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Abstract 

We propose an innovate identification scheme, which we call intertemporal identification, that 

focuses on the relative importance of identified shocks at different frequencies to establish a structural 

interpretation of the responses in VAR models. The method is highly intuitive and can be used to 

identify structural shocks either independently or in conjunction with other approaches, such as sign 

restrictions. Thus, or approach is particularly useful when other approaches are questionable or when 

they generate wide sets of admissible responses. Theoretically and through simulation-based 

scenarios, we show that the intertemporal identifications tend to significantly reduce the identified 

sets of sign restrictions and derive the conditions under which one of the restrictions becomes 

redundant. We illustrate the usefulness of our approach with three empirical examples: (i) 

identification of technology shocks; (ii) identification of oil-specific demand shocks; and (iii) 

identification of monetary policy shocks. 
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1. Introduction 

 

Vector Autoregressive (VAR) models are widely used in policy and empirical economic analyses and 

have gained popularity since the groundbreaking work by Sims (1980). As emphasized in the survey 

conducted by Ramey (2016), the success of VAR models stems from their ability to offer a 

straightforward framework for capturing the dynamic interactions among multiple variables over 

time. This framework enables researchers to examine how each variable responds to shocks in its 

own value as well as to changes in the values of other variables within the system. Consequently, 

VAR models provide valuable insights into the interdependencies and reactions within an economic 

system. 

Notwithstanding this remarkable track record, one of the main challenges in building VAR 

models is the issue of identification. If the variables exhibit feedback effects, then it may not be 

possible to uniquely estimate the structural parameters of the model based on the observed data. The 

Structural VAR (SVAR) identification scheme has been the standard approach to deal with this 

drawback. The idea behind this approach is viewing the residuals of the estimated VAR model as 

combinations of the underlying structural shocks, which are assumed to be orthogonal to each other 

and to have a particular economic interpretation. This is allowed by imposing restrictions that set 

conditions as to how certain variables would behave according to economic theory. 

Not intending to exhaustively list all the contributions made by researchers in this rapidly 

evolving field, numerous approaches have been proposed over the past few decades to impose 

economically motivated restrictions that identify structural shocks.1 The early-stage approaches 

suggested in the literature focused on exact (point) identification restrictions, which limit the relative 

importance of the identified shock at different time/frequency periods or horizons. The most popular 

are zero restrictions, which do not allow some variables to react to shocks in the short-run (Sims, 

1980), in the long-run (Blanchard and Quah, 1989), or at a specific horizon (Uhlig, 2004). Despite 

their initial success, these methods have been criticized for being too restrictive and offering 

unrealistic results, sometimes confronted with economic theory. 

To address the challenge of horizon determination in exact identification restrictions, more 

recent approaches have employed min/max restriction methods. Faust (1998) proposed identifying 

shocks associated with the maximum forecast-error variance share in specific variables and horizons. 

Francis et al. (2014) recognized this method as a finite-horizon alternative for identification of SVARs 

 
1 While acknowledging the significance of statistical methods in identifying restrictions, we intentionally omitted their 
discussion in the current text because our emphasis centers on economically motivated restrictions. Interested readers 
seeking a detailed exploration of statistical methods are encouraged to consult, among other valuable references, 
Herwartz, Lange, and Maxand (2021). 



with long-run restrictions and DiCecio and Owyang (2010) proposed a variant of this approach in the 

frequency domain. In a similar frequency domain context, Lovcha and Perez-Laborda (2020) 

identified shocks by minimizing the distance between empirical contributions to the fluctuations of 

system variables at selected frequency ranges and a set of targets derived from theoretical models. 

However, a limitation of min/max restriction methods lies in their restrictiveness. These methods 

constrain the contribution of the shock of interest relative to other shocks on the variance of variables 

at specific time/frequency horizons, demanding that these contributions be either exact or closely 

approximate predefined arbitrary values. 

Overcoming some of the drawbacks of exact identification restrictions, set identification 

restrictions have emerged as one widely adopted method for identifying structural shocks in VAR 

models. Among them, sign restrictions impose restrictions on the direction of the responses (Faust, 

1998; Canova and Nicolo, 2002; Uhlig, 2005). Since sing restrictions imply weaker restrictions than 

classical identification schemes, they have achieved extensive success in economic applications. 

However, pure sign-identified VAR models are typically consistent with a large set of responses that 

are compatible with the restrictions. In these cases, inferring policy recommendations from the 

resulting distribution of admissible responses can be misleading as the resulting identified sets are 

compatible with cases that overestimate the response of some variables and/or underestimate the 

response of others.  

The refinements of the sign restriction approach proposed in the literature often involve 

complementing sign restrictions with additional economically motivated bound restrictions. These 

bound restrictions are set-identified constraints that impose narrow bands on transformations of the 

reduced form parameters, effectively narrowing down the set of admissible responses. For example, 

Kilian and Murphy (2012) integrated sign restrictions with additional empirically plausible bounds 

on the magnitude of short-run elasticities and on the impact responses. Volpicella (2022) combined 

sign restrictions with bounds on the Forecast Error Variance Decomposition (FEVD). 

In this paper, we contribute to this growing literature by presenting an alternative approach to 

identification, which falls within the realm of set identification approaches. In a frequency domain 

setup, our novel procedure involves identifying the frequency or frequency ranges where the relative 

contributions of the shock of interest to variables variances are concentrated. This involves imposing 

inequality restrictions on the FEVD of a selected variable at specific frequencies, an operation that 

represents a nonlinear transformation of the structural parameters, that can be attributed to a certain 

shock.2 Therefore, we term these restrictions intertemporal restrictions because the focus is on 

 
2 In this sense, the method can be viewed as a form of sign restriction on the nonlinear transformation of structural 
parameters in an SVAR 



determining which shocks contribute more to one set of frequencies than to others, regardless of 

whether the shock provides the largest contribution under certain conditions for a given set of 

frequencies.  

As in the related literature, the restrictions are typically guided by the results of other empirical 

analyses or by economic theory. For example, the method could rely on the fact that the contributions 

of technology shocks tend to be more concentrated in long-run frequencies than in short-run 

frequencies or that the contributions of transitory market specific shocks are typically concentrated 

on short-run frequencies. Therefore, the method is very flexible and can be adapted to numerous 

empirical setups. 

In the spirit of the sign restrictions approach, our method also involves a rejection 

identification method. It implies rotating a base set of orthogonal shocks in a SVAR specification to 

form a new set of orthogonal shocks from which impulse responses are obtained. Then, a response is 

retained if the relative contribution of the structural shock to the variance of a target variable at 

different frequencies agrees with that expected by economic theory, while the response is discarded 

if it does not. The result of this procedure is a set of identified responses to economically interpretable 

shocks. 

When the rotation matrix is of a Givens form, we develop a theoretical framework that 

characterizes the system of inequalities of model parameters provided by the intertemporal 

restrictions which can be solved for the angles that are compatible with the restrictions. This results 

in an identified set of angles that generate the admissible impulse responses. The analysis of the 

resulting sets of angles help to derive the conditions under which intertemporal restrictions, in 

isolation or in conjunction with other identification procedures like sign restrictions, provide 

reasonable sets of identified responses. We use this setup to enhance our understanding of the 

advantages, limitations, and potential synergies between sign and intertemporal restrictions in VAR 

models. 

In our comparative analysis, we observe that intertemporal restrictions tend to narrow down 

the identified set of admissible responses provided by sign restrictions. Notably, sign restrictions 

alone can be redundant in many cases when combined with intertemporal restrictions. To further 

illustrate and substantiate these findings, we conduct a simulation study where we have control over 

the data generating process because we can isolate the effects of each restriction and observe how 

they interact. Using these controlled scenarios, we also illustrate the usefulness of intertemporal 

restrictions, especially when they are combined with sign restrictions. 

Through three empirical scenarios, we address the applied value of intertemporal restrictions 

to identify structural responses and evaluate their relative accuracy as compared to sign restrictions. 



Our empirical setups have been prolific sources of numerous contributions in the literature of VAR 

specifications. Specifically, they involve the identification of technology shocks, as in Gali (1999) 

and Christiano, Eichenbaum and Vigfusson (2003); the identification of oil-specific demand shocks, 

as in Kilian (2009) and Kilian and Murphy (2012); and the identification of monetary policy shocks, 

as in Uhlig (2005), Christiano, Eichenbaum, and Evans (2005) and Altig et al. (2011). Our empirical 

results highlight the importance of imposing intertemporal restrictions, either in isolation or in 

conjunction with sign restrictions, when such information exists.  

The rest of the paper is organized in the following way. Section 2 introduces the intertemporal 

restrictions. Section 3 examines the comparative accuracy of intertemporal restrictions in relation to 

sign restrictions and offers the analytical analysis on the effectiveness of the proposed method. 

Section 4 develops simulations to address the empirical small-sample reliability of VAR models 

identified with intertemporal and sign restrictions. Section 4 collects three empirical examples that 

illustrate the usefulness of our approach. Section 5 concludes. 

