Q(x, y, z) = x2 + 3z2 + 6xy + 2z
b Q(x, y, z) = 2xy2 + 3z2 + 6xy
c Q(x, y, z) = 3xy + 3xz + 6yz

Quadratic forms



Quadratic Forms
Review problems for Quadratic forms

Multiple choice questions

2 Let Q(x, y, z) be a quadratic form such that Q(1, 1, 0) = 2
and Q(5, 0, 0) = 0, then

Answer

a Q(x, y, z) could be indefinite
b Q(x, y, z) is positive definite
c Q(x, y, z) could be negative semidefinite

Quadratic forms



Quadratic Forms
Review problems for Quadratic forms

Multiple choice questions

3 The quadratic form Q(x, y, z) = (x− y)2 + 3z2 is
Answer

a positive definite
b positive semidefinite
c indefinite

Quadratic forms



Quadratic Forms
Review problems for Quadratic forms

Multiple choice questions

4 The quadratic form Q(x, y, z) = −y2 − 2z2 is
Answer

a negative definite
b negative semidefinite
c indefinite

Quadratic forms



Quadratic Forms
Review problems for Quadratic forms

Multiple choice questions

5 The quadratic form Q(x, y, z) = x2 + 2xz + 2y2 − z2 is
Answer

a positive definite
b positive semidefinite
c indefinite

Quadratic forms



Quadratic Forms
Review problems for Quadratic forms

Multiple choice questions

6 A 2 by 2 matrix has a negative determinant, then the matrix is
Answer

a negative definite
b negative semidefinite
c indefinite

Quadratic forms
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Review problems for Quadratic forms

Multiple choice questions

7 The matrix A =

 1 1 0
1 1 0
0 0 2

 is

Answer

a indefinite
b positive semidefinite
c positive definite

Quadratic forms



Quadratic Forms
Review problems for Quadratic forms

Multiple choice questions

8 The leading principal minors of a 4 by 4 matrix are
|A1| = −1, |A2| = 1, |A3| = 2, and |A4| = |A| = 0.Then,

Answer

a the matrix is negative semidefinite
b its definiteness cannot be determined with this information
c the matrix is indefinite

Quadratic forms
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Review problems for Quadratic forms

Multiple choice questions

9 The leading principal minors of a 4 by 4 matrix are
|A1| = −1, |A2| = 1, |A3| = −2 and |A4| = |A| = 0.Then,

Answer

a the matrix is negative semidefinite
b its definiteness cannot be determined from this information
c the matrix is indefinite

Quadratic forms



Quadratic Forms
Review problems for Quadratic forms

Multiple choice questions

10 The leading principal minors of a 4 by 4 matrix are
|A1| = −1, |A2| = 1, |A3| = −2, and |A4| = |A| = 1.Then,
the matrix is

Answer

a negative definite
b indefinite
c positive definite and negative definite

Quadratic forms
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Review problems for Quadratic forms

Multiple choice questions

11 The quadratic form in three variables Q(x, y, z), subject to
x+ 2y − z = 0, is positive semidefinite. Then, the
unconstrained quadratic form is:

Answer

a positive semidefinite or indefinite
b positive semidefinite
c positive definite or positive semidefinite

Quadratic forms
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Review problems for Quadratic forms

Multiple choice questions

12 If Q(x, y, z) is a negative semidefinite quadratic form such
that Q(−1, 1, 1) = 0, then Q(x, y, z) subject to the constraint
x+ 2y − z = 0

Answer

a is negative semidefinite
b cannot be clasified with this information
c is negative definite or negative semidefinite

Quadratic forms



Quadratic Forms
Review problems for Quadratic forms

Multiple choice questions

13 The quadratic form Q(x, y, z) = (x− y)2 + 3z2 subject to the
constraint x = 0 is:

Answer

a indefinite
b positive semidefinite
c positive definite

Quadratic forms



Quadratic Forms
Review problems for Quadratic forms

Multiple choice questions

14 The quadratic form Q(x, y, z) = (x− y)2 + 3z2 subject to the
constraint z = 0 is:

Answer

a indefinite
b positive semidefinite
c positive definite

Quadratic forms
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Answers to the Problems

