
CHAPTER 7

COUNTING POVERTY ORDERINGS

AND DEPRIVATION CURVES

Ma Casilda Lasso de la Vega

ABSTRACT

Purpose – A counting approach based on the number of deprivations
suffered by the poor is quite an appropriate framework to measure
multidimensional poverty with ordinal or categorical data. A method to
identify the poor and a number of poverty indices have been proposed to
take this framework into account. The implementation of this methodol-
ogy involves the choice of a minimum number of deprivations required
in order for an individual to be identified as poor. This cutoff and the
choice of a poverty measure to aggregate the data are two sources of
arbitrariness in poverty comparisons. The aim of this chapter is twofold.
We first explore properties that characterize an identification method
which allows different weights for different dimensions. Then the chapter
examines dominance conditions in order to guarantee unanimous poverty
rankings in a counting framework.

Design/methodology/approach – In the unidimensional poverty field,
one branch of the literature is devoted to establishing dominance criteria
that guarantee unanimous orderings at a variety of poverty thresholds
and indices. This chapter takes this literature as a starting point, and
investigates circumstances in which these ordering conditions may be
applied in a weighted counting framework.
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Findings – Necessary and sufficient conditions are obtained that
guarantee that two vectors, which represent the weighted sum of the
deprivations felt by each person, may be unanimously ranked regardless
of the identification cutoff and of the poverty measure.

Originality/value – Since most of the data available for measuring
capabilities or dimensions of poverty is either ordinal or categorical, the
counting approach provides an alternative framework that suits these
types of variables. The implementation of the ordering conditions derived
in this chapter is based on simple graphical devices that we call dimension
deprivation curves. These curves become a useful way to check the
robustness of poverty rankings to changes in the identification cutoff.
They also provide a tool for determining nonambiguous poverty rankings
in a wide set of multidimensional poverty indices that suit ordinal and
categorical data.

1. INTRODUCTION

In recent years there has been considerable agreement that poverty is a
multidimensional phenomenon and great efforts have been made from
both a theoretical and an empirical point of view, trying to assess multi-
dimensional poverty.1 Following Sen (1976), poverty measurement should
consist of a method to identify the poor and an aggregative measure.

In a multidimensional framework, the identification of the poor usually
incorporates two cutoffs. The first has to do with the traditional
identification of the poor within each dimension using a dimension-specific
poverty line. In the second step, a minimum number of deprived dimensions
is required to be considered as a poor person. Thus a person is identified
as poor if deprived in at least a given number of dimensions. The two
extreme cases are referred to as the ‘‘union’’ and ‘‘intersection’’ approaches,
respectively. Whereas the union procedure identifies someone who is
deprived in at least one dimension as poor, the intersection definition
requires a poor person to be deprived in all dimensions.

Nevertheless, how to identify the multidimensional poor is still a
debatable issue and it may be of interest to explore properties to be fulfilled
in this step. Allowing different weights for different dimensions, Section 2
explores properties of the second stage of the identification procedure. Once
the poor people are identified, the multidimensional headcount ratio, which is
the percentage of poor people in the society, may be gauged.
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As regards the aggregation step, the majority of the indices introduced
for the measurement of multidimensional poverty behave well only with
cardinal variables, that is, with dimensions that are quantitative in nature.
However, most of the data available to measure capabilities or dimensions
of poverty are either ordinal or categorical. Consequently, only indices that
deal well with qualitative variables should be used in empirical applications
when this sort of data are involved.

What Atkinson (2003) refers to as a counting approach focuses on
the number of dimensions in which each person is deprived, and is an
appropriate procedure that deals well with ordinal and categorical variables.
Among others, Chakravarty and D’Ambrosio (2006), Bossert, D’Ambrosio,
and Peragine (2007), Alkire and Foster (2007), and Bossert, Chakravarty,
and D’Ambrosio (2009) propose indices based on a counting approach.
Specifically, Chakravarty and D’Ambrosio (2006) introduce the possibility
that the dimensions may be weighted differently and derive counting
measures in the social exclusion field. We also assume a weighted counting
framework. In turn, Alkire and Foster (2007) propose what they call the
adjusted headcount ratio, defined as the average of the number of
deprivations suffered by the poor. The multidimensional headcount ratio
and the adjusted headcount ratio, appropriately modified to incorporate
dimensional weights, will play an important role in this work.

