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Abstract

We introduce the three-dimensional Generalized ROC (GROC) function, which extends the

conventional two-dimension components of the ROC function by incorporating threshold val-

ues (α) along with False Positive Rates (FPR) and True Positive Rates (TPR) of the classi-

fier. To evaluate classifier performance comprehensively, we propose the Area of the GROC

(AGROC) function, which quantifies performance by measuring the difference between the area

under the GROC projection on the TPR×α plane and the area under the GROC projection

on the FPR×α plane. Our simulations show that AGROC outperforms the standard AUROC

in evaluating classifier performance when dealing with time-series probabilistic classifiers. In

our empirical analysis, we showcase the accuracy of our approach in determining which reces-

sion probabilities, computed from recently proposed Markov-switching specifications using US

GDP growth rate data, most accurately align with the NBER-referenced business cycle phases.
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�Fundamentos del Análisis Económico, Universidad de Murcia, 30100 Murcia, Spain. Email: aromeu@um.es
§Universidad de Murcia and UNIR, 30100 Murcia, Spain. Email: salvador.ramallo@um.es

1



Generalized ROC function and time-series probabilistic classification Camacho, Ramallo, Romeu

1 Introduction

The Receiver Operating Characteristic (ROC), as originally introduced by Peterson and Birdsall

(1953), found its roots in World War II as a tool used by the US army to enhance the detection

rate of enemy aircraft through radar systems. Its straightforward interpretation played a pivotal

role in the rapid adoption of this technique. The ROC curve, specifically, provides a visual

representation of the trade-offs between true positives and false positives in a classifier. Thus, the

Area Under the ROC curve (AUROC) serves as a natural measure of classification performance

in this context. An AUROC value of 1 signifies perfect classification, while 0.5 indicates no

discriminatory ability.

Over the past few decades, ROC analysis has become widely employed for assessing the per-

formance of classification models across various fields, including radiology (Obuchowski, 2003),

meteorology (Harvey et al., 1992), medicine (Kumar and Indrayan, 2011), machine learning

(Bradley, 1997), psychology (Swets, 1996), and economics (Berge and Jordà, 2011). In this

paper, the analysis is specifically limited to probabilistic classification models, which do not

directly assign instances to classes but instead provide probabilities associated with each class.

Furthermore, the focus is on time series applications that involve only two distinct classes.1

In practice, the effectiveness of probabilistic classification in guiding decisions relies on its

ability to accurately differentiate between the two corresponding classes. Probabilistic differen-

tiation is achieved when the probabilities closely approach zero for one class and stay near one

for the other. Classification accuracy pertains to the performance of the classification, aiming

to maximize true positives while minimizing false positives. While ROC curve metrics could

serve as a suitable tool for evaluating the accuracy of classification probabilities, they may not

fully capture how effectively these probabilities differentiate the actual classes.

One of the reasons for this limitation of the AUROC, as well as other related threshold-

moving type measures such as Precision-Recall curves, stems from the scale invariance of ROC

metrics and the Area Under the curve (Lobo et al, 2007). Consequently, the actual difference in

the probabilities between the two classes has minimal impact on the AUROC value. Even if the

probability assigned to one class only slightly exceeds that of another class, it is still counted as

a success, thereby contributing to the overall AUROC score. While this property is beneficial

for ranking classifiers with different units, it may not adequately address the requirement for

accurately calibrated probability outputs (Cook, 2007). Other measures that are not threshold-

moving type, such as the mean square error or the log loss function, however, are not specifically

tailored for ranking the performance of classifiers in classification tasks..

To illustrate this limitation with an example, let us consider evaluating the performance

of two probabilistic classifiers. The first classifier assigns probabilities of 1 to one class and 0

to the other. The second classifier is derived from the first one by scaling its probabilities by

1e-10. According to ROC metrics, both classifiers achieve a perfect AUROC of 1 since they

correctly classify instances into both classes. Nevertheless, only the first classifier holds prac-

tical value for real-world decision-making. This is because decision-makers rely on informative

1The implications derived from our study can readily apply to cross-sectional classification probabilities and multiple
classes as well.

2



Generalized ROC function and time-series probabilistic classification Camacho, Ramallo, Romeu

probability estimates that accurately reflect the underlying class probabilities. Therefore, the

minimal changes in probabilities observed in the second classifier, ranging from 1e-11 to 1e-9,

lack meaningful information for real-time decision-making.

In this paper, we aim to overcome this limitation by presenting an alternative measure of

classification performance. Rather than introducing additional metrics based on the averaging

of previous measurements, as proposed by Caruana and Niculescu-Mizil (2004), we offer a more

streamlined solution by introducing a novel metric that mitigates the shortcomings of threshold-

moving measurements. Our proposed metric not only takes into account True Positive Rates

(TPR) and False Positive Rates (FPR), similar to ROC metrics, but also incorporates the se-

quence of threshold levels (α) to weight them in its calculation. Consequently, we extend the

two-dimensional (FPR×TPR) ROC curve into a three-dimensional (FPR × TPR ×α) General-

ized ROC (GROC) curve. In this context, the ROC curve is a specific case of the GROC curve

when projected onto the FPR × TPR plane, with the AUROC representing the area under this

projection.

Introducing a novel metric for evaluating classifier performance, we present the Area of the

Generalized ROC (AGROC). This metric comprises two key components. Firstly, we calculate

the area under the projection of the GROC curve on the TPR×α plane, denoted as AUTPR.

This component quantifies the effectiveness of the classifier in accurately identifying one specific

class when it occurs. Secondly, we compute the area under the projection of the GROC curve on

the FPR×α plane, labeled as AUFPR. This component indicates the tendency of the classifier

to make errors by incorrectly signaling the occurrence of that class when it does not actually

happen.

Subsequently, AGROC is determined as the difference between these two components, AUTPR−
AUFPR, representing the equilibrium between classifier accuracy in identifying a specific class

and the potential for false alarms during the other class. A perfect classifier achieves the max-

imum value of 1, while a non-informative classifier scores 0.2 Unlike AUROC, AGROC is not

scale-invariant, providing more nuanced assessment of probabilistic classifier performance. As

a consequence AGROC provides a solution to the previously mentioned challenge, approaching

almost 0 for classifiers generated by multiplying a perfect probabilistic classifier by 1e-10.

We validate the reliability of this framework using simulated classifiers that emulate some

challenges encountered in time-series probabilistic classification. Through MonteCarlo simu-

lations with different persistence of the distinct classes, we observed how, when faced with

predictors close to perfect classification, scaled, noisy, or even with good classification ability in

a limited threshold, the AUROC measure tends to be generous when evaluating the ability of

the predictors, while in opposition, AGROC is able to discern these inaccuracies that move the

predictors away from being a perfect classifier.

