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Abstract

Practitioners do not always use research �ndings, sometimes because the research

is not always conducted in a manner relevant to real-world practice. This survey seeks

to close the gap between research and practice on short-term forecasting in real time.

Towards this end, we review the most relevant recent contributions to the literature,

examine their pros and cons, and we take the liberty of proposing some lines of future

research. We include bridge equations, MIDAS, VARs, factor models and Markov-

switching factor models, all allowing for mixed-frequency and ragged ends. Using the

four constituent monthly series of the Stock-Watson coincident index, industrial pro-

duction, employment, income and sales, we evaluate their empirical performance to

forecast quarterly US GDP growth rates in real time. Finally, we review the main re-

sults regarding the number of predictors in factor based forecasts and how the selection

of the more informative or representative variables can be made.
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1 Introduction

The rapid economic changes during the Great Recession were a big shock to policy makers

and the business world. In 2008, the sharp downturn in the economy triggered drastic

reactions by policy makers who implemented monetary and �scal policies to combat the

adverse economic situation. In addition, the pervasive e¤ects on retirement plans, stock

portfolios and the housing market drastically changed private agents�economic decisions.

Since being late in identifying the turning points entailed dramatic economic consequences,

the economic agents seemed eager to learn as quickly as possible early detection meth-

ods to foresee downturns and recoveries and they acknowledged the need for new tools to

monitor economic developments in real time. These forecasts usually include predictions

of changes in the gross domestic product (GDP) and its components, both from an expen-

diture perspective (consumption, gross capital formation, exports and imports) and from

a revenue perspective. Sometimes, they also deal with the revenue and expenditure �ows

between the di¤erent institutional sectors, in�ation, the labour market and �nancial data.

Consequently, business people all over the world seem to have caught gold fever to

speedily update the next relevant macroeconomic �gures with signi�cant time to onset.

Accurate forecasts of these �gures allow them to position themselves competitively since

advance notice gives the business time to implement new strategies. In this survey, we

focus on several statistical frameworks developed in the literature to perform early assess-

ments of the ongoing economic development, which must unavoidably deal with short-term

forecasting. According to this scenario planning, the time period attributed in this paper

to examine the accuracy of short-term forecasts goes from the publication of the latest

available �gure of one variable of interest to the availability of the next �gure. Actually,

this time period concentrates the forecasting interest of business people in real time, in

what it is called nowcasting, which rarely covers more than a few months.

As a response to this growing interest, this paper is written as a survey that aims to

close the potential gap between research and applied short-term forecasting. We establish

some of the key theoretical results and empirical �ndings in the recent literature on short-

term forecasting. Then, we try to translate these theoretical �ndings into economically
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meaningful techniques to facilitate their widespread application to compute short-term

forecast in economics and to monitor the ongoing business cycle developments in real

time. In this sense, the survey does not pretend to be a textbook in forecasting, covering

all the aspects of the forecasting exercise, from theoretical de�nitions of predictability to

the de�nition of loss function for the forecasting exercise. For an excellent survey on the

de�nition of forecasting predictability, Hendry and Mizon (2012) is highly recommended.

For a comprehensive guide to forecasting, the books of Clements and Hendry (1998) or

Diebold (1998) are excellent references.

It is worth noting that the automatic forecasting frameworks surveyed in this paper

exhibit several advantages with respect to the economic forecasts typically provided by the

most relevant economic institutions. Although these institutions usually employ state-of-

the-art forecasting methods, they have the possibility of partly basing their forecasts on

judgements. Consequently, their forecasts cannot be easily replicated and their forecast

failures are di¢ cult to interpret. By contrast, the statistical methods described in this

survey seek to avoid this problem by using simple forecasting algorithms which, while

doing the job of computing short-term forecasts, have the advantage of forecasting from

speci�c frameworks. Therefore, the methods can be evaluated in terms of transparency and

replicability. In addition, the automatic forecasts can be easily updated as new releases

for the key economic indicators become available. This considerably reduces the time to

process the economic information because it is done as new data arrive and this quick

processing facilitates rapid reactions to economic news.

However, computing the short-term forecasts in real time is not straightforward. To

start with, the analysts performing multiperiod forecasting must choose between either

using a one-period model that is iterated forward, or instead a multi-period model esti-

mated with a loss function tailored to the forecast horizon. Although the iterated method

produces more e¢ cient parameter estimates than the direct method and does not require

di¤erent models for di¤erent forecasting horizons, it is prone to bias if the one-step-ahead

model is misspeci�ed and usually requires separate forecasting models for the explanatory

variables. Which approach is better will depend on the characteristics of the forecasting

model and, ultimately, will be an empirical matter.
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In addition, performing short-term forecasts in real time faces speci�c problems of the

day-to-day monitoring of economic developments. The �rst problem is that the real-time

data �ow of all the variables involved in the forecasting analysis does not occur at the

same time. Although the national statistical agencies release economic data in blocks

and the releases follow a relatively stable calendar, most of the releases are asynchronous.