In general, the choice of either the identification cutoffs or the indices
adds arbitrariness to poverty comparisons, and different selections can lead
to contradictory results. For this reason it may be of interest to investigate
conditions to guarantee that comparisons be unanimous to the different
choices. There exists a branch of the literature devoted to establishing
dominance criteria that provide unanimous orderings when comparisons
are made at a variety of poverty thresholds and measures. Zheng (2000)
provides a comprehensive survey of dominance conditions in the poverty
unidimensional field. In this chapter, we take this literature as a starting
point, and more specifically the papers by Shorrocks (1983), Foster (1985),
and Foster and Shorrocks (1988a, 1988b). In particular, we investigate
circumstances in which two vectors, which represent the number of weighted
deprivations felt by each person, may be unanimously ranked regardless
of the identification cutoff and of the poverty measure. In Section 3, we
will show that if the ranking provided by the multidimensional headcount
ratio is unambiguous over all admissible identification thresholds, then
agreement is guaranteed over all counting poverty measures that satisfy
the dimensional monotonicity property.2 A similar result is obtained with
respect to the (weighted) adjusted headcount ratio: rankings provided by
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this latter index are equivalent to agreement over all counting measures
that fulfill monotonicity and distribution sensitivity. These results are by
no means surprising. Atkinson (1987) derives a similar conclusion with
regard to the headcount ratio in the unidimensional poverty field. In turn,
Foster and Shorrocks (1988a, 1988b) characterize the poverty orderings
obtained from the Foster–Greer–Thobercke measures (Foster, Greer, &
Thorbecke (1984)).

The implementation of these conditions is based on two different types
of curves that we call dimension deprivation curves, introduced in Section 3.
The first one, which we call the FD curve, represents the multidimensional
headcount ratio for all the admissible dimension cutoffs.3 The second
type of curve, henceforth SD curves, represents in the same picture the
headcount ratio, the adjusted headcount ratio, and the average deprivation
share according to the proposal by Alkire and Foster (2007), appropriately
modified to incorporate dimensional weights.

Since the Lorenz curve was introduced in the literature, a number of
cumulative curves have been widely used to check unanimous orderings in
the inequality, poverty, and polarization fields.4 In this connection, we will
show that the curves proposed in this chapter become a powerful tool
for checking unanimous orderings according to a wide class of counting
measures. They also avoid the choice of an arbitrary identification cutoff
and offer a useful way to determine the bounds of the number of dimensions
for which multidimensional comparisons are robust. As the multidimen-
sional headcount ratio and the adjusted headcount ratio behave particularly
well with ordinal and categorical data, the dimension deprivation curves
play a key role in making poverty comparisons when data are ordinal.
The chapter finishes with some concluding remarks.

2. A WEIGHTED COUNTING POVERTY APPROACH

2.1. Notation and Basic Definitions

We consider a population of n � 2 individuals endowed with a bundle
of k � 2 attributes considered as relevant to poverty measurement. The
number of dimensions is given and fixed.

Regarding the identification of the poor through the specification of a
poverty line, let us consider zj40 to be the minimum quantity of the jth
attribute for a subsistence level. An individual i is deprived as regards
attribute j if xijozj.
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In a counting approach, poverty is measured by taking into consideration
the number of dimensions in which people are deprived. Thus we assume
that the dimensions are represented by binary variables and characteristics
of individual i are identified by a deprivation vector xi 2 f0; 1gk, whose
typical component j is defined by xij ¼ 1 when individual i is deprived in
attribute j and xij ¼ 0 otherwise.

Allowing one dimension to be more important than another, let w 2 Rk
þþ

be a vector of weights summing to k, whose jth component, wj is the weight
assigned to attribute j. We assume that the vector of weights is given and
fixed.

Let us denote by di the weighted sum of the dimensions in which person i
is deprived, that is, di ¼

P
1�j�dwjxij , which represents the poverty score

of individual i.5 Let D � ½0; k� be the set of all admissible scores. In general,
D is a discrete set of [0, k] containing the value 0, which corresponds to a
person nondeprived in any dimension, and the value k, when the person is
deprived in all the dimensions. When all weights are equal to 1 (i.e.,
all dimensions are assumed to be equally important), D ¼ f0; 1; . . . ; kg. By
contrast, if the weights are all different, then D is a discrete set with 2k

elements.
The vector d ¼ ðd1; . . . ; dnÞ 2 Dn is referred to as the vector of weighted

deprivation counts. This vector plays an important role in poverty
measurement when ordinal data are involved. In fact this vector is
invariant if the achievement levels and the poverty lines are transformed
under the same monotonic transformations, and this is a crucial
property when the achievements or capabilities are measured with
ordinal variables. We will denote by �d the permutation of d in which
individuals’ poverty scores have been arranged in decreasing order, that is,
�di �

�diþ1 for i ¼ 1; . . . ; n. Hence people are ranked from the most
deprived to the least. Let G ¼ [n�1D

n be the set of all admissible vectors
of deprivation counts.

We will say that the vector d u is obtained from the vector d by a
permutation if �d

0
¼ �d; by a replication if d 0

¼ ðd; d; . . . ; dÞ; by an increment
(decrement) if d 0

i4di (d
0
iodi) for some individual i, and d 0

j ¼ dj for all jai.

