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Abstract

In the setting of a one-dimensional legislative bargaining game, we characterize
qualified majority rules maximizing social surplus - i.e., the sum of individual
benefits. The simple majority rule maximizes social surplus when individual utilities
are tent-shaped. When the utilities are strictly concave, the surplus maximizing rule
is a strict super-majority.

1 Introduction

Democratic polities take decisions by bargaining and voting: Proposals are submitted
to the floor until one receives the favorable votes of a (super)majority. Weather the
required support is, for instance, a simple majority, a 2/3 majority, or unanimity, is not
inconsequential, as the different rules may deliver different outcomes. A natural question
is: What rules deliver maximal collective benefits? In this paper, we build on previous
results that establish the uniqueness of the equilibrium for the model of bargaining and
voting over one-dimensional policies to address this question precisely.
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This paper adds to the literature on bargaining in legislatures initiated by Baron and
Ferejohn (1989). More specifically, our paper contributes to the literature addressing
the relationship between the voting rules and the bargaining outcomes (e.g., Banks and
Duggan (2000, 2006), Cardona and Ponsati (2007, 2009, 2011), Cho and Duggan (2003),
Predtetchinski (2011)). We refer the reader to Cardona and Ponsati (2011) for a detailed
discussion of this literature.

We consider environments where policies must be selected from a continuous one-
dimensional set, where individuals have single-peaked and concave utilities, and they are
heterogeneous only in the locations of peaks. Bargaining takes place over time. At each
period a randomly selected individual makes a proposal which is approved if it receives
the vote of a qualified majority; otherwise, a new proposer is selected next period, and so
on. Assuming that individual payoffs are discounted utilities, we have proved in Cardona
and Ponsat{ (2011) that this game has a unique equilibrium.! Thanks to the uniqueness of
the equilibrium, and its explicit characterization, the welfare performance of the different
majority requirements can be assessed. Cardona and Ponsati (2011) supply sharp results
for the special case of symmetric populations: Assuming strict impatience unanimity is
the unique (ex-ante) Pareto optimal rule. However, when the population is not symmetric
the Pareto criterion is ineffective since any (super)majority may be Pareto optimal.> In
this paper we take a utilitarian approach and we examine the social performance of
the different vote quotas in terms of their delivered social surplus - i.e., the sum of the
individual utilities attained in equilibrium.

What qualified majority requirement maximizes the social surplus? To supply an
answer free of discount factor considerations, we address this question by examining the
(equilibrium) social surplus in the limit as individual impatience vanishes. In this limit,
the equilibrium outcome collapses to a unique alternative. In Proposition 1 we supply the
equation that determines this policy for each qualified majority. Building on this result,
answering our main question is a rather direct comparative statics exercise. Under simple
majority rule the median individual determines the outcome, which may be positively or
negatively correlated to social surplus depending on the utilities and the distribution of
the peaks. Sometimes it is optimal to let the median determine the outcome; but it may
be that a super-majority that allocates bargaining strength towards the extremes delivers
more surplus. The precise answer depends mostly on the specification of the utilities.

When individual utilities are tent-shaped (that is, when the cost of selecting an alter-
native different from the peak is linear in its distance to the peak) the simple majority
rule delivers the first best policy. The reason is simple: Under tent-shaped utilities so-
cial surplus increases as we move towards the median regardless of the distribution of
peaks. L.e., the policy that maximizes surplus, the first best policy, always coincides with

! Existence of a Stationary Subgame Perfect Equilibrium follows by the results of Banks and Duggan
(2000, 2006).
2See Examples in Cardona and Ponsati (2011), p. 72.



the median. Thus, simple majority (and generically no other rule) delivers the first best
policy.

When the utilities are strictly concave (the cost of selecting an alternative different
from the peak is strictly convex in the distance), the surplus maximizing rule is a strict
super-majority. With concavity, the social surplus does not necessarily increase as policies
approach the peak of the median. Then, under distributions of peaks satisfying very mild
regularity conditions, the optimal rule is a strict super-majority. Although the first best
policy might not be attained in general, for the case of quadratic utilities we can prove
that a super-majority weaker than unanimity delivers the first best - which is the peak of
the average individual.

In order to fit the size of optimal quotas for strictly concave utilities, a detailed speci-
fications of the peaks distribution and explicit computations are necessary. We carry out
this computations for quadratic utilities and a rich set of parametrizations and the results
suggest that the optimal consensus requirement is always a rather demanding quota rule
that lies in the interval [0.80,0.95].

The remainder of the paper is organized as follows. Section 2 presents the model
and describes the unique bargaining outcome. In section 3 we present our results about
the surplus-maximizing quota rules. Section 4 describes the simulation exercises that
complement our theoretical results. The Appendix contains proofs and simulation results.