 

2. Intertemporal restrictions 

 

2.1. Identification in VAR models 

 

Start with a set of N  variables, which are collected in the vector ty , that admits a covariance-

stationary reduced-form VAR model  

( ) t tF L y u , (1) 

with 1( ) ( )pF L I F L F L    , (1)F  is of full rank, ( ) 0tE u  , '( )t tE u u  , '( ) 0t t hE u u    for 0h  , and 

1,...,t T .3 The process can be expressed in moving average notation as 

( )t ty C L u , (2) 

were 1 2
1 2( ) ( ) ( )C L F L I C L C L     . In this expression, hC  refers to the h-period lagged response 

of ty  to unit impulses to each of the elements of the reduced-form shocks tu . In the reduced form, 

parameters and tu  can be estimated from the data.  

To derive the impulse responses to structural-form errors, the focus is finding the linear 

combinations of the reduced-form shocks, which are determined by the invertible matrix A  providing 

orthogonal transformations 

 
3 We omitted the intercepts to simplify the exposition.  



1
t tA u  , (3) 

that arise from the structural form of the VAR 

( ) t tA L y  , (4) 

with 1
1( ) ( )pA L A A L A L    . To ensure that the structural shocks are mutually uncorrelated, it is 

standard to look for A  satisfying 'AA  , which implies ' 1 1'( )t tE A A I     .  

The moving average representation of the structural shocks is 

( )t ty C L A , (5) 

and the responses to unit impulses of the structural-form shocks are h hR C A , with h=1,2,… As 0C I

, then 0R A  and the matrix A  of structural parameters defines the contemporaneous responses of 

the variables to unit structural shocks. Unfortunately, the appropriate set of weights on tu  given by 

𝐴ିଵ cannot be derived uniquely from 'AA   because this system involves 2( ) / 2N N  more 

unknowns than linearly dependent equations.  

Since the seminal proposal of Sims (1980), one of the most popular ways to approximate the 

matrix A  is via the Cholesky decomposition of the reduced-form covariance matrix, 'HH  . In 

this case, the Cholesky combination of the reduced-form shocks is 

1
t tH u  . (6) 

The moving average representation of these shocks is ( )t ty C L H , which implies that the 

contemporaneous responses to unit shocks are given by the lower triangular matrix H . This 

decomposition imposes an arbitrary recursive structure on the VAR as variables ordered first do not 

respond to contemporaneous shocks of variables ordered later. Unless the dynamics of the time series 

yield this restrictive contemporaneous response, it is quite improbable that the Cholesky shocks 

correspond to the actual structural shocks of interest. 

 

2.2. Rotating a base set of shocks 

 

To alleviate this restrictive assumption and following the lines suggested by the literature on sign 

restrictions, we propose rotating an initial set of orthogonal shocks, sometimes called base set of 

shocks, to form a new set of orthogonal shocks from which impulse responses are obtained. To ensure 

that the intertemporal restrictions apply, we employ a rejection method, which is achieved by 

discarding the rotations generating structural matrix 𝐴 that does not satisfy the restrictions in the way 

we describe below.  



To start with, we follow Fry and Pagan (2011) and rely on Cholesky decompositions to obtain 

base shocks. They are just a rescaled version of the reduced-form shocks, which are 

contemporaneously uncorrelated.4 Then, we propose a large set of M  candidates of structural shocks 

as linear combinations of these base shocks 

1m
t m tP  , (7) 

where mP  is an orthonormal rotation square matrix satisfying 1 1' 1' 1
m m m mP P P P I      and 1,...,m M . 

Generated in this way, the candidates of structural shocks are mutually uncorrelated as 

' 1 1'( )m m
t t m mE P P I     . The moving average representation of the candidates of structural shocks is 

( ) m
t m ty C L HP  . (8) 

In this way, the candidate of impulse responses are 

m
h h mR C HP , (9) 

and the contemporaneous responses are 0
m

mR HP , with 1, ...,m M .  

There are many ways to find orthonormal square matrices that provide combinations of the 

base shocks. The two most popular methods used to obtain mP  focus on Givens (Canova and de 

Nicolo, 2002) and Householder (Rubio-Ramirez, Waggoner, and Zha, 2010) transformations. 

According to the results suggested by Fry and Pagan (2011) the two methods are equivalent, although 

the latter are computationally faster when the number of variables included in the system grows. In 

line with Fisher and Huh (2019b), as the theoretical part of this paper focuses in small-size VARs, 

we will follow the former approach. 

 

2.3. Setting intertemporal restrictions 

 

According to our rejection method to find identified impulse responses, we require finding only the 

set of rotations of the base shocks that generate the structural matrix 𝐴 that satisfies pre-specified 

intertemporal restrictions. To define these restrictions, we follow Stiassny (1996), who focus on the 

cross spectral density matrix of the VAR model. The density matrix of the process at frequency   is  

     1

2
i i

yf C e C e 


   , (10) 

 
4 Another way of obtaining base shocks is the eigenvalue-eigenvector decomposition ' 'QDQ VV   , where Q is a 

matrix of eigenvectors, D  is a diagonal matrix with eigenvalues on the main diagonal and 1/2V PD . For instance, 
this strategy was pursued by Fisher and Huh (2019). 



where i denotes the imaginary unit ( 1i   ),  iC e   is the complex conjugate of  iC e  , and the 

frequency is defined for 2 /j j T  , 0,..., / 2j T . 

The n-th element of the main diagonal of the spectral density matrix contains the univariate 

spectral density of ny  at frequency   

     1

2n

i i
y n nf s C e C e s   


, (11) 

where ns  is a column vector with the n-th element equals to one and the other elements equal to zero, 

 0,  , and 1,...,n N . Intuitively, this expression measures how much variance of ny  is 

concentrated at each frequency and is typically used to assess the importance of the different 

frequencies to the overall variance. 

Using the relation ' ' '
0 0
m m

m mR R HP P H   , we define the causality spectrum of a shock in say 

variable ky  on variable ny  at frequency   as  

     0 0

1

2k n

i m m i
y y n nk k

f s C e R R C e s


        
 


, (12) 

where 0
m

k
R    refers to the k-th column of 0

m
mR HP . It can be shown that the spectral density of ny  

at frequency   can be decomposed into their N  different sources, originating from shocks in the 

time-series collected in the vector ty  

   
1

n k n

N

y y y
k

f f 


 . (13) 

To determine the share contribution of the innovations in the k-th time series on the n-th time 

series, we define the causality spectrum share as 

 
 

k n

n

y y
nk

y

f
w

f
 


 , (14) 

where 
1

1
N

nk
k

w



 . This represents the portion of the spectrum of ny  at frequency   that can be 

attributed to shocks in ky .  

This expression can be integrated over sets of different frequencies of interest to assess the 

shares of structural shocks in fluctuations at a range of frequencies. For example, let  1 2,    be 

the selected frequency range. Then, the share of the k-th disturbance in the fluctuations of the n-th 

variable at the range of frequencies   is given by  



 
 

k n

n

y y

nk

y

f d
w

f d

 

 
 



 


, (15) 

where the definite integrals can be approximated by summations for the frequencies 2j j T  for 

1,2,... 2j T  belonging to the selected range. 

The causality spectrum share can be used to impose the intertemporal restrictions established 

by economic theory on the impulse responses. In particular, economic theory often provides guidance 

to assert that some shocks are expected to have larger effects on a target variable at determined 

frequencies than at others. For example, fundamental shocks are expected to have greater effects in 

long-run frequencies while transitory market specific shocks are typically concentrated on the short-

run frequencies.  

These intertemporal restrictions are easy to translate into meaningful inequality constraints on 

the causality spectrum share. Without loss of generality, we use as an example an economic theory 

indicating that the magnitude of the influence of the k-th disturbance in the fluctuations of the n-th 

variable is different at frequencies 1  than at frequencies 2 , which implies a specific sign for 

1 2
nk nkw w  .5 In the spirit of the literature of sign restrictions, the way we proceed to recover the 

structural matrix 𝐴 from intertemporal restrictions is a rejection method that consists of the following 

steps: 

1. Run an unrestricted VAR to get consistent estimates of   and hC , with 1,2,...h  . Then, 

perform a Cholesky decomposition of   to obtain H . 

2. Use Givens or Householder transformations to obtain a random orthogonal square matrix 𝑃௠ 

and the candidate structural matrix 𝐴௠ ൌ 𝐻𝑃௠, compute 1
nkw  and 2

nkw . 

3. If the postulated intertemporal restriction holds (correct sign of 1 2
nk nkw w  ), then save the 

candidate structural matrix 𝐴௠. If not, discard the draw. 

4. Repeat 2 and 3 for 2,3,...,m M  and store the set of admissible structural matrices. 

In summary, economic theory guides the expected intertemporal restrictions, which are 

imposed as meaningful restrictions on the causality spectrums share at different frequencies. The set 

of admissible impulse responses can be calculated based on the admissible set of structural matrices. 