Moreover, the economic indicators of the current state of the economy are available with

di¤erent delays. Typically, hard indicators, which refer to economic activity data, exhibit

relatively long reporting lags, which usually extend to two months. Soft indicators, which

are based on opinion surveys, are released on a more timely basis since they are usually

available at the end of the reference month. Financial data are available on a daily basis

and are also available at the end of the month. According to this particular release process,

the automatic forecasting models should support reading linked data in an asynchronous

manner.

Not accounting for this publication pattern would imply that the users of traditional

forecasting models, which develop the forecasts from balanced panels of data, will unavoid-

ably incur one of the two following substantial costs. The �rst appears when forecasts are

made from the latest available balanced panel. In this case, the forecasts lose the latest

and most valuable information contained in the promptly issued indicators at the time of

the assessments. The second cost is that of being late. If the analysts decide to wait until

all the business cycle indicators become available, their inference will refer to the past.

The second problem of real-time short-term forecasting is that it usually involves time

series data sampled at di¤erent frequencies. Many important macroeconomic indicators,

which are the key time series to be predicted, are sampled at low frequency and are pub-

lished with a signi�cant delay. One noticeable example is GDP, whose data are sampled

quarterly and are released with a delay of about one and a half months with respect to

the end of the reference quarter. With the aim of obtaining early estimates of these low-

frequency variables, the analysts frequently focus on higher-frequency economic indicators.

These indicators typically show high correlation with the low-frequency variables but ex-

hibit much more timely information at monthly, weekly, daily, or even higher frequencies.

The earliest attempts to assess the peculiarities of real-time forecasting were based
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on bridge equation models. Essentially, these are single-equation autoregressive models

that focus on the lower-frequency variable of interest which is modeled as a function

of aggregations of the higher-frequency economic indicators. To compute the forecasts,

the higher-frequency indicators are usually predicted in separate autoregressive models.

Although bridge equations usually incur parameter proliferation problems, they are very

popular in Central Banks and research institutions because of their simplicity and modest

technical requirements.

With parsimony in mind, MIDAS models are general frameworks that require a small

number of hyperparameters relative to the sampling rate of the higher-frequency. Typi-

cally, they employ distributed lag polynomials as weighting functions of lagged values of

the higher-frequency indicators, which require nonlinear estimation techniques. Since they

are relatively new on the forecasting arena, they are a fruitful place to consider further de-

velopments. In this paper, we review the latest research and take the liberty of suggesting

future lines on this topic.

Some other proposals assume that the models operate at the highest frequency in the

data, which implies that some values of the lower-frequency data and the latest data of

the indicators with longer publication delays are unobserved. The models are conveniently

cast in state-space representations and are estimated by using the Kalman �lter since it

has the ability to account for missing observations in a data set in a relatively straightfor-

ward manner. In short, the strategy consists of skipping some calculations while others

do not need to be changed, so the basic Kalman �lter remains valid and the parameters of

the model can be estimated by maximum likelihood. This feature is of practical relevance

when computing the forecasts since one can regard the future values of the time series

as a set of missing observations. As a consequence, the Kalman also delivers the neces-

sary computations for forecasting. Given the population parameters, the Kalman �lter

also provides the Mean Square Forecast Error (MSFE). In addition, these models have

been extended to account for regime-switching nonlinearities. They are used to infer the

probabilities of recession that serve as a barometer for the state of the business cycle.

Practitioners usually compute the MSFEs as if their estimated parameters were the

�true�ones. Therefore, they do not take into account the uncertainty associated to the
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estimation of the parameters, and their prediction intervals are usually narrower than they

should be. To overcome this problem, Wall and Sto¤er (2002), Pfe¤ermann and Tiller

(2005) and Rodríguez and Ruiz (2009) propose using bootstrap techniques to compute

mean square errors (MSEs) in state space models.

Within this setup, one of the most compelling approaches is the mixed-frequency VAR

framework. However, computing the forecasts from this approach usually relies on serious

dimensionality problems, especially when the number of time series or their frequency

increases. Fortunately, the mixed-frequency VAR stated in state-space form can, alterna-

tively, be estimated using Bayesian methods.

The parameter proliferation problem can also be addressed by means of the well known

reduction dimensionality allowed by factor models. Since macroeconomic data are usually

very collinear, it is reasonable to conjecture that they are multiple, indirect measurements

of some low-dimensional underlying sources, which can be used to reproduce most of the

variability of a data set, although typically they cannot be directly measured. Therefore,

factor models have the additional appeal of computing indexes of the overall economic

activity, which are very useful for tracking the economic developments.

