
Unsupervised time-event probabilistic classification

using large panels of time series *
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Abstract

This work presents a general framework for partitioning a time span into meaningful, non-

overlapping segments using time series datasets characterized by a large cross-sectional dimen-

sion. These datasets commonly exhibit complexities and challenges such as non-linearities,

structural breaks, asynchronicity, missing data or significant outliers that hamper data analysis

and modelling. Aiming at accurate time-event classification and change or breakpoint detec-

tion in this setting, our proposal integrates three distinct components into a unified approach:

symbolic analysis, compositional data analysis, and Markov-switching time series modeling. A

comprehensive Monte Carlo simulation study is conducted to assess the performance of the

method, demonstrating exceptional robustness across diverse scenarios. Moreover, its use in

real-world applications is illustrated through two economic examples: (i) identifying recurrent

recession and expansion regimes in the US economic cycle; and (ii) dating change points to high

volatility episodes in the US stock market.
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1 Introduction

Event classification in time series involves partitioning time calendars into segments that repre-

sent distinct events or states, identifying critical change or breakpoints which correspond to shifts

between different states. Determining the change points of the partition enables a deeper under-

standing of complex temporal patterns and assists in deploying a proactive mechanism to anticipate

and respond to critical events and transitions.

Without aiming to be exhaustive, time-series event classification has been employed across

various contexts. Thus, Liu et al. (2018) used it in clinical decision support systems, Reeves et

al. (2007) for detecting climate changes, Küchenhoff et al. (2021) to monitor disease outbreaks

in public health, or Lévy-Leduc and Roueff (2009) for network anomaly detection. Similarly,

in economics and business, time-series event classification aids policymakers in monitoring key

economic indicators such as exchange rates dynamics (Engel and Hamilton, 1990), real interest

rates (Garćıa and Perron, 1998), and business cycles (Camacho et al., 2022). In finance, Jorda et

al. (2011) and Barassi et al. (2020) identified episodes of global financial instability and change

points in correlation structures, respectively. Additionally, Ranjan et al. (2018) showcased its

utility in monitoring product quality in manufacturing, and Pourhabibi et al. (2020) in anomaly

detection techniques for identifying fraudulent activities.

Given that practitioners often grapple with the challenge of event classification when labeled

time series data are lacking, this work primarily focus on unsupervised classification. Time-event

classification techniques involve algorithms that detect local minima and maxima within the time

series data (Bry and Boschan, 1971), sequential change detection algorithms (Tartakovsky et al.,

2014), minimizing cost functions over possible numbers and locations of change points (Killick et

al., 2012), identifying latent discrete state variables that indicate regimes from which particular

observations are drawn (Chib, 1988, and Hamilton, 1989), or handling kernel densities or rank

statistics (Csörgö and Horváth, 1988).

These unsupervised methods encounter challenges that impact their effectiveness and reliability,

many of which are outlined in Gupta et al. (2024). Key issues include sensitivity to assumptions

such as stationarity, normality and independence of observations. Ad hoc constraints are some-

times required to ensure meaningful turning points, but slight deviations from assumptions can

lead to inaccurate results. Furthermore, optimizing hyperparameters such as window size, penalty

terms, or significance thresholds for some methods can be challenging; particularly in the absence

of labeled data in at least part of the sample. Moreover, recent technological advancements have fa-

cilitated the analysis of vast collections of time series data, enhancing the richness of the inferences

drawn from them. Nevertheless, the use of larger datasets introduces two additional challenges

in empirical applications. Firstly, they notably increase the risk of issues such as non-linearities,

structural breaks, missing data or outliers. Secondly, certain methods cannot cope with the in-

creasing computational burden, then restricting scalability to real-time or high-dimensional data

analysis.

We contribute to this literature with a novel time series event classification method that builds

on latent class models, introducing an unobservable event indicator variable that represents tempo-

ral segments in a timeline. This is coupled with a large set of observable time series characterized
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by a common dynamics which captures the characteristics of those segments. The goal is to cate-

gorize the distinct events occurring in each segment and identify the transitions between them by

inferring the event indicator variable based on the observed patterns in the time series.1

To address the data issues typically found in large datasets, we apply a symbolic representa-

tion so that the analysis of the dynamics of the time series is simplified to evaluating a model-free

sequence of symbols which, as suggested by the findings of Collet and Eckmann (2009), compre-

hensively captures the behavior of the time series.2 Specifically, assuming that each event can be

associated with high relative frequencies of some disjoint group of the potential set of symbols, in-

ferring the unobserved event indicator variable involves tracking the evolution of the compositional

transformations of these frequencies.3 In addition, the event indicator variable is modeled as a

discrete-time first-order Markov chain with a specified number of distinct regimes, with transition

probabilities that may be constrained to ensure specific transitions. To estimate the probabilities

of time t belonging to a particular regime, we rely on the approach suggested by Hamilton (1989).

Through a comprehensive Monte Carlo simulation study, our method demonstrates outstanding

performance and robustness across various scenarios. These include the cases of missing data,

outliers, structural breaks and time series asynchronicity. Thus, the simulation exercise shows

that varying proportions of missing data or outliers had minimal impact on classification accuracy,

especially when regimes were clearly distinct. Furthermore, the method exhibits notable prowess

in detecting structural breaks, particularly when there is a substantial difference between regimes

and low data variability. Finally, asynchronicity surrounding transition periods poses a significant

challenge, potentially hindering performance. However, this issue is easily addressed by introducing

a dedicated regime for the transition periods, leading to significant improvements in both turning

point detection and regime classification.

Leveraging two empirical cases in the economic context, we showcase the practical value of our

unsupervised time-event probabilistic classification method for large panel time series analysis. In

the first application, we demonstrate its effectiveness in dating the United States (US) national

reference cycle using a rich dataset of coincident indexes for all 50 states. These are sourced

from the Federal Reserve Bank of St. Louis and derived from the single-index dynamic factor

model developed by Crone and Clayton-Matthews (2005). Despite the extremely large outliers

observed in 2020, our method performs remarkedly well, both accurately establishing the in-sample

historical recession periods and offering promising results for pseudo real-time detection of national

business cycle turning points. In the second application, we delve into the occurrence of highly

synchronized upward trends in US stock market volatility by examining the squared returns of each

asset comprising the Standard & Poor’s index (S&P 500), identifying four prominent break dates

that signify episodes of high volatility risk. Notably, two of these break dates coincide with the

occurrence of the highest ever volatile index (VIX) levels during the COVID-19 virus outbreak and

the financial crisis. The remaining two break dates align with the crash in October 1987 and the

1It is worth noting that the shifts between events can manifest as either recurrent or permanent phenomena.
2This approach has demonstrated remarkable robustness in dealing with data challenges when analyzing time-

dependent systems, as shown for instance by Camacho, Romeu, and Ruiz (2021).
3These are formally required due to the non-negative nature and constant-sum properties of the vector of relative

frequencies of the different groups of symbols.
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1973-75 oil crisis.