To underscore the empirical utility of our approach, we align with the direction set forth

by Berge and Jordà (2011), from which the ROC metrics have garnered attention in economic

contexts. Specifically, ROC metrics have been instrumental in assessing the effectiveness of

state probabilities in accurately discerning business cycle turning points, which holds immense

2AGROC values could range between 0 and -1 in cases where classifications are inverted.
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significance for academics, policymakers, and practitioners. Notable contributions using ROC

measures to assess the extent to which recession probabilities align with the chronology of

business cycle phases provided by official dating committees include studies by Lahiri and Wang

(2013), Owyang et al. (2015), Lahiri and Yang (2016), Pönkä (2017), Pönkä and Stenborg

(2019), Camacho et al. (2018), Piger (2020), Leiva-Leon et al. (2020), Ercolani and Natoli

(2020), Galvão and Owyang (2020), Ferrari and Le Mezo (2021), and Lahiri and Yang (2022,

2023).

In our empirical analysis, we employ AGROC to rank various classifiers based on their

alignment with the business cycle phases determined by the National Bureau of Economic

Research (NBER) Business Cycle Dating Committee. Specifically, we employ different versions

of a 2-state Markov-switching model to generate filtered recession probabilities from US real

GDP growth rate data. While not exhaustive, our study encompasses the seminal proposal

by Hamilton (1989) alongside extensions by Eo and Kim (2016), Eo and Morley (2022, 2023),

and Leiva-Leon et al. (2024). Importantly, all models have been re-estimated using a sample

covering the period from 1947Q4 to 2023Q4 to ensure the comparability of the results.

Our findings indicate that, when excluding Covid-19 data, all recession probabilities closely

align with the NBER chronology. As a result, the models yield high AUROC and AGROC val-

ues, suggesting that both of which serve as valid metrics for assessing classification performance.

However, the AUROC values are exceptionally high for all classifiers, despite variations in their

ability to classify certain business cycle episodes, resulting in limited differentiation among them.

In contrast, AGROC provides a more nuanced perspective on classifier performance, enabling

a clearer ranking.

The inclusion of pandemic-related data significantly alters this landscape. This is partic-

ularly evident in the seminal proposal by Hamilton (1989), where recession probabilities are

near-zero for all periods except during the pandemic recession. Despite this, the probabilities of

recessions can still classify dates into the two distinct business cycle phases, but this is true only

for extremely tiny thresholds like 5e-13. Due to the scale-invariant property of ROC metrics,

AUROC remains close to one. By contrast, AGROC approaches zero, signaling the expected

decline in business cycle classification accuracy.

In light of these considerations, we rely on GROC to conduct a comprehensive evaluation

of the performance of all proposals as classifiers of the NBER business cycles. Our findings

highlight the significance of departing from the assumption of constant regime-specific mean

output growth rates in probabilistic classification of business cycles. Notably, the approach

proposed by Eo and Kim (2016), which relaxes this assumption, emerges as the most accurate

alternative for computing business cycle probabilities in the sample analyzed.

Our paper is structured as follows. In Section 2, we begin by describing the challenge of ROC

metrics to measure the performance of time-series probabilistic classification models and propose

the GROC alternative. Section 3 is devoted to Monte Carlo simulations, which serve as the basis

to show the advantages of GROC over ROC metrics. In Section 4, we discuss the computation

of filtered recession probabilities using several versions of Markov-switching models and use our

new metric to assess which of these probabilities best align with the NBER-referenced state of
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the business cycle. Finally, Section 5 presents our conclusions.

2 A new metric of probabilistic classification perfor-

mance

2.1 Time-series probabilistic classification

To represent probabilistic classification, we assume the existence of only two distinct classes,

each of which characterizing particular regimes or states. In time series analyses, the evolution

of classes categorizes the dates of a calendar time period {1, . . . , T} into these two regimes.

To characterize the class occurrence, we introduce the discrete class-indicator variable, denoted

as St, taking values in the set {0, 1}, where St = s indicates class s occurring at time t, with

s = 0, 1. Consequently, the sequence S = {S1, . . . , ST } encompasses the complete array of all

conceivable classification outcomes.

A key task in time-series probabilistic classification involves assigning class labels to sequen-

tially ordered data by estimating the probability of belonging to one of the two classes at a

specific time period, denoted here as ξt ∈ [0, 1]. Assessing the classification ability of these

class, state or regime probabilities commonly involves comparing their historical performance

in classifying the data. A good classifier should provide high probability of a particular class

when time t is within that class, juxtaposed with a low probability of that class when time t is

in the other class.

Assuming, without loss of generality, that the interest lies in classifying class 1, we proceed

as follows. Given a threshold, α, we classify time t as class 1 when ξt ≥ α, and as class 0 when

ξt < α. A true positive event occurs when ξt ≥ α and St = 1, while a false positive event occurs

when ξt ≥ α and St = 0. The probabilities of these two events are termed True Positive Rate

(TPR) and False Positive Rate (FPR), which can be expressed as follows:

TPR(α) = p(ξt ≥ α|St = 1) (1)

FPR(α) = p(ξt ≥ α|St = 0). (2)

In practical applications, TPR(α) is estimated as the ratio of the number of times that ξt ≥ α

over the number of class 1 events. Besides, FPR(α) is estimated as the ratio of the number of

times that ξt ≥ α over the number of class 0 events.3

2.2 ROC metrics

ROC curves offer a graphical representation of the trade-off between TPR(α) and FPR(α)

for every possible threshold α. As α approaches 0, both TPR(α) and FPR(α) tend towards

one, and as α approaches 1, both tend towards zero. Thus, the ROC curve is depicted as the

3In the literature, the TPR(α) is often denoted as “sensitivity” while the p(ξt < α|St = 0) ≡ 1−FPR(α) is known
as “specificity”.

5



Generalized ROC function and time-series probabilistic classification Camacho, Ramallo, Romeu

trajectory of the coordinates A(α) = (FPR(α), TPR(α)) in the xy-plane. When the state

probabilities fail to provide informative classification of the sequence S, TPR(α) = FPR(α)

for all possible thresholds. This implies that the ROC curve aligns with the 45-degree line that

connects the origin to the point (1,1).4 Conversely, a perfect classifier situates the ROC curve

in the upper-left section of the unit quadrant.

The classification performance of a vector of state probabilities is often evaluated based on

the position of the ROC curve within the unit quadrant. As a consequence, a standard measure

of the overall classification ability is the Area Under the ROC (AUROC) curve. In the case of a

perfect classifier, AUROC equals 1, while any deviation from this perfect classification gradually

reduces AUROC until it reaches 0.5, which is the expected value for a random classifier.5

Therefore, AUROC is typically used to rank a set of classifiers by the quality of their respective

classifications.

In practice, an approximation of AUROC can be obtained using a sorted grid of thresholds,

αr, where r ranges from 1 to R. The grid starts with α1 = 0 and ends with αR = 1. The ROC

curve is then represented as a plot of points (xr, yr) in the first quadrant of the [0, 1] × [0, 1]

coordinate plane. Here, xr is placed on the x-axis and represents the true positive rate at

threshold αr, while yr is placed on the y-axis and represents the false positive rate at the same

threshold. Using this notation, AUROC is approximated by the following formula:

AUROC =
R∑

r=2

|xr − xr−1|
(yr + yr−1)

2
. (3)

This equation essentially calculates the area under the ROC curve in the xy-plane by summing

the areas of trapezoids. The width of each trapezoid is equal to the difference between consecu-

tive sampling points on the FPR axis, and the average height is determined by the corresponding

points on the TPR vertical axis.