2.2. The Identification of the Poor

The first step in measuring poverty is to identify the poor people. Two
main methods have been used in this stage in a multidimensional setting,
referred to as the ‘‘union’’ and the ‘‘intersection’’ approaches, respectively.

Counting Poverty Orderings and Deprivation Curves 157



Whereas the union procedure identifies as poor someone who is deprived in
at least one dimension, the intersection definition requires a poor person
to be deprived in all dimensions. These methods present well-known
drawbacks when the number of poverty dimensions is great. Whereas
‘‘almost nobody’’ is identified as poor with the intersection approach,
‘‘almost everybody’’ is poor with the union identification.

There is an intermediate procedure that proposes establishing a cutoff
in the number of dimensions. If a weighted sum of deprivations is assigned
to each person, this score may be used in the identification step. Thus,
a person is identified as poor if the number of weighted dimensions in which
they are deprived is at least m, that is, di � m, with 0om � k. Person i is
nonpoor otherwise, that is, if diom.6 For m ¼ min1�j�kwj, this method
coincides with the union approach, whereas for m ¼ k, it is equivalent
to the intersection approach. We will use rm to denote this procedure.
In this framework the identification function is assumed to be the same for
all individuals.

The rm method is simple and intuitive, and it may be worth examining the
conditions that lead to a rm identification method in a multidimensional
setting.

For doing so, first of all we assume that the function that identifies the
poor satisfies a property of dichotomization. This is a strong property that
makes sense in a counting approach since it assumes that identifying
a person as poor depends only on each individual’s deprivation vector. This
property is formalized as follows:

Dichotomization: An identification procedure r is a dichotomized identifica-
tion function if r : f0; 1gk ! f0; 1g links xi, the vector of deprivations of
individual i, with an indicator variable such that rðxiÞ ¼ 1 if person i is
identified as poor and rðxiÞ ¼ 0 if person i is not poor.

In addition, we introduce a property for a dichotomized identification
function. We think that a reasonable assumption is to require that if a
person is considered as poor according to an identification method, then
any other person deprived in equal or more weighted dimensions should
also be considered as poor. We call this property Poverty Consistency and it
is formulated as follows:

Poverty Consistency. Let r be a dichotomized identification function.
We say that r satisfies the poverty consistency property if given a person i
with rðxiÞ ¼ 1 then rðxi0 Þ ¼ 1 for all person iu such that di ¼

P
1�j�dwjxij �

di0 ¼
P

1�j�dwjxi0j.
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The following proposition characterizes the rm identification method.

Proposition 1. A nontrivial dichotomized identification function r fulfils
the poverty consistency property if and only if there exists some m 2 ð0; k�
such that rðxiÞ ¼ 1 if di ¼

P
1�j�dwjxij � m and rðxiÞ ¼ 0 otherwise.

Proof. Since r is a nontrivial identification method, there exists a person i
such that rðxiÞ ¼ 1. Let m ¼ mini0¼1; ... ;nfdi0=rðxiÞ ¼ 1g. For definition
rðxi0 Þ ¼ 0 if di0om and for poverty consistency, rðxi0 Þ ¼ 1 if di0 � m.
The sufficiency of the proof is clear. Q.E.D.

As a consequence of this proposition, the only dichotomized identification
method that is poverty consistent is rm for some m 2 ð0; k�. Throughout this
chapter the poor are supposed to be identified according to a rm procedure.

Let us denote by Qm and qm, respectively, the set and number of poor
identified using the dimension cutoff m. For each vector d of weighted
deprivation counts, we define the censored vector of deprivation counts,
denoted by d(m), as follows: diðmÞ ¼ di if di � m, and diðmÞ ¼ 0 if diom.

2.3. Aggregating Deprivations with a Counting Measure

The second step in poverty measurement is the aggregation of the poverty
scores of the poor people. In what follows, a counting poverty measure P is
a nonconstant function whose typical image, denoted by PmðdÞ, represents
the level of poverty in a society with a vector of weighted deprivation
counts d and where the poor are identified according to a rm procedure. The
following four properties are the counterparts for a counting measure of the
basic properties assumed in the poverty field.

First of all, since poverty measurement is concerned with poor people,
it is usually demanded that a poverty index should not change under the
improvements of the nonpoor people. In a counting approach, improve-
ments are reflected in a decrease in the number of the weighted deprivations.
Then, the poverty focus property may be formulated as follows.

Poverty Focus (PF): For any m 2 ð0; k�, Pm remains unchanged if the
poverty score of a nonpoor person decreases.

It may be worth noting that PF ensures that PmðdÞ ¼ Pm½dðmÞ�.
In order to narrow down the shape of the measure, it may be interesting

to identify some types of transformations that seem to have an effect
on the poverty level, and to require the index to be consistent with them.
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If one believes that all the individuals and all the dimensions are essential in
measuring poverty, then it appears intuitive to demand that if the poverty
score of any poor individual decreases, then the overall poverty should
decrease. Note that the decrement in the poverty score of a poor person may
lift them out of poverty.7 This property may be is formulated as follows:

Dimensional Monotonicity (MON): For any m 2 ð0; k�, Pmðd
0
ÞoPmðdÞ if

d 0
iodi for some individual i with di � m, and d 0

j ¼ dj for all jai.