Although much professional attention has recently been devoted to examining the

pros and cons of these alternative forecasting approaches, it is di¢ cult to rank them

based purely on theoretical considerations. The matter is ultimately empirical, requiring

detailed comparative assessment. However, while numerous empirical applications have

been proposed in the literature, there is lack of comparative evaluation of the empirical

performance of the di¤erent models. In this paper, we comprehensively examine the

performance of the most signi�cant models that have been suggested in the academic

literature to compute short-term forecasts in economics for the same economy and time

period.

The case we analyze is one of the most relevant for policy making, namely forecasting

quarterly US GDP growth. The set of monthly indicators used to compute the forecasts

comprises the monthly growth rates of industrial production, employment, income and

sales, which become available in di¤erent time periods and with di¤erent publication
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delays.1 At any point t in real time, we simply use the time-t data vintage to extract

the short-term forecast of the next unobserved US GDP �gure. As time progresses, we

re-estimate all the models for each period, always using the latest data vintage to compute

the forecast. Therefore, the experiment mimics the day-to-day monitoring of the economic

activity as it would have been developed in real time. Our results suggest that all the

models that use indicators represent a massive improvement in forecasting over the pure

autoregressive ones, with marginal di¤erences across the di¤erent speci�cations. However,

the nonlinear speci�cation has the advantage of computing timely and accurate real-time

inferences about the US business cycles.

Banbura, Giannone and Reichlin (2011) and Banbura, Giannone, Modugno and Re-

ichlin (2013) provide complementary surveys of the short-term forecasting literature. The

econometric framework used by Banbura, et al. (2011) is a large scale linear dynamic

factor model, which is also one of the models used in the empirical application of Banbura

et al. (2013). Although we consider linear factor models in this survey, they are treated

as one alternative among a list of competing forecasting models. In addition, the models

surveyed in this paper are applied to a small group of indicators for forecasting. The

forecasting role of the number of time series in dynamic factor models has already been

treated in Alvarez, Camacho and Perez Quiros (2012). Readers interested in forecasting

with larger datasets are referred to the above mentioned surveys and the reviews of factor

models developed in Bai and Ng (2008), Stock and Watson (2011) and Breitung and Choi

(2013).2

The paper proceeds as follows. In Section 2, we introduce the notation and main

characteristics of the data for short term forecasting. In section 3, we review the main

models used for this purpose address the role of the number of series in factor models.

1Although the NBER Business Cycle Dating Committee does not have a �xed de�nition of economic

activity, it acknowledges on its home page that these are the �ve indicators that examines to analyze the

US business cycle conditions.
2After the paper was reviewed by the editor, we became aware of the working paper by Foroni and

Marcellino (2013). In an independent research, they also survey some of the models that we consider. We

di¤er from their work by focusing on di¤erent data features and by including an empirical application with

a real time comparison of the reviewed models.
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In Section 4, we illustrate the forecasting performance of the di¤erent models reviewed in

Section 3 through an empirical application. Finally, in Section 5, we conclude and propose

some lines of further research.

2 Short-term forecasting: the evil is in the details

In this section, we examine a few common solutions to the short-term forecasting problem.

After setting up the forecasting environment, we confront two forecasting strategies: direct

and iterated multistep ahead forecasts. Next, we examine some solutions to the mixing

frequency problem and to the presence of missing observations at the end of the sample,

re�ecting the unsynchronized data release dates.

2.1 Forecasting environment and notation

To compare across di¤erent modeling environments, it is very useful to establish a common

notation. In the forecasting models that follow, we assume that the objective is to forecast

a lower-frequency (quarterly) �ow variable eyq� , whose logs are assumed to have a unit root
so that the variable of interest is its quarterly growth rate, yq� . In this notation, the

subscript refers to a quarterly time index � = 1; 2; :::;�y, and the superscript refers to

quarterly growth rates. One signi�cant example in macroeconomic analysis is the forecast

of GDP growth rates.

This variable can be expressed at monthly frequency by setting, yqt = yq� , 8� = 3t,3

where the subscript t refers now to a monthly time index and t = 1; 2; :::; Ty. Hence, y
q
t is

observed only at months t = 3; 6; :::; Ty. Finally, it is convenient to de�ne the underlying

unobserved monthly growth rates ymt , where the subscript refers to a monthly time index

t = 1; 2; :::; Ty and the superscript refers to monthly growth rates.

We also assume that the information set used to forecast this variable typically include

3The quaterly variable yqt at monthly frequency implies that, even though it is monthly, the variable

refers to the three months growth rate over the previous three months. For example, refering to the GDP

series, the variable yqt for the month of November would refer to GDP growth in November, October and

September over August, July and June. This is a number not reported every month by the statistical

agencies but conceptually, it could be calculated.
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a set of higher-frequency �ow indicators, which are collected in the N -dimensional vectoreXm
t , with t = 1; 2; :::; T eX . If the logs of these indicators contain a unit root, they typically

enter the forecasting equations in monthly growth rates, Xm
t , with t = 1; 2; :::; TX . A

typical example is a model that predicts GDP quarterly growth rates based on the monthly

growth rates of some key economic indicators as industrial production, nonfarm payroll

employment, personal income and retail sales.