To perform inference, a bootstrapping method can be employed to obtain an empirical ap-

proximation of the distribution of AUROC, as proposed by Bertail et al. (2008). However,

applying bootstrapping to the ROC can be challenging due to the presence of data from two

distinct classes. To address this issue, we can use stratified bootstrapping. This involves per-

forming resampling with replacement of the state probabilities separately from subsamples, each

of which corresponding to one of the two regimes. For each of these resampled probabilities,

ξmt , a new value of AUROCm is calculated, with m ranging from 1 to a large value M .6

4For example, the ROC from a random classifier and a classifier with constant probabilities of class 1 events (ξt = c,
for all t = 1, . . . , T , and 0 ≤ c ≤ 1) is the 45 degrees line.

5In cases where classifiers incorrectly classify class 0 as class 1, AUROC values may fall between 0 and 0.5. To
address this issue, reversing the labels can be considered.

6An alternative approach is to represent the AUROC measure as a weighted average of correlation coefficients
between a set of binary indicators and the target event as shown in Yang et al. (2024). This representation paves the
way for inference development based on parametric methods under serial dependence.
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2.3 Generalized ROC metrics

This section extends the traditional ROC function, defined in the xy-plane by coordinate points

A(α) = (FPR(α), TPR(α)), to the Generalized ROC (GROC) function, defined in the xyz-

space with triple-coordinate points R(α) = (FPR(α), TPR(α), α). This expansion adds a third

coordinate, determined by the threshold α, to the standard ROC analysis.

Figure 1 illustrates our proposal with an example of ordered triples R(α) for a typical

classifier. The figure includes a three-dimensional plot of R(α), along with three associated

coordinate planes: the FPR×TPR plane, representing the FPR- and TPR-axes; the TPR×α

plane, representing the TPR- and α-axes; and the FPR×α plane, representing the FPR- and

α-axes.

The traditional ROC curve, depicted in the figure as line L1, represents the graphical plot

of A(α), and can be obtained from the data provided by R(α) as the projection of the triples

onto the FPR×TPR plane, where α = 0. Consequently, the standard AUROC, indicated by

the red area in Figure 1, can be calculated as the area under this projection, as explained in

(3). Because the ROC is a two-dimensional projection on the bottom plane, it overlooks the

magnitude of the thresholds represented by the slope of the GROC. This limitation results

in a scale-invariant metrics that may yield unreliable rankings of classifiers, especially when

threshold magnitudes are important such as in the case of probability classifiers.

To address this issue, we introduce a new metric for classification ability called the Area

of the Generalized ROC (AGROC). Our approach focuses on the projections of R(α) onto the

TPR×α and FPR×α planes, and the areas beneath these projections, represented by curves L2

and L3 in Figure 2. Using the notation from expression (3), the approximations to the areas

under these curves for a given classifier are as follows:

AUTPR =
R∑

r=1

|yr − yr−1|
(αr + αr−1)

2
, (4)

AUFPR =
R∑

r=1

|xr − xr−1|
(αr + αr−1)

2
, (5)

respectively. The first expression calculates the area AUTPR by adding trapezoids, each with

a base calculated as the difference between consecutive sampling points on the TPR axis, and

height computed as the average of their associated thresholds. This calculation method measures

the cumulative gains of true positives, weighted by their corresponding thresholds. Similarly, the

second expression computes the areaAUFPR by summing trapezoids, with bases representing the

differences in consecutive false positives multiplied by the average of their associated thresholds.

Here, the calculation captures the cumulative losses incurred when generating false positives,

weighted by their corresponding thresholds. These two metrics are visually represented by the

purple and green areas in Figure 1, respectively.

In this extension of ROC measures, we define the Area of the Generalized ROC as:

AGROC = AUTPR −AUFPR. (6)
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This metric quantifies the trade-offs between the cumulative gains and the cumulative losses

achieved by the classifier. Mimicking the approach used for AUROC, we can additionally

approximate the sample distribution of AGROC using stratified sampling with replacement,

providing an empirical estimate of the standard deviation.

3 Performance evaluation via simulations

3.1 Illustrations

Consider the sequence of 100 dates belonging to class 0 and class 1, denoted as S = S1, . . . , S100,

which is generated by assuming that St follows a 2-state Markov-switching process of order one

taking values in {0, 1}, with transition probabilities p00 = p(St = 0/St−1 = 0) = 0.9 and

p11 = p(St = 1/St−1 = 1) = 0.8. In Panel A of Figures 2 to 4, the occurrences of St = 1

are represented with shaded areas. Let us begin to elucidate our proposal with intuition by

examining the classification performance of two extreme classifiers in relation to that of standard

ROC metrics.

Figure 2 illustrates a classifier that impeccably distinguishes between class 0 and class 1

dates, i.e. ξt = St. In Panel A, the red line represents the probabilities of class 1 for this

classifier, perfectly aligning with the generated class 1 dates. Panel B displays the ROC curve,

obtained from the projection of the triples R(α) onto the FPR×TPR plane. For this classifier,

this curve consists of three points: (1,1) for a threshold of 0, (0,1) for all thresholds between 0

and 1, and (0,0) for a threshold of 1. The green area in Panel B represents the AUROC, which

reaches its maximum value of one.

In the case of this perfect classifier, Panel C presents the projection of R(α) on the TPR×α

plane. Here, TPR remains at 1 for thresholds within the interval [0,1) and decreases to 0 when

the threshold reaches 1. The red area represents AUTPR, which attains the maximum value

of 1. Meanwhile, Panel D displays the projection of R(α) on the FPR×α plane, showing that

FPR equals 1 for a threshold of 1 and drops to 0 for thresholds within the interval (0,1]. In

this projection, AUFPR is 0. AGROC, measured as the difference between AUTPR and AUFPR,

reaches its maximum value of 1. Mirroring AUROC, AGROC signifies the highest possible

discrimination ability for this classifier.

Contrary to the perfect classifier, Figure 3 focuses on classifiers that offer no meaningful

information, such as when providing constant class 1 probabilities, ξt = c, where 0 ≤ c ≤ 1. To

illustrate, Panel A displays a classifier that provides class 1 probabilities of 0.5, ξt = 0.5, for all

t. Panel B shows the ROC curve, which comprises only two points: (1,1) for α ≤ 0.5 and (0,0)

for α > 0.5, resulting in an AUROC of 0.5, represented by the green area. Panels C and D show

the projections of R(α) on the TPR×α and FPR×α planes and are represented by red and blue

areas, respectively. They reveal that TPR and FPR are both 1 for α ≤ 0.5 and 0 for α > 0.5,

resulting in AUTPR and AUFPR both being 0.5. Consequently, AGROC is 0, indicating, like

AUROC, that the classifier lacks informativeness.