The resulting impulse responses align with economic reasoning and policy implications, discarding 

those that do not agree with the intertemporal restrictions. 

 
5 For example, if the influence of the k-th disturbance in the fluctuations of the n-th variable is greater at frequencies 1  

than at frequencies 2 , then 1 2
nk nkw w   and 1 2 0nk nkw w   . 



It is unlikely that the result of this method will be only one rotation given by mP  satisfying the 

intertemporal restrictions. Thus, in practice, there will be many m
hR  satisfying the restrictions, each of 

one referring to a different model. This results in an impulse-response graph with set of estimated 

responses. Although there are some initiatives in the literature of sign restrictions to summarize the 

multiple responses result (Fry and Pagan, 2011), we will focus the analysis on the whole set of 

responses that are consistent with the intertemporal restrictions.6  

 

2.4. The identified set of intertemporal restrictions 

 

The identified set refers to the compilation of generated structural matrices A that are compatible with 

the imposed restrictions and, therefore, are not discarded by the rejection method. To provide a 

theoretical characterization of the set of responses induced by intertemporal restrictions, we will start 

with a simple bivariate VAR(1) model. In this case, the structural framework is the following: 

1

1 111 12

2 221 22

t t

t t

y F F a b
I L

y F F c d





       

        
      

, (16) 

where the structural matrix 
a b

A
c d

 
  
 

 satisfies AA  .  

Let 11

21 22

0
H


 
 

  
 

 be a lower-triangular Cholesky decomposition of  , with the diagonal 

elements satisfying 11 0   and 22 0  . Let us consider a Givens rotation as the weighting to 

generate 1,...,m M  combinations of the base shocks 

cos sin

sin cos
m m

m
m m

P
 
 

 
  
 

, (17) 

for  / 2, / 2,m    , where m indexes the different values of the angle used to rotate the base set 

of shocks. In this way, the candidate structural matrices are 

𝐴௠ ൌ ൬
𝜎ଵଵ𝑐𝑜𝑠𝜌௠ െ𝜎ଵଵ𝑠𝑖𝑛𝜌௠

𝜎ଶଵ𝑐𝑜𝑠𝜌௠ ൅ 𝜎ଶଶ𝑠𝑖𝑛𝜌௠ െ𝜎ଶଵ𝑠𝑖𝑛𝜌௠ ൅ 𝜎ଶଶ𝑐𝑜𝑠𝜌௠
൰, 

11 11
0

21 22 21 22

cos sin

cos sin sin cos
m mm

m m m m

R
   

       
 

     
, (18) 

 
6 Despite this comment, for the sake of facilitating comparisons, we will occasionally reference the median value among 
the range of admissible responses for each h-period lagged response. Furthermore, we will present these median values 
in certain figures to provide visual clarity. 



which represent the structural contemporaneous responses 0R A . To facilitate notation, we will 

denote   as a particular realization of the angles  1 , ..., M  , so that we will skip the sub-index m

. 

Let us assume there is an economic theory providing the intertemporal restriction that the 

importance of the second shock for the variances of the first and second variables in the longest 

frequency ( 0  ) is different than that in the shortest frequency (  ). The identified set of 

impulse responses must satisfy the corresponding restrictions in the sign of the difference of causality 

spectrum shares 0
12 12w w  and 0

22 22w w , which imply two intertemporal restrictions that we call IR1 

and IR2, respectively. In this framework, the identified set can alternatively be viewed as the set of 

angles   generating structural matrices that are compatible with the restrictions, which is denoted by 

IRIS  . 

Appendix A shows that IR1 and IR2 will lead to the following four zeros that satisfy 0
12 12w w  

and 0
22 22w w  in the interval  / 2, / 2  : 

22
1

22
21 11

12

arctanR
F

F


 

 
 
 

 
  

 and 22
3

22
21 11

12

arctanR
F

F


 

 
 
 

 
  

 (19) 

for IR1, and  

22
2

21
21 11

11

arctanR
F

F



 


 
 
 
 
  

 and 22
4

21
21 11

11

arctanR
F

F



 


 
 
 
 
  

 (20) 

for IR2,  

where 

110 11

110 11

K K

K K




 



, 110 11

110 11

K K

K K




 



, 220 22

220 22

K K

K K




 



, and 220 22

220 22

K K

K K




 



, 

with 

    
2

110 2
1111 22 12 21

1 1

01 1
K

SF F F F

     

, 
    

2
11 2

1111 22 12 21

1 1

1 1 i

K
SF F F F

 

     

,

    
2
220 2

2211 22 12 21

1 1

01 1
K

SF F F F

     

, and 
    

2
22 2

2211 22 12 21

1 1

1 1
K

SF F F F
 

     

. 



Note that these zeros do not depend on the entries of the structural matrix A  and remain constant for 

whatever realization of the rotation matrix P . In Appendix B, we derive the following 

characterization of these zeros. 

Proposition 1. The length of the intervals for   in each of the two intertemporal restrictions is / 2

, i.e. 3 1 4 2 / 2R R R R     . 

This implies that 1 3 2 4( / 2, ) ( , / 2) ( / 2, ) ( , / 2) / 2R R R R         . In addition, the zeros 

that satisfy the restrictions cannot be zero because 22 0   and the parameters in F  and the angle   

are finite. 

Corollary 1.1. The identified set that satisfies the two intertemporal restrictions IR1 and IR2, IRIS  , 

is smaller than / 2 . 

The identified set is the collection of angles that lay on the intersection of the two intervals 

corresponding to the intertemporal restrictions IR1 and IR2, each of which of the length / 2  on 

 / 2, / 2  . Thus, if these two intervals do not coincide, the length of this intersection must smaller 

than / 2 .7  

Corollary 1.2. The zeros for IR1 ( 1R  and 3R ) and IR2 ( 2R  and 4R ) are always of opposite sign. 

This follows from the fact that the length the intervals for   in each of the two intertemporal 

restrictions is / 2  on  / 2, / 2   and that none of the zeros can be zero. 

To provide a graphical intuition of this characterization, Figure 1 shows in blue arrows the 

four identified sets of angles for which both intertemporal restrictions hold, which are denoted by 

IRIS  . In each graph, points 1R  and 3R  refer to the zeros of IR1 while 2R  and 4R  refer to the zeros in 

IR2. The upper-left and lower-right panels show identified sets that refer to rotations of base shocks 

that admit positive and negative angles, which lay in the intervals ሺ𝑅ଵ,𝑅ଷሻ ∩ ሺ𝑅ଶ,𝑅ସሻ ൌ ሺ𝑅ଶ,𝑅ଷሻ and 

ቄቀെ గ

ଶ
,𝑅ଵቁ ∪ ቀ𝑅ଷ, గ

ଶ
ቁቅ ∩ ቄቀെ గ

ଶ
,𝑅ଶቁ ∪ ቀ𝑅ସ, గ

ଶ
ቁቅ ൌ ቄቀെగ

ଶ
,𝑅ଵቁ ∪ ቀ𝑅ସ, గ

ଶ
ቁቅ, respectively.  

The upper-right panel alludes to rotations that admits only negative angles, as it refers to 

angles that are located in the intersection ሺ𝑅ଵ,𝑅ଷሻ ∩ ቄቀെ
గ

ଶ
,𝑅ଶቁ ∪ ቀ𝑅ସ, గ

ଶ
ቁቅ ൌ ሺ𝑅ଵ,𝑅ଶሻ. Finally, the 

lower-left panel stands for rotations that admits only positive angles as it refers to solutions that lay 

on the interval ቄቀെ గ

ଶ
,𝑅ଵቁ ∪ ቀ𝑅ଷ, గ

ଶ
ቁቅ ∩ ሺ𝑅ଶ,𝑅ସሻ ൌ ሺ𝑅ଷ,𝑅ସሻ. 

 
7 The length of IRIS   would be / 2  if and only if 22 211 F F   and 11 121 F F  , which cannot happen because 

the matrix  I F  has been assumed of full rank. 



 

3. Connecting intertemporal and sign restrictions 

 

3.1. Sign restrictions 

 

There are deep connections between intertemporal restrictions and sign restrictions. Although both 

approaches follow a rejection method described Section 2.3, the main difference between these two 

approaches is the restrictions used to obtain identified sets. In this case, sign restrictions discards the 

rotations of the base shocks whose signs of the generated impulse responses, m
hR , do not agree with 

the pre-specified signs of the same elements of the structural responses, hR . 

To facilitate comparisons with intertemporal restrictions, we restrict the analysis to the 

VAR(1) with two variables suggested in Section 2.4. In addition, it is quite common in the literature 

on sign restrictions imposing restrictions on the signs of impact responses, 0R A , as for example, in 

Faust (1998) or Canova and Nicolo (2002). To start with, we impose a first set of sign restrictions 

that consist of normalizing the impact responses of the variables to their own shocks to be positive. 

This implies that 𝜎ଵଵcos𝜌 ൒ 0 and 21 22sin cos 0      . 