2 Bargaining under (super)majority decisions: The
unique outcome

The basic set up is that of Cardona and Ponsati (2011). A group of n individuals, must
collectively select an alternative within the one dimensional policy space [0,1]. They
negotiate over discrete time, t = 0,1,2.... with a procedure that combines alternating
proposals and voting. The negotiations begin at ¢ = 0 and proceed as follows: At each
t > 0 an individual is selected at random (all with equal probability) to make a proposal.
Then, she chooses an alternative in [0, 1] and all other players, sequentially in any fixed
order, reply with acceptance or rejection. A collective decision under qualified majority
q € [1/2,1] requires the support of a subset S € {T' C I : |T| > nq} of the players. Thus,
when at least ng— 1 responders accept the proposal, it is implemented and the game ends.
Otherwise, the game moves to t + 1, a new proposer is selected, and so on.

Upon a collective decision that selects alternative x € [0, 1] at date ¢, individual i
obtains utility ¢'u (z,7) where 6 € (0,1) is the common discount rate. Utilities satisfy,
u(x,i) = v (]i — z|) where v is twice differentiable for any |i — x| > 0, decreasing and



concave, with v(0) > v(1) > 0. Disagreement yields zero utility to all agents.

The different locations of the peaks are the only source of heterogeneity within the
population. Each ¢ € I denotes both a generic individual and the location of her peak,
so that all the information regarding heterogeneity within the population is embedded in
the cumulative distribution function of peaks, denoted by F'. Since we are interested in
set-ups where n is large, it will be convenient to describe a population with a continu-
ous cumulative distribution function of peaks F', with a positive density f on (0,1). A
population is symmetric if f(i) = f(1 — i) for every i € [0,1]. The median policy x™ is
the alternative that coincides with the peak of the median individual; i.e., 2™ satisfies
F (™) = 1/2. The mean policy z¢ is the alternative that coincides with the expectation
of individual peaks; i.e., 2¢ = fol xf (z)du.

A stationary subgame perfect equilibrium (SSPE) is a profile of stationary strategies
that are mutually best responses at each subgame. Cardona and Ponsati (2011) charac-
terize and prove the uniqueness of an SSPE for each specification (n, q, F,v,d). An SSPE
is associated to a unique profile of expected utilities; agents exploit the impatience of
others and propose the alternative which is closest to her peak and it is approved by a ¢
majority. Thus the unique SSPE is fully characterized by a unique approval set; i.e., the
set of alternatives that in equilibrium receive the acceptance of a ¢ majority. The bounds
of the approval set depend on the range of proposals that are individually acceptable to
the boundary players, individuals [ (¢) and r (¢) that constitute a (tight) ¢ majority with
all the individuals on their right and on their left, respectively; i.e., F(I(q)) = 1 — ¢
and F(r(q)) = q. When the agents’ impatience vanishes, the advantage of the proposer
also vanishes and the approval set collapses to a singleton. This asymptotic equilibrium
outcome x(q) is the unique alternative at which the (marginal) deviations induced by the
proposers with peak i < z(q) weighted by their mass F(z (¢q)), are exactly compensated
by the (marginal) deviations induced by proposers with peak ¢ > x(q), which occur with
the complementary probability. Proposition 1 supplies the equation that characterizes
this unique asymptotic outcome.

Proposition 1 UNIQUE BARGAINING OUTCOME. Consider a sequence of environments
(q, F,v,0), where 8y — 1. In the limit, as o, — 1, the SSPE approval set converges to a
singleton x (q), where x (q) is the unique solution to

w1 |y M @)

Kp(z,q) = F (2) u(z,1(q)) u(z,7(q))

~0. (1)

Proof. See Cardona and Ponsati (2009) or Predtetchinski (2011). m

3Note that the right and left derivatives with respect to z, u; (z,i) and u; (z,4), are always well
defined, and that they coincide when i # x.



A unique equilibrium outcome z(q) yields a unique payoff u(x(q),) for each i € I,
which in turn induce collective benefits. Equipped with Eq. (1), we are ready to address
the comparative statics for z(¢) and its induced individual and collective benefits with
respect to ¢. We turn to this exercise next.

3 (Super)majority rules and social surplus maximiza-
tion

The social surplus associated to policy x is the sum of individual utilities delivered by x:

A first best policy x/* is an alternative that maximizes S(z). When the maximization of
social surplus is the welfare-maximizing criterion, the best conceivable performance for
W (q) would be delivered by a first best rule - i.e., a quota rule ¢/ such that z(q/%) = 2/°.