According to Sen (1976), a poverty measure should be sensitive to
distribution among the poor and greater weight should be attached to the
poorer person. Consequently, a decrease in poverty due to a decrease in
the poverty score of a poor person should be greater the higher the score
of the person is. Let us consider two poor individuals, i and j, such that the
poverty score of individual i is higher than that of individual j, that is,
di4dj. Let us assume that it is possible to decrease the two scores by the
same amount. MON ensures that the poverty level decreases under the two
transformations. Nevertheless, the next axiom goes beyond MON and
demands that the decrease in poverty under the former decrement (that of
the poverty score of the poorer), should be higher than that under the latter.
As in MON, the two individuals involved in the transformation are allowed
to lift out of poverty.8 This axiom may be formalized as follows.

Distribution Sensitivity (DS): For any m 2 ð0; k� and h40:

PmðdÞ � Pmðd1; . . . ; di � h; . . . ; dj ; . . . ; dnÞ4

PmðdÞ � Pmðd1; . . . ; di; . . . ; dj � h; . . . ; dnÞ

if ðd1; . . . ; di � h; . . . ; dj ; . . . ; dnÞ; ðd1; . . . ; di; . . . ; dj � h; . . . ; dnÞ 2 Dn and
di4dj � m.

The following property establishes that no other characteristic apart from
the number of weighted dimensions in which a person is deprived matters in
defining a counting poverty index. This principle is much stronger than its
counterpart in the unidimensional field since it implicitly entails a trade-off
between the dimensions. For instance, when all the dimensions are weighted
equally this property implies that it does not matter in which particular
dimensions people are deprived and, somehow, all of them become
interchangeable. A similar conclusion may be obtained if the weights are
different.

Symmetry (SYM): For all m 2 ð0; k�, PmðdÞ ¼ Pmðd
0
Þ if �d

0
¼ �d.
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Finally, the following condition allows the comparisons of populations of
different sizes.

Replication Invariance (RI): For all m 2 ð0; k�, PmðdÞ ¼ Pmðd
0
Þ if

d 0
¼ ðd; d; . . . ; dÞ.

We define the following two inclusive classes of counting poverty
measures:

P1 ¼ fP counting poverty measure=P satisfies PF ;MON; SYM and RIg

P2 ¼ fP counting poverty measure=P satisfies PF ;MON;DS;SYM and RIg

Clearly P2 � P1, and as will be shown, the inclusion is strict.
The first counting poverty measure introduced in the literature is the

multidimensional headcount ratio, denoted by H, which is the percentage of
poor people in the society. In other words, for each m 2 ð0; k� identification
cutoff, Hm ¼ qm=n is the percentage of the population whose poverty scores
are higher than or equal to m. This index, usually used to measure the
incidence of poverty, is unable to capture the intensity, is not distribution
sensitive and violates MON, that is, it does not change if a person already
identified as poor becomes deprived in an additional dimension.

The (weighted) adjusted headcount ratio, M, is defined as the ratio of
the number of weighted deprivations suffered by the poor to the total
number of weighted deprivations, that is, MmðdÞ ¼ ½

P
1�i�ndiðmÞ�=nk.

In contrast to the headcount ratio this index satisfies MON, although it
does not belong to class P2 since it violates DS.

More information about poverty can be incorporated by using the
weighted average deprivation share across the poor denoted by A, introduced
by Alkire and Foster (2007) when all the dimensions are equally weighted.
This is defined as the mean among the poor, of the weighted sum of
the deprivations suffered by the poor, that is, AmðdÞ ¼ ½

P
1�i�ndiðmÞ�=qmk.

This index captures the intensity of poverty. Furthermore, it holds that
MmðdÞ ¼ HmAmðdÞ.

3. COUNTING POVERTY ORDERINGS

This section is concerned about how to rank two vectors of weighted
deprivation counts in order to evaluate whether poverty is higher in one
society than in another. Poverty rankings may be reversed depending on the
identification threshold, or on the measure selected. Thus, in order to avoid
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contradictory results, poverty orderings require unanimous rankings for
a set of identification cutoffs, or a class of poverty measures. As it is
impossible to check unanimity for infinite pairwise comparisons, ordering
conditions are derived to characterize unanimous agreement. Following
the literature, given a counting poverty measure, P, we define the partial
ordering with respect to P, denoted by "P, in the set of vectors of
deprivation counts, by the rule9

d 0
"Pd if and only if Pmðd

0
Þ � PmðdÞ for all m 2 ð0; k�

In this section, we will examine the partial poverty orderings with respect
to the multidimensional headcount ratio, H, and the weighted adjusted
headcount ratio, M.