In our view, the proposed method for time-event classification represents a significant advance

with respect to traditional unsupervised algorithms, allowing to address key challenges inherent

to the field as those mentioned above. Firstly, unlike many unsupervised methods, our approach

does not rely on labeled training data, thereby alleviating the challenge of lacking ground truth

labels. By leveraging innovative techniques from symbolic analysis and compositional data, our

method does not require the determination of the optimal number of change points, overcoming

the challenge of manually specifying required parameters. It is also invariant under monotonic

transformations in the datasets and robust to the presence of missing data, outliers and structural

breaks. Additionally, it is computationally cheap, thus facilitating real-time analysis of large-scale

time series without compromising accuracy or scalability.

The rest of the paper is organized as follows. Section 2 introduces the formal background,

including basic definitions and notation to be used throughout the paper, along with the proposed

algorithm for change-point detection. Section 3 contains the Monte Carlo study assessing the

performance of the method over a range of different scenarios and settings. Section 4 is devoted

to the empirical examples using real data, namely with the purpose of dating the US reference

economic cycle and detecting periods of high volatility in the S&P 500 index. Section 5 concludes

with some final remarks.

2 Time-event classification

2.1 Preliminaries and notation

To represent latent classes in time series, we assume the existence of s∗ distinct regimes each

characterizing particular events. The regime evolution partitions the sample calendar time period

{1, . . . , T} into non-overlapping segments. To characterize the occurrence of an event, we intro-

duce an unobserved discrete event indicator variable, denoted by st, which takes values in the set

{1, .., s∗}, such that st = s indicates event s occurring at time t. For any given event s ∈ {1, .., s∗},
we define the support of s as supp(s) = {t| st = s}. Consequently, the sequence S = {s1, . . . , sT }
encompasses the complete array of all conceivable classification outcomes.

Inference about the event indicator variable is made by analyzing the dynamics of an extensive

collection of time series {Xit}Tt=1, with i = 1, 2, . . . , N . These time series are assumed to evolve

uniquely within each event identified by st and distinctly across events. Importantly, these time

series are synchronized, moving in unison whenever an event transition occurs. Therefore, the

process of event classification from observed time series involves assigning a label st by drawing on

the shared patterns embedded in the dataset {Xit} at time point t.

2.2 Symbolic representation of time series

Addressing common issues in observed data is facilitated by a symbolic dynamic representation of

the time series. In our context, symbolic dynamics involves partitioning the phase space into a

finite number of regions and assigning a symbol to each partition. Subsequently, each time series



Unsupervised time-event probabilistic classification using large panels of time series 5

Xit at time t is transformed into a symbol, denoted by π, if, at time t, the corresponding trajectory

of Xi in the phase space falls within the region associated with the symbol π. Specifically, we use

the symbolic representation approach based on the phase space reconstruction method suggested

by Takens (1981).

For each time series Xit, where i = 1, . . . , N and t = m, . . . , T , we embed it into an m-

dimensional space, so that it is expressed as

Xit(m) = (Xit−m+1, Xit−m+2, . . . , Xit). (1)

The vector Xit(m) is referred to as the m-history, with the integer m representing the embedding

dimension. For every cross-section i = 1, 2, . . . , N , these m-histories encapsulate the dynamic

behavior of the time series in the neighborhood of time t. While different symbolic representations

are conceivable, we here follow the approach of Bandt and Pompe (2002). Specifically, we consider

ordinal symbolic representations, which focus on the ordinal patterns within the m-histories. It has

been shown that these representations are highly effective in the analysis of complex dynamics, as

evidenced by Amigó (2010).

For this purpose, let Γm be the symmetric group of order m! comprising all permutations

of length m.4 An element within this group, denoted by π = (i1, i2, ..., im) ∈ Γm, with ij ∈
{0, 1, . . . ,m−1} and j = 1, 2, . . . ,m, is referred to as a symbol. Subsequently, for each i = 1, . . . , N

and t = m, . . . , T , we map the m-histories Xit(m) to a unique symbol πit = π ∈ Γm based on the

relative value of the elements in the m-history. In this context, we say that Xit(m) is of πit-type if

and only if πit = (i1, i2, ..., im) is the unique symbol in Γm satisfying the following conditions:

(a) Xit−i1 ≤ Xit−i2 ≤ ... ≤ Xit−im ,

(b) ik−1 < ik if Xit−ik−1
= Xit−ik .

Condition (a) enforces the ordinal pattern, while condition (b) serves as a technical requirement

ensuring the uniqueness of the symbol πit.
5

As a basic example, consider the time series {5, 3, 6, 1, 8, 9, 0, 2, 4} of length T = 9. An embed-

ding dimension m = 3 generates the T −m+ 1 = 7 m-histories {(5, 3, 6), (3, 6, 1), (6, 1, 8), (1, 8, 9),
(8, 9, 0), (9, 0, 2), (0, 2, 4)}. Now, using the integers {0, 1, 2} to construct the symbols, these histories

map to the set of symbols Γ3 as follows: {(1, 2, 0), (0, 2, 1), (1, 2, 0), (2, 1, 0), (0, 2, 1), (1, 0, 2), (2, 1, 0)}.
It is crucial to emphasize that the presence of specific symbols in particular time periods offers valu-

able insights into the dynamic behavior of the time series. For instance, in a negative trend period,

the most common symbol will be (0, 1, 2); whereas in periods of positive trend the symbol (2, 1, 0)

will tend to happen most frequently.

As st governs the dynamics ofXit, it naturally extends its influence toXit(m) and, by extension,

to πit. Consequently, the occurrence of a given regime can be associated with specific symbols.

Thus, we assemble a collection Π = {Π1, . . . ,Πs∗} comprising disjoint subsets of symbols within

4In both simulations and empirical applications, we have found that m = 3 provides a suitable choice for capturing
the dynamics of time series.

5For continuous distributions, where single values have a theoretical probability of occurrence equal to zero,
condition (b) becomes redundant.
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Γm.6 If all N m-histories are mapped into Πs at time t, then time t is classified as regime s.

However, recognizing the uncertainty in symbol mapping in real-world applications, the proposed

event classification method involves assigning time t to the event labeled as st = s if Πs is the set

of symbols more likely to occur across the N time series at t.

Specifically, let Pt = {Pt(Π1), . . . , Pt(Πs∗)} be the set of probabilities referred to the occurrence

of the subsets of symbols in Π at time t. Thus, we classify st = s when there exists a subset of

symbols Πs ⊂ Γm for which Pt(Πs) > Pt(Πs), where Πs refers to the complementary set of Πs in

Γm. To ensure a one-to-one mapping between time series and their symbolic representation in terms

of event classification, the following two conditions must be satisfied for each s ∈ {1, 2, . . . , s∗}:

1. There should always exist a subset of symbols associated to label s, Πs ⊊ Γm, such that

Pt(Πs) > Pt(Πs) for all t ∈ supp(s). In other words, when st = s, we must consistently

identify a set of symbols Πs as predominant among the entire set of possible symbols within

the support of s at that time.