It is trivial to check that in the special case of symmetric populations, Eq. (1) yields
x* = 2™ = 1/2 for all q. Moreover, it is immediate that symmetry implies that the median
policy ™ (which coincides with mean policy) is also the first best policy. Thus, in this
special case any ¢ is (trivially) a first best rule. However, this result is not robust to
perturbations of I’ away from symmetry. For an asymmetric F' the bargaining outcome
varies with ¢, and thus the value of ¢ must be fine tuned to attain the first best policy.
The following simple examples illustrate this point.

Example 1 Consider a population distributed according to a triangular density function

2% 0<x<4@g

Jr(w;d) = { 2020 g < p <1

and tent-shaped utilities u(z,i) = 1 — |z — i|. Figure 1 displays equilibrium outcomes x(q)
and the first best policy for parameters 6 € {0.7,0.9}.

4 A property of the function K (z,q), which is used to derive the uniqueness result, is that it is strictly
decreasing in x (see Lemma 4.3. in Predtetchinski, 2010).
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Figure 1: Tent-shaped preferences

Example 2 Consider a population distributed according to a triangular density function
and quadratic utilities u(x,i) = 1 — (x —i)%. Figure 2 displays equilibrium outcomes z(q)
and the first best policy for parameters 6 € {0.7,0.9}.
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Figure 2: Quadratic preferences

These examples show three things: First, there exists one (and only one) ¢ that delivers
the first best policy. Second, when preferences are tent shaped, then the simple majority
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delivers the first best policy. Third, under quadratic preferences the first best rule is a
strict super-majority, which is smaller than unanimity. In particular, the first best rule
is around 0.9. In the remainder of this section, we show that these observations apply in
general under very mild regularity properties of the population.

Population Regularity Properties A population F' with density f satisfies

1. Asymmetry Regularity (AR) if (a) there exists ¢ > 0 such that f(z™ —y) #
fla™ +y) for all y € (0,¢), and (b) f(2™ + y) — f(z™ — y) changes sign at
most once for y > 0.

2. Mean-Median Regularity (MMR) if either (a) 2™ < z¢ < 1 — F(2°) or (b)
™ > x> 1— F(xf).

AR (b) is a weakening of the condition provided by Groeneveld and Meeden (1979) that
guarantees that a distribution with a unique mode M satisfies the well know mean-median-
mode inequality, that either z¢ < 2™ < M or z°¢ > 2™ > M, with strict inequalities
whenever ™ # M.5 AR and MMR are independent mild conditions that hold for most
common specifications of bounded distributions.® We will rely on AR or MMR to show
that the features displayed in the examples are general.

We first show that under tent-shaped utilities the simple majority is optimal.

Proposition 2 OPTIMAL SIMPLE MAJORITY. Consider an asymmetric population F'. If
u(z,i) = a—blz —i| then ¢/* = 1/2. Moreover, if F satisfies AR, then (i) no other quota
delivers the first best if ™ # 1/2 and (ii) both, simple majority and unanimity, uniquely
deliver the first best policy whenever x™ = 1/2.

Proof. Since z/° maximizes

S(:c):a—b/o w — i f (i) di.

The first order condition that characterizes 2/* is F/(x) = 1— F(z), and therefore /° = 2™.
Since z(1/2) = 2™ for all F, ¢ = 1/2 is a first best rule. If ™ = 1/2, then z(1) = 1/2 as
well, and the unanimity rule also delivers the first best. See Lemma 2 in Appendix A for
the proof that if F satisfies AR then no other rule delivers ™. m

5Specifically, their condition demands AR (b) and that f(M +y) — f(M — y) does not change sign.
Van Zwet (1979) shows that a weaker sufficient condition guaranteeing M < z™ < z° is F(z™ + z) +
Fz™ —=x) <1.

6Both conditions hold in Triangular, Two-block, Beta and Standard Two-Sided Power distributions,
and for most of Kumaraswamy distributions.



The optimality of the simple majority does not extend beyond the tent-shaped spec-
ification. Specifically, when preferences are quadratic MMR assures that the rule maxi-
mizing social surplus is a strict super-majority weaker that unanimity which, in addition,
is the first best rule. Furthermore, for general strictly concave utilities, AR assures that
the optimal rule is a strict super-majority.

Proposition 3 OPTIMAL SUPER-MAJORITIES. Consider an asymmetric population F'.

1. Ifu(z,i) = a —b(x—i)*, a > b and F satisfies MMR, then x(q) = x* = z¢ for
some q € (1/2,1).

2. If utilities are strictly concave and F satisfies AR, then the rule that mazimizes
social surplus is a strict super-magority. Moreover, if x™ = 1/2 this majority is
smaller than unanimity.