3.1. Poverty Ordering with Respect to the Multidimensional Headcount
Ratio, H, and the FD Curve

As already mentioned, given a cutoff of the number of dimensions, m, the
multidimensional headcount ratio,Hm, gauges the percentage of poor people
according to the identification procedure rm. For any vector of deprivation
counts it is possible to consider the graph ofH as a function of this dimension
cutoff, ranked in decreasing order. We will refer to this curve as the FD curve
associated with the vector d, and its ordinates are computed as follows:

FDðd; pÞ ¼ Hk�p; p 2 ½0; k�

The following example helps to clarify this. Let us consider a society of 10
individuals endowed with 4 attributes weighted equally. Let us assume that
the vector of deprivation counts is d ¼ ð4; 3; 3; 2; 2; 1; 1; 1; 0; 0Þ. The FD curve
for this vector is displayed in Fig. 1.

Some interesting properties of this curve may be mentioned. The FD
curve is an increasing step function that is right-continuous. The horizontal
axis displays the identification cutoffs ranked in decreasing order, and in the
vertical axis, by definition, the multidimensional headcount ratio, Hm, is
recovered. Two limiting curves correspond with the extreme situations:
if nobody is deprived, the curve coincides with the horizontal axis;
whereas, if everybody is deprived in all dimensions, the curve becomes the
parallel line to the horizontal axis through the point (0,1).

It is clear from the graph that, for two vectors of deprivation counts with
the same population size, d ; d 0

2 Dn, if d 0
"Hd, that is, if Hmðd

0
Þ � HmðdÞ

for all m 2 ð0; k�, then the FD curve of d must be below or to the left of the
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FD curve of d u. And the reverse is also true: if the FD curve of d is below or
to the left of the FD curve of du then Hmðd

0
Þ � HmðdÞ for all m 2 ð0; k�, and

d 0
"Hd. We get the following proposition.

Proposition 2. For any d ; d 0
2 Dn vectors of deprivation counts, the

following statements are equivalent:

(i) FDðd; pÞ � FDðd 0; pÞ for all p 2 ½0; k�;
(ii) HmðdÞ � Hmðd

0
Þ for all m 2 ð0; k�;

(iii) �di �
�d
0

i for all i ¼ 1; . . . ; n;
(iv) �d

0
may be obtained from �d by a finite sequence of increments;

(v)
P

1�i�njð �d
0

iÞ �
P

1�i�njð �d
0

iÞ for all continuous, increasing functions
j : ½0; k�!R

Proof. In the appendix.

This proposition shows that when the FD curve of a vector of deprivation
counts lies above or to the right of the curve of other with the same population
size, or equivalently, when these two vectors can be ordered with respect toH,
then one may be obtained from the other by a finite sequence of permutations
and/or increments. Consequently, any poverty measure belonging to class P1

will rank these two vectors exactly in the same way. Moreover, since both H
and the measures belonging to class P1 are replication invariant, the result also
holds for vectors with different population sizes.

p=0
m=4

p=3
m=1

p=2
m=2

p=1
m=3

H4

H3

H2

H1

p=4

Fig. 1. Plotting the Identification Cutoffs and the Headcount Ratio: The FD Curve.

Counting Poverty Orderings and Deprivation Curves 163



The reverse is also true. In fact, consider the following class of counting
measures: Pðd;mÞ ¼ 1=nf

P
1�i�nc½diðmÞ�g, with c : ½0; k� ! R, a continuous

strictly increasing convex function. It is quite simple to show that P
belongs to class P1. Given any continuous increasing function j : ½0; k� ! R

and �40, then the measures P�ðd;mÞ ¼ 1=n½
P

1�i�nð�cþ jÞðdiðmÞÞ�

also belong to class P1. Consequently, given two vectors d and du with
P�ðd;mÞ � P�ðd

0;mÞ, when � ! 0 we get statement (v) in Proposition 2
and have the following result, that links the ordering with respect to H with
first-degree stochastic dominance:

Proposition 3. For any d ; d 0
2 G vectors of weighted deprivation counts:

FDðd 0; pÞ � FDðd; pÞ for all p 2 ½0; k�

if and only if Pmðd
0
Þ � PmðdÞ for all P 2 P1 and for all identification cutoff

m 2 ð0; k�.

This proposition reveals that, although H fails to satisfy MON, the
ordering with respect to H is equivalent to agreement over all counting
measures satisfying MON. Consequently, if the FD curves of two vectors of
deprivation counts do not intersect, then all poverty counting measures
satisfying MON will lead to the same verdict.

By contrast, when the curves intersect, there are two possibilities in order
to obtain unanimous ranking: either the set of measures is restricted,
as shown in Section 2.2, or the admissible cutoffs are limited, as will be
developed in Section 2.3.