In addition, we restrict the rotation of the base shocks to the set of angles that generate a 

predetermined sign in the response of 1y  to a unit shock 2 . Thus, we will consider only angles that 

generate rotations of the base shocks with sign of 11 sin   that agrees with the sign of the structural 

response, which is determined by the parameter b  in A . In practice, this restriction implies that the 

identified set supported by the sign restrictions, denoted by SRIS  , only admits angles   that have 

opposite sign to that of b . 

Depending on the signs of b  and 21 , the sign restrictions imply four different possible 

identified sets for  . Appendix C shows that these identified sets are  / 2,0  when 0b   and 

21 0  ;  22 21arctan( / ),0   when 0b   and 21 0  ;  22 210,arctan( / )   when 0b   and 21 0 

; and  0, / 2  when 0b   and 21 0  . Thus, the length of the resulting identified set of the sign 

restrictions is / 2  when the sign of b  coincides with the sign of the reduced-form parameter 21 , 

while it is 22 21arctan( / ) / 2    when their signs do not coincide.  

To facilitate interpretation, Figure 1 shows the identified sets that are compatible with all the 

combinations of b  and 21 , which are represented with red arrows. In each graph, the main diagonal 



panels represent the cases where b  and 21  have the same signs. In these cases, the size of the 

identified sets is / 2 . The off main diagonal panels of each graph refer to the cases where b  and 

21  have the different signs and the identified sets are delimited by the location of arctanሺ𝜎ଶଶ/𝜎ଶଵሻ. 

 

3.2. Combining sign and intertemporal restrictions 

 

The success of sign restrictions in empirical studies is often attributed to their simplicity and intuitive 

appeal, making them easy to impose. However, it is important to note that purely sign-identified VAR 

models often yield a wide range of admissible responses, especially when the signs restrictions are 

not very informative. For example, when b  and 21  have the same signs, the identified set can 

encompass a broad set of responses. This can lead to potential challenges when inferring policy 

implications from the set of admissible responses, as some cases may overestimate the response of 

certain variables while underestimating the response of others. 

Indeed, one approach to refine the set of admissible responses in VAR models is to combine 

sign restrictions with additional restrictions. Researchers have employed various types of additional 

restrictions to further narrow down the set of feasible responses. To name a few, Canova and De 

Nicolo (2002) imposed additional structure in the form of sign restrictions on dynamic cross-

correlations; Uhlig (2005) and Baumeister and Benati (2013); Kilian and Murphy (2012) combined 

sign restrictions with plausible bounds on the magnitude of the short-run responses; and Fisher and 

Huh (2019) combined long-run neutrality restrictions together with signs and contemporaneous zero 

restrictions. 

Building on the existing literature, we propose in this section to combine sign and 

intertemporal restrictions. Specifically, we aim to compare the joint set of admissible responses, 

which are compatible with both type of restrictions, with each of the identified sets obtained 

separately. The objective is to determine when both approaches can be beneficial in obtaining 

narrower sets of admissible responses, when one of the restrictions may not contribute to obtain the 

joint identify set, and when the two types of restrictions are incompatible. 

For this purpose, let IR SR IR SRIS IS IS  
    be the identified set of angels ρ that is compatible 

with both intertemporal and sign restrictions. We say that the identified set of sign restrictions is 

redundant if IR SR IRIS IS 
  , which happens when IR SRIS IS  . In the same way, we say that the 

identified set of intertemporal restrictions is redundant if IR SR SRIS IS 
  , which happens when 

SR IRIS IS  . In the cases where no type of restrictions is redundant, combining intertemporal and sign 



restrictions can be beneficial in narrowing down the set of admissible structural matrices and 

responses to a more specific range. In addition, we say that the two identified sets are not compatible 

when IR SRIS 
   . 

Using Figure 1 to characterize the identified sets, we can identify some combinations for 

which intertemporal and sign restrictions are not compatible. For example, when  1 2,IRIS R R   as in 

the upper-right graph while the sign restrictions imply the assumption that 0b  ; when  3 4,IRIS R R   

as in the bottom-left graph while the sign restrictions imply the assumption that 0b  ; or when 

    1 4/ 2, , / 2IRIS R R      as in the bottom-right graph while the sign restrictions imply the 

assumptions that 0b   and 21 0   and 22 21 2arctan( ) [ ,0]R   . 

When intertemporal and sign restrictions are compatible, the combination of both restrictions 

produces a joint identification set that is strictly smaller than the identification sets that uses only 

intertemporal restrictions or only sign restrictions, unless in the cases that one of the two types of 

restrictions is redundant. In this case, the joint set will coincide with the narrower of the separate sets. 

With the help of Figure 1, we find that the sign restrictions are redundant in two different 

scenarios. First, if b  and 21  have the same signs, then sign restrictions are redundant when 0b   

and 21 0   and  1 2,IRIS R R   as in first quadrant of the upper-right graph, or when 0b   and 

21 0   and  3 4,IRIS R R   as in the fourth quadrant of the bottom-left graph. Second, if b  and 21  

have opposite signs, then sign restrictions are redundant when 0b  , 21 0   and 

22 21 1arctan( ) [ / 2, ]R     and  1 2,IRIS R R   as in third quadrant of the upper-right graph, or when 

0b  , 21 0   and 22 21 4arctan( ) [ , / 2]R    and 𝐼𝑆ூோ
ఘ ∈ ሾ𝑅ଷ,𝑅ସሿ as in the second quadrant of the 

bottom-left graph. 

Interestingly, Figure 1 shows that intertemporal restrictions cannot be redundant if b  and 21  

have the opposite sign. When these parameters are of the same sign, there are only two situations for 

which intertemporal restrictions are redundant, both occurring when  2 3,IRIS R R  , as in the upper-

left graph. The first situation refers to 0b  , 21 0   and 22 21 2arctan( ) [ ,0]R   , which appears in 

the third quadrant, while the second situation refers to 0b  , 21 0   and 22 21 3arctan( ) [0, ]R   , 

which depicted in the second quadrant.8 

 
8 The authors derived an on-line appendix describing the situations for which sign and intertemporal restrictions are 
redundant as a function of the reduced-form and structural form parameters. This is available from the websites of the 
authors. 



 

4. Simulations 

 

4.1. VAR with p=1 and N=2 

 

To illustrate the theoretical analysis developed in Sections 2 and 3, we conduct simulations using a 

VAR(1) model with two variables. We begin by defining the matrices F  and   that characterize the 

reduced form of the model. Using these matrices, we calculate the set of moving average 

representation matrices, hC , with 1,...,20h  . We also obtain the lower triangular matrix H  by 

performing the Cholesky decomposition of  . For the intertemporal restrictions, we also find the 

zeros 𝑅ଵ, 𝑅ଶ, 𝑅ଷ and 𝑅ସ .9 Additionally, we specify the structural matrix A, which is utilized to 

compute the true structural responses h hR C A . 

Next, we proceed to identify the partition of the interval  / 2, / 2   as determined by the 

intertemporal restrictions, IRIS  . This partition is characterized by the restrictions on the sign of the 

difference of the causality spectrums 0
12 12w w  and 0

22 22w w . Additionally we determine the 

identified set of sign restrictions, SRIS  , characterized by 0d   and a sign restriction on b . Lastly, 

we determine the identified set resulting from the combination of both restrictions, IR SRIS 
 . To achieve 

this, we select the angles m , with 1,...,m M , that are consistent with these three identified sets. 

These angles are utilized to generate the matrices mP  and the corresponding admissible responses 

based on the respective identified sets, m
h h mR C HP . The resulting responses are displayed in Figure 

2 and 3.10  

To facilitate comparisons, the graphs show the responses of the first variable to shocks in the 

second variable. In these graphs, the responses of the data generating process are represented by black 

lines. The blue dashed lines depict the upper and lower limits of the responses provided by IRIS  , with 

the blue solid lines representing the median values. Similarly, the red dashed lines depict the upper 

and lower limits of the responses provided by SRIS  , with the red solid lines representing the median 

 
9 Recall that the zeros 1R , 2R , 3R  and 4R  do not depend on the angle   used to rotate the base shocks. 
10 It is worth pointing out that our simulation exercise does not require generating data or estimating model parameters. 
This avoids unnecessary uncertainty.  



values. Finally, the green dashed lines display the upper and lower limits of the responses provided 

by IR SRIS 
 , with the green solid lines representing the median values.11 

With the aim of exploring a wide range of possibilities, we generate four data generating 

processes, DGP1, DGP2, DGP3 and DGP4 characterized by a specific combination of the matrices F 

and 𝛴. For each DGP we choose the sign of the structural parameter 𝑏 that defines the sign of impulse 

response of the first variable to the second shock. Given the sign of 𝑏 and the sign of 𝜎ଶଵ, we can 

recover the identified set for the sign and intertemporal restrictions for each DGP. 