Outline of the Proof.

1. For quadratic utilities, u(z,7) = a — b(z — )%, a > b, the first order condition
for social surplus maximization is fol(x —4)f (i) di = 0, which implies that z/* =
fol if (i) di = z°. The strict concavity of u combined with MMR assure the existence
of a unique ¢ € (1/2,1) such that z(q) = z°.

2. Given F' that satisfies AR, an auxiliary distribution F with symmetric density f
can be constructed such that (a) F' has median ™, and (b) f and f cross only
once. For population [ the first best policy is 2™, and ¢ = 1/2 is the first best rule.
The argument then relies on the strict concavity of u and the first order stochastic
dominance relation between F' and F'.

See Appendix A for the detailed arguments.

4 Simulations

Proposition 2 provides a precise characterization of the optimal rule for tent-shaped utili-
ties. Likewise, for strictly concave preferences, Proposition 3 establishes that the optimal
rule is a strict super-majority weaker than unanimity. However, it gives no hint about
its precise size. To this end, we carried out numerical simulations computing the optimal
super-majority rule for quadratic utilities u(x,i) = 1 — (z — i)? and extensive parame-
trizations of 4 natural specifications of F': Two-block,Triangular, Beta and Kuramaswamy
distributions. The results of these computations are in Appendix B.
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Although optimal rules depend (continuously) on the concavity of the preferences, the
size of the optimal super-majority grows quickly when increasing this concavity. Figure
3 displays this dependence in an example.

0.95

0.9+

0.85

0.8

Figure 3: First best rule as a function of k for
populations distributed according to a beta (2,7),
and utilities given by u = 1 — |z — i|".

Moreover, our extensive computations confirm the features of Example 2: Under quadratic
preferences, first best rules are large. As shown in the Appendix B, with slight differences
between populations, the first best rule ranges from 80% to 95%. Surplus maximization
requires a super-majority in order to avoid that extreme players (those who suffer high
"transportation" costs) are completely excluded from the bargaining. On the other hand,
since the mass of extreme agents is relatively low, their influence must be limited. Thus,
the optimal rule is lower than unanimity. It is worth to note that we did not find a
clear monotonicity relationship between the mass of extreme players, measured in terms
of skewedness of the distribution, and the optimal rule.” This is due to two effects that
appear when increasing the skewedness of the population. First, the first best policy
moves away from the increased tail. Second, the boundary players also move away from
the increased tail, so does the bargaining outcome. Hence, the total effect on the optimal
rule due to an increase in the heterogeneity is unclear, as it depends on the relative

"The skewness is a measure of the asymmetry of the probability distribution of a real-valued random
variable. Although there are many measures, the skewness of a random variable z is usually taken as the

third standardized moment, defined as F [(T_Tte)g], where o is the standard deviation.



size of each effect. In particular, when changes in the bargaining outcome exceed (are
smaller than) the variation in the optimal policy, then the optimal rule must be increased
(reduced) accordingly, in order to weaken (strengthen) the bargaining power of the agents
in the largest tail of the distribution.

Our computations examine first the optimal rules under a simple one-paramenter (the
median) specification where densities are constant over two-blocks with the same mass of
players each. For this specification increasing the skewedness - equivalent to decreasing
the median - of the population, decreases the optimal super-majority. Starting from the
optimal rule in any given population, the change in the optimal policy due to an increase
in the skewedness always exceeds the corresponding change in the bargaining outcome.
Hence, the super-majority required must be weaker in order to decrease the bargaining
power of agents in the largest tail. However, these considerations are nuanced in the other
specifications for which we have computed optimal rules. Under Triangular distributions,
for example, the difference between the change of the optimal policy and the change in
the bargaining outcome due to an increase in the skewedness of the population depends
on the initial distribution. Thus, the optimal quota is not monotone in the skewedness.

Things are even more complex, when considering of Beta distributions. These distri-
butions are characterized by two parameters a, 5 > 0, and offer a very flexible family of
specifications. Roughly speaking, the absolute value of the difference between the para-
meters is positively related to the skewedness of the density function. Now, when a < f3,
the skewedness might be increased either (i) by decreasing o while maintaining 3 fixed
or (ii) by fixing a and increasing (3. Moreover, our computations show that the optimal
super-majority rule decreases in case (i) and it increases in case (ii). Thus, while large
super-majorities are obtained in all cases, they are not monotone in the skewedness. As an
illustration, consider the beta distribution with parameters (o, 3) = (3,6). The optimal
rule is 0.9146. If the skewedness is increased by reducing a to 2 then the optimal rule
decreases to 0.9134. If, instead, the skewedness increases by changing (5 to 7, the optimal
rules goes up to 0.9163.%

Finally, we carry out computations for Kumaraswamy distributions, which (unlike the
previous specifications) do not necessarily satisfy neither AR nor MMR. For example (see
Table 4 in the Appendix), the distribution F (z;3,6) is such that z¢ < 2™ < M < 1/2,
which implies that (i) f(z™+y)— f(2™—y) changes sign twice, and (ii) 1— F(z¢) > 1/2 >
x™ > x°. Despite the fact that the sufficient conditions of Proposition 3 do not apply, the
computed optimal rules are very similar to those obtained with the beta distributions.