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 1 Return

a Convex, closed and bounded

b Convex and closed

c Closed and bounded

d Convex and bounded

e Convex and closed

f Convex, closed and bounded
g Closed

h Convex
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Answers to the Problems

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 3 Return

a Concave on the convex set of R2 : {(x, y) ∈ R2/x ≤ 0}
b Convex on the convex set of R2 : {(x, y) ∈ R2/x ≥ 3}
c Convex

d Convex if z ≥ 0

e Convex

f Convex
g Neither concave nor convex

h Neither concave nor convex
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 4 Return

a Concave

b Concave

c Convex

d Concave
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 5 Return

a It is convex if a = 0

b It is concave if a < 0
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 6 Return

All of them are convex except for C.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 2 Return

75 units of good 1 and none unit of good 2.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 3 Return

x∗ = 25, y∗ = 50⇒ u∗ = 1250
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 4 Return

The problems that verify the hypothesis of the Extreme Value
Theorem are b), c) and f).
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 1 Return

a (1, 0) is a local minimum point.

b (0, 0) is a local minimum point and (0, 1) and (0,−1) are
saddle points.

c (0, 1) is a local maximum point and (0,−1) is a saddle point.

d (0, 0) is a saddle point.

e (−1/2, 0, 0) is a saddle point.

f (1/2, 1, 1) is a local minimum and (0, 0, 0) is a saddle point.
g (−2,−4) is a local maximum.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 2 Return

The maximum point is x = 4/9 and y = 8/27.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 3 Return

a The maximum point is x =
(

p31
12p22p3

)2
and y =

(
p21

6p2p3

)3
.

b If the price of y rises with other parameters remaining
constant, the quantity demanded of input y will decrease in
order to maximize profits. By contrast, if the selling price of
output rises, the quantity demanded of input y will increase.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 4 Return

(0, 0) is a saddle point for all of the values of parameter a.(
− 3

√
2
a ,−

3

√
4
a2

)
is a local minimum point if a < 0 and, a local

maximum point if a > 0.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 5 Return

The maximum point is x = 3, y = 4, z = 2 and the maximum
profit is Bmax = 11 m.u.
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Answers to the Problems

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 6 Return

The maximum point is x1 = x2 = 3, whose prices are, respectively,
p1 = 9, p2 = 21.
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Answers to the Problems

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 7 Return

The maximum produced quantity is Qmax(2, 4) = 52 units.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 8 Return

The maximum profit is Bmax(1.000, 100) = 1.000 m.u.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 9 Return

The maximum point is x = y = 5 and the maximum profit
Bmax(5, 5) = 500 m.u.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 1 Return

a The problem has a global minimum at x∗ = 1/5 and y∗ = 2/5
whose value is 20/25.

b (3/2, 1) is a global maximum of value 3/2.

c (3, 2) is a local minimum point of value 12 and (−3,−2) is a
local maximum point of value −12.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 2 Return

a Global minimum at x = 4, y = 3 and z = 5 of value 33.

b (2, 2) and (−2,−2) are two global maximum points of value
e4. (2,−2) and (−2, 2) are two global minimum of value e−4.

c Global maximum at x = y = 1 of value 1.

d Two local maximum points at (2, 2) and (−2,−2) of value
ln 4.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 3 Return

The global maximum point is at x = 12 and y = 11 with a
maximum quantity of 1059 bottles.
If the budget is increased by 1 monetary unit, the maximum
production would increase by 6 units (approximately). Similarly, if
the budget is reduced, the production would reduce by 6 units
(approximately)
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
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Quadratic forms

Problem 4 Return

x = 3 and y = 12.
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Answers to the Problems

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 5 Return

The global maximum is obtained when the first project is assigned
200 thousand euro and the second project with 400 thousand euro.
The maximum income will be of 659.970 euro.
An increase of 50 thousand euro will increase the maximum income
by 35.355 approximately. It is not worth it.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 6 Return

K = 15 and L = 3. An increase of one unit in production would
increase the minimum cost by 2 units (approximately)
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 7 Return

a x =
4b

5
+ 4 and y =

b

5
− 4.