DGP1: 
0.7 0.2

0.1 0.4
F

 
  
 

, 
1 0.5

0.5 1

 
   

 
, 0b   and 𝜎ଶଵ ൐ 0 =>  / 2,0SRIS    , 

DGP2: 
0.7 0.2

0.1 0.4
F

 
  
 

, 
1 0.5

0.5 1

 
   

 
, 0b   and 𝜎ଶଵ ൐ 0  =>  0,1.0472SRIS  , 

DGP3: 
0.9 0.2

0.4 0.5
F

 
  
 

, 
1 0.5

0.5 1

 
    

, 0b   and 𝜎ଶଵ ൏ 0 =>  1.0472,0SRIS    , 

DGP4: 
0.5 0.2

0.4 0.5
F

 
  
 

, 
1 0.5

0.5 1

 
    

, 0b   and 𝜎ଶଵ ൏ 0=>  1.0472,0SRIS    . 

Figure 2 presents examples of DGP where either intertemporal restrictions or sign restrictions 

are redundant, while Figure 3 depicts the responses where both intertemporal restrictions and sign 

restrictions are not redundant when employed jointly in the identification process and produce 

narrower identification set than when employed by separately. To facilitate comparisons, in Figure 3, 

the left-hand-side graphs exhibit the limits of the responses determined by intertemporal restrictions 

(blue lines) and sign restrictions (red lines). Meanwhile, the right-hand-side graphs replace the 

responses determined by intertemporal restrictions with those that conform to the joint restrictions 

(green lines).  

 In DGP1, the structural parameters 𝑏 and 𝜎ଶଵ are of opposite sign (or ρ and 𝜎ଶଵ are of the 

same sign) that is situation when the intertemporal restrictions cannot be redundant given that the 

identified set for the sign restrictions is wide:  / 2,0SRIS    . This situation is represented in the 

first quadrant in all graph in Figure 1. The zeros of the intertemporal restrictions depend on the 

parameters of the reduced-form model only and take values: 𝑅ଵ ൌ െ1.5157, 𝑅ଶ ൌ െ0.6187, 𝑅ଷ ൌ

0.0551, and 𝑅ସ ൌ 0.9521. Let us consider the situation represented in the first quadrant of the upper-

right graph in Figure 1 when the sign restrictions are redundant. If 𝜌 ൌ െ1 in the DGP1, the 

 
11 Recall that using median responses to characterize the responses can be misleading. They are included in the graphs 
only to facilitate comparisons. 



corresponding structural matrix takes form 𝐴 ൌ 𝐻𝑃ሺ𝜌ሻ ൌ ቂ 0.5403 0.8415
െ0.4586 0.8887

ቃ . The intertemporal 

restrictions in this case are given by 0
12 12w w  and 0

22 22w w ; and the identified set is determined by 

𝐼𝑆ூோ
ఘ ൌ ሾ𝑅ଵ,𝑅ଶሿ ൌ ሾെ1.5157,െ0.6187ሿ. The recovered impulse responses with sign and 

intertemporal restrictions are presented in the upper-left graph of Figure 2. In this case, there exists a 

large range of impulse responses that satisfy the contemporaneous sign restrictions. However, when 

intertemporal restrictions are imposed in conjunction with sign restrictions, the sign restrictions 

become redundant due to the overlap of the identified sets, implying IR SR IRIS IS 
  . Therefore, in this 

scenario, the intertemporal restrictions prove valuable in significantly narrowing down the set of 

admissible responses generated by the sign restrictions. 

The top graph of Figure 3 represents the case of non-redundancy of the sign and intertemporal 

restrictions for DGP1, corresponding to the first quadrant of the upper-left graph of Figure 1. If in 

DGP1 the angle 𝜌 ൌ െ0.3, then and the structural matrix takes form 𝐴 ൌ 𝐻𝑃ሺ𝜌ሻ ൌ

ቂ0.9553 0.2955
0.2217 0.9751

ቃ . The corresponding intertemporal restrictions 0
12 12w w  and 0

22 22w w  result in 

the identified set 𝐼𝑆ூோ
ఘ ൌ ሾ𝑅ଶ,𝑅ଷሿ ൌ ሾെ0.6187,0.0551ሿ. The joint set of the sign and intertemporal 

restriction is narrower than the individual set:  0.6187,0IR SRIS 
   . In this case the application of 

both restrictions is appropriate.  

The reduced-form model in the DGR2 is the same as in the DGP1, but now we consider the 

case when the parameter 𝑏 and 𝜎ଶଵ are of the same sign (or ρ and 𝜎ଶଵ are of the opposite signs). In 

this case the identified set of the sign restrictions is narrower than in DGP1: 

   22
21

21

0, 0 0,arctan 0,1.0472SRIS b



  
     

  
. The possible identified sets for this DGP are 

depicted in the second quadrant in all graphs in Figure 1. Given that the zeros of the intertemporal 

restrictions depend on the reduced-form parameters only, they take the same values as in DGP1: 𝑅ଵ ൌ

െ1.5157, 𝑅ଶ ൌ െ0.6187, 𝑅ଷ ൌ 0.0551, and 𝑅ସ ൌ 0.9521. As before, let us illustrate the case where 

the sign restrictions are redundant as in the second quadrant in the down-left graph of Figure 1, when 

the limit of the identified set for the sign restrictions is marked with arrow 3. In the upper-right graph 

of Figure 2, we plot the responses of DGP2 with 𝜌 ൌ 0.3 and the corresponding structural matrix 𝐴 ൌ

𝐻𝑃ሺ𝜌ሻ ൌ ቂ0.9553 െ0.2955
0.7336 0.6796

ቃ, identified with intertemporal restrictions given by 0
12 12w w  and 

0
22 22w w . The resulting identified set for intertemporal restrictions is 𝐼𝑆ூோ

ఘ ൌ ሾ𝑅ଷ,𝑅ସሿ ൌ

ሾ0.0551,0.9521ሿ. In this case, the joint identified set IR SRIS 
  coincides with IRIS  , leading to redundant 

sign restrictions. However, if in DGP2, 𝜌 ∉ ሾ𝑅ଷ,𝑅ସሿ then the sign restriction is not redundant. For 



example, if  𝜌 ൌ 1 and the corresponding structural matrix 𝐴 ൌ 𝐻𝑃ሺ𝜌ሻ ൌ ቂ0.9610 െ0.5713
0.7287 0.4679

ቃ , the 

intertemporal restrictions  0
12 12w w  and 0

22 22w w   produces the identified set 𝐼𝑆ூோ
ఘ ൌ ቂെ గ

ଶ
,𝑅ଵቃ ∪

ቂ𝑅ସ, గ
ଶ
ቃ ൌ ቂെ గ

ଶ
,െ1.5157ቃ ∪ ቂ0.9521, గ

ଶ
ቃ as in the second quadrant of the down-right graph in Figure 

1, where the limit of the set identified with the sign restrictions is marked with the arrow 3. In this 

case, the joint identified set 𝐼𝑆ூோାௌோ
ఘ ൌ ሾ0.9521,1.0472ሿ is significantly more restrictive than the 

separate identified sets, leading to a substantial reduction in the set of admissible responses. This 

results are presented in the middle row of Figure 3. 

The responses corresponding to DGP3 depicted in the lower-left graph of Figure 2 for the case 

where the sign restrictions are redundant and in the last row of Figure 3 where the application of both 

restrictions is preferable. Given that in the DGP3, the parameters 𝑏 and 𝜎ଶଵ are of the same sign (or 

ρ and 𝜎ଶଵ are of the opposite signs), the identified set of the sign restrictions is 

𝐼𝑆ఘௌோሺ𝑏 ൐ 0,𝜎ଶଵ ൏ 0ሻ ൌ ቂarcatan ቀ஢మమ
஢మభ
ቁ , 0ቃ ൌ ሾ1.0472,0ሿ. The zero of intertemporal restrictions are 

𝑅ଵ ൌ െ0.3206, 𝑅ଶ ൌ െ0.0790, 𝑅ଷ ൌ 1.2502, and 𝑅ସ ൌ 1.4918. The former case stands for DGP3 

with 𝜌 ൌ െ0.3 and the corresponding structural matrix 𝐴 ൌ 𝐻𝑃ሺ𝜌ሻ ൌ ቂ 0.9553 0.2955
െ0.7336 0.6796

ቃ. For this 

scenario, the intertemporal restrictions are specified as 0
12 12w w  and 0

22 22w w , resulting in the 

identified set 𝐼𝑆ூோ
ఘ ൌ ሾ𝑅ଷ,𝑅ସሿ ൌ ሾെ0.3206,െ0.0790ሿ. This example is represented in the third 

quadrant of the upper-right graph in Figure 1, where the limit of the set identified with sign restrictions 

is marked with the arrow 3. In this case, the sign restrictions are redundant since IR SR IRIS IS 
  . In the 

latter case we choose  𝜌 ൌ െ1 and the corresponding structural matrix 𝐴 ൌ 𝐻𝑃ሺ𝜌ሻ ൌ

ቂ 0.5403 0.8415
െ0.9989 0.0472

ቃ . The intertemporal restrictions 0
12 12w w  and 0

22 22w w  lead to the 

intertemporal and joint identified set of 𝐼𝑆ூோ
ఘ ൌ ቂെ గ

ଶ
,𝑅ଵቃ ∪ ቂ𝑅ସ, గ

ଶ
ቃ ൌ ቂെ గ

ଶ
,െ0.3206ቃ ∪ ቂ1.4918, గ

ଶ
ቃ 

and 
 

 1.0472, 0.3206IR SRIS 
     respectively. This case is represented in the third quadrant of the 

down-right graph in Figure 1, where the limit of the set identified with the sign restrictions is marked 

with the arrow 3. The combination of intertemporal and sign restrictions substantially reduces the set 

of admissible responses, indicating the effectiveness of using both sets of restrictions together. 