2. If there are two events si, sj ∈ {1, 2, . . . , s∗} with si ̸= sj , then it should be the case that

Πsi∩Πsj = ∅. This means that the partition of Γm should result in disjoint subsets of symbols.

Therefore, if a symbol π ∈ Πsi this means that such symbol will continue to characterize any

time t where st = si. Importantly, this symbol will never be part of the set of symbols Πsj .

In practice, it is necessary to estimate the probability of occurrence of each subset of symbols.

To accomplish this, we establish that an m-history that maps to the symbol π is called of Πj-type

if and only if π ∈ Πj . By considering all m-histories ending at a given time point t for all cross

sections i = 1, 2, . . . , N , the probability associated with the set of symbols Πj can be estimated by

the proportion of m-histories of Πj-type at time t, written as

P̂t(Πj) =
#{i | Xit(m) is of Πj-type}

N
. (2)

Here, # denotes the cardinality, j = 1, . . . , s∗, and t = m, . . . , T .

The feasibility of using the observed proportions as estimators of the probability of occurrence

of the symbols will relate to the number of series N and the number of symbols (m!) considered.

Drawing on the ordinary considerations for the common statistical test on multinomial proportions,

based as an approximation to the χ2 distribution, a practical rule of thumb is to ensure that the

expected frequencies are at least 5 (see e.g. Rohatgi, 1976, Chapter 10). Applying this to our

context, we recommend that the number of time series should be at least five times the total

number of symbols. In any case, this is not anticipated to be an issue in general when dealing with

moderate to large time series panels.

6The selection of subsets of symbols depends on the specific event classification. We illustrate the methodology
for designing these subsets in the simulation and empirical sections of the manuscript.
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2.3 Compositional characterization of symbol frequencies

By construction, the distribution of frequencies of the symbols, Pt = (Pt(Π1), . . . , Pt(Πs∗)), defines

a data point within an s∗-part unit simplex

S = {P = (P (Π1), . . . , P (Πs∗)) : P (Πj) ≥ 0;

s∗∑
j=1

P (Πj) = 1}. (3)

The simplex corresponds to the sample space of so-called compositional data, i.e. multivariate data

accounting for parts of a whole and then carrying relative information, subject to non-negativity

and constant-sum constraints. This implies that conventional statistical methodology and models,

designed for data obeying the ordinary (unconstrained) real Euclidean geometry, are incompatible

with the unique characteristics of data defined on the simplex; which can lead to misleading or

spurious results7.

A principled way to overcome this challenge is to work with log-ratios between parts. This

establishes a one-to-one mapping between the simplex and the real space spanned by a log-ratio

transformation (or, more generally, a coordinate representation) of the original data, enabling an

equivalent application of ordinary statistical methods on the latter. Moreover, working with log-

ratios guarantees desirable properties, such as the irrelevance of both the scale of the data (i.e.,

results not depending on the constant-sum constraint, e.g. either 1 or 100) and the number of parts

forming the composition. Accordingly, we conduct inferential analysis regarding the unobserved

discrete variable st, not using the probabilities of the sets of symbols, but rather their log-ratio

representation.

Among the various alternatives discussed in the specialized literature, orthonormal log-ratio

(olr) coordinates have been favored for statistical modeling due to their natural alignment with

the geometrical structure of the simplex and some desirable metric properties (Barceló-Vidal and

Mart́ın-Fernández, 2016). However, for simplicity of the exposition we opt here for an additive log-

ratio (alr) coordinate representation (Aitchison, 1986). This decision is actually irrelevant for our

modelling as stressed below.8 Specifically, an alr-coordinate vector yt = (y1t, . . . , ys∗−1t) consists of

s∗ − 1 log-ratio coordinates derived from the probabilities of the set of symbols Pt as follows

yt =

(
ln

Pt(Π1)

Pt(Πs∗)
, . . . , ln

Pt(Πs∗−1)

Pt(Πs∗)

)
. (4)

The alr representation requires one symbol frequency to be used as reference and placed in the

denominator of the log-ratios. Without loss of generality, we use the frequency of the last symbol

for this. Note that using a different part as denominator is equivalent to perform a permutation

of the parts of the composition, which formally results in a matrix linear transformation between

two alternative alr-coordinate vectors.

Importantly, assuming multivariate normality and applying maximum likelihood estimation as

7The interested reader is referred to the seminal work by Aitchison (1986) and more recent accounts of composi-
tional data analysis such as Pawlowsky et al. (2015), Greenacre (2018), and Filzmoser et al. (2021).

8An alr-coordinate system however implies an oblique mapping between the simplex and the real space, potentially
leading to distortion of results when using statistical methods based on distance measures (Pawlowsky et al., 2015).
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ordinarily, it can be shown that the results are invariant to linear transformations between two alr-

coordinates (Aitchison, 1986; Palarea-Albaladejo and Mart́ın-Fernández, 2008). In addition, both

alr and olr coordinates lead to the same probability law (Mateu-Figueras et al., 2013). Therefore,

the difference between using alr or olr lies in how the information about the distribution of symbols

is represented in the real space of coordinates.

Lastly, it is worth noting that the log-ratio operation is not defined when some parts take a

value of zero. In practice, specialized imputation methods are commonly employed to replace these

zeros by small, sensible values while preserving the relative structure of the data. This assumes

that the zeros are not true zeros but rather the result of some form of left-censoring (Palarea-

Albaladejo and Mart́ın-Fernández, 2015). In our context, any zeros in the data are addressed

through compositional imputation, assuming that limited sampling prevented the observation of a

particular symbol at a certain time point, but that a positive frequency might have been obtained

from another sample.

2.4 Inference on the latent variable

To perform inference on the unobserved discrete variable st, based on the dynamics of the resulting

series of alr-coordinates of the composition of the probabilities of the sets of symbols, we turn to

Markov-switching models (MSMs). In this framework, we assume that st changes its regime at

unknown points in the calendar time period, referred to as turning points. These regime changes

influence both the observed time series Xit and the series of alr-coordinates yt representing the

relative distribution of symbols.

Given the temporal dependence of events in time series contexts, there is typically some degree

of inertia in the regimes. Therefore, the latent variable is modeled as a discrete-time, first-order,

stationary, and ergodic Markov chain with s∗ states. Let Yt = {y1, . . . , yt} represent the information

available at time t. In a first-order Markov chain, the conditional probability that st takes a specific

value j, given st−1 = i, depends on the past only through the most recent value, st−1:

Pr(st = j|st−1 = i, st−2 = k, ..., Yt−1) = Pr(st = j|st−1 = i), (5)

which is abbreviated as pij in the following. The transition matrix, consisting of these transition

probabilities, defines the characteristics of the Markov process. In certain scenarios, the matrix may

be constrained to ensure that a regime can transition to only one particular regime, as proposed in

Boldin (1996). In other cases, transition probabilities may be restricted to allow the state variable

to either remain at its current value or progress to the next higher value, with no possibility of

returning, as suggested in the multiple change-point model proposed by Chib (1998).