For the sake of simplifying the example, let us start by assuming that there is only

one monthly indicator, for example, industrial production, whose monthly growth rates

are xmt , with t = 1; 2; :::; Tx. To estimate some of the forecasting models, it is convenient

to de�ne the skip sampled indicator x3mt , which is constructed by picking every third

observation of xmt starting from the �nal observation Tx. More precisely, the skip sampled

indicator is de�ned as x3mt = xmt , t = :::; Tx � 6; Tx � 3; Tx.

Because the data are usually released in blocks and the releases follow a relatively

stable calendar, the real-time forecasts are typically conditional on the same (updated)

sets of data releases following somehow stylized schedules. An example of this forecast

timeliness is depicted in Figure 1, which for simplicity only shows a stylized three-month-

ahead (one-quarter-ahead) forecast of the target variable yq� . Assume that at time t� we

are interested in computing the forecast of yqTy+3 (y
q
�y+1

), which is observed until month

Ty, from the information of the monthly indicator, which is available up to Tx. Typically,

the monthly indicators are available sooner than the quarterly indicators, which imply

that Ty < Tx. Accordingly, in this example the end-of-period forecasting problem consists

is to compute an accurate forecast of yqTy+3jTx .

2.2 Direct versus iterated forecasts

A commonplace example of multiperiod forecasting is the end-of-period forecast of the

quarterly indicator yq� from the information provided by the monthly indicator xmt . To

isolate the problem of multiperiod forecasting from other problems of short-term fore-

casting, let us assume in this section that the interest lies in computing h-period-ahead

forecasts of the quarterly indicator yq� from the skip sampled indicator x3m� , where both

time series are assumed to be available up to the same quarter, i.e., � = �y = �x.

9



A forecaster making this multiperiod time series forecast faces a choice between using

two forecasting strategies. The �rst strategy consists of computing direct h-step-ahead

projections from the regression model

yq�+h = 
0 + 
1y
q
� + 
2x

3m
� + ��+h: (1)

where ��+h is the disturbance term, which is not necessarily serially uncorrelated. In this

case, the estimates of the parameters are the minimizers of the mean squared error of

this h-step-ahead criterion function. Accordingly, the parameters 
i; i = 0; 1; 2; can be

estimated by OLS in which the regressors are a constant, yq� and x3m� , and the dependent

variable is yq�+h, by using observations from � = 1 to � = � � h. Using the estimated

parameters b
0, b
1 and b
2, the estimate of the optimal h-step-ahead projection yq�+hj� can
be obtained as b
0 + b
1yq� + b
2x3m� .

The second forecasting strategy entails �rst estimating the autoregression

yq� = 
0 + 
1y
q
��1 + 
2x

3m
��1 + �� ; (2)

where �� is a serially uncorrelated disturbance, with observations from � = 1 to � = �,

then iterating upon that autoregression to obtain the multiperiod forecast. In the case

of an iterated forecast, the estimate of the �rst one-period-ahead forecast yq�+1j�, can be

computed straightforwardly as b
0+b
1yq�+b
2x3m� . However, the second one-period-ahead

forecast yq�+1j�, cannot be directly computed as b
0 + b
1yq�+1j� + b
2x3m�+1j� since x3m�+1j�
is not available from the single-equation forecasting model.

This example illustrates a typical problem of short-term multivariate forecasting from

single-equation models: each of the explanatory variables used in the estimating autore-

gression must be projected in separate time series models. Accordingly, the predictions of

the variable of interest must be obtained in two steps. First, the explanatory indicators

are forecast over the remaining forecasting horizons on the basis of auxiliary time series

models. Second, these projections are used to roll the one-period model forward to obtain

forecasts of the variable of interest.

In theory, Marcellino, Stock and Watson (2006) show that in linear speci�cations iter-

ated forecasts are more e¢ cient if the one-period ahead model is correctly speci�ed, but
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direct forecasts are more robust to model misspeci�cation. Iterative forecasts needs sep-

arate projections of the explanatory variables and the success in forecasting the variable

of interest will rely on the accuracy of the auxiliary regressions. In addition, iterative

forecasts entail estimating a large number of parameters, which could erode forecast per-

formance.

However, which approach is better will ultimately be an empirical matter. Direct

forecasts come from horizon-speci�c estimated models which may complicate the real-

time forecasting procedure, especially when the forecasts are frequently updated. Using

simulated out-of-sample methods with 170 U.S. monthly macroeconomic time series, Mar-

cellino, Stock and Watson (2006) �nd that the iterated forecasts typically outperform

direct forecasts, particularly, if the models can select long-lag speci�cations. These �nd-

ings rely on linear speci�cations.