3.2. Poverty Ordering with Respect to the Adjusted
Headcount Ratio, M, and the SD Curve

One interesting feature of the FD curve introduced in the previous section is
that, given a vector d and a dimension threshold m, it is straightforward
to prove that the area beneath the curve of the censored vector, FD½dðmÞ�,
is equal to d Mm. Thus, even if a conclusive poverty verdict could not be
reached with theH ordering, it would be possible to get unanimous rankings
with respect to M.

As usual, we propose constructing the SD curve, for any vector d, plotting
the headcount ratio against the adjusted headcount ratio, that is, pairs of
points ðHm;MmÞ. We also plot two extreme points ð0; 0Þ as the start of the
curve, and ð1;M1Þ, as the end of the curve. Then we join the dots. Fig. 2
shows the SD curve associated with the vector d in the previous example.
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It may be worth noting that for any vector of deprivation counts d,
ranked from the highest poverty score to the lowest, the SD curve can
equivalently be defined in the following way: for each integer p ¼ 0; . . . ; n� 1
the ordinate of the curve is computed as the cumulative of the sum of poverty
scores of the first p people divided by the total number of deprivations that
could possibly be experienced by all people. At intermediate points the curve
is determined by linear interpolation. Thus, the ordinates of the SD curve are
computed as follows:

SDðd; 0Þ ¼ 0

SD d;
p

n

� �
¼

1

nk

X
1�i�p

di; p ¼ 1; . . . ; n

SD d;
pþ y
n

� �
¼

1

nk

X
1�i�p

ðdi þ ydpþ1Þ; p ¼ 0; . . . ; n� 1; y 2 ½0; 1�

The ordinates of this curve are replication invariant, and are also
invariant to permutations of d. The graph, as displayed in Fig. 2, begins at
the origin, and is a continuous nondecreasing concave function.

0

1

0 1H4 H3 H2 H1

M4

M3

M2

M1

A1

cumulative sum of the poverty scores divided 
by the total deprived dimensions

cumulative population share

Fig. 2. Plotting the Headcount Ratio and the Adjusted Headcount Ratio:

The SD Curve.
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There are two boundaries that correspond to the extreme situations of
minimum and maximum deprivation. If nobody is deprived, the curve
coincides with the horizontal axis. By contrast, if everybody is deprived in
all dimensions, the curve becomes the diagonal line.

By construction, on the vertical axis the curve shows the percentage
of the weighted sum of deprivations experienced by the percentage of the
most deprived population, which is displayed on the horizontal axis. Thus,
the maximum value of the curve corresponds to the percentage of the
deprivations experienced by all the people, that is, the adjusted headcount
ratio according to the union procedure. The point at which the curve
becomes horizontal yields the percentage of people deprived in at least one
dimension: the headcount ratio according to the union procedure.

Less obvious, perhaps, is the meaning of each point at which the slope of
the curve changes. It should be noted that when people with the same
poverty scores are accumulated, the slope does not change. By contrast,
adding a person whose poverty score is less than the existing ones makes the
slope decrease. Thus, each of the points at which the slope changes, yields
the percentage of people deprived in at least, say, m weighted dimensions, or
Hm. The vertical axis on the other hand displays, by definition, the adjusted
headcount ratio Mm. For instance, the first point at which the slope changes
shows the percentage of deprived dimensions suffered by the population
deprived in all dimensions. In other words, according to the intersection
procedure, the headcount ratio (on the horizontal axis) and the adjusted
headcount ratio (on the vertical axis) are recovered at this point.

The weighted average deprivation share across the poor, Am, is also
represented in the graph by the slope of the ray from (0,0) to ½p;SDðpÞ�.

The following proposition is based on the results established by Marshall
and Olkin (1979, Propositions 4.A.2 and A.B.2) for vectors with the same
number of components:

Proposition 4. For any d ; d 0
2 Dn vectors of deprivation counts, the

following statements are equivalent:

(i) SDðd 0; pÞ � SDðd; pÞ for all p 2 ½0; 1�;
(ii) MmðdÞ � Mmðd

0
Þ for all m 2 ð0; k�;

(iii)
P

1�i�p
�di �

P
1�i�p

�d
0

i for all p ¼ 1; . . . ; n;
(iv) d u may be obtained from d by a finite sequence of permutations,

increments and/or transformations of the form TðzÞ ¼ ðz1; . . . ; zi þ
h; . . . ; zj � h; . . . ; znÞ with h40 and zi � zj;

(v)
P

1�i�njð �diÞ �
P

1�i�njð �d
0

iÞ for all continuous, increasing and convex
functions j : ½0; k� ! R.
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Proof. In the appendix.

An implication of this proposition is the result below.