To estimate the probability of time t belonging to a particular regime, we adopt the approach

outlined by Hamilton (1989). Building on the observed alr-coordinates, we consider the simplified

version of the linear MSM proposed by Camacho and Perez-Quiros (2007):

yt = µst + ϵt. (6)

Here, µst represents the expected value E(yt), and ϵt ∼ N(0,Σ) denotes a normally distributed



Unsupervised time-event probabilistic classification using large panels of time series 9

random error term.9 Gathering the model parameters together, including means µ1, . . . , µs∗ , ele-

ments of the covariance matrix Σ, and transition probabilities pij , into a vector θ, the Bayes’ rule

and Markov chain properties lead to

Pr(st = i | θ, Yt) =
f(yt | θ, Yt−1, st = i)Pr(st = i | θ, Yt−1)

f(yt | θ, Yt−1)
. (7)

Here, f(yt | θ, Yt−1, st) is the probability density function of a multivariate normal distribution with

mean µst and variance Σ. Also, the denominator of this expression can be obtained by summing

the elements of the numerator over i = 1 to s∗. Hamilton (1989) outlined a forward filter to store

these filtered probabilities. Starting from an initial value Pr(s0 = i | θ, Y0), for i = 1, . . . , s∗, the

following two steps are carried out recursively from t = m to t = T . First, the one-step-ahead

prediction from information up to t− 1,

Pr(st = i | θ, Yt−1) =

s∗∑
i=1

pijPr(st−1 = i | θ, Yt−1), (8)

is computed. Second, when the t-th observation of the alr-coordinates of Pt is added to this

recursion, the filtered probabilities are updated using (7). In addition, the likelihood of the mix-

ture f(yt | θ, Yt−1) is obtained as a byproduct of this recursion, enabling parameter estimation by

maximum likelihood.

3 Monte Carlo simulations

In this section, we present the results of a Monte Carlo study aimed at assessing the performance

of the proposed time-event classification procedure when applied to large panels of time series

data. We evaluate the procedure using common performance metrics, relying on lists of actual and

predicted regimes over time. The study examines the performance and robustness of the proposed

method across various scenarios defined for a range of model parameter settings. These scenarios

include cases with missing data, outliers, structural breaks, and asynchronicity.

To provide a visual representation of the cases studied, we present illustrative time series panels

in Figure 1, each of which referring to the different simulated scenarios. To facilitate the discussion,

the event periods or regimes are indicated in the figures by white and grey background colors.10

Different aspects are consider when assessing the classification performance of the proposal, in-

cluding its ability to provide an accurate prediction, detect breakpoints, and indicate the need for

adjustments to accommodate asynchronicities.

In this exercise, our primary focus is on a state variable that governs the first moment of the time

series. However, it is worth noting that the analysis will remain largely analogous when the state

variable governs the second moment. In such cases, the attention would shift to the squared time

series, providing then insights into the evolution of the variance of the data. This versatility enables

9We found this simple model to be enough and useful in our empirical applications. However, if required, it could
be readily extended to e.g. incorporate autoregressive parameters or a state-dependent covariance matrix.

10The implementation of the method was carried out using the R system for statistical computing version 4.2.3 (R
Core Team, 2023), with the simulation pipelines set up in parallel using built-in R functions.
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to adapt the method to varied characteristics of the data, ensuring a comprehensive assessment of

their performance across different moments of the time series to detect event changes.

3.1 Missing and outlying observations

In this initial simulation study, denoted by DGP1, we generate a set of N time series. These

time series exhibit a unit root in their levels but have stationary differences, following a Markov-

switching autoregressive process with two regimes and recurrent shifts. To accomplish this, for

each Monte Carlo simulation (r = 1, 2, . . . , R), we create a random sequence of length T consisting

of indicator variables, denoted by brt . These indicators take values in {1, 2} and represent the

partition of the calendar time period of the sample into two distinct and recursive regimes. We

assume that brt follows a 2-state first-order Markov-switching model with transition probabilities

p11 and p22. Simultaneously, we generate N idiosyncratic components, denoted by urit, of length

T . These components are drawn from Gaussian random variables with mean zero and variance σ2.

Therefore, for each simulation, we obtain N nonlinear time series given by

Xr
it = αbrt

+Xr
it−1 + urit. (9)

We consider panels comprising N = 30, 60, 120 time series, each with a length of T = 250,

and setting model parameters p11 = 0.9, p22 = 0.3, 0.7, and σ2 = 1, 2. The two regimes associated

with the underlying state brt are defined by values α1 < 0 and α2 > 0, with α2 − α1 taking values

1 and 3 which determine the expected difference in the first difference of the time series between

both regimes. The embedding dimension is fixed at m = 3, resulting in a set of symbols Γ3 with a

cardinality of 6.

Thus, in the r-th Monte Carlo simulation, 3-histories Xr
it(3), for i = 1, . . . , N and t = 3, . . . , T ,

are computed and subsequently mapped into Γ3. The number of states for the subsets of sym-

bols is fixed at s∗ = 2, and these states govern the dynamics of two subsets of symbols, namely

Π = {Π1,Π2}. Here, we are interested in performing inference on the regime that characterizes

decreasing paths, occurring when st = 1, and associated with the set of symbols Π1 = (0, 1, 2).

Consequently, we define a second set of symbols, Π2, encompassing the complementary set Π1 =

{(2, 1, 0), (0, 2, 1), (1, 2, 0), (1, 0, 2), (2, 0, 1)}. These two sets of symbols are sufficient to characterize

the regime changes in the panel of time series for this particular simulation scenario.

The elements P r
t (Πj) of Pt are then calculated as the proportion of times any of the symbols

belonging to Πj (with j = 1, 2) appear in the N 3-histories Xr
it(3) observed at time point t. If any of

these proportions is occasionally zero, we consistently impute them with a value below the minimum

observed proportion for the affected symbol, using the log-ratio expectation-maximization (lrEM)

method (Palarea-Albaladejo and Mart́ın-Fernández, 2008, 2015). This method takes into account

the interdependencies between the proportions of symbols and preserves the constraint that relative

frequencies sum up to 1. Finally, the series of alr-coordinates yrt = ln(P r
t (Π1)/P

r
t (Π2)) leads to

the estimation of a univariate 2-state MSM as described in (6), with filtered regime probabilities

P (srt = i|θ, Y r
t ), where θ = (α1, α2, σ

2, p11, p22) and i = 1, 2. This process is repeated in R = 500

simulation runs.
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The common values of the model parameters for this DGP1 study (N , p11, p22, σ
2, and α2−α1)

are combined with a parameter set that controls for the presence of missing data and outliers. In the

case of missing data, we implement a random mechanism to simulate missingness in a fraction pmiss

of the N time series, where pmiss = {0.2, 0.4, 0.6, 0.8}. For each time series within this fraction,

missing values are randomly imposed at a rate of 20-60% of the time points. It is important to note

that when translating the original time series into a symbolic representation, a symbol is considered

missing if any element of the associated m-history Xr
it(m) is missing (illustrated in Figure 1A). In

practice, the computation of each proportion P r
t (Πj) is therefore based only on the observed cases.