81n the light of this example, one could think that the important variable in detemining the size of the
optimal rule might be the sum of a and b, which is related to the variance of the distribution. However,
it can be easily checked that this is not the case.

10



5 Final remarks

In the context of a multilateral one-dimensional bargaining game, we analyzed the perfor-
mance of alternative (super)majority rules in achieving outcomes that maximize collective
surplus. We showed that simple majority is generically the unique optimal rule only when
the preferences of the agents are tent-shaped. Moreover, this is independent of how the
population is distributed. However, under natural specifications of the population and
strictly concave preferences, the surplus-maximizing quota rule is shown to be a strict
super-majority. This super-majority is smaller than unanimity, and it allows to achieve
the first best under the additional hypothesis of quadratic preferences. Although in gen-
eral our results do not determine how strong the surplus-maximizing majority requirement
should be, numerical simulations show that when preferences are quadratic the optimal
rule is always higher than ¢ = 0.8 and smaller that ¢ = 0.95.

We adopted an utilitarian approach to determine the social performance of the differ-
ent qualified majorities. An alternative welfare approach would be to consider a Rawlsian
social welfare specification. In our setting, this would mean that, regardless of the dis-
tribution of peaks, the socially optimal policy is 1/2, which, not surprisingly, would be
obtained in symmetric populations. We cannot characterize the Rawlsian optimal rule
in general. However, in asymmetric populations characterized by either a concave or a
convex distribution function of peaks, it can be show that a Rawlsian first best rule does
not exist, since there is no ¢ delivering x(q) = 1/2. (See Proposition 4 in the Appendix

A).
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A Proofs

Induced Symmetric Densities

As a tool to examine the equilibrium outcome of asymmetric populations we will rely
on the comparison with an auxiliary symmetric distribution constructed as follows. Given
a positive density f on (0,1) we define its Induced Symmetric Density f as follows

-~ ~

1. If f is such that 2™ < 1/2 then f(x) = f(z) for z € [0,2™], f(z) = f(22™ — x) for

-~

x € [2™,22™], and f(z) =0 for x € [22™, 1].

o~ ~

2. If f is such that 2™ > 1/2 then f(z) = f(z) for x € [2™,1], f(x) = f(22™ — z) for
x €[l —2x™ 2™, and f(x) =0 for x € [0,1 — 2z™].

Note that condition AR (b) is equivalent to requiring that f and f cross only once.

~ ~

Consider for instance ™ < 1/2 so that f(x) = f(z) for all x € [0,2™], f(z™ 4+ y) =

~

f(z™ —y) for y € (0,2™] and f(z) = 0 for z € [22™,1]. Thus, f and f can cross only at
x € (z™,22™]. Since f(z™ —l—:g\) —fl@™+y) = f(a™+y)— f(z™ —y) for any y € (0,2™],
then AR implies that f and f cross only once.

The function J? is constructed either by transferring mass from one of the tails of
the distribution towards the median or vice-versa. As an illustration, in Figure 4, f is
constructed from f by replacing agents with higher peaks with agents with lower peaks
(from A to B). Note that in this example, F(z) > F(z) for all x € [0, 1].

12
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Figure 4.

A direct implication of AR (as f andf cross only once) is a first order stochastic
dominance relationship (denoted by >(;y) which, in turn, determines the relationships
between the boundary players stated in the following Lemma:

Lemma 1 If F satisfies AR then

~

1. If 2™ < 1/2 then f =@ f, (q) =1(q) andr(q) >7(q) for all g € (1/2,1).
2. If 2™ > 1/2 then f -y [, 1(q) < ( ) and 1 (q) =7 (q) for all g € (1/2,1).

3. Ifa™ = 1/2 then either (Z)f>— F.l(q) =1(q) andr (q) > 7(q) forallq € (1/2,1),
or (zz)f>(1) f,l(q) = 1(q ) andr( ) <7 (q) forallqe (1/2,1).

where | (q) and 7 (q) denote the boundary players under the induced symmetric dis-
tribution.