b It is worth it in the first case but not in the second.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 8 Return

y = 84 and x = 0.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 9 Return

(1 + 2
√
3, 0) and (1, 2) are two minimum points of value 20..
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 1 Return

a

(
−2 1
0 0

)
b 2

(
−1/2 −1/2
1 1

)
c

(
1 0
2 0

)
d 3

(
0 1
0 1

)
e

(
2 2
1 1

)
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 2 Return

a AB =

(
16 10
13 −15

)
and BA =

 12 3 6
36 8 −4
−5 −2 −19


b AB =

 −2 1 7
5 11 5
3 10 8

 and BA =

 5 5 4
8 4 6
12 5 8


c AB = 3

(
2 3

)
and BA is not possible.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 3 Return

It is false because the multiplication of matrices does not verify the
commutative property. To probe its falsity the students must
provide a counterexample.
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Chapter 3
Chapter 4
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Problem 4 Return

(a)-24 (b)-58 (c)-80 (d)35

Answers to Problems



Answers to the Problems

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 6 Return

(a) abc (b) −24 (c) 5!
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

Problem 8 Return

(a)16 (b) 16 (c) 2834 (d) 130.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 9 Return

(a)15 (b) 3n · 5 (c) 26 · 32
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 10 Return

(a)3n · 5 (b) 5n−1 (c) 15
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 11 Return

|A| = 0 or |A| = 1.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 14 Return

X =

(
−4 1
−4 0

)
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 15 Return

(a)X = Bt − 3
5A (b)X = At +Bt.
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Problem 1 Return

a positive semidefinite.

b indefinite.

c positive definite.

d negative semidefinite.

e positive semidefinite.
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Problem 2 Return

(a) Q(x, y, z) = (x, y, z)

 −1 1/2 1/2
1/2 −1 1/2
1/2 1/2 −1

  x
y
z

 negative semidefinite.

(b) Q(x, y, z) = (x, y, z)

 0 0 1
0 1 2
1 2 2

  x
y
z

 indefinite.

(c) Q(x, y, z) = (x, y, z)

 0 0 0
0 2 1
0 1 4

  x
y
z

 positive semidefinite.

(d) Q(x, y, z) = (x, y, z)

 −3 0 1
0 −2 0
1 0 −3

  x
y
z

 negative definite.

(e) Q(x1, x2, x3, x4) = (x1, x2, x3, x4)


1 0 2 0
0 0 1 1
2 1 −4 0
0 1 0 5




x1
x2
x3
x4

 indefinite.
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Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 3 Return

(a) negative definite for a < −5, negative semidefinite for a = −5
and indefinite when a > −5.
(b) positive definite if a < 1, positive semidefinite if a = 1 and
indefinite when a < 1.
(c) Indefinite when a < 0 or a > 1/2, positive semidefinite for
a = 0 or a = 1/2 and positive definite.if 0 < a < 1/2.
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Chapter 2
Chapter 3
Chapter 4
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Problem 4 Return

a = 1. The constrained quadratic form is positive definite.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 5 Return

(a) indefinite.

(b) Q(h1, h2,h3) = (h1, h2,h3)

 0 0 −1
0 1 −2
−1 −2 3

  h1
h2
h3

 =

h22 + 3h23 − 2h1h3 − 4h2h3
(c) positive definite.

Problem 6 Return

(a) negative semidefinite,
Q(x, y, z) = −2x2 − 2y2 − 2z2 + 2xy + 2xz + 2yz.
(b) indefinite, Q(x, y, z) = 2x2 + y2 − 3xy + xz− yz.
(c) positive semidefinite,
Q(x, y, z) = x2 + y2 + 3z2 − 2xy + 2xz− 2yz.
(d) negative definite,Q(x1, x2, x3, x4) =
−5x21 − 2x22 − x23 − 5x24 + 4x1x2 + 2x1x3 + 4x2x4.
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Chapter 1
Chapter 2
Chapter 3
Chapter 4
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Problem 7 Return

(a) negative semidefinite. (b) The constrained quadratic form is
null.
(c) positive definite. (d) negative definite (since the unconstrained
quadratic form is negative definite).
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Chapter 2
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Chapter 4
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Problem 8 Return

(a) Q(x, y, z) = (x, y, z)

 −1 1 0
1 −2 −1
0 −1 −1

  x
y
z

 negative

semidefinite.
(b) negative semidefinite if a = 0, negative definite if a 6= 0.