In the case of outlying observations, we randomly select fractions of time series with varying

levels of outlying data, denoted by pout = {0.2, 0.4, 0.6, 0.8}. For each selected time series, we

introduce outlying observations at 10-30% of the time points. These outliers are generated by firstly

calculating the first and third quartiles of the data distribution across time series at a specific time

point. Then, subtracting 1.5 times the interquartile range from the first quartile and adding 1.5

times the interquartile range to the third quartile.11 Given this, the selected time points in the

time series are randomly transformed into outliers by assigning to them the result of subtracting

(resp. adding) a percentage deviation from the tip of the lower (resp. upper) whisker, with such

percentage being in the set {20%, 40%, 60%}. Figure 1B provides a visual representation of the

generated data sets.

To evaluate the performance of the method in the setting above, we use four common metrics

computed from the outputs generated in each simulated scenario, which are averaged across runs

to provide a final estimate. These metrics include (1) Area Under the Receiver Operating Charac-

teristic curve (AUROC), which jointly considers sensitivity and specificity to measure the ability of

the classifier to separate between regimes as the binary discrimination threshold varies; (2) Brier

score, which measures the mean squared difference between the actual outcome of the event at time

point t (0 when st = 2 and 1 when st = 1) and the probability of this event estimated from the

model; (3) F1 score, which assesses the ability to detect change of regime while accounting for the

unbalanced occurrence of regimes over time; and (4) balanced accuracy, which is the arithmetic

mean of sensitivity and specificity and provides an accuracy measure adjusted for unbalance oc-

currence of events. For all metrics except the Brier score, higher values closer to 1 indicate better

performance (see e.g. Sammut and Webb, 2017).12

3.2 Structural breaks

In the second simulation study, referred to as DGP2, we simulate Markov-switching autoregressive

processes with means subject to structural breaks or permanent shifts. These structural breaks in

the means of the time series occur at specific time points, including switches upwards at T/4 and

switches downwards at T/2 and 3T/2. Within each of these four segments, the time series evolve

stationarily around the corresponding mean.

The structural breaks are introduced using an indicator variable vt that takes values {1, 2, 3, 4}
11Therefore, we are computing lower and upper whiskers commonly used as thresholds beyond which a data point

is classed as outlier in boxplots.
12Note that the predicted regime at a given time point is that having the highest filtered probability as estimated

by (7) for each scenario.
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for each of the four segments respectively, and governs the dynamics of the time series as

Xr
it = µvt + urit. (10)

Here, urit follows an independent distribution N(0, σ2), and r = 1, . . . , R. Specifically, µ1 = 1 is set

as the reference mean, and then the others are define as µ2 = µ1+3δ, µ3 = µ1−δ and µ4 = µ1−2δ,

with the parameter δ controlling the relative separation between them.

Similarly to DGP1, we compute 3-histories and their corresponding symbols for the DGP2

study. However, in this case, we allow for a 3-state regime switching variable to determine whether

the time series are evolving within one of the four segments or transitioning between them. Specifi-

cally, the state variable st can take three values: st = 1 when the time series are switching upwards,

st = 2 when the time series are switching downwards, and st = 3 when the time series are steadily

evolving within one of the four segments.

This setup results in a collection of symbols Π = {Π1,Π2,Π3}, where Π1 = (2, 1, 0) refers to

upward switches (occurring around T/4), Π2 = (0, 1, 2) refers to downward switches (occurring

around T/2 and 3T/2), and Π3 = {(0, 2, 1), (1, 2, 0), (1, 0, 2), (2, 0, 1)} refers to any steady time

period within any of the four segments, where the time series fluctuate randomly around the mean.

We compute the proportions of symbols P r
t (Πj), with j = 1, 2, 3, and subsequently obtain the alr-

coordinates yr1t = ln(P r
t (Π1)/P

r
t (Π3)) and yr2t = ln(P r

t (Π2)/P
r
t (Π3)). The time series yrt = (yr1t, y

r
2t)

are then modeled by a 3-state bivariate MSM as in (6) to estimate the probabilities of each of the

three regimes over time.

For the simulation in DGP2, we consider a range of scenarios primarily based on values for

δ = {0.5, 1, 2, 3, 4, 5} and σ2 = {1, 2, 3, 4}. The number of time series per panel and their length

are fixed at N = 250 and T = 250, respectively. To specify the transition matrix of the underlying

Markov chain governing the move from one state to another, we set the elements pij with i, j = 1, 2, 3

as follows. After a switch, we assume that the time series remain steady regardless of its direction.

This implies that the transition probabilities are restricted to avoid two consecutive switches,

resulting in p12 = 0 and p21 = 0. This case is illustrated in Figure 1C.

The assessment of the performance of the method focuses here on its ability to detect structural

breaks. Thus, the prediction outcome is simplified to a binary split into steady regimes (series within

any of the segments) or breaks (series switching either upwards or downwards). The true positive

rate is used as performance metric, which represents the proportion of times an actual break is

correctly detected by the model over R = 500 simulation runs. Since there are only three single

time points corresponding to breaks over the time span defined by T , whereas the probability of

a break as estimated by the model varies continuously, it is possible that a break is not precisely

predicted at its exact predefined point. Therefore, to ensure a fair evaluation and prevent potential

false negatives caused by slight misalignments, we allow for a window of width ±w around the

actual break points. Success is then recorded whenever a break is predicted within a close vicinity

of the break point. Here, we consider different values for such window width, namely w = {0, 1, 2, 3}
time points.
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3.3 Asynchronous time series

To investigate scenarios where some time series enter and/or change regime asynchronously, we use

a 2-regime setting similar to the one used in the DGP1 study. However, we now allow certain time

series to transition asynchronously between these two regimes. Asynchronous transitions occur

when the events affect specific time series either before or after they impact others. This leads to

variations in the timing of regime changes across different time series within the same panel.

In our simulations, we consider panels consisting of N = 250 time series, each with a length of

T = 250 time points. The MSM parameters are fixed at p11 = 0.97, p22 = 0.95, α2 −α1 = 2.5, and

σ2 = 1. Within these panels, random fractions of time series, ranging from 0.1 to 0.8, are made

asynchronous by adjusting the timing of their entry into and exit from a particular regime. We refer

to the time difference between actual and standard entry or exit points as the asynchronicity gap η.

We test three values for η = {5, 10, 15}. Similar to DGP1 and DGP2, R = 500 simulations are run

for each scenario defined by the parameter settings mentioned above. It is important to note that

we set transition probabilities relatively high to favor scenarios with separated and longer-lasting

regimes.13

While our simulations are based on a 2-regime setting, considering asynchronous time series

within the panel induces a transitional phase, during which some series are entering the new regime

while others remain in the current one. This actually defines an additional state that governs such

periods around transitions. As shown in both the simulation exercise and the empirical applications

developed in Section 4, the inclusion of an additional state is a key aspect of the modelling. Figure

1D visually illustrates a panel containing asynchronous time series.