2.3 Mixed frequencies

Some of the major macroeconomic indicators, such as GDP, are available quarterly with

a substantial delay. With the aim of obtaining early estimates of these low-frequency

variables, analysts frequently focus on higher frequency economic indicators. The reason

is that they, while showing high correlation with the low-frequency variables, contain more

timely information.

The problem of mixed sampling frequencies is exempli�ed in Figure 2. This �gure

shows quarterly GDP and monthly industrial production growth rates for the period from

the beginning of the 2008-2009 Great Recession to the latest available �gures in February,

2011. According to the �gure, the industrial production index appears to be an interesting

procyclical indicator, in the sense that their monthly observations �uctuate between the

quarterly GDP observations. However, GDP and industrial production are available at

di¤erent frequencies.

Since the real-time forecasts will typically involve time series data sampled at di¤erent

frequencies, any attempt to compute real-time forecasts from models that use several

economic indicators must handle the problem of using mixed-frequency data. However,

to compute the model estimates in traditional forecasting models, all the variables in the
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model must be sampled at the same frequency, which implies that the forecasters face one

of the following two alternatives. Either the higher-frequency data must be aggregated

to the lowest frequency or the lower-frequency data must be interpolated to the highest

frequency.

In some empirical applications, the higher frequency is aggregated to the lower fre-

quency by averaging, summing up, or by taking a representative corresponding value (for

example, the third month of the quarter). These aggregations to the lower frequency are

then plugged into a lower-frequency time series model. In some other applications, the

lower frequency is interpolated to the higher frequency. Bridge equations and MIDAS

models are signi�cant examples.

Interpolation typically assumes that the lower-frequency variable is interpreted on

some higher frequency which exhibits missing observations. Forecasting from interpolated

time series is to project the series of interest, which contains missing observations, either

on its own available data or on a set of series covering the whole sample. The methods

usually employed in interpolating face the issues of how best to revise the data for the

lower-frequency data to be compatible with the aggregated data and of how big the bias

that emerges when the interpolated series are subsequently used in econometric analyses

is. A signi�cant contribution to this literature is Angelini, Henry, and Marcellino (2006).

Some of the most recent contributions to real-time forecasting from mixed frequency

indicators are based on the method that assumes that the models operate at the highest

frequency in the data. All the variables are assumed to be generated, but not necessarily

observed, at the highest frequency. Hence, the variables observed at a lower frequency are

viewed as being periodically missing and the system can be conveniently represented as

a state-space model. Using the Kalman �lter with missing data, one can reconstruct the

lower-frequency series as if they were observed at the higher frequencies. Extensions of

VAR and dynamic factor models that account for mixed frequencies are two interesting

approaches.
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2.4 Unbalanced data sets

In addition to the frequency sampling problem, the (timely) day-to-day monitoring of the

economic activity has to deal with the typical lack of synchronicity that characterizes the

daily �ow of macroeconomic information. For example, hard indicators, which are based

on economic activity data, usually exhibit longer publication delays than soft indicators,

which are based on surveys. With a few exceptions, �nancial indicators are available with

no signi�cant delays.

As we mentioned in the introduction, not accounting for this publication pattern would

imply that the users of traditional forecasting models face severe costs. Typically, the fore-

caster has to wait until having a balanced panel, losing the valuable information contained

in the promptly issued indicators at the time of the assessments. Therefore, the inferences

actually refer to the past. In this context, the lack of a timely comprehensive economic

picture implies that policy reactions may occur some months after a signi�cant slowdown

or an acceleration in the economy. As we show below, this problem is especially important

around business cycle peaks or troughs, where there may be only weak evidence from some

promptly published economic indicators that the economy is changing the business cycle

phase. In this paper, we only consider models that deal with asynchronously published

economic indicators, which allow the models to compute real-time forecasts on the basis

of timely updated data.

2.5 Assessment of the forecasting performance

The economic forecasts are intended to be used in many aspects of economic life: business

planing, health care decisions, national and local budgeting, �nancial management, and

monetary and �scal policy. Therefore, a responsible use of the outcome of a forecasting

model must be accompanied by an exhaustive analysis of the actual empirical performance

that the model would exhibit in practice.

Among many others, Stark and Croushore (2002) suggest that the analysis of in-sample

forecasting performance of competitive models is questionable since the results can be de-

ceptively less conclusive when using real-time vintages. Basically, this happens because

the in-sample analysis misses three aspects of real-time forecasting: (i) the recursive es-
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timation of the model parameters; (ii) the real-time data �ow, i.e. the fact that data

are released at di¤erent point in time; and (iii) the real-time data revisions. Accordingly,

Koenig, Dolmas and Piger (2003) suggest the use of real-time data for estimation and fore-

cast evaluation purposes whenever possible. Recent examples of forecasting from real-time

data vintages are Giannone, Reichlin and Small (2008) and Clements and Galvao (2009)

for US data, and Diron (2008) and Camacho and Perez Quiros (2010) for Euro area data.