Answers to Problems



Answers to the Problems

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
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Problem 9 Return

(a) Hf(x, y, z) is indefinite∀(x, y, z) ∈ R3.
(b) Hf(x, y) is positive definite∀(x, y) ∈ R2 − {(0, 0)}. H f(0,0) is
positive semidefinite.
(c) Hf(x, y, z) is negative
definite∀(x, y, z) ∈ Dom(f) = {(x, y, z) ∈ R3/x > 0, y > 0, z > 0}.
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Problem 10 Return

(a) negative semidefinite. (b) indefinite.
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Problem 11 Return

(a) Positive Semidefinite.
(b) a = 2.
(c) Positive Definite.
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1 Which of the following sets is convex? Back

a
{
(x, y) ∈ R2/x2 + y2 ≤ 1

}
b

{
(x, y) ∈ R2/x2 + y2 = 1

}
c
{
(x, y) ∈ R2/x2 + y2 ≥ 1

}
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Chapter 1
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Matrix algebra
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2 The closed line segment between (1, 1) and (−1,−1) can be
written as the set Back

a B = {(x, y) ∈ R2/(x, y) = (2λ− 1, 2λ− 1),∀λ ∈ [0, 1]}
b B = {(x, y) ∈ R2/(x, y) = (λ, 1− λ),∀λ ∈ [0, 1]}
c B = {(x, y) ∈ R2/x = y}
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Chapter 1
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3 Given S ⊆ R2 a convex set, the function f : S → R will be
convex if Back

a the Hessian matrix Hf(x, y) is negative definite for all (x, y)
in S

b the sets {(x, y) ∈ S/f(x, y) ≤ k} are convex for all k in R
c f is a lineal function
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4 The set S = {(x, y, z) ∈ R3/x+ y2 + z2 ≤ 1} Back

a is convex because the Hessian matrix of the function
f(x, y) = x+ y + z2 is positive semidefinite

b is convex because the function f(x, y) = x+ y2 + z2 is lineal
c in not convex
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5 Which of the following sets is not convex? Back

a {(x, y) ∈ R2/x ≤ 1, y ≤ 1}
b {(x, y) ∈ R2/x, y ∈ [0, 1]}
c {(x, y) ∈ R2/xy ≤ 1, x, y ≥ 0}
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6 Which of the following Hessian matrices belongs to a concave
function? Back

a

(
−2 2
2 −2

)
b

(
2 2
2 0

)
c

(
−2 2
2 2

)
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7 The function f(x, y) = lnx+ ln y is concave on the set Back

a S = {(x, y) ∈ R2/x, y > 0}
b R2

c S = {(x, y) ∈ R2/x, y 6= 0}
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8 Which of the following sets is convex? Back

a A = {(x, y) ∈ R2/xy ≥ 1, x ≥ 0, y ≥ 0}
b B = {(x, y) ∈ R2/xy ≥ 1}
c C = {(x, y) ∈ R2/xy ≤ 1, x ≥ 0, y ≥ 0}
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1 Which of the following points belongs to the feasible set of
the optimization problem Back

opt. : x2
√
y

s.t. : x+ y = 3 ?

a (1, 2)
b (−1, 2)
c (4,−1)
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2 If the feasible set of an optimization problem is unbounded
then Back

a no finite optimum point exists
b it has an infinite number of feasible points
c the existence of a finite optimum point cannot be assured
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3 Given f(x, y) = ax+ by with a, b ∈ R and the set Back

S = {(x, y) ∈ R2/x+ y = 2, x ≥ 0, y ≥ 0},

a f has a global maximum point and a global minimum point in
S

b f has a global maximum point in S if a and b are positive
c there is no maximum or minimum point of f in S

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

4 Which of the following is the feasible set of the optimization
problem Back

max . : 2x+ y

s.t. : x+ y = 1

: x2 + y2 ≤ 5 ?