Moving to more realistic classifiers, Figure 4 presents a comparative assessment of three

alternative classifiers. In panel A, classifier A (red line) and classifier B (green line) were
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generated as follows: at each time t, the absolute value of a random number is drawn from the

Gaussian distribution N(0, 0.05) for classifier A and N(0, 0.5) for classifier B. This value is then

added to St when St = 0 and subtracted from St when St = 1. Finally, classifier C is obtained

by multiplying classifier A by 0.1.

As expected, Panel A shows a close alignment between classifier A and the sequence of states

S, resulting in a ROC curve (depicted in Panel B as a red area) that closely follows the upper

part of the unit quadrant, yielding an AUROC of 0.99. Similarly, Panel C reveals that TPR

is 1 for all thresholds except for those very close to 1, resulting in a high AUTPR of 0.96, as

indicated by the red area. For this classifier, FPR is positive only for thresholds lower than 0.1

but becomes 0 for thresholds greater than 0.1, leading to a low AUFPR of 0.04, as indicated by

the red area in Panel D. This classifier exhibits the largest AGROC, reaching the value of 0.92.

The increased noise in generating classifier B significantly diminishes its classification accu-

racy compared to the sequence of states. Consequently, its ROC curve, depicted by the green

area in Panel B, is closer to the 45-degree line, resulting in a decreased AUROC of 0.72, indicat-

ing lower classification performance. Using GROC metrics, classifier B, exhibits some positive

signals that align with dates of St = 1, resulting in a AUTPR of 0.60, represented by a green

area in Panel C. However, this classifier also reports significant probabilities of class 1 dates

when St = 0, as evidenced in Panel A, leading to the highest AUTPR of 0.36, represented by the

green area in Panel C. Subtracting AUTPR from AUFPR yields an AGROC of 0.24, indicating

lower classification performance than classifier A.

Of particular relevance to this paper is the comparison between classifiers A and C. In Panel

A, we observe that classifier A demonstrates significantly stronger probabilistic differentiation

compared to classifier C. This distinction is evident as classifier A approaches near-certainty

when St = 1 and near-zero probability when St = 0, whereas classifier C consistently maintains

very low probabilities for state 1.

Despite these disparities, both classifiers yield identical ROC curves, reflected by AUROC

values of 0.99, as depicted by the green area in Panel B, matching for both classifiers. However,

upon employing GROC metrics, classifier C presents relatively diminished probabilities for

class 1 when St = 1, resulting in a considerable reduction in AUTPR to 0.09, as indicated by

the blue area in Panel C. Conversely, the probabilities of class 1 when St = 0 for classifier C

are exceedingly low, implying that false signals only emerge for extremely minuscule thresholds,

thus yielding a low AUFPR of 0.01. Consequently, the AGROC value for classifier C decreases

to 0.08, accentuating its inferior probabilistic differentiation performance compared to classifier

A.

This example illustrates how AUROC may not be a reliable metric for ranking classification

probabilities when assessing their relative classification performance. This is particularly evident

in scenarios where the scale-invariance property of AUROC fails to adequately differentiate

between classifiers with varying levels of probabilistic differentiation.
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3.2 Monte Carlo analyses

In order to assess the robustness and reliability of the AUROC and AGROC metrics, a Monte

Carlo experiment was conducted. Inspired by the illustration in the previous subsection, this ex-

periment comprised nine unique scenarios for the data generating process of the classes St. These

scenarios resulted from the simulation of three binary Markov processes for St: first, a high-

persistence process (HI) with transition probabilites p00 = p11 = 0.9, second, a low-persistence

(LO) with transition probabilites p00 = p11 = 0.2 and thrid, an unbalanced persistence (UNB)

process, with high 0-state persistence (p00 = 0.9) and low 1-state (p11 = 0.2). The analysis was

performed across three sample sizes, T = 200, 500, 1000, resulting the mentioned nine scenarios.

For each scenario and size, a single run of St was generated.

Our aim is to test the performance of distinct time-series probabilistic classification models

that were representative of different situations and that illustrated the different capacity of the

two measures analyzed. In particular, we tested up to seven distinct classification models:

1. (U) Uninformative signal: ξ1t ∼ U(0, 1)

2. (AT) Almost True signal: ξ2t = St(1− |εt|) + (1− St)|εt|, where εt ∼ N(0, 0.1)

3. (N) Noisy signal: ξ3t = St(1− |εt|) + (1− St)|εt|, where εt ∼ N(0, 0.5)

4. (HS) Heavily Shrinked signal: ξ4t = 0.05ξ2t

5. (SS) Softly Shrinked signal: ξ5t = 0.5ξ2t

6. (MA) Moving-Average fat tails signal: ξ6t = St+(1−St)P (St, 5) where P (St, 5) is a moving

average of order 5 centered in t.

7. (MAAT) Moving-Average and Almost True signal: ξ7t = Stξ
2
t + (1− St)ξ

6
t

For each of the seven distinct classification models, 1000 samples of one of the simulated clas-

sifier above were obtained and the corresponding corresponding AUROC and AGROC metrics

are computed and recorded. The whole process is repeated for each classifier and the results are

summarized in Table 1, where average values over the 1000 replicas are reported. We proceed

to break down the different signals and the results for the measures under study.

The first signal U is considered a lower-boundary test case. Note that U simply random

noise drawn from a uniform distribution over the interval (0,1). Panel A of Figure 5 shows the

poor performance of one simulation of this classifier, which is entirely naive and fails to convey

any information about the true state of nature, St, with St = 1 represented by shaded areas.

Consequently, the fourth column of the table shows that the average AUROC is around 0.5 and

AGROC is close to zero, regardless of the persistence of the binary Markov processes and the

sample size of the simulation.

The AT classifier, an example of which is depicted in Panel B of Figure 5, represent the

prototype of a very accurate signal : it almost mimics the true state and takes the value of

one when St = 1 except for a small error. Consequently, high values from the AUROC and

AGROC metrics would be expected. Fifth column in Table 1 confirms that this is indeed the

case. However, we observe a differentiated behavior between both metrics: the AUROC scores a
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perfect classifier value of 1, while the AGROC metrics is more conservative with a more modest

0.84 value.

To investigate if this deterioration pattern persists for higher levels of classifier error, we

introduced the N classifier, an example of which is displayed in Panel C of Figure 5. The sixth

column in Table 1 shows that the N noisy signal reduces the AUROC approximately by a 30%

but decreases the AGROC by almost a 75%, further with respect to the AT. This result suggests

that AGROC penalizes the amount of noise conveyed in the classifier more strictly than AUROC

does.

Classifiers HS and SS explore the effect of the scale-invariance property on classification

performance. Both mimics the AT classifier although they apply shrinkage proportions of 95%

and 50%, respectively. The representative illustrations of these two classifiers, displayed in

Panels D and E of Figure 5, illustrate the performance deterioration experienced by HS and,

to a lesser extent, by SS compared to AT. Despite this evident deterioration, columns seven

and eight of Table 1 show that AUROC is unaffected by the changes in units and remains at a

very high measure of 1 in both cases, as it did in the original units of the AT case. However,

AGROC is more sensitive to the shrinkage factor: the value of this metrics is close to zero when

the shrinkage is significant and close to 0.4 for the softer shrinkage.