However, although developing real-time data sets is conceptually simple, producing

real-time vintages is sometimes unfeasible since the historical records of many time series

are not available. One alternative, employed for example by Stock and Watson (2002), is

to develop an out-of-sample analysis, in which (i) holds. The method consists of computing

forecasts from successive enlargements of a partition of the latest available data set. It

begins with data from the beginning of the sample until one prede�ned period. Using this

sample the model is estimated and the h-period-ahead forecasts are computed. Then, the

sample is updated by one period, the model is reestimated and the forecasts are computed

again. The forecasting procedure continues iteratively until the �nal forecast, which is

computed from a model that uses the complete latest available data vintage.

In the context of forecasting from multivariate models, an interesting alternative to the

out-of-sample forecasting analysis is the pseudo real-time forecasting exercise. Although

the latter method is also based on successive enlargements of the latest available data set,

it di¤ers from the out-of-sample analysis since, when constructing the data vintages, the

analyst takes into account the real time data �ow (and hence the publication lags). The

proposal is based on trying to mimic as closely as possible the real-time analysis that would

have been performed by a potential user of the models when forecasting, at each period

of time, on the basis of the di¤erent vintages of data sets. Thus, the experiment considers

that the releases of each vintage contain missing data at the end of the sample re�ecting

the calendar of data releases. Accordingly, only (i) and (ii) hold in these experiments,

which are labeled �pseudo�because the vintages are not obtained in pure real time but

from di¤erent partitions of the latest available data. Therefore, this strategy does not

account for data revisions.

The extent to which using data vintages constructed from the latest-available data
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could potentially give a misleading picture of the actual forecasting accuracy of the model

is ultimately empirical. The literature show mixed results in this context. Diron (2008)

and Giannone, Reichlin and Small (2008) �nd that the average reliability measures of

pseudo real-time exercises seem valid, since the forecasts tend to be similar regardless of

whether they are based on preliminary or revised data. By contrast, from the earliest paper

by Denton and Kuiper (1965) to the recent analyses of Molodtsova, Nikolsko-Rzhevskyy,

and Papell (2008) and Clements and Galvao (2009) the literature is full of examples that

�nd signi�cant di¤erences in the forecasts depending on whether real-time data or latest-

available data are used. A good survey in forecasting comparison methods can be found

in West (2006).

3 Models

There is a growing body of the literature dealing with the problems of short-term forecast-

ing reviewed above. Although the list of surveyed models tries to o¤er a comprehensive

overview of the recent advances in the literature, it does not pretend to be exhaustive. To

facilitate the exposition, all the models are described in the simplest case of forecasting

the variable of interest by using a single indicator. However, they can be extended easily

to include multiple indicators, as we do in the empirical application.

3.1 Bridge equations

Bridge equations have been used extensively to compute forecasts from mixed frequency

data, as in Ingentino and Trehan (1996), Runstler and Sedillot (2003), Ba¢ gi, Golinelli,

Parigi (2004) and Diron (2008).4 They are essentially single-equations time series models

based on regressions relating high-frequency indicators which are aggregated to lower

frequencies and plugged into the low-frequency time series model. The aggregations can

be obtained by averaging, summing up, or by taking a representative corresponding value,

as in the skip sampled indicator.

As single-equation speci�cations, when the forecasts are computed iteratively, the high-

4Further references on bridge equations can be found in these papers.
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frequency data must be forecast up to the desired forecast horizon in separate time series

models. To overcome this additional complexity, in this survey we focus on direct fore-

casts.5 To facilitate the analysis, let x3m� be the skip sampled indicator and assume that

�y = �x = �. The bridge equation h=3-quarter-ahead forecasting model, h = 3; 6; :::; can

be stated as

yq� = �0 + c
q (Lq;K1)x

3m
��h=3 + �� ; (3)

where "� is a serially uncorrelated disturbance, cq (Lq;K1) is the quarterly lag polynomial

cq0 + cq1L
1
q + ::: + cqK1

LK1
q and Lq is the quarterly backshift operator. In this case, the

h=3-quarter-ahead forecasts can be computed by estimating the model with quarterly

data of yq� up to � = � and quarterly data of the skip sampled indicator x3m� up to

� = �� h=3. Then, the estimated parameters can be used to compute the projections of

x3m��K1
, x3m��K1+1

, ..., x3m� .6

Standard bridge equation models can be extended in two ways. First, the process used

to transform left-hand and right-hand variables into the same frequency usually discards a

lot of potentially useful information and makes the detection of the actual relation between

the variables di¢ cult. Second, the model cannot capture the latest available information

provided by the higher-frequency indicators, which is ignored in this proposal whenever

Ty < Tx, since it requires knowing the indicators for the entire quarter. Otherwise, the

monthly data must be forecast in separate time series models.