a {(x, y) ∈ R2/x+ y = 1, x ≥ 0, y ≥ 0}
b {(x, y) ∈ R2/(x, y) = λ(5, 0) + (1− λ)(0, 5),∀λ ∈ [0, 1]}
c {(x, y) ∈ R2/(x, y) = λ(2,−1) + (1− λ)(−1, 2),∀λ ∈ [0, 1]}

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

1 The function f(x, y) = x2 + y2 Back

a has no stationary point
b has a stationary point at (0, 0)
c has a stationary point at (1, 1)

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

2 The function f(x, y, z) = (x− 2)2 + (y − 3)2 + (z − 1)2 has,
at point (2, 3, 1), Back

a a global maximum point
b a global minimum point
c a saddle point

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

3 The function f(x, y) = xy2(2− x− y) has, at point (0, 2),
Back

a a local maximum point
b a local minimum point
c a saddle point

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

4 The function f(x, y) = x2y + y2 + 2y has Back

a a local maximum point
b a local minimum point
c a saddle point

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

5 The function f(x, y) =
ln(x3 + 2)

y2 + 3
: Back

a has a stationary point at (1, 0)
b has a stationary point at (0, 0)
c has no stationary points

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

6 If the determinant of the Hessian matrix of f(x, y) on a
stationary point is negative, then Back

a the stationary point is a saddle point
b the stationary point is a local minimum point
c the stationary point is a local maximum

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

7 If (a, b) is a stationary point of the function f(x, y) such that

∂2f(a, b)

∂x2
= −2 and |Hf(a, b)| = 3

then Back

a (a, b) is a local maximum point
b (a, b) is a local minimum point
c (a, b) is a saddle point

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

8 If (2, 1) is a stationary point of the function f(x, y) such that

∂2f(2, 1)

∂x2
= 3 and |Hf(2, 1)| = 1

then Back

a (2, 1) is a local maximum point
b (2, 1) is a local minimum point
c (2, 1) is a saddle point

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

9 The Hessian matrix of function f(x, y, z) is

Hf(x, y, z) =

 1 0 0
0 2 0
0 0 3

 .

If the function had a stationary point, this would be Back

a a local maximum point
b a global maximum point
c a global minimum point

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

10 Let B(x, y) be the profit function of a firm which produces
two output goods in quantities x and y. If (a, b) is a
stationary point of function B(x, y), for it to be a global
maximum point it must occur that Back

a the profit function is concave for all (x, y) in R2

b the profit function is convex for all (x, y) in R2

c the profit function is concave in a neighborhood of the point
(a, b)

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

11 The Hessian matrix of function f(x, y) is given by Back

Hf(x, y) =

(
x2 + 2 −1
−1 1

)
.

If f(x, y) had a stationary point then this point would be

a a global maximum point
b a global minimum point
c a local minimum point that couldn’t be global

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

12 If (2, 1) is a stationary point of the function f(x, y), which of
the following conditions assures that (2, 1) is a global
maximum point of the function? Back

a Hf(2, 1) is negative definite
b Hf(x, y) is negative definite fort all (x, y) in R2

c Hf(2, 1) is positive definite

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

1 The Lagrange function associated with the problem Back

Opt.f(x, y, z) subject to g(x, y, z) = c is

a L(x, y, λ) = f(x, y)− λ(g(x, y)− b)
b L(x, y, λ) = f(x, y)− λ(g(x, y) + b)
c L(x, y, λ) = g(x, y)− λ(f(x, y)− b)

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

2 The maximum production of a firm is 500 units of a certain
good and the shadow price of the available resource is 3.
What would be the effect on the maximum production level if
the resource were increased by one unit? Back

a The maximum production level would not be affected
b The maximum production level would reduce by 3 units
c The maximum production level would increase by 3 units

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

3 Given the optimization problem Back

min f(x, y) subject to 3x− 6y = 9. (P)

If (x, y, λ) = (1,−1, 3) is a stationary point of the associated
Lagrange function, it can be assured that (1,−1) is a global
minimum of problem (P) when the function f(x, y) is

a convex
b concave
c neither convex nor concave

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

4 Given the following optimization problem Back

min f(x, y) subject to x2 + y = 5. (P)