Interestingly, we have found that the classification metrics are almost insensitive to the

choice of sample size or the persistence of the binary Markov processes St. This is unsurprising,

as changing these parameters only affects the frequency of regime changes in the processes.

Consequently, the predictive ability of the probabilistic classifier across different scenarios is

expected to differ only when the signal displays some form of memory or dynamics, which is

not the case for any of the five previous ξt’s considered.

We further explore the influence of the persistence of the regimes in on classification perfor-

mance by introducing the MA classifier. This classifier exhibits short-run memory, as illustrated

in Panel F of Figure 5. Consequently, the figure shows that classification performance deteri-

orates around the regime-change dates, and we expect higher deterioration when the regimes

are less persistent, as the number of turning points increases. However, column nine of Table 1

shows that AUROC does not deteriorate when the persistence of the regimes falls. By contrast,

AGROC does deteriorate when the persistence of the states falls.

To further explore the differences in both metrics and their responses to signal noise and

scaling, we introduce a supplementary classifier denoted as MAAT. This classifier combines

features of moving average, as in MA, and good classification performance, as in AT. MAAT

behaves like MA within 0-states and like an AT signal within 1-states. An illustrative example

is shown in Panel G of Figure 5. This classifier effectively predicts state 1 despite noise and

follows a moving average of order 5 when outside state 1. Consequently, it represents a signal

of lower predictive quality than MA, a characteristic that the metrics should be able to discern.

The results in the last column of Table 1 indicate that AUROC fails to identify the lower

performance of the signal, while AGROC successfully reflects this fact by yielding markedly

lower values than for the MA scenario.
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4 Empirical application

Berge and Jordà (2011) played a pivotal role in popularizing the use of ROC curves in the realm

of business cycle analysis. They conceptualized dating procedures as a distinct instance of a

standard time-series classification problem, thus highlighting the applicability of ROC curves

within this framework. Their work has inspired numerous empirical economic applications uti-

lizing ROC metrics. In this section, we aim to compare our GROC metrics with the traditional

ROC approach in assessing the performance of classifiers in business cycle analysis.

Specifically, our study examines the business cycle classification performance of various ver-

sions of univariate Markov-switching models for US GDP growth rates. These models have

gained widespread acceptance within economic research circles due to their robustness in pro-

viding a probabilistic classification framework that accurately identifies the different phases of

the business cycle.

4.1 Markov-switching models

To address the complexity of identifying the observed tendency of economic activity to exhibit

markedly different behaviors during downturns, reflecting the nonlinear dynamics inherent in

economic cycles, Hamilton (1989) introduced the regime-switching specification. Specifically, the

author proposed that the real output growth, denoted as yt, for t = 1, ..., T , can be represented

as a non-linear process controlled by an unobserved regime-switching two-state variable, St,

taking values in {0, 1}. The model is expressed as:

yt = µst + ϵt, (7)

where ϵt ∼ iidN(0, σ2
ϵ ). Here, we abstract from autoregressive parameters, following the empiri-

cal results by Camacho and Perez-Quiros (2007) and the recent specifications by, among others,

Eo and Kim (2016) and Eo and Morley (2022, 2023). If we assume µ0 > 0 and µ1 < 0, we can

label St = 0 and St = 1 as representing the states of economic expansion and recession at time

t, respectively.

Hamilton (1989) assumed that the state variable St evolves as an irreducible 2-state Markov

chain. The transition probabilities for this Markov chain are defined as:

p(St = j|St−1 = i, St−2 = h, ...,Ψt−1) = p(St = j|St−1 = i) = pij (8)

where i and j take on values of 0 or 1, and Ψt represents the information set up to period t,

collected in {y1, ..., yt}. Additionally, the author described a forward filter that calculates the

filtered probabilities of being in a recession at time t given Ψt. Here, we call this model MH .

Several extensions of this seminal work have been proposed in the literature, aiming to incor-

porate empirical features such as time-dependency in regime-specific means, time-dependency in

the long-run mean growth rate, or stochastic volatility. One of the most significant contributions

was proposed by Eo and Kim (2016), who were the first to relax the assumption of constant

regime-specific growth rates made by Hamilton (1989). Specifically, let µ0,τ0 and µ1,τ1 be the
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growth rates during the τ0th episode of expansion or the τ1th episode of recession in the sample,

respectively, and denote the long-run growth rate as δDt . Consider the Markov-switching model

of the business cycle:

yt = δDt + (1− St)µ0,τ0 + Stµ1,τ1 + ϵt, (9)

where the variance of the disturbance term is specified as a stochastic volatility process, implying

ln(σ2
ϵ,t) = ln(σ2

ϵ,t−1) + ηt, with ηt ∼ iidN(0, σ2
η).

In order to allow for different episodes of expansions and recessions, the dynamics of the

regime-specific mean growth rates are assumed to follow a random walk. Specifically, if there

are N0 episodes of expansion and N1 episodes of recession, the dynamics of the random walks

are

µ0,τ0 = µ0,τ0−1 + ω0,τ0 , ω0,τ0 ∼ N(0, σ2
0,τ0) (10a)

µ1,τ1 = µ1,τ1−1 + ω1,τ1 , ω1,τ1 ∼ N(0, σ2
0,τ1) (10b)

where τ0 = 1, 2, . . . , N0 and τ1 = 1, 2, . . . , N1.

Referring to the unconditional state probabilities as πi = P (St = i), with i = 0, 1, Eo and

Kim (2016) assumed that both the long-run condition E[π0µ0,τ + π1µ1,τ ] = 0 and identifying

restrictions µ0,τ > 0, and µ1,τ < 0 hold. In regards to the long-run mean growth rate, the

authors considered two possibilities. Firstly, they proposed that the long-run mean growth rate

is a random walk process determined by:

δt = δt−1 + et, (11)

with et ∼ iidN(0, σ2
e). Alternatively, they suggested an abrupt structural break, modeled as a

Markov-switching process with an absorbing state:

δDt = δ0(1−Dt) + δ1Dt, (12)

with Dt following a Markov chain with two states, Dt = 0 and Dt = 1, whose the transition

probabilities are (Dt = 0|Dt−1 = 0) = q00 and p(Dt = 1|Dt−1 = 1) = q11 = 1.

A model such as that in expression (9), where the stochastic long-run growth follows a

random walk as in (11), with the corresponding long-run and identifying restrictions, is referred

to as model II in Eo and Kim (2016). Conversely, when the stochastic long-run growth, as

defined in (12), is permitted to exhibit one structural break, they referred to it as model IV.

Here, we denote these two extensions of model (7) as M2
EK and M4

EK , respectively.