In n the lower-right graph of Figure 2, we observe the responses of DGP4 with 𝜌 ൌ െ0.3, the 

corresponding structural matrix is 𝐴 ൌ 𝐻𝑃ሺ𝜌ሻ ൌ ቂ 0.9553 0.2955
െ0.7336 0.6796

ቃ. The identified set of the sign 

restriction is 𝐼𝑆ఘௌோሺ𝑏 ൐ 0,𝜎ଶଵ ൏ 0ሻ ൌ ቂarcatan ቀ஢మమ
஢మభ
ቁ , 0ቃ ൌ ሾ1.0472,0ሿ. The zero of intertemporal 

restrictions are 𝑅ଵ ൌ െ1.4204, 𝑅ଶ ൌ െ1.3752, 𝑅ଷ ൌ 0.1504, and 𝑅ସ ൌ 0.1956.  The intertemporal 



restrictions are given by 0
12 12w w  and 0

22 22w w , result in the identified set of 

 1.3752,0.1504IRIS    . This situation is represented in the third quadrant of the upper-left graph in 

Figure 1, where the limit of the set identified with sign restrictions is marked with the arrow 1. In this 

scenario, we can observe one of the few cases where the intertemporal restrictions are indeed 

redundant, as IR SR SRIS IS 
  .  

4.2. VAR with p>1 and N>2 

To derive theoretical results within tractable models, we have restricted the theoretical 

analysis and the simulations to the case of a VAR model containing one lag. However, relaxing these 

restrictions would have little qualitative impacts on the main results presented in the paper. 

Specifically, allowing for a higher number of lags up to p in the VAR model would result in minor 

adjustments to the calculation of nkw  from  

1

( )
p

i j
j

j

C L I F e 



 
  
 

 . (19) 

In addition, the conditions for sign restrictions remain unaffected regardless of the number of lags 

considered in the VAR model. 

With regards to relaxing the dimension of the VAR to include up to N variables, the resulting 

models become mathematically challenging, making it difficult to derive analytical conclusions. To 

address this issue, we performed extensive simulations that show how intertemporal restrictions, 

especially when they were combined with sign restrictions, significantly narrow down the set of 

admissible responses that are provided by sign restrictions alone. In many cases, the sign restrictions 

become redundant due to the effectiveness of intertemporal restrictions in constraining the 

responses.12 

 

5. Empirical examples 

 

In this section, we illustrate the application of intertemporal identification to provide identified sets 

for impulse responses used separately or in conjunction with sign restrictions. It is important to note 

that our analysis is not intended to be exhaustive, does not aim to include the latest developments in 

the literature on the topic, and does not incorporate policy recommendations. 

We focus on three well-known empirical models used in the literature. The first example 

pertains to the identification of a technology shock in a bi-variate VAR, while the second and third 

 
12 These results are available from the authors upon request. 



examples pertain to the identification of monetary policy shocks and oil market specific demand 

shocks in a VAR with three variables. All examples are based on 100,000 draws of the orthogonal 

matrix. 

 

5.1 Identification of the technology shock  

 

The identification of technology shocks in a SVAR has garnered significant attention in the 

macroeconomic literature, aiming to discern the effects of such shocks. Building upon the influential 

proposal by Gali (1999), our analysis focuses solely on its simplest specification. This specification 

relies on a SVAR with two variables: hours worked, assumed to be stationary as in Christiano, 

Eichenbaum, and Vigfusson (2003), and (log) labor productivity, assumed to be integrated of order 

one. Consistent with the approach taken by Lovcha and Perez-Laborda (2021), we estimate the 

bivariate model using U.S. postwar quarterly data from 1948:1 to 2009:4, sourced from the Federal 

Reserve Bank of St. Louis database.  

Our measure of labor input in per-capita terms was obtained by taking the logarithm of the 

non-farming business sector hours of all persons (HOANBS) and subtracting the logarithm of the 

civilian non-institutional population over the age of 16 years (CNP16OV). On the other hand, our 

measure of output productivity is represented by the logarithm of nonfarm business sector labor 

productivity (output per hour) for all workers (OPHNFB). To ensure comparability, all the time series, 

except for the population, were seasonally adjusted. Based on this dataset, we estimated the reduced 

form of the VAR model with four lags. 

Next, we proceed to identify the model and calculate the impulse responses to technology 

shocks applying both intertemporal and sign restrictions. Figure 4 displays the impulse responses of 

hours worked to technology shocks in three distinct scenarios. In this figure, the responses identified 

with the two intertemporal restrictions are depicted as shaded blue areas, while the set of identified 

responses that agrees with the two sign restrictions is delimited by the two black lines. 

To facilitate comparisons, we conduct a sensitivity analysis in three distinct scenarios. In the 

first scenario, the intertemporal restrictions are employed to determine the relative contribution of a 

technology shock to the variances of productivity and hours worked at frequencies zero (long run) 

and π (short-run). This implies imposing restrictions on the signs of 0
12 12w w  and 0

22 22w w . 

Specifically, we assume that a technology shock has a larger effect on the variance of productivity 

and hours worked in the long run compared to the short run, leading to 0
22 22 0w w  , and that 



0
12 12 0w w  .13 In terms of the sign restrictions, we constrain the contemporaneous reaction of 

productivity to a technology shock to be positive, 0d  . Additionally, we set the impact response of 

hours worked to a technology shock as positive, 0b  , in line with the standard predictions of 

calibrated Real Business Cycle (RBC) models. 

The left graph of Figure 4 displays the responses of hours worked to technology shock 

obtained under the scenario described above. In this case, both the intertemporal restrictions and sign 

restrictions lead to positive responses of labor to the technology shock. However, the impact of the 

technology shock is more pronounced when intertemporal restrictions are imposed. An interesting 

observation is that the set of the responses that satisfy the intertemporal restrictions is a subset of the 

set of responses that align with the sign restrictions. This implies that the sign restrictions are 

redundant, and their exclusion from the analysis would not have any effect on the results. 

The second scenario differs from the first scenario in letting the impact response of hours 

worked to technology shocks to be negative, 0b  . This is consistent with the results provided by 

Keynesian models. In this case, the responses displayed in the middle graph of Figure 4 show that the 

intertemporal and sign restrictions are not compatible because the set of responses that satisfy both 

restrictions jointly empty. Unlike sign restrictions, intertemporal restrictions do not permit negative 

responses of hours worked to technology shocks. Similar to the first scenario, the application of 

intertemporal restrictions significantly reduces the set of admissible responses.  

Finally, the third scenario differs from the second scenario in letting technology shocks to 

have a greater contribution to the variance of hours worked in the short run compared to the long run, 

indicated by 𝑤ଵଶ
଴ െ 𝑤ଵଶ

గ ൏ 0. The estimated sets of responses are displayed in the right graph of Figure 

4, illustrating the advantage of combining intertemporal and sign restrictions. Specifically, the range 

of the responses one gets by applying the contemporaneous sign restrictions independently is much 

wider than that of the model combining sign restrictions and intertemporal restrictions, which is 

represented by the shaded area appearing in the bottom of the graph. This shows that the inclusion of 

intertemporal restrictions narrows down the range of admissible responses significantly, providing 

more precise and informative results. 

Additionally, this empirical example exemplifies the valuable role of intertemporal 

restrictions in distinguishing between different theoretical proposals based on empirical evidence. 

The second scenario shows that any theoretical model that implies a negative response of labor to a 

positive technology shock together with a higher impact of this shock to the long-run labor variance 

than to the short-run is not compatible with data. 

 
13 This assumption is less restrictive than restricting technology as the only drive of productivity in the long run. 



 

5.2. Identification of oil market-specific demand shocks 

 

As a second example, we direct our attention on the structural VAR model of the global crude oil 

market proposed by Kilian (2009). Our objective is to show the usefulness of applying intertemporal 

restrictions in estimating the dynamic effects of an oil-market-specific demand shock on three key 

variables: the global crude oil production, the index of real economic activity (representing the global 

business cycle) constructed by Kilian (2009), and the real price of oil. The dataset consists of monthly 

observations, spanning from 1973:02 to 2008:09.14 Within this time frame, we employ a reduced-

form VAR model with a lag length of 2, selected based on the minimum BIC information criterion.15 

Kilian and Murphy (2012) proposed a VAR identification based on sign restrictions that 

imposing that a positive oil-market-specific demand shock on impact tends to have the following 

effects: raising oil production, lowering real activity, and stimulating the real price of oil. 