Inspired in the MIDAS speci�cation, a bridge equation h-month-ahead prediction

model that takes into account the limitations described above, can be stated as follows:

yq� = �0 + c (L;K)x
3m
t�h + �� ; (4)

where

c (L;K) = c0 + c1L
1 + :::+ cKL

K (5)

is the monthly lag polynomial, L is the monthly backshift operator, and usually K >> K1.

Note that, for convenience, the right-hand-side time indicator is expressed in monthly
5To save space, linkage models are omitted from this survey. In these models, the forecasts are generated

at di¤erent frequencies and are combined to improve the forecasting accuracy of the lower-frequency time

series.
6To exploit information from several monthly predictors, bridge equations are sometimes pooled.
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terms since the higher frequency indicator is not aggregated to obtain quarterly observa-

tions before entering the model. In addition, the h-month-ahead forecasts can be com-

puted in real time by incorporating the �ow of monthly data as they become available.

The model is estimated with quarterly data of yq� up to � = �y (or Ty on a monthly ba-

sis), and the weighted sum of monthly observations xTx�K�h, xTx�K�h+1, ..., xTx�h. The

corresponding estimated parameters are then used to compute the projections of xTx�K ,

xTx�K+1, ..., xTx .

Note that, in this framework the polynomial lag structures are left unconstrained.

Therefore, there is a potentially large number of lags of the monthly variables that are

likely to be signi�cant, which implies that the number of parameters to be estimated by

the models would sometimes become unfeasible, especially when they refer to very high

frequency (weekly or daily) data. A lag polynomial a la Almon, could be a solution.

3.2 MIxed DAta Sampling (MIDAS) regression

Bridge equation models are parsimonious but usually require the user to estimate a po-

tentially large number of parameters. To solve the problem of parameter proliferation

while preserving some timing information Ghysels, Santa-Clara, and Valkanov (2004) pro-

pose the MIDAS model. Given a weighting function b (L;K; �), the MIDAS model can be

adapted to our h-month-ahead forecasting framework as follows

yq� = �0 + �1b (L;K; �)x
3m
t�h + "� ; (6)

where "� is a serially uncorrelated disturbance. Accordingly, the forecasts are computed

by estimating the model with quarterly data of yq� up to � = �y (or Ty on a monthly

basis) and quarterly data of the skip sampled indicator x3mt up to t = Tx � h. Then, the

model uses the estimated parameters to compute the projections of xTx�K�h, xTx�K�h+1,

..., xTx�h.

To overcome the parameter proliferation problem of bridge equations, the MIDAS

framework constrains the polynomial lag structures with nonlinear functional speci�ca-

tions, the weighting functions b (L;K; �). They can have any number of functional forms

whenever they achieve �exibility, impose reasonable constraints on the parameter dynam-
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ics and maintain the desired parsimony. In practice, by playing with di¤erent weighting

functions, one might impose di¤erent prior beliefs on the weights that should be given to

lagged values of the explanatory variables. For example, the weights can be estimated

without restriction, they can preserve the within-quarter e¤ects but have di¤erent e¤ects

across months, or they can be restricted to the case in which the explanatory variables are

aggregated to the lower frequency by averaging, summing up, or by taking a representative

corresponding value, as in traditional bridge equation models.

Ghysels, Sinko, and Valkanov (2007) examines various speci�cations of MIDAS regres-

sion polynomials as �nite polynomials, in�nite polynomials, autoregressive augmentations,

rational polynomials and step functions. In this paper, we focus on the �nite lag polyno-

mial

b (L;K; �) = b0 (�)L
0 + b1 (�)L

1 + :::+ bK (�)L
K ; (7)

where the weights bk (�) ; � = (�1; �2) are based on the exponential Almon weighting func-

tion

bk (�) =
exp

�
�1k + �2k

2
�

KX
k=0

exp (�1k + �2k2)

: (8)

According to this parameterization, the lag coe¢ cients are always positive and sum up

to unity. One of the main advantages of this functional form is that it is quite �exible

and allows for various shapes with only two parameters. To illustrate the characteristics

of the exponential Almon lag, Figure 3 plots various parameterizations of this polynomial

weighting function. For �1 = �2 = 0, the polynomial imposes equal weights. For some

combinations of the parameters, the weights decline, which refer to the case in which more

weight is given to the months of the explanatory variable that are more contemporaneous

to the observed x3mt . For other combinations, weights can also produce hump shapes.7

While the exponential Almon weighting function is a practical parsimonious way of

allowing lags of explanatory variables, it may be di¢ cult to obtain accurate estimates

of its parameters from numerical nonlinear optimization procedures. Figure 3 illustrates

the di¢ culty in estimating parameters of the weighting function in practice since for very