Let (x, y, λ) = (1, 4, 3) be is a stationary point of the
associated Lagrange function L(x, y, λ). Then, if the Hessian
matrix of function L(x, y, 3) is positive semidefinite then
(1, 4) is a

a is a global maximum point of problem (P)
b is a global minimum point of problem (P)
c It can’t be assured that it is a global extreme point for problem

(P)

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

5 The Hessian matrix of the Lagrange function L(x, y, z, λ∗) is
given by Back

H(L(x, y, z, λ∗)) =

 −1 2 0
2 −5 0
0 0 −4

 ,

then, a stationary point is a
a global maximum
b global minimum
c neither of the above

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

6 Given the optimization problem

Opt.f(x, y, z) subject to g(x, y, z) = c

and given (1, 2, 3, 4), a stationary point of the Lagrange
function (λ = 4 is the Lagrange multiplier) if the Hessian
matrix of L(x, y, z, 4) is

HL(x, y, z, 4) =

 x2 + 1 0 0
0 2 0
0 0 4y2 + 3

 .

then Back

a the problem has no solution
b point (1, 2, 3) is a global minimum point
c (1, 2, 3) is a global maximum point

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

7 Given the optimization problem

Opt.f(x, y, z) subject to g(x, y, z) = c,

it is known that the Hessian matrix of the Lagrange function
when λ = 4 is given by

HL(x, y, z, 4) =

 −x2 − 7 0 0
0 −2 0
0 0 −4

 .

Then, if (1, 2, 3, 4) is a stationary point of the Lagrange
function, Back

a the problem has no solution
b the problem has a global maximum point
c the problem has a global minimum point

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

8 Given the optimization problem

Opt.f(x, y) subject to g(x, y) = c,

it is known that the Hessian matrix of the Lagrange function
when λ = 4 is given by

HL(x, y, 4) =
(
−x2 0
0 −2

)
.

Then, if (1, 2, 4) is a stationary point of the Lagrange
function, Back

a the minimum value of the objective function is 4
b (1, 2) is a global minimum point
c (1, 2) is a global maximum point

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

9 In the maximization of profits with a linear constraint on costs
x+ y + z = 89, the Lagrange multiplier is −0, 2. Is it worth
increasing the level of cost? Back

a No. The maximum profit would decrease
b Yes, since the maximum profit would increase
c Yes, because we would continue with positive profits

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

1 The matrix A =

 4 1 −3
0 −1 1
0 0 7

 is Back

a. a lower triangular matrix
b. an upper triangular matrix
c. a diagonal matrix

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

2 Which of the following is the true definition of a symmetric
matrix? Back

a. A square matrix A is said to be symmetric if A = −A
b. A square matrix A is said to be symmetric if A = −At

c. A square matrix A is said to be symmetric if A = At

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

3 Given A and B matrices of order m× n and n× p, (AB)t

equals to: Back

a. BtAt

b. AtBt

c. AB

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

4 Let A be a matrix such that A2 = A then, if B = A− I,
then: Back

a. B2 = B
b. B2 = I
c. B2 = −B

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

5 Let A and B be square matrices of order 3. If |A| = 3| and
|B| = −1 then: Back

a. |2A � 4B| = (−4)23
b. |2A � 4B| = (−3)23
c. |2A � 4B| = (−3)29

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

6 Which of the following properties is NOT always true? Back

a.
∣∣A2
∣∣ = |A|2

b. |A+B| = |A|+ |B|
c. |AtB| = |A| |B|

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

7 Given the 3 by 3 matrices A, B, C such that |A| = 2, |B| = 4

and |C| = 3, compute
∣∣∣ 1
|A|B

tC−1
∣∣∣: Back

a. 2
3

b.
1
6

c. 6

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

8 Let A and B be matrices of the same order, which of the
following properties is always true? Back

a. (A−B)(A+B) = A2 −B2

b. (A−B)2 = A2 − 2AB +B2

c. A(A+B) = A2 +AB

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

9 Which of the following properties is NOT true? Back

a.
∣∣A2
∣∣ = |A|2

b. |−A| = |A|
c. |At| = |A|

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

10 Let A and B be symmetric matrices, then which of the
following is also a symmetric matrix: Back

a. BA
b. A+B
c. AB

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

11 Let A be an n by n real matrix. Then, if k ∈ R one has that
Back

a. |kA| = k |A|
b. |kA| = |k| |A|, being |k| the absolute value of the real number
k