Of main interest for the performance assessment here is the ability of the method to identify

regime changes and accurately assess the duration of regime labeled as 1, which we use as the

reference event. Specifically, the focus is on the precision of the classifier when identifying st = 1,

i.e., the fraction of actual time points labeled as 1 among all the time points this regime exhibits

the highest filtered probability.

3.4 Simulation-based results

Figure 2 presents an overview of the results from the DGP1 simulation study across various pa-

rameter settings. Results for scenarios with complete observations and no outliers (i.e., pmiss and

pout equal to 0) are included as reference. Overall, the results illustrate that increasing proportions

of time series with missing or outlier observations have a negligible impact on the classification

performance. The only noticeable exception is observed for the Brier score in the case of outly-

ing observations when states are not well separated (first column of Figure 2B), showing a slight

positive trend with increasing proportions of time series affected by outliers.

The main differences in performance across scenarios and evaluation metrics are primarily due

to differences between α2 and α1. As anticipated, a more distinct separation between regimes leads

to superior model performance, as evidenced by scenarios where α2 − α1 = 1.5. This results in

very high AUROC values over 0.9, small Brier scores below 0.10, and balanced accuracy around

13As expected, we observed in preliminary trials that excessive changes and closely spaced short-term regimes led
to confusion and overlapping regimes as η increased.
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0.8 in most cases. Despite the decline in values, when the difference between regime means is small

(α2 − α1 = 0.5), AUROC generally remains over 0.7, Brier score reaches values below 0.25 in the

worse cases, and balanced accuracy is over 0.65. In this simulated scenario, the F1 score is the

most negatively affected metric, with values around 0.2 when the states are not well separated in

combination with noise and low inertia in the states.

Noisy signals, showcased by large values of σ2, lead to lower classification performance. This

trend is more noticeable in the scenario with α2−α1 = 0.5. Regarding the transition probability p22,

differences in performance are generally challenging to discern. The exception is the F1 score, where

higher values of p22 seem to be associated with moderately improved performance. This result can

be attributed to the improved classification ability when the regimes become more persistent.

Figure 3 shows a summary of the results from the DGP2 simulation study. The curves represent

different window widths (parameter w) around the actual structural break points, allowing for

various degrees of tolerance in the alignment of actual and predicted break points as discussed

above. The importance of considering this window width is evident from the graphs, as the true

positive rate is significantly lower when w = 0 across all scenarios. This was expectable because, by

construction, when there is a change of regime at time t, the corresponding change in the proportion

of symbols marking the turning point requires that at least one period has passed.

Focusing on results for w > 0, it is evident that the proposed method is capable of detecting

structural breaks very accurately, although the performance depends on the differences in mean

levels across regimes and their interaction with data variability. As expected, the highest perfor-

mance is observed when there is a substantial separation across regimes and low variability. For

scenarios with minimal relative separation between regimes (δ = 0.5), the performance is generally

poor. However, at the lowest variability level (σ2 = 1), the true positive rate exceeds 0.80 for

any δ ≥ 3, reaching a value over 0.95 for the largest separation considered (δ = 5). Performance

becomes more challenging as data variability increases, with a true positive rate of around 0.80

achieved only for δ = 5 when σ2 = 4.

Lastly, Figure 4 addresses the asynchronous time series case DGP3. Recall that the data were

generated assuming two regimes, but as mentioned earlier, the severity of asynchronicity requires

considering a 3-state MSM in practice. This additional state allows for a genuine characterization

of the transitioning period around a regime change, thereby improving regime classification. As

an example, Figures 4A and 4B depict the estimated regime probabilities using 2-state and 3-state

MSMs fitted to a panel of simulated time series (comprising 80% asynchronous time series with

a gap of 5). These figures illustrate the impact of asynchronicity on the probabilities around the

transitioning periods. Unlike in the 2-state MSM case, the 3-state MSM effectively identifies the

transitioning period as an additional state, which implies a more precise outline of the turning

points across the three regimes.

For the specified ranges of asynchronicity gap (η) and the proportion of asynchronous time

series in the panel, Figure 4C provides the average precision in identifying the regime with negative

drift in (9), using both 2-state and 3-state specifications. The results show that the performance of

the proposed method remains robust to asynchronicity, and the performance of both models is com-

parable up to a moderate fraction of asynchronous time series (40-60%) regardless of η. However,
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beyond that range, the performance of the 2-state MSM formulation significantly declines, while

the 3-state MSM continues to yield good results. Interestingly, the 3-state MSM appears to be-

come more stable with increasing η, potentially due to a better characterization of the transitioning

period with a larger number of time points therein.

4 Empirical examples

4.1 Dating the reference cycle

Establishing a reference cycle dating for a given country or economic area, which has a long tradition

in economics, can be viewed as dividing the time calendar into segments of recurrent recession and

expansion regimes of the economy. The business cycle dating committee of the National Bureau

of Economic Research (NBER) states that a recession is the period between a peak of economic

activity and its subsequent trough or lowest point. Thus, the peak-trough turning points mark the

break dates and delimit the periods of recession. The committee emphasizes that “[...] a recession

involves a significant decline in economic activity that is spread across the economy and lasts more

than a few months”. From this definition, several important issues can be inferred. Firstly, in

reference to the US, a recession must have a widespread impact throughout the entire economy.

This suggests that a national recession should affect states broadly, rather than being confined

to only one set of the states. Secondly, the definition implies that the dynamics of the business

cycle phases must exhibit a certain degree of inertia. To capture this aspect, we focus on Markov-

switching frameworks to define the statistical properties of the regimes. Lastly, the definition lacks

a clear statement regarding what the committee understands as an expansion, which is viewed as

a non-recessionary period.

We leverage these three characteristics of the business cycle to demonstrate that our model can

be effectively employed to make inferences about the probability of a national recession commencing

or concluding at a specific date. We use a dataset at the state level, which was originally compiled

by Crone and Clayton-Matthews (2005) and is regularly updated by the Federal Reserve Bank of

St. Louis. These authors employed a state-level single-index dynamic factor model to generate

a set of consistent coincident indexes for all 50 states in the US. These coincident indexes reflect

the overall economic condition of each state. Figure 5A illustrates the trends in these indexes,

spanning from January 1979 to August 2023. The graph underscores the substantial growth of these

indexes, punctuated by marked declines that align with the NBER-referenced national recessions,

represented by shaded areas in the background.

Characterizing the dynamics during national non-recessionary periods is somewhat more chal-

lenging using a single regime with the information provided by the state indexes. On the one hand,

Figure 5A shows periods of sustained upward trends in most of the state indexes and we refer

to these periods as national expansions. On the other hand, Hamilton and Owyang (2012) ob-

served examining state-level data that some states entered recessions before others, or experienced

recoveries with certain lags, particularly in the months preceding and following recessions.