Proposition 5. For any d; d 0
2 Dn vectors of deprivation counts and for

any measure P 2 P2, if SDðd 0; pÞ � SDðd; pÞ for all p 2 ½0; 1� then Pmðd
0
Þ �

PmðdÞ for all m 2 ð0; k�.

Proof. In the appendix.

Consequently, when the SD curve of a vector du lies above the curve of
another, d, with the same population size, any poverty measure belonging to
class P2 will rank these two vectors in exactly the same way. In addition, as
both the deprivation curves and the measures P 2 P2 are invariant under
replication, the result also holds for vectors with different population sizes.
The reverse is also true and the proof is completely similar to the
corresponding result in the previous section. So we get:

Proposition 6. For any d ; d 0
2 G vectors of deprivation counts:

SDðd 0; pÞ � SDðd; pÞ for all p 2 ½0; 1�

if and only if Pmðd
0
Þ � PmðdÞ for all P 2 P2 and for all identification cutoff

m 2 ð0; k�.

Then, this result reveals that although M, the dimension adjusted
headcount ratio, violates DS, if two vectors of deprivation counts can be
unanimously ranked by Mm at all dimension cutoffs, then all poverty
counting measures satisfying DS will rank societies in the same way.

3.3. Poverty Ordering when the Curves Intersect

When the dimension deprivation curves introduced in the two previous
sections intersect, it is still possible to establish dominance conditions by
restricting the set of identification cutoffs. In fact, even if the curves of two
vectors cross, there exists a threshold m� 2 ð0; k� that corresponds with the
identification cutoff after which the intersection occurs. In other words, m�

ensures that the curves do not intersect for all m 2 ðm�; k�, which becomes
the relevant set for the cutoffs. A simple way to establish dominance
conditions in these cases is to base comparisons on the censored vectors, and
to modify the results derived in the previous sections accordingly. Taking
into consideration the respective censored vectors, denoted by dðm�Þ and
d 0
ðm�Þ, we get the following proposition.
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Proposition 7. For any d ; d 0
2 G vectors of deprivation counts:

(i) FDðd 0
ðm�Þ; pÞ � FDðdðm�Þ; pÞ for all p 2 ½0; k�

if and only if Pmðd
0
Þ � PmðdÞ for all P 2 P1 and for all

identification cutoff m 2 ðm�; k�.

(ii) SD½d 0
ðm�Þ; p� � SD½dðm�Þ; p� for all p 2 ½0; 1�

if and only if Pmðd
0
Þ � PmðdÞ for all P 2 P2 and for all

identification cutoff m 2 ðm�; k�.

The implication of this proposition is that, even when the dimension
deprivation curves intersect, they allow us to obtain robust conclusions in a
wide set of counting measures restricting the set of identification cutoffs.
Since not all the admissible cutoffs are equally meaningful in poverty
measurement, this result may be quite useful in empirical applications:
when two deprivation vectors cannot be unanimous ranked for all cutoffs,
concentrating on the poorest people can lead to conclusive verdict.

4. CONCLUDING REMARKS

A counting approach that concentrates on the number of dimensions in
which each person is deprived is an appropriate procedure to measure
multidimensional poverty with ordinal and categorical variables.

The choice of a cutoff to identify the poor, and a poverty measure to
aggregate the data are two sources of arbitrariness and different selections
may lead to contradictory conclusions. In this chapter we have characterized
the identification procedure and have derived dominance conditions in order
to obtain unanimous rankings in a wide set of counting measures, and a set
of identification cutoffs.

The implementation of these conditions is based on two different types of
dimension deprivation curves, which guarantee unanimous rankings of vectors
of deprivation counts when they do not intersect. And, even if the curves cross,
additional results are derived that lead to conclusive verdicts by restricting the
admissible cutoffs in the identification of the poor. Thus, these curves become
a useful way to determine the boundaries of the number of dimensions for
which counting poverty comparisons are robust and have been shown to play
a key role in making poverty comparisons when the data are ordinal.

Policy makers should choose the dimension-specific poverty line and the
weight attached to any dimension.
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NOTES

1. A comprehensive survey on multidimensional poverty can be found in
Chakravarty (2009).
2. This property demands that the measure should decrease if the number of

dimensions, in which a poor person is deprived, decreases.
3. This curve is quite similar to the deprivation distribution profile proposed by

Subramanian (2009). However, two main differences can be pointed out. On the one
hand, we propose to represent this cumulative curve as a step function that is right-
continuous. On the other hand, to our knowledge, S. Subramanian does not derive
dominance conditions in his paper.
4. Among them the TIP curves proposed by Jenkins and Lambert (1997), the

poverty curves in Foster and Shorrocks (1988b), the polarization curve introduced
by Foster and Wolfson (2010), and the proposal of Shorrocks (2009) to derive
unemployment indices.
5. Bossert et al. (2009) characterize this first stage of aggregation of the

characteristics of each individual.
6. Assuming that all the dimensions are equally weighted, this intermediate

identification method is followed by Mack and Lansley (1985), Gordon, Nandy,
Pantazis, Pemberton, and Townsend (2003), and Alkire and Foster (2007) among
others.
7. This is the counterpart of what Donaldson and Weymark (1986) refers to as the

strong monotonicity axiom in the unidimensional poverty field. Zheng (1997)
discusses different types of monotonicity axioms and their relationships.
8. This principle has the same spirit as the Transfer Sensitivity Axiom introduced

by Sen (1976) as long as progressive transfers among the poverty scores make
sense. A discussion about the relationship between these axioms may be found in
Zheng (1997).
9. We follow Atkinson (1987) and adopt the weak definition of a partial ordering.