c. |kA| = kn |A|

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

12 Given the matrices

A =

(
1 1
1 1

)
B =

(
0 1
−1 1

)
yC =

(
−2 1
0 0

)
the solution to the matrix equation
3X + 2A = 6B − 4A+ 3C is Back

a. X =

(
1 0
0 1

)
b. X =

(
−4 1
−4 0

)
c. X =

(
4 1
4 1

)

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

13 Let A,B be matrices of order n. Then: Back

a. (AB)
2
= A2B2

b. (AB)
2
= B2A2

c. (AB)
2
= A(BA)B

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

14 Given the matrix A =

1 2 3
3 1 2
2 3 1

, the adjoint element a12 is:

Back

a. −1
b. 1
c. −2

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

1 Which of the following is a quadratic form? Back

a Q(x, y, z) = x2 + 3z2 + 6xy + 2z
b Q(x, y, z) = 2xy2 + 3z2 + 6xy
c Q(x, y, z) = 3xy + 3xz + 6yz

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

2 Let Q(x, y, z) be a quadratic form such that Q(1, 1, 0) = 2
and Q(5, 0, 0) = 0, then

Back

a Q(x, y, z) could be indefinite
b Q(x, y, z) is positive definite
c Q(x, y, z) could be negative semidefinite

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

3 The quadratic form Q(x, y, z) = (x− y)2 + 3z2 is
Back

a positive definite
b positive semidefinite
c indefinite

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

4 The quadratic form Q(x, y, z) = −y2 − 2z2 is
Back

a negative definite
b negative semidefinite
c indefinite

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

5 The quadratic form Q(x, y, z) = x2 + 2xz + 2y2 − z2 is
Back

a positive definite
b positive semidefinite
c indefinite

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

6 A 2 by 2 matrix has a negative determinant, then the matrix is
Back

a negative definite
b negative semidefinite
c indefinite

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

7 The matrix A =

 1 1 0
1 1 0
0 0 2

 is

Back

a indefinite
b positive semidefinite
c positive definite

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

8 The leading principal minors of a 4 by 4 matrix are
|A1| = −1, |A2| = 1, |A3| = 2, and |A4| = |A| = 0.Then,

Back

a the matrix is negative semidefinite
b its definiteness cannot be determined with this information
c the matrix is indefinite

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

9 The leading principal minors of a 4 by 4 matrix are
|A1| = −1, |A2| = 1, |A3| = −2 and |A4| = |A| = 0.Then,

Back

a the matrix is negative semidefinite
b its definiteness cannot be determined from this information
c the matrix is indefinite

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

10 The leading principal minors of a 4 by 4 matrix are
|A1| = −1, |A2| = 1, |A3| = −2, and |A4| = |A| = 1.Then,
the matrix is

Back

a negative definite
b indefinite
c positive definite and negative definite

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

11 The quadratic form in three variables Q(x, y, z), subject to
x+ 2y − z = 0, is positive semidefinite. Then, the
unconstrained quadratic form is:

Back

a positive semidefinite or indefinite
b positive semidefinite
c positive definite or positive semidefinite

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

12 If Q(x, y, z) is a negative semidefinite quadratic form such
that Q(−1, 1, 1) = 0, then Q(x, y, z) subject to the constraint
x+ 2y − z = 0

Back

a is negative semidefinite
b cannot be classified with this information
c is negative definite or negative semidefinite

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

13 The quadratic form Q(x, y, z) = (x− y)2 + 3z2 subject to the
constraint x = 0 is:

Back

a indefinite
b positive semidefinite
c positive definite

Answers to Multiple Choice Questions



Answers to Multiple choice questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Matrix algebra
Quadratic forms

14 The quadratic form Q(x, y, z) = (x− y)2 + 3z2 subject to the
constraint z = 0 is:

Back

a indefinite
b positive semidefinite
c positive definite

Answers to Multiple Choice Questions
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