Mathematically, if we denote the impact reactions of global oil production, real activity, and the real 

price of oil as 𝑎ଵଷ, 𝑎ଶଷ, and 𝑎ଷଷ, respectively, the sign restrictions imply 𝑎ଵଷ ൒ 0, 𝑎ଶଷ ൏ 0, and 𝑎ଷଷ ൒ 0. 

The first column of graphs in Figure 5 displays the set of responses that are admissible with the sign 

restrictions, which is delimited by the two dashed lines plotted in each graph. 

Consistent with the findings of Kilian and Murphy (2012), the Figure 5 shows that sign 

restrictions yield a wide range of response functions, exhibiting varying amplitudes and shapes. 

Consequently, this diversity of admissible response functions poses challenges in determining the 

relative importance of an oil-market-specific demand shock for the evolution of global crude oil 

production, economic activity, and the real price of oil. 

With respect to the intertemporal restrictions and considering that demand shocks specific to 

the global crude oil market are associated with market specific fluctuations, we posit that they 

represent shocks for the global oil supply and economic activity associated with mostly to the short-

run movements. Accordingly, we assume that the contribution of the oil-market specific shock at 

frequency π is higher than at the frequency zero for these two variables, which implies 𝑤ଵଷ଴ െ 𝑤ଵଷ
గ ൏ 0, 

and 𝑤ଶଷ
଴ െ 𝑤ଶଷ

గ ൏ 0.  

With the aim of providing a varied set of exemplifications, we are more agnostic about the 

contribution of the oil-market specific demand shock to the real price of oil and do not wish to rule 

out the possibility that the shock could be either more important in the short term than in the long 

term or the in other way around. Thus, we consider two scenarios of intertemporal restrictions. In line 

 
14 For a full discussion of the data sources and construction of the data see Kilian (2009). 
15 For p=24, as in Kilian (2009) and Kilian and Murphy (2012), the estimated spectrum in a VAR is not smooth and it is 
difficult to judge about the relative importance of a shock at different frequencies or ranges.  



with Killian (2009), we evaluate a first scenario in which the price shock reflects an increase in 

precautionary demand for crude oil that causes immediate large changes in the real price of crude oil. 

Accordingly, we assume that 𝑤ଷଷ଴ െ 𝑤ଷଷ
గ ൏ 0.  

The first column of graphs in Figure 5 displays with shaded blue areas the impulse response 

functions generated by the admissible models after imposing the intertemporal restrictions. The sets 

of responses that agree with intertemporal restrictions in conjunction with sign restrictions appear as 

shaded green areas in the second column of graphs in Figure 5. One notable result is that the 

intertemporal identifying assumptions significantly reduce the number of admissible responses in the 

index of economic activity when they are imposed in conjunction with sign restrictions. Consistent 

with Kilian and Murphy (2012), the intertemporal restrictions are able to successfully eliminate all 

the economically implausible responses that do not satisfy 231.5 0a   . 

In addition, we consider a second scenario where the oil-market specific demand shock is 

assumed to be more important in the long-run than in the short-run for the real prices, as indicated by 

the intertemporal restriction 𝑤ଷଷ଴ െ 𝑤ଷଷ
గ ൐ 0. The set of admissible responses under this assumption, 

displayed in the third and fourth columns of graphs in Figure 5, not only confirms the robustness of 

the results but also yields a narrower range of admissible responses of oil production and prices, 

especially when both restrictions are imposed at the same time. In this scenario, it is noteworthy that 

the set of implied impact responses of economic activity remains above the limit of -1.5. However, it 

is worth noting that the supply elasticity, as defined in Kilian and Murphy (2012) as 𝑎ଵଷ/𝑎ଷଷ, will 

exceed significantly the threshold of 0.0258, which is the value used by those authors to impose an 

additional restriction. 

 

5.3 Identification of monetary policy shocks 

 

This final example serves to illustrate the identification of impulse responses using intertemporal 

restrictions across a range of frequencies, rather than focusing on specific frequencies. Specifically, 

we examine the effects of monetary policy on output, a topic that has been extensively explored in 

the economic literature. Notably, the survey conducted by Boivin, Kiley and Mishkin (2010) 

documents the substantial body of scholarly work dedicated to analyzing monetary policy 

transmission mechanism. 

In line with the previous examples, we confine ourselves to examining the most basic 

specification. In particular, we examine output and inflation responses to shocks in the equation of 

interest rates for the U.S. The data is quarterly, collected from St. Louis FRED, and runs from the 

first quarter of 1980 to the last quarter of 2018. The GDP growth is computed as log-difference of 



real gross domestic product (GDPC1), inflation is computed as log-difference of GDP deflator 

(GDPDEF), and the treatment of fed fund interest rates (FEDFUNDS) is left agnostically open by 

considering the time series in level and linearly detrended.16 Based on the Schwarz criteria, we opted 

for a VAR model with a lag order of 4. 

As a basis of comparison, we rely on Uhlig (2005) to set the sign restrictions. We impose the 

condition that a contractionary monetary supply shock raises interest rates and lowers output and 

inflation on impact. If 𝑎௜ଷ represents the immediate impact of a monetary shock on GDP (i=1), 

inflation (i=2) and the federal funds rate (i=3), the sign restrictions imply 𝑎ଵଷ ൏ 0, 𝑎ଶଷ ൏ 0, and 𝑎ଷଷ ൒ 0. 

Figure 6 plots as dashed black lines the maximum and the minimum of the impulse responses that 

satisfy this pure-sign-restriction approach after a contractionary monetary policy shock, where the 

first two columns are obtained by using interest rate and the last two columns refer to the case of 

detrended interest rate. Regardless of the responses that we consider, the figure shows that multiple 

specifications can satisfy the restrictions, resulting in uninformative ranges of admissible responses. 

Regarding intertemporal identification, we examine the relative contribution of a monetary 

policy shock, as implied by various credible parameterizations of the theoretical models developed 

by Christiano et al. (2005) and Altig et al. (2004). For this purpose, we adopt a methodology similar 

to that proposed by Dedola and Neri (2007) and Canova and Paustian (2011) to establish robust sign 

restrictions. However, in this particular study, our objective is to identify frequency ranges where the 

relative contribution of the monetary policy shock remains consistent despite variations in theoretical 

model parameterization. The procedure is as follows: 

1. Determine credible ranges for all model parameters, ensuring they are sufficiently wide to 

encompass all theoretically plausible values. 

2. Randomly draw values for each model parameter from independent uniform distributions 

within their respective credible intervals, generating a credible parameterization of the model. 

3.  Calculate the contributions of the monetary policy shock to the variances of the variables at 

different frequencies or frequency ranges using this parameterization. 

4. Repeat steps 2 and 3 until the desired number of credible parameterizations is obtained. 

5. Identify the frequencies or frequency ranges where the relative contribution of the monetary 

policy shock remains robust across all parameterizations. Combine these frequencies or 

ranges with the findings on the relative importance of the monetary policy shock for 

intertemporal identification. 

 
16 The evolution of the fed fun rate has a significant downward sloping trend in our sample period. 



In line with this procedure, we postulate that a monetary policy shock has a short-run effect 

in output and interest rate while it has a long-run effect on inflation. We define the long-run monetary 

policy shock as one that contributes more to the variance at frequencies with period longer than 30 

years, than to frequencies shorter than 1 year. Translated to intertemporal restrictions, these effects 

imply 𝑤ଵଷ
௟௢௡௚ െ 𝑤ଵଷ

௦௛௢௥௧ ൏ 0, 𝑤ଶଷ
௟௢௡௚ െ 𝑤ଶଷ

௦௛௢௥௧ ൐ 0, and 𝑤ଷଷ
௟௢௡௚ െ 𝑤ଷଷ

௦௛௢௥௧ ൏ 0, where long and short refer to period 

above 30 years and below one year, respectively.  

Figure 6 displays as blue areas the set of responses that are admissible with intertemporal 

restrictions and as green areas those that satisfy both intertemporal and sign restrictions. Notably, 

intertemporal restrictions, used in isolation or combined with sign restrictions, tend to narrow down 

significantly the identified sets of impulse responses to a monetary policy shock. The results remain 

robust even when detrending the interest rate. Notably, the resulting sets of admissible responses align 

with the findings of Christiano, Eichenbaum, and Evans (2005) and Altig et al. (2011) regarding the 

response patterns of output, prices, and interest rates to a monetary policy shock. Specifically, we 

find a hump-shaped response of output, a short-run response of interest rates, and substantial inertia 

in the response of prices. 
 

6. Conclusion 

 

We contribute to the literature on structural vector autoregression models, by proposing a novel 

identification procedure for identifying structural shocks. This procedure involves imposing 

restrictions on the relative importance of shocks across different frequency horizons. Our approach 

follows a similar procedure to identifying VAR models as that of sign restrictions, as it also explores 

the responses generated by rotating a set of base shocks derived from the model estimates.  