Although not all the results derived in this chapter hold for the other two levels
(the semistrict and the strict ones), similar conditions could be also obtained in these
two cases.
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APPENDIX

Proof of Proposition 2. The equivalence between (i) and (ii) follows from
the definition of FD curve. To prove that (ii) implies (iii), let us suppose
that there exists i 2 f1; . . . ; ng such that �dj �

�d
0

j for all j ¼ 1; . . . ; i � 1 and
�di4 �d

0

i. Taking m ¼ di, we find that HmðdÞ4Hmðd
0
Þ. That (iii) implies

(ii) is clear. After (iii), writing �d
0

i ¼
�di þ ð �d

0

i �
�diÞ we have (iv). That

(iv) implies (v) is straightforward. If (v) holds, since the function j1ðzÞ ¼
maxfz� �d

0

1; 0g is continuous and increasing we find that �d1 �
�d
0

1. Let
us suppose that there exists i 2 f1; . . . ; ng such that �dj �

�d
0

j for all j ¼
1; . . . ; i � 1 and �di4 �d

0

i. If we consider the continuous increasing function

j�ðzÞ ¼

1 if z � �di

ðz� �d
0

iÞ=ð
�di �

�d
0

iÞ if �d 0
iozo �di

0 if z � �d
0

i

;

8>><
>>:

we find that
P

1�i�nj
�ð �diÞ � i4

P
1�i�nj

�ð �d
0

iÞ ¼ i � 1. Then (v) implies
(iii) and the proof is complete. Q.E.D.

To prove Proposition 4 we use the following result established by
Marshall and Olkin (1979, propositions 4.A.2 and A.B.2):

Lemma 1. For any d ; d 0
2 Rn

þ the following conditions are equivalent:

(i)
P

1�i�p
�di �

P
1�i�p

�d
0

i for all p ¼ 1; . . . ; n;
(ii) d may be obtained from du by successive applications of a finite

number of T transforms of the form T1ðzÞ ¼ T1½z1; . . . ; zi�1; lzi þ
ð1� lÞzj ; ziþ1; . . . ; zj�1; lzj þ ð1� lÞzi; zjþ1; . . . ; zn� where 0 � l � 1;
and/or of the form T2ðzÞ ¼ T2ðz1; . . . ; zi�1; azi; ziþ1; . . . ; znÞ, where
0 � ao1;

(iii)
P

1�i�njð �diÞ �
P

1�i�njð �d
0

iÞ for all continuous, increasing and convex
functions j : ½0; k� ! R.

Counting Poverty Orderings and Deprivation Curves 171

http://www.mids.ac.in/mids_ds.htm


Proof of Proposition 4. From the definitions of SD curve and the
weighted adjusted headcount ratio, it is clear that (i), (ii), and (iii) are
equivalent. From Lemma 1, (iii) is also equivalent to (v).

Moreover, according to (ii) in Lemma 1, under the same hypothesis, d
may be obtained from du by d ¼ T2ðd

0
Þ, that is, by a decrement; and/or by

d ¼ T1ðd
0
Þ. Note that for l ¼ 0, T1 reduces to a permutation. For the rest

of values of l, as permutations are allowed, we may assume, without loss
of generality that zi4zj and l 2 ½1=2; 1�. Defining h ¼ ð1� lÞðzi � zjÞ40,
T1 may rewritten as T1ðzÞ ¼ T1ðz1; . . . ; zi � h; . . . ; zj þ h; . . . ; znÞ, with
zi � h � zj þ h, and T1 is the inverse of the T transformation of
(iv). Q.E.D.

Proof of Proposition 5. From Proposition 4 (iv) holds. Then it is enough
to prove that if d 0

¼ ðd1; . . . ; di þ h; . . . ; dj � h; . . . ; dnÞ with h40 and di �

dj then for any m 2 ð0; k�, Pmðd
0
Þ � PmðdÞ. If dj � m, Pmðd

0
Þ4PmðdÞ since

Pm satisfies DS. If di þ h � m4dj, Pmðd
0
Þ4PmðdÞ by MON. Otherwise,

Pmðd
0
Þ ¼ PmðdÞ by PF. Q.E.D.
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