The goal in this example is to perform inferences about the national recessions and its phase-

change transitions using the information provided by the coincident state indexes. However, the
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unprecedented economic contraction associated with the COVID-19 epidemic in 2020 presented

a unique challenge for this task. This period encompassed the deepest and shortest recession

in recent history, followed by an unusually rapid and robust economic recovery fueled by policy

interventions, leading the indexes to rebound to pre-recession levels within a few months. Among

other researchers, Bobeica and Hartwig (2022) have documented the challenges posed by such

sharp fluctuations, which have a tendency to distort the estimated coefficients of standard time

series parametric approaches.

To address this challenge, we employed a symbolic dynamics approach to make inferences

on the regime variable. Specifically, we used an embedding dimension of m = 3 to generate

time series of 3-histories for the 50 coincident indexes and mapped them into the set of symbols

Γ3, which comprises all permutations of the three elements {0, 1, 2}. Subsequently, the symbols

were categorized into three groups, denoted by {Π1,Π2,Π3}, where Π1 = (0, 1, 2) represents two

consecutive declines (labeled as regime 1), Π2 = (2, 1, 0) represents two consecutive rises (labeled as

regime 2), and Π3 = {(0, 2, 1), (1, 2, 0), (1, 0, 2), (2, 0, 1)} represents other situations in the evolution

of the coincident state indexes (labeled as regime 3).

The evolution of the relative frequency of these three groups of symbols, with respect to the

total number of symbols mapped for the 50 states in each time period, i.e., P̂t(Πi), with i = 1, 2, 3,

is displayed at the bottom of Figure 5. As expected, Figure 5B shows that more than 50% of the

states exhibited the symbol Π1 in the periods that were classified as recession by the NBER business

cycle dating committee. In contrast, Figure 5C shows that in the middle of the intervals between

NBER-referenced troughs and their subsequent peaks, the coincident indexes of more than 75% of

the states displayed the symbol Π2. Finally, Figure 5D shows that the probability of the group of

symbols Π3 substantially increased during the transitions before the NBER-referenced peaks and

after the NBER-referenced troughs.

Figure 6 displays at the top the evolution of the corresponding alr-coordinates y1t = ln P̂t(Π1)

P̂t(Π3)

and y2t = ln P̂t(Π2)

P̂t(Π3)
. In line with the previously outlined 3-regime pattern, during NBER-referenced

recession periods the first alr-coordinate experiences a substantial increase, while the second alr-

coordinate declines significantly. The middle of the periods between NBER peaks and their sub-

sequent troughs are characterized by high values of the second alr-coordinate and low values of

the first alr-coordinate. Furthermore, both alr-coordinates display a decrease before the peaks and

after the troughs.

Using the specification (6), we account for this asymmetric business cycle dynamics by modeling

the vector of alr-coordinates yt = (y1t, y2t) conditionally upon an unobservable 3-regime state

variable st. To aid interpretation, Figures 6C-E exhibit the probabilistic inferences about the three

distinct regimes across the entire sample. These figures effectively demonstrates the ability of the

filtered probabilities to split the sample into three subperiods with clear economic interpretations.

Figure 6C exhibits a notable alignment between the months with high probabilities of regime 1

and the NBER-referenced recessions, suggesting that this regime corresponds to recession, and the

time series in this graph represents the probabilities of being in recession. Figure 6D indicates that

it is highly improbable for the US to be in regime 2 during NBER recessions and the periods that

encompass a few months before the peaks and after the troughs. Conversely, the probability of
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being in regime 2 approaches unity during the middle of NBER expansions, suggesting that the

probabilities depicted in this figure represent the likelihood of national expansions. Lastly, Figure

6E highlights a distinct shift in the probability of the economy being in regime 3, from almost

negligible to nearly one, in the periods immediately preceding and following NBER recessions,

albeit with a few exceptions. Accordingly, regime 3 is interpreted as a transitional phase between

recessions and expansions and the probabilities depicted in the figure reflect the likelihood of

navigating through the business cycle phase changes.

So far in this example, we have evaluated the performance of our approach using state coincident

indexes to partition the evolution of the US business dynamics and their transitional dynamics using

data from January 1979 to August 2023. However, a good in-sample performance of the probabilistic

classification model could deteriorate significantly when detecting the business cycle phase changes

in real time. To address this issue, we assess how suitable our approach is for detecting business

cycle turning points in a timely manner by conducting a pseudo real-time classification experiment.

This analysis is based on successive enlargements of the latest available dataset, aiming to closely

mimic the real-time analysis that would have been performed by a potential user of the models

when classifying each month into one regime based only on the information available at that time.

In our pseudo real-time analysis, we consider successive data vintages, each starting from

January 1979. The first data vintage ends in July 1987 and the final one encompasses the entire

dataset up to August 2023. Note that we re-estimate all sets of symbols, the log-ratio coordinates,

and the MSMs for each of the pseudo real-time vintages ending at τ , with τ ranging from July 1987

to August 2023. Following this recursive procedure, the corresponding 421 probabilities of regime

1 that refer to τ are stored and displayed in Figure 6F. The figure reveals that the pseudo real-time

probabilities of regime 1 closely align with NBER recessions, increasing around the beginning of

recessions and decreasing around their end. Thus, the time-series probabilistic classifier performs

nearly perfectly, effectively distinguishing between recession and non-recession periods with few

mistakes, achieving an AUROC of 0.98 and a Brier score of only 0.03.

4.2 Stock returns volatility

Asset market volatility is of critical importance to economic agents for several reasons. It serves

as a measure of risk exposure for their investments, it plays a central role in pricing of derivative

securities, and it acts as a barometer for policy makers, indicating the vulnerability of financial

markets and the economy. While many assets belonging to broad stock market indexes typically

exhibit relatively low historical correlation to one another, during periods of heightened volatility,

such as the 2008 financial crisis, individual volatilities have a tendency to become more correlated,

even across different sectors. This phenomenon leads to periods of high overall volatility, posing a

challenge to investors attempting to make rational risk management decisions by diversifying their

portfolios.

The purpose of this empirical application is to demonstrate the effectiveness of our time-event

classification procedure to identify periods of increased risk in the US stock market. Specifically,

we aim to detect instances where a substantial number of assets experience heightened volatility,

indicating a potential turbulence in the market. To achieve this, we focus on the assets that
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form the Standard & Poor’s 500 stock market index, known as the S&P 500, which measures the

performance of approximately 500 companies in the US across 11 sectors, accounting for close to

80% of the available market capitalization on stock exchanges. Due to its depth and diversity,

the assets that form the index provide valuable insights into the overall market trends, investor

sentiments, and health of the financial and other sectors.

Given that volatility is unobservable, we use the squared returns of each asset as a proxy for

the individual underlying volatility processes, where the returns represent the growth rates of the

stock market average traded price of the respective asset. To asses the evolution of the volatility

in the US stock market, Figure 7A displays the monthly squared mean-centered returns of the

S&P 500 assets from January 1973 to January 2024.14 The granularity of the visualization and the

presence of overlapping data points illustrate the difficulties to identify specific dates during which

a significant number of assets start to experience pronounced increases in volatility.