Proof. Consider 2™ < 1/2. As f(z) = 0 < for all z € (22™,1), AR implies that
generically there exists z such that f (z) > f(z) for all z € (2™, 2) and f (z) < f(z) for
all z € (z,1), while ]/”\(1:) = f(x) for any z € [0,2™]. Hence, F (z) = F (z) for all z < 2™,
which implies I (q) = 1(¢), and F(z) > F(z) for all # € (™, 1), implying 7 (¢) > 7(q)
for all ¢ € (1/2,1). This proves (1). A similar argument will prove case (3). In case that

= 1/2, by AR there exists z such that either (i) f(a:) > f(z) for all z € (2™, 2) and

f( ) < f(z) for all z € (z,1), or (i )f( ) < f(z) for all x € (2™, z) and f (z) > f(z) for
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all z € (2,1). In case (i), the previous argument applies; and in case (i), F(z) = F(z)
for all z < 2™ and F(x) < F(x) for all z € (2™,1) so l(q) =1 (q) and 7(q) > r(¢q). m
Note that AR implies that ¢ # 2™, as the mean and the median of the induced sym-

metric distribution f coincide and there is a first order stochastic dominance relationship
between f and f.

Lemma 2 Under tent shaped utilities, if F' satisfies AR, only ¢ = 1/2 or ¢ = 1 can be
first best rules.

Proof. We must show that under AR no ¢ € (1/2,1) delivers 2. To see that, note that,
by Lemma 1, either (i) f > f and [ (¢) = [ (¢) and r (q) > 7 (q) or (ii) f >y f with
I(q) <1(q) and r(q) = 7 (q) for any ¢ € (1/2,1). Moreover, it is easily checked that

U (2,7) increases in |z — i|.

u(z, 1)
Hence, when f =) wae obtain that
Kp (2™, q) > Kz (2™,q) = 0 for any g € (1/2,1),
where the last equality comes from the fact that fis symmetric. This implies that there
is no q € (1/2,1) such that z(q) = 2™ = x/°.
Similarly when fA>—(1) f we obtain Kp (2™, q) < Kz (2™,q) =0 for all ¢ € (1/2,1).
To see that (1) # 2™ when 2™ # 1/2 just note that in this case
ugz (™, 0) ‘ ug (™, 1)
u(z™, 0) u(z™, 1)

Y

so that Kp (z,1) #0. m
Proof of Proposition 3 .

Part 1. For quadratic utilities, u(x,7) = a—b(xz—1i)?, a > b, the first order condition for
social surplus maximization is fol (x—1i)f (i) di = 0, which implies that 2/* = fol if (4)di =

x€.

Strict concavity of u implies that the function

B(xz,q) = F(x)us (2,1(q)) + [1 = F ()] us (2,7 (q))
is continuous in x and ¢ and decreasing in z.

Denote by 7 the (unique) solution to B(z,1) = 0. By MMR either 2™ < z¢ < 1—F(z°)
or £ > x¢ > 1 — F(2°). Assume, w.l.o.g., the first. Note first that it implies 2™ < 2¢ <
1/2. Thus, B(z™,1) > 0. Moreover, z (1) solves

ug (z,0)

H-F @)t <,
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implying that = (1) € (™, 1/2) and therefore u(z (1),0) > u(z (1),1). Thus,

B(z(1),1) = F (2 (1)) uy (x (1),0) + [1 = F'(x (1) uz (x(1),1)
< Kp(z(1),1) =0,

which implies that = € (™, z(1)).
Moreover, B(z¢) = —F(x¢)2bz¢ + [1 — F(2°)] 2b(1 — z°) =
so that 2™ < z¢ <7 < z(1
ge(1/2,1).
A similar argument applies if ™ > z¢ > 1 — F(z), in which case it must be that
€ > 1/2.

Part 2. We prove the result for setups where ™ < 1/2. The symmetric argument
applies when z™ > 1/2.

2b[1 —a°— F(z°)] > 0
). Therefore, by continuity of x(q), x(q¢) = z¢ for some

Assume first ™ < 1/2. By Lemma 1 f > ]/C\ Moreover, since utilities are strictly
concave (i.e., Qu, (z™,1) /0i > 0 for all i > 2™), we have that

m 1

Swwif%@%nmm_ﬁz%@%umm+éuwwwﬂmi

m

- " ) Fli)di + / "y (1) fli)di = 0,

m

because x™ is the first best allocation under f Hence, social surplus is increasing at z™,

implying 2/ > 2™. Moreover, as K (z,q) decreases in z and

(™, 0)  uy (2™, 1)
+

z™,0) u(z™, 1)

1 [u,

it must be that z(1) > ™. Since x (¢q) is continuous in ¢, social surplus is maximal at
some ¢ € (1/2,1].