As competitors, Eo and Kim (2016) also allowed constant regime-specific mean growth rates,

meaning that µ0,τ = µ0 and µ1,τ = µ1 in (9). Additionally, they also allow for potential bounce-

back effects. Specifically, the model becomes

yt = δDt + (1− St)µ0 + Stµ1 + λ

M∑
m=1

(yt−m − δDt−m) + ϵt, (13)

where the variance of the disturbance term is specified as a stochastic volatility process as in (9).
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The third addend refer to the bounce-back effect and allows for long and deep recessions to be

followed by stronger recoveries, where the authors set M = 6 for the length of the bounce-back

effect.

Considering the specifications of the long-run mean growth rate and the presence of bounce-

back effects in (13), Eo and Kim (2016) examined four alternative specifications. Not allowing

bounce-back effects (λ = 0) and modeling the long-run mean growth rate as a random walk

as in (11) resulted in model I, while modeling the latter as having a structural shift as in (12)

led to model V. Conversely, permitting bounce-back effects (λ ̸= 0) and modeling the long-run

mean growth rate as a random walk as in (11) led to model III, while modeling the latter as

having a structural shift as in (12) resulted in model VI. Here, we denote these models as M1
EK ,

M5
EK , M3

EK , and M6
EK , respectively.

Closely related to model (9), Leiva-Leon at al. (2024) considered time-varying output growth

means associated with expansions and recessions that do not follow random walks. In particular,

their specification assumes δDt = 0 and constant variance of errors as in (7) but does not allow for

bounced-back effects. Additionally, viewing explicitly each regime-specific episode as a function

of time, the authors proposed the following transition between expansion and recession episodes,

marked by τ0t and τ1t:

τ0t =

1− S1, if t = 1

(1− S1) +
∑t

j=2max(0, Sj−1 − Sj), otherwise,
(14a)

τ1t =

S1, if t = 1

S1 +
∑t

j=2 max(0, Sj − Sj−1), otherwise,
(14b)

where τ0t = 1, 2, . . . , N0 and τ1t = 1, 2, . . . , N1. When a transition between states occurs, such

as from expansion to recession, µ0,τ0t remains unchanged during the new phase of the state,

while µ1,τ1t is derived based on the output growth rates observed during the corresponding

recessionary period. We call this model MDGE .

The latest extensions of the Markov-switching model that we consider here were proposed

by Eo and Morley (2022, 2023). The authors introduced a three-state Markov-switching latent

variable where St = 0 represents expansions, St = 1 indicates L-shaped recessions, and St = 2

signifies U-shaped recessions. Notably, the transition probabilities are constrained to prevent

transitions between the two types of recessions, i.e., p12 = p21 = 0. Utilizing the indicator

function I(·), the extended model for output growth incorporates the following conditional

mean based on the three regimes:

yt = µ0 + µ1χtI(St = 1) + µ2χtI(St = 2) + φ

K∑
k=1

χt−kI(St−k = 2) + ϵt, (15)

with µ0 > 0, µ1 < 1, and µ2 > 2.

In this equation, the variance of the disturbance term allows to account for a breakdate

volatility reduction, expressed as ϵt ∼ (0, σ2
t ), with σ2

t = σ2
0I(t ≤ 1984Q2) + σ2

1I(t > 1984Q2).

Enforcing an U-shaped recession to have only transitory effects implies µ2+Mφ = 0, where M is
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set to 5. Lastly, to accommodate the extreme outliers during the pandemic, the model integrates

the volatility decay function χt, where χ = 1 for t < 2020Q2 and χt = 1 + (c− 1) + ρ(t−2020Q2)

otherwise. The probability of recession can be derived by summing the probability of being in

either of the two recession types, either L-shaped or U-shaped. When ρ = 0, the model reduces

to Eo and Morley (2022), denoted as M22
EM , while it is labeled as M23

EM otherwise.7

4.2 Classification ability

This section is dedicated to illustrating the benefits of GROC-type metrics compared to standard

ROC-type metrics for assessing the classification performance of recession probabilities derived

from the aforementioned versions of an univariate Markov-switching for US GDP growth rates.

To do this, we evaluate the alignment of the filtered probabilities of recession with the NBER-

referenced dates.8

To ensure comparability, all of these models are estimated using the same sample, which

starts in 1947Q4 following Eo and Kim (2016) and ends in 2023Q4.9 However, to examine the

potential biases in classification performance caused by the extreme values in output growth

rates during the first quarters of 2020 due to the pandemic, we also conduct the analysis using

a sample ending in 2019Q4.

Figures 6 and 7 provides an illustrative example of how ROC and GROC metrics gauge the

performance of an inferred probability of recession from Hamilton’s (1989) Markov-switching

model as a business cycle classifier for two different samples. Starting from Figure 6, Panel A

presents the quarterly US GDP growth rates spanning from 1951Q1 to 2019Q4, while Panel B

depicts the corresponding filtered probabilities of the negative state. The classification proba-

bilities roughly align with the official chronology of business cycle expansions and recessions as

provided by the NBER, represented by shaded areas.

The correspondence is evident in Panel C, where the ROC curve is prominently located near

the upper left corner. Quantitative support for this classification effectiveness is provided by

an AUROC value of 0.989, as reported in Table 2 for MH , along with a standard deviation of

0.005. Nonetheless, the near-perfect AUROC value may overstate the performance in classifi-

cation, given its failure, for example, to promptly identify the recession in 2000 or its delayed

recognition of the 1970 recession. Moving to GROC metrics, the projections of the ROC curves

on the TPR×α and FPR×α planes in Panels D and E reveal the large cumulative gains of

the true positives (AUTPR=0.607) and small cumulative losses when generating false positives

(AUTPR=0.003). As a result, Table 2 shows that AGROC is large, 0.604, although significantly

below the value of 1 for a perfect classifier, leaving room for ranking in better positions classifiers

with larger AGROC and overcoming the drawback of ROC metrics.

Examining the performance of MH when including pandemic data, provides an illustrative

7Readers interested in detailed derivations and estimation procedures for the models mentioned in this paper are
encouraged to refer to the original works cited in the text.

8Importantly, our aim is not to provide here the best Markov-switching model, but rather to illustrate how some
alternative specifications in the literature can be ranked using GROC metrics according to their ability to classify
dates into expansions and recessions.

9The models were estimated using codes obtained from the authors’ websites.
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example of the failure of ROC metrics for probabilistic classifiers due to their scale-invariant

property. Panel A of Figure 7, which extends the sample up to 2023Q4, shows that the US

economy experienced, in 2020, the deepest U-shaped recovery in recent history, with the sharpest

downturn, falling by -8.93% in the second quarter, and rebounding at a record rate of 7.55%

in the third quarter. As a consequence, Panel B illustrates that the very large drop in 2020

is identified by the likelihood as the low-growth state, and the model apparently relegates all

the previous recessions of normal falls to the high-growth state. Thus, all the probabilities of

recession are nearly reduced to zero for the period prior to the COVID-19 pandemic. Intuitively,

this should significantly reduce the ability of the recession probabilities to classify the business

cycle.