In order to overcome this difficulty, we employed the introduced symbolic dynamics approach

to generated time series of 3-histories for the stock return volatilities and mapped them into the

set of symbols comprising all permutations of {0, 1, 2}. Then, we categorized the symbols into

three groups, denoted by {Π1,Π2,Π3}, where Π1 = (0, 1, 2) represents two consecutive declines in

volatility (labeled as regime 1), Π2 = (2, 1, 0) represents two consecutive rises (labeled as regime

2), and Π3 = {(0, 2, 1), (1, 2, 0), (1, 0, 2), (2, 0, 1)} represents other situations (labeled as regime 3).

Figure 7B displays the alr-coordinates of symbol proportions, y1t = ln P̂t(Π1)

P̂t(Π3)
and y2t = ln P̂t(Π2)

P̂t(Π3)
,

accompanied by NBER-referenced recessions as shaded areas for contextual reference.

Lastly, a 3-regime Markov-switching model, as represented by (6), is fitted to the vector of

alr-coordinates. In this case we constrained transition probabilities to prevent consecutive switches

between regimes 1 and 2, setting p12 = 0 and p21 = 0. For the sake of interpretability, Figure

7C displays the filtered probabilities of regime 2, again with shaded areas representing NBER-

referenced recessions for reference. Additionally, it includes the monthly average of the CBOE VIX

volatility index, which gauges the expected stock market volatility over the next 30 days, as derived

from S&P 500 index options.

The figure highlights four prominent highly synchronized upward trends in US stock market

volatility. Various economic and non-economic factors, including the COVID-19 pandemic, changes

in economic policies, shifts in inflation trends and industry-specific developments, can substantially

contribute to these directional shifts in the stock market and significantly influence its volatility.

Of particular note, though, is that the two most recent break dates coincide with the occurrence of

the highest ever VIX levels during the coronavirus disease outbreak and the financial crisis. The

other two break dates marking highly correlated upward trends in market volatility correspond to

the crash in October 1987 and the 1973-75 oil crisis.

14Due to the presence of extreme values, the y-axis has been truncated at 0.5 to enhance visual clarity and focus
on the relevant patterns and trends.
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5 Concluding remarks

We have introduced a novel formal approach for partitioning a time span into meaningful, non-

overlapping segments using time series datasets with a large cross-sectional dimension based on

time-event probabilistic classification analyses. Our method exhibits exceptional performance and

robustness across diverse scenarios, as demonstrated by rigorous Monte Carlo simulations. Notably,

different proportions of missing data or outliers have minimal impact on classification accuracy, par-

ticularly when regimes are distinct. The method excels in detecting structural breaks, especially

in scenarios with significant differences between regimes and low data variability. Although, asyn-

chronicity during transition periods presents a challenge, this issue can be easily addressed by

introducing a specific regime for the transition periods, resulting in substantial improvements in

turning point detection and regime classification.

Two examples have illustrated real-world applications. In the first one, a set of coincident

indexes for the 50 states of the US is used to learn about the course of the national economy.

As in Hamilton and Owyang (2012), full-sample and real-time exercises show that, despite the

heterogeneity between states, there appears to be a strong national component to the recessions.

The method is able to provide excellent inference about the business cycle regimes. The second

application uses the monthly average price of the assets of the S&P 500 index to infer the break

dates that mark episodes of highly synchronized upward trends in volatility in the US stock market.

Our findings indicate that the two most recent breakpoints align with record-high levels of the VIX

index during the recent COVID-19 pandemic and the financial crisis, and the other two breakpoints

coincide with the October 1987 market crash and the oil crisis of 1973-75.

The proposal integrates three distinct components into a unified framework: symbolic analysis,

compositional data analysis, and Markov-switching time-series modeling. Each of these components

is strategically employed to address specific challenges and features related to the treatment of the

data and their use for time-event classification analysis. The symbolic representation maps a real-

valued time series into a discrete symbol space and, instead of following the trajectory of the time

series point by point, it only requires registering the alternation of certain appropriate symbols.

The procedure involves choices regarding parameter settings and model specification. These

choices include the embedding dimension, the log-ratio coordinate representation of the estimated

symbol probabilities, and the specification of the Markov-switching model. For the analyses con-

ducted in this paper, we chose settings that were simple and worked for the particular purposes as

illustrated. However, the approach can be easily extended and customized to address, or represent

more realistically, the particularities of other related time series problems.

Recent technological advances and the democratization of data via open data initiatives have

enabled the analysis of vast collections of time series data, enhancing the richness of the inferences

made from them. However, with the use of larger time series datasets comes a higher risk of en-

countering issues such as non-linearities, structural breaks, missing data, or significant outliers. As

demonstrated, the approach depicted in this work allows to tackle these issues head-on. Therefore,

we believe that our method represents a significant step forward in the field of time-series proba-

bilistic classification and change-point detection, offering a reliable and versatile solution to address

inherent challenges faced by unsupervised algorithms in a contemporary context.
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Figure 1: Time series simulation.

Notes. Exemplary simulated time series panels with different characteristics: missing data (A), outlying

observations (B), structural breaks (C), and asynchronous time series (D). Shaded background areas indicate

changing underlying regimes.
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Figure 2: Performance assessment from DGP1 study.

Notes. Based on area under the receiver operating characteristic curve (AUROC) (A), Brier score (B), F1

score (C), and balanced accuracy (D) for different parameter settings.
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Figure 3: Performance assessment from DGP2 study.

Notes. Based on detection of actual structural breaks for different parameter settings.
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Figure 4: Performance assessment from DGP3 study.

Notes. Based on regime probabilities from 2-state (A) and 3-state (B) Markov-switching model (MSM) fits for

asynchronous time series. Precision in identifying the regime indicated by the shaded background across different

levels of asynchronicity η (C).
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Figure 5: US state coincident indexes 1974.04-2023.08.

Notes. Time series of the 50 state coincident indexes provided monthly by the Federal Reserve Bank

of Philadelphia (A). Relative frequency of symbols (0, 1, 2) (B), (2, 1, 0) (C) and any other symbols in

{(0, 2, 1), (1, 2, 0), (1, 0, 2), (2, 0, 1)} (D). The shaded areas in the background refer to the NBER-referenced

recessions.
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Figure 6: US state coincident indexes modeling and prediction.

Notes. Additive log-ratio coordinates based on the distribution of three symbols, ln P̂t(Π1)

P̂t(Π3)
and ln P̂t(Π2)

P̂t(Π3)

(A-B). Estimated probabilities for regimes 1, 2 and 3 (C-E). Real-time estimated probabilities for regime

1 (F). The shaded areas in the background refer to the NBER-referenced recessions.
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Figure 7: Market values volatilities 1973.01-2024.01.

Notes. Time series of demeaned squared growth rates of the market values of assets comprising the

S&P500 (A; y-axis truncated at 0.5 to enhance visualization). First and second alr-coordinates of 3-symbol

distribution (B). Estimated probabilities for regime 2 from fitted model (solid line) and superimposed

CBOE VIX volatility index (dashed line) (C). The shaded areas in the background refer to the NBER-

referenced recessions.
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