If 2™ = 1/2 there are two possibilities: either f > forf =) f. Assume, w.lo.g.,
the first case. As previously, dominance implies z/* > z™. Moreover, [ (q) = [(q) and
r(q) > 7(q). Thus,

Kr(2™,q) > Kp (2™, q) = 0 for any ¢ € (1/2,1)

which, as Kg (2™, q) is a decreasing function of x, implies that z(q) > z™. Moreover, as
x(1) = 2™, the rule that maximizes social surplus must be stronger than simple majority
and weaker than unanimity.

Proposition 4 If F' is concave (resp. convex) then there is no q such that x(q) = 1/2.

15



Proof. We prove the statement for F' concave. The argument for F' convex is analogous.

We first show that —I'(q) < 1’(¢). By definition (¢) = F~'(1 —¢) and r (q) = F~'(q).
If F is concave, then H = F~! is convex. Thus, since q € [0.5, 1] we obtain

—l'(q)=H (1-q <H'(9) =7"(q).

Assume there is ¢ such that x (¢) = 1/2. Le.,

That is,
Cug (1/2,1(q))
uw(1/2,1(q)) _ 1—F(1/2)

(q)
u, (1/2,7(q)) F(1/2)
u(1/2,7(q))

u (ZL',Z)

increases in
u(x, 1)

Since F' is concave we have that F'(1/2) > 1/2. Moreover, since

|x — 4|, it must be that

r(q) — 0.5 > 0.5 —1(q) < r(q) + l(q) > 1.
However, F~! is a convex function with £~ (0) = 0, and F~! (1) = 1. Thus, r(q) =
F~1(q) <qandl(q) = F1(1—-q) <1-—gq, contradicting r(¢q) +1(¢) > 1. =
B Simulations

Recall that under quadratic utilities, the first best policy is the mean of the peaks z°.
Thus, the optimal rule is ¢ such that Eq. (1) yields z(¢) = 2. Our numerical evaluations
require the use of MatLab for the Beta and Kuramaswamy distributions. In this case,
intervals of size A = 1/10000 are used.

16



B.1 Two block distributions

77 £27
P ]
2T | 2+
| ]
1+ | 1
| 1 :
| 1 |
0 ! : : : |0 : : |
00 02 04 06 08 10 00 02 04 06 08 10
X
Figure 5: f; (x;0.2) Figure 6: f;, (x;0.4)

The two-block density and cumulative distribution functions, defined over [0, 1], are given
by
w 0<a<d . 0<z<0

) . 3 . _ 20

where 2™ =6 € [0,1], z° = (1 +26) /4,1 (q) = 20(1—q) and r (¢) = 0+ (q — 3) 2(1—6).
The first best rules, for different values of 6 € (0,1/2), are presented in Table 1.

0 =am 2¢=2l q’? l r

0.1 0.3 0.82332 0.035336 0.68198
0.2 0.35 0.83383 0.066468 0.73413
0.3 0.4 0.84769 0.091386 0.78677
0.35 0.425 0.85640 0.10052 0.81332
0.4 0.45 0.8667  0.10664 0.84004

0.45 0.475 0.87905 0.10886 0.866 96
0.49 0.495 0.89081  0.10701 0.88863

Table 1.
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B.2 Triangular distributions

25T 25T
f 1 f ¢
20+ 20+
15+ 15+
10+ 10+
05+ 05+
0.0 —t 1+ 0.0 —t
00 02 04 06 08 10 00 02 04 06 08 10
X X
Figure 7: fr(x;0.65) Figure 8: fr (z;0.8)

The density and cumulative distribution functions of the peaks are given by

22 0<z<0 T, 0=sz<d
) — 0 == 10) = Gow? -
fT(%d)—{ (1:2) 0 <r<l. and F(m,g)—{ 1— (11—}9) 0<z<1

We restrict, w.L.o.g., to the case where 0 € (1/2,1]. In these cases, 2™ = (6/2)"/

and 2¢ = (140)/3. Note that 2° = (1+6)/3 < 2™ = (/2)"> < 6. Moreover,
1(q) = /(1 —q)bforallg,r(q)=+gfifg<Oandr(q) =1—+/(1—¢q)(1—0)if ¢ >0,

The first best rules, for different values of 6 € (0,1/2), are presented in Table 2.