The unexpected outcome is reported in Panel D, where the ROC curve continues to exhibit a

high classification performance, closely tracking points near the top-left corner. The quantitative

evidence of this surprising effectiveness is reflected in an AUROC value of 0.914, as detailed in

Table 2, with a standard deviation of 0.024. The reason for this seemingly counterintuitive result

can be attributed to the scale invariance property of AUROC. This issue is clearly illustrated in

Panel C, where we zoomed in on the probabilities of recession reported in Panel B by reducing

the y-axis scale. This panel show that for extremely tiny thresholds like 5e-13 the probabilities

of recession still provide classification ability.

Consequently, as AUROC assesses true positives and false positives for all conceivable

thresholds of the recession probabilities, including almost negligible thresholds, it still yields

near-perfect classifier values. However, despite the large AUROC values for both samples, the

probabilities derived from the larger sample yield a classifier with significantly less economic

significance than that of the shorter sample.

Fortunately, our proposed GROC metrics effectively address this limitations of ROC mea-

sures. Panels E and F display the projections of the GROC curve on the TPR×α and FPR×α

planes, respectively. As the probabilities of recession obtained from MH when including pan-

demic data only identify recessions for extremely small thresholds, it results in a substantially

reduced AUTPR of 0.028. Additionally, the metrics reveal a limited number of false signals

across different thresholds, leading to a small AUFPR of 0.005. With AGROC falling to 0.023

and a standard error of 0.022, barely surpassing the value of an uninformative classifier, the

GROC metric accurately reflects the considerably superior classifier performance of the Markov-

switching model that excludes Covid-19 data.

After illustrating the weaknesses of ROC metrics and the strengths of our GROC exten-

sion, Table 2 helps us rank recently proposed extensions of Hamilton’s (1989) seminal Markov-

switching model for the samples ending in 2019Q4 and 2023Q4. Ideally, the models would be

ranked to closely align with the NBER business cycle classification, with the top-ranking model

expected to achieve the closest correspondence. To facilitate understanding, Figures 8 and 9

display the probabilities of recession provided by these models for both samples, respectively.

Starting with the sample ending in 2019Q4, the AUROC values in the table reveal a strikingly

high classification performance across all models, with scores often approaching values close to

one. This result is in line with Saito and Rehmsmeier (2015) and Lahiri and Yang (2023),
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who suggest that in cases of severe class imbalance the performance metrics under ROC get

overloaded by the success in predicting the dominant event, even when the rare object interest

is not predicted well, as illustrated in Figure 8. This characteristic of AUROC metrics poses

a challenge in distinguishing between good classifiers, as they tend to provide little room for

differentiation across them, ranging from 0.945 to 0.989. However, the AGROC values offer a

more nuanced perspective on classifier performance, taking into account both true positive and

false positive rates across all thresholds. Notably, AGROC designates M2
EK as the model with

the highest discriminatory power in accurately classifying business cycle phases, with a value of

0.731 (captures pretty accurately every recession and expansions), and ranging the values for

the different model in this case from 0.489 to that value.

Evaluating potential changes in ranking classification performance with the sample ending in

2023Q4 is of particular interest, given that the models must contend with the extreme outliers

observed during the pandemic. Some of these models have the necessary flexibility to account for

recessions and expansions of various magnitudes, such as the time-varying regime-specific means

of M2
EK , M4

EK and MDGE . Notably, M
23
EM is specially designated to incorporate pandemic data

by introducing a decay function for volatility from 2020Q2.

As indicated in Table 2, among the models considered, M2
EK once again emerges as the

top performer, achieving the highest AGROC score of 0.616 (only fails partially for the last

recession period). This underscores the superior business cycle classification performance of

Markov-switching models that allow different episodes of expansion and recession to have varying

output mean growth rates, enabling accurate classification of business cycle phases compared

to other models included in the analysis. Again, the range of differentiation is different in both

measures, being in the case of AUROC between 0.914 and 0.977, and between 0.023 and 0.616 in

the case of AGROC, again highlighting the greater distinguishing ability of the latter measure.

5 Conclusions

The Area Under the ROC (AUROC) has become a common metric for assessing the performance

in probabilistic classification. However, although it is simple to calculate, its interpretation in

this context could be meaningless for classifier comparison because the ROC metric does not

depend on the scale of the probabilities. To address this limitation, we introduce a Generalized

ROC (GROC) function, which extends the traditional ROC curve by incorporating a third

coordinate, represented by the thresholds (α) used to assign categories to probabilites.

In our setup, the ROC curve is essentially a projection of the GROC function onto the

FPR×TPR plane, with AUROC quantifying the classification performance of a given classifier.

Furthermore, we introduce the projection of the GROC function onto the TPR×α plane and

calculate the area under this curve as AUTPR, measuring the ability of the classifier for cor-

rect classification. Additionally, the projection of the GROC function onto the FPR×α plane

provides the basis for AUFPR, which assesses the capacity of the classifier to misclassification.

Additionally, we introduce the Area of the Generalized ROC (AGROC), calculated as the

difference between AUTPR and AUFPR. This innovative metric effectively captures the balance
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between false positives and true positives, offering a reliable measure for evaluating classifier per-

formance. Unlike AUROC, AGROC is not scale-invariant, enhancing its robustness in ranking

classifiers for classifying trough probabilities. The robustness of AGROC in ranking classifiers

has been extensively assessed through simulations, which have been designed to replicate certain

challenges encountered in probabilistic classification.

To offer an empirical illustration, we turn to Berge and Jordà (2011), who notably introduced

ROC curves in business cycle analysis, treating dating procedures as a standard classification

problem. Utilizing US GDP growth rate data, we employ our metric to rank classifiers derived

from different versions of Markov-switching models. The rankings are based on how well the es-

timated probabilities of recession align with the NBER-determined business cycles. Our results

underscore the importance of allowing for different episodes of expansion and recession to have

varying output mean growth rates to address the challenge posed by the large outliers observed

during the 2020 pandemic.

We look forward to future work addressing the following issues. Following Saito and Rehmsmeier

(2015) and Lahiri and Yang (2023), we see a natural extension of our approach generalizing PRC

measures of classification performance for classifiers that are applied to strongly imbalanced

datasets in which the number of negatives outweighs the number of positives significantly. In

addition, our GROC can be re-expressed in terms of the correlation coefficient between a binary

outcome and an indicator as in Yang et al. (2024). This could be a technical convenience to

perform statistical inference that is robust to the serial correlation in the data.
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Table 1: Comparison of AUROC and AGROC measures for different time-series
probabilistic classication models

Metrics T Persistence U AT N HS SS MA MAAT

200 Low 0.527 1.000 0.709 1.000 1.000 1.000 1.000
200 High 0.531 1.000 0.710 1.000 1.000 1.000 0.991
200 Unb. 0.539 1.000 0.708 1.000 1.000 1.000 1.000
500 Low 0.519 1.000 0.710 1.000 1.000 1.000 0.999