However, our procedure differs from sign restrictions in terms of the type of restrictions used 

to select the set of admissible responses. While sign restrictions discard rotations that produce 

responses deviating from expected signs, our intertemporal restrictions eliminate rotations that 

generate responses inconsistent with the expected relative contribution of some structural shocks to 

the variances of target variables. Specifically, we focus on the relative contribution of structural 

shocks at long-run frequencies compared to short-run frequencies.  

This method allows for the generation of economically meaningful responses, such as those 

identifying fundamental shocks that tend to be concentrated in long-run frequencies, or transitory 

market specific shocks whose effects are primarily observed in short-run frequencies. These 

assumptions are less restrictive than the standard variance-based medium-term restrictions or 



targeting contributions of shocks at different frequency horizons because they do not aim to specify 

a specific share of the shock of interest in the variables’ variances. 

We contribute to a theoretical framework that characterizes the system of inequalities for 

model parameters derived from intertemporal restrictions when the rotation matrix takes a Givens 

form. We solve these inequalities to determine the angles that are compatible with the restrictions, 

resulting in an identified set of angles that generate the admissible impulse responses. This framework 

enables us to establish the conditions under which intertemporal restrictions, either alone or in 

conjunction with other identification procedures like sign restrictions, yield meaningful results. 

Our findings characterize the situations for which intertemporal restrictions effectively narrow 

down the identified set of admissible responses provided by sign restrictions, highlighting the 

redundancy of the latter in many cases. With the aim of illustrating these results under controlled 

conditions, we conduct a simulation study based on a carefully designed data generating process. 

Finally, we show the applicability of the methodology developed in this article through a 

threefold empirical application. These applications showcase the broad range of problems in which 

VAR models can be employed to identify structural shocks. Specifically, we focus on economic 

issues that have garnered significant attention in the literature, including the identification of 

technology shocks, oil-specific demand shocks, and monetary policy shocks. 

To establish a basis of comparison, we highlight that the pure-sign-restriction approach often 

results in a wide range of admissible impulse responses, which diminishes the usefulness of the sign-

restriction results for policymaking purposes. In an interesting contrast, we observe that the inclusion 

of intertemporal restrictions, either in isolation or in combination with sign restrictions, significantly 

reduces the number of accepted responses. This leads to much more informative sets of admissible 

responses. 

  



Appendix A. Derivation of zeros for the intertemporal restrictions 

 

Let us consider the first intertemporal restriction in the sign of 0
12 12w w . To derive the zeros, let us 

consider the difference between these two causality spectra 
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rewrite (A.1) with the new notation: 
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Simplify and rearrange the second expression: 
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In a symmetric way, we can derive the zeros from 0
22 22 0w w  , which implies 
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where 
    

2
220 2

2211 22 12 21

1 1

01 1
K

SF F F F

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 and 
    

2
22 2

2211 22 12 21

1 1

1 1 i

K
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
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. 

In this case, the zeros are  2 22,1 22,1arctanR E   and  4 22,2 22,2arctanR E  . 

Simplify and rearrange (A3) to (A6) 
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Appendix B. Length of the intervals that hold the intertemporal restrictions.  

 

There are two zeros for IR1 ( 1 12,1R   and 3 12,2R  ) and two zeros for IR2 ( 2 12,1R   and 

4 12,2R  ) on the interval  / 2, / 2  . Let us consider the restriction IR1 for which there are two 

possible intervals on which the restriction is satisfied:  

12,1 12,2/ 2, , / 2            or its complementary 12,1 12,2,     if 12,1 12,2  ; 

12,2 12,1/ 2, , / 2            or its complementary 12,2 12,1,     if 12,1 12,2  . 

Note that if the length of one of these intervals is / 2 , the length of the complementary is / 2  as 

well. So, without loss of generality, we consider the length 12,1 12,2  . 

                          12,1 12,2
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.                            (B1) 



In the denominator: 
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Note that the spectrum of the process for the first variable at 0 frequency is given by  

 
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, (B2) 

which implies that 
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In the same way, the spectrum at frequency   is 
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, (B3) 

which implies that  
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Let us call  
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Turning back to the expression for 12,1 12,2E E  and substituting expressions for 110K  and 11K  , we get:  
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Using this result, it is easy to see that 12,1 12,2 12,1 12,2
12,1 12,2 arctan arctan

1 1 0 2

E E E E  
    

         
. 

The proof of the length of the intervals that hold the intertemporal restriction IR2 follows the same 

logic, and the length of the interval is / 2  as well. 

 

Appendix C. Identification set for sign restrictions. 

 

The identifying sign restrictions are the normalization 21 22sin cos 0       and 11 sin 0    when 

0b  or 11sin 0    when 0b . Depending on the signs of b  and 21 , there are four different 

possible identified sets for  .  

When 0b , the restriction 11 sin 0    only admits rotations of base shocks with negative 

angles in the interval  / 2, 0 . If 21 0  , the normalization 21 22sin cos 0       implies that 

22 21arctan( / )   , which is always true in the interval  / 2,0  and the length of the identified 

set is / 2 . If 21 0  , the normalization implies 22 21arctan( / )   , which is true only in the 

interval  22 21arctan( / ), 0   and the length of the identified set is 
22 21| arctan( / ) | / 2   .  

When 0b , the restriction 11 sin 0    only admits rotations of base shocks with negative 

angles in the interval  0, / 2 . If 21 0  , the normalization implies 22 21arctan( / )   , which is 

true in the interval  0, / 2  and the length of the identified set is / 2 . If 21 0  , the normalization 

21 22sin cos 0       implies that 22 21arctan( / )   , which is true only in the interval 

 22 210,arctan( / )   and the length of the identified set is 22 21| arctan( / ) | / 2   . 
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Figure 1. Identified sets. 

𝐼𝑆ூோ
ఘ ൌ ሺ𝑅ଵ,𝑅ଷሻ ∩ ሺ𝑅ଶ,𝑅ସሻ ൌ ሺ𝑅ଶ,𝑅ଷሻ 𝐼𝑆ூோ

ఘ ൌ ሺ𝑅ଵ,𝑅ଶሻ 

  

𝐼𝑆ூோ
ఘ ൌ ሺ𝑅ଷ,𝑅ସሻ 𝐼𝑆ூோ

ఘ ൌ ሼሺെ𝜋/2,𝑅ଵሻ ∪ ሺ𝑅ସ,𝜋/2ሻሽ 

 

  

Notes. Identified sets (IS) on the interval  /2, /2    provided by the zeros R1, R2, R3, and R4 of the intertemporal 

restrictions on 0
12 12w w  and 0

22 22w w  (IR, blue arrows) and by the zeros of the sign restrictions on 

21 22sin cos      and 
11 sin m   (SR, red arrows). 

  



Figure 2. Impulse responses with redundancy of intertemporal or sign restrictions. 

 1.515, 0.618IR IR SRIS IS 
      / 2,0SRIS      0.055,0.952IR IR SRIS IS 

   𝐼𝑆ௌோ
ఘ ൌ ሾ0,1.047ሿ 

  

 0.320, 0.079IR IR SRIS IS 
      1.047,0SRIS  

  1.375,0.150IRIS     1.047,0SR IR SRIS IS 
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Notes: The graphs display the responses of the first variable to shocks in the second variable. The black lines depict the 

responses of the data generating process. The blue dashed lines represent the limits of the responses provided by IRIS  , 

with the blue line indicating their median values. Similarly, the red dashed lines represent the limits of the responses 

provided by SRIS  , with the red line indicating their median values.  

  



Figure 3. Impulse responses without redundancy. 

 0.618,0.055IRIS     / 2,0SRIS     0.6187,0IR SRIS 
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  1.0472, 0.3206IR SRIS 
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Notes: The green dashed lines represent the limits of the responses provided by IR SRIS 
 , with the green line indicating 

their median values. Refer to the notes in Figure 2 for further details. 



Figure 4. Technology shocks.  

IR: 𝑤ଵଶ
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Notes: The figure displays the response of hours worked to technology shocks. The shocks are identified with both 

intertemporal restrictions (resulting in the blue identified set of responses) and sign restrictions (limiting the identified set 

of responses represented by the black lines). 
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Figure 5. Oil-market-specific shocks 

 IR: 𝑤ଵଷ
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Notes: The figure displays the response of global crude oil production (oil), the index of real economic activity, and real prices of oil (price) to an oil-market specific demand shock. The 

shocks are identified with both intertemporal restrictions (resulting in the blue identified set of responses) and sign restrictions (limiting the identified set of responses represented by the black 

lines). The responses identified with intertemporal and sign restrictions are displayed in green. 



Figure 6. Monetary policy shocks 
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Notes: The figure displays the response of GDP, inflation, and interest rates to a monetary policy shock. Refer to Figure 5 for further details. 