0 x™ z¢ = zf? q’? [ r
0.6 054772 0.53333 091765 0.22228 0.81851
0.7 059161 0.56667 0.89325 0.27336 0.82104

0.8 0.63246 0.6 0.88253 0.30656 0.846 72

09 0.67082 0.63333 0.88533 0.32097 0.89263

0.95 0.6892 0.65 0.88758 0.32682 0.89376
Table 2.
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B.3 Beta distributions

Figure 9: fp(z;2,5) Figure 10: fp(x;4,5)

The Beta density and cumulative distribution functions, defined over [0, 1], are parame-
trized by two positive parameters, o and b, and are given by’

2711 — x)/g*l . B 1 o 51
B d) andFB(x,a,ﬁ)—m/o 22 N1 = 2)  d

fB(x;Oéaﬁ) =

with )
B(a, p) = / 227H1 = 2)P 2.
0
While the median has no explicit form, for any «, 5 the mean is given by ¢ = o /(a+/f),

and the mode is (« — 1) /(a+ 8 — 2).

The first best rules, for different values of «a, 3, are presented in Table 3.

% > 1 and b > 1 guarantee the single-peakedness of the density function.
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Q x™ z¢ = 2f? q/® l r
0.2063 0.25 0.8989 0.0349 0.5341
0.3857 0.4 0.9028 0.1403 0.6829
5 0.4487 0.4545 0.9048 0.1922 0.7266
0.1591 0.2 0.9053 0.0246 0.4453

0.3138 0.3333 0.9075 0.1074 0.5930
0.4214 0.4286 0.9100 0.1926 0.6773
0.4636 0.4667 0.9111 0.2315 0.7074
0.1294 0.1667 0.9093 0.0188 0.3812
0.2644 0.2857 0.9109 0.0867 0.5232
0.3641 0.375 0.9126 0.1606 0.6094
0.4401 0.4444 0.9142 0.2281 0.6688
0.4718 0.4737 0.9149 0.2589 0.6921
0.1091 0.1429 0912  0.0152 0.3331
0.2285 0.25 0.9134 0.0726 0.4676
0.3205 0.3333 0.9146 0.1376 0.5533
0.4517 0.4545 0.9169 0.2541 0.6605
0.4769 0.4783 0.9174 0.2795 0.6796
0.0943 0.125 0914 0.0128 0.2957
0.2862 0.3 0.9163 0.1203 0.5064
0.3551 0.3636 09171 0.1763 0.5677
0.4595 0.4615 0.9188 0.2742 0.6529
0.4805 0.4815 0.9192 0.2956 0.6692

ot

ot

ot
N I 7700 OO O OUL UL UL ULk W ww ™

(@)

Table 3.

B.4 Kuramaswamy distributions

The Kumaraswamy density and cumulative distribution functions are defined by
fr (x50, 8) = aBx® (1 — :L‘a)ﬁfl and Fig (z;0,0) =1—(1 — xo‘)ﬁ, respectively, o, 5 > 0.

This distribution resembles to the Beta distribution. In particular, if z,5 is a Ku-
maraswamy distributed random variable with parameters o and 3, and y; 3 denotes a
Beta distributed random variable with parameters 1 and /3, then one has that z, 3 = yi/ﬁa.

As a comparison, in Figure 11, displays population distributed according to fx (x;2,8)
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and a population distributed according to fp (x;2.7,6).

Figure 11: fx (;2,8) (solid) and fg (x;2.7,6)
(dash).

The first best rules, for different values of «, 3, are presented in Table 4.

M ™ xf =gl g’ l r
0.3333 0.3598 0.3694 09132 0.1341 0.6219
0.3015 0.3303 0.341 0.9146  0.1215 0.5800
0.2773 0.307  0.3183 0.9158  0.1117 0.5457
0.2582 0.2881 0.2995 0.9168  0.1039 0.5168
0.5228 0.5059  0.5007  0.9026 0.2727 0.7194
0.4900 0.4778 0.4743 0.8973 0.2616 0.6810
0.4641 0.4551 0.4528  0.8871 0.2570 0.6445
0.4430 0.4362 0.4347  0.8669 0.2605 0.6063
0.6304 0.5998 0.5884  0.9127 0.3668 0.7882
0.6100 0.5747 0.5648 0.91282 0.3505 0.7603
0.5773 0.5541 0.5454 0.91285 0.3373 0.7365
0.5577 0.5367 0.5288 0.9128  0.3263 0.7160
0.6988 0.6644 0.6504 0.9164 0.4442 0.8289
0.6729 0.6420 0.6294 0.91677 0.4281 0.8056
0.6518 0.6236  0.6119  0.9170 0.4149 0.7856
0.6342 0.6079 0.5970 09172 0.4039 0.7682

U O O OB i R R W W W WD NN N
0 O U0 -3 U0 I O U0 I O O

Table 4.
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