AUROC 500 High 0.518 1.000 0.710 1.000 1.000 1.000 0.996
500 Unb. 0.528 1.000 0.708 1.000 1.000 1.000 1.000
1000 Low 0.513 1.000 0.709 1.000 1.000 1.000 1.000
1000 High 0.513 1.000 0.711 1.000 1.000 1.000 0.996
1000 Unb. 0.520 1.000 0.710 1.000 1.000 1.000 1.000
200 Low -0.003 0.840 0.217 0.039 0.420 0.596 0.439
200 High -0.001 0.840 0.220 0.039 0.420 0.906 0.730
200 Unb. 0.000 0.840 0.217 0.039 0.420 0.868 0.715
500 Low -0.000 0.840 0.219 0.039 0.420 0.555 0.384

AGROC 500 High 0.001 0.840 0.219 0.039 0.420 0.885 0.691
500 Unb. 0.000 0.840 0.217 0.039 0.420 0.914 0.763
1000 Low 0.000 0.840 0.219 0.039 0.420 0.559 0.394
1000 High -0.001 0.840 0.220 0.039 0.420 0.871 0.659
1000 Unb. 0.001 0.840 0.219 0.039 0.420 0.909 0.762

Notes. The table displays AUROC and AGROC values for various versions of predictors for

200, 500 and 1000 time-series length, with a low, high and an unbalanced level of persistence.

The table display the results for an uninformative distribution as a classifier (U), and almost

true perfect classifier (AT), a noisy classifier (N), a classifier softly shrinkaged (SS), a heavily

shrinkaged one (HS), a classifier with fat bumps based on a moving average prediction (MA),

and a classifier based on an hybrid almost true and a fat bumps situation (MAAT).
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Table 2: Classification performance

1947Q4− 2019Q4 1947Q4− 2023Q4
Model AUROC AGROC AUROC AGROC

MH
0.989 0.604 0.914 0.023
(0.005) (0.042) (0.024) (0.022)

M1
EK

0.975 0.578 0.974 0.431
(0.008) (0.042) (0.008) (0.034)

M2
EK

0.981 0.731 0.970 0.616
(0.007) (0.026) (0.009) (0.031)

M3
EK

0.975 0.680 0.976 0.524
(0.009) (0.041) (0.007) (0.033)

M4
EK

0.979 0.678 0.977 0.529
(0.007) (0.036) (0.007) (0.033)

M5
EK

0.970 0.524 0.963 0.304
(0.009) (0.045) (0.011) (0.036)

M6
EK

0.975 0.668 0.966 0.487
(0.008) (0.044) (0.009) (0.029)

MDGE
0.984 0.685 0.975 0.562
(0.006) (0.027) (0.008) (0.031)

M22
EM

0.945 0.489 0.968 0.348
(0.023) (0.049) (0.011) (0.041)

M23
EM

- - 0.931 0.390
(-) (-) (0.023) (0.049)

Notes: The table displays AUROC and AGROC values for various versions of univariate

Markov-switching models applied to US GDP growth rates, along with their respective

standard deviations in parentheses. The model references are as follows: MH refers to

Hamilton (1989), M j
EK denotes model j in Eo and Kim (2016), MDGE refers to Leiva-Leon

et al. (2024), and M22
EM and M23

EM represent models from Eo and Morley (2022) and (2023),

respectively. The samples periods span from 1947Q4 to 2019Q4 and from 1947Q4 to 2023Q4.
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Figure 1: Three-dimension representation

Notes. The red line refers to the ordered triples R(α) = (FPR(α), TPR(α), α) of a classifier, where

α is the threshold. The figure shows the three coordinate planes: the TPR×FPR plane, the TPR×α

plane, and the FPR×α plane. The projections of R(α) on these three planes are L1 (ROC curve), L2

and L3, respectively.
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Figure 2: Projections of GROC (R(α)) for a perfect classifier

Panel A. Classifier Panel B. Projection on FPRxTPR plane

Panel C. Projection on TPRxα plane Panel D. Projection on FPRxα plane

Notes. Panel A represents the occurrence of class 1 with shaded areas and plots the probability of class 1

provided by a perfect classifier. Panels B, C and D display the projections of GROC on the FPRxTPR, TPRxα

and FPRxα planes, respectively.
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Figure 3: Projections of GROC (R(α)) for an uninformative classifier

Panel A. Classifier Panel B. Projection on FPRxTPR plane

Panel C. Projection on TPRxα plane Panel D. Projection on FPRxα plane

Notes: Panel A represents the plot of the probability of class 1 provided by a constant-probability classifier.

For further details, refer to the notes of Figure 2.
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Figure 4: Comparative performance

Panel A. Simulated classifiers Panel B. AUROCs

Panel C. Projections on the TPR×α plane Panel D. Projections on FPR×α plane

Notes: In Panel A, the red line is generated by adding random draws from N(0, 0.05) to a perfect

classifier when the class is 0 and subtracting them when the class is 1. The green line is generated

using the same method, but with the variance of the Gaussian process increased to 0.5. The blue

line is obtained by multiplying the red line by 0.1. For further details, refer to the notes of Figure 2.
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Figure 5: Representative predictions from seven different predictors

Panel A. Uninformative Panel B. Almost True

Panel C. Noisy Panel D. Heavily shrinkaged

Panel E. Softly shrinkaged Panel F. MA fat bumps

Panel G. MA fat bumps and almost
true

Notes. The figure displays the probability representative predictions of seven different predictors. Shaded areas
represent class 1.
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Figure 6: US business cycle inferences 1947Q4-2019Q4

Panel A. GDP growth rates Panel B. Hamilton(1989)

Panel C. AUROC

Panel D. Projections on TPR×α Panel E. Projections on FPR×α

Notes: Panel A displays US GDP growth rates, and Panel B shows the probabilities of recession derived from Hamilton
(1989). Panel C presents the AUROC, while Panels D and E display the projections of GROC on the TPR×α and
FPR×α planes, respectively. Shaded areas refer to the NBER recessions.
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Figure 7: US business cycle inferences 1947Q4-2023Q4

Panel A. GDP growth rates Panel B. Hamilton(1989)

Panel C. Hamilton(1989) zoomed Panel D. AUROC

Panel E. Projections on TPR×α Panel F. Projections on FPR×α

Notes: Panel A displays US GDP growth rates. Panel B shows the probabilities of recession derived from Hamilton
(1989), which is zoomed in Panel C. Panel D presents the AUROC, while Panels E and F display the projections of
GROC on the TPR×α and FPR×α planes, respectively. Shaded areas refer to the NBER recessions.
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Figure 8: Probability classifiers 1947Q4-2019Q4

M1
EK M2

EK

M3
EK M4

EK

M5
EK M6

EK

M1
DGE M22

EM

Notes: The figure displays probabilities of US recessions provided by alternative
Markov-switching specifications to Hamilton (1989). Shaded areas refer to the NBER
recessions. For further details, refer to the notes of Table 2.
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Figure 9: Probability classifiers 1947Q4-2023Q4

M1
EK M2

EK M3
EK

M4
EK M5

EK M6
EK

M1
DGE M22

EM M23
EM

For clarification, please refer to the details provided in Figure 8.
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