7The rate of decline will determine how many lags are included in MIDAS regression, K. The lag length

can be either data driven or large enough to ensure that the declining weighting function falls to zero.
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small changes in the polynomial parameters produce large e¤ects in the evolution of the

weights. For �1 = 0:001, the decays are very smooth for �2 = �0:001 and the weights

remain steadily about 0:04 for any lag of the explanatory variable. However, the decays

are much sharper when is �2 = �0:009. The impacts of current values of the explanatory

variable start at about 0:1 but they become negligible for more than 15 months lagged

values.8

The natural extension of this simple MIDAS model is to include lags of the dependent

variable as regressors. Although conceptually it seems that the MIDAS model can be easily

adapted to include autoregressive components, Ghysels et al. (2007) pointed out that this

is not straightforward. If an autoregressive component is added to the MIDAS speci�cation

unrestricted, it would generate a seasonal response of the variable of interest to x3mt

irrespective of whether or not x3mt displays a seasonal pattern. Fortunately, Clements and

Galvao (2008) propose an easy solution which is based on including the autoregressive lags

as a common factors and ensures a smooth impulse response function. Consider simply

adding one lower-frequency lag for h-step-ahead forecasting

yq� = �0 + �y
q
��1 + �1b (�;K;L) (1� �L)x3mt�h + "�+h; (9)

which is frequently referred to as autoregressive MIDAS model.

In contrast to bridge equation models, in the MIDAS framework the polynomial lag

structures are constrained via nonlinear functional speci�cations, which implies that it

requires nonlinear estimation procedures. The referenced literature establishes that esti-

mating methods based on nonlinear least squares are consistent estimators for the MIDAS

models. In addition, estimating the nonlinearities imposed by the restricted lag polyno-

mial could be troublesome, so using a large variety of initial parameter speci�cations to

check for the robustness of the results is clearly advisable. To facilitate the convergence

in optimization procedures, the empirical applications usually impose constraints in the

estimation of the Almon weighting function.

8Alternatively, for �xed �1 and large negative values of �2, the weighting function does not change

signi�cantly for large di¤erent valued of �2. In these cases, regardless the value of �2, the weight is 1 for

k = 0, and 0 otherwise.
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It is worth noting that the MIDAS forecast is h-dependent, and thus has to be rees-

timated for multistep forecasts according to the information available at the time of the

forecast. For each h, the observed variables must be re-organized according to the fore-

casting horizon, which makes it necessary to manage h di¤erent forecasting models at each

forecast time. In addition, since the model changes from month to month, it is necessary

to re-estimate the models when new observations for the indicator are released.

Since MIDAS models were introduced less than ten years ago, they are a proli�c source

of recent extensions. First, Marcellino and Schumacher (2010) merge factor and MIDAS

approaches in the Factor-MIDAS model, so augmenting the MIDAS regressions with the

factors extracted from a large dataset in high frequency. Although some theoretical work

is required, we think that this is an interesting area to develop further research.9 Sec-

ond, Ghysel et al. (2007) show that MIDAS models can be extended to account for

nonlinearities. Galvao (2013) with smooth transitions and Guerin and Marcellino (2013)

with Markov-swicthing dynamics are two illustrative examples. Third, Bai, Ghysels, and

Wright (2012) interpret the MIDAS regression as a reduced form representation of the

linear projection that emerges from a state space model approach. However, they show

that the Kalman �lter is more prone to speci�cation errors and usually falls into the

curse of dimensionality since it requires the speci�cation of a full state space system of all

the equations. Finally, Ghysels (2012), extends the MIDAS regression to a multivariate

framework.

For interested readers, several recent surveys on the topic of MIDAS models are

Andreou, Ghysels, and Kourtellos (2011), who review extensively the MIDAS models,

Armesto, Engemann, and Owyang (2010), who provide a very intuitive introduction to

MIDAS regressions and Ghysels and Valkanov (2012), who discuss volatility models and

mixed data sampling.

9For example, it would be interesting to check if computing the forecasts in two steps (extracting the

factors and using then in MIDAS) is preferable to mixing the frequencies in the factor model directly.
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3.3 Mixed Frequency Vector Autoregression (MF-VAR)

To exploit the advantages of using economic indicators that are available at di¤erent

frequencies, one alternative to single-equation models is the mixed-frequency Vector Au-

toregression (MF-VAR) model. Since the early proposal by Zadrozny (1990), the approach

of the method is to assume that the model operates at the highest frequency in the data.

Hence, all variables are assumed to be generated, but not necessarily observed, at this

highest frequency, and thus can be used to produce forecasts of any variable at this fre-

quency. Variables which are observed at a lower frequency are viewed as being periodically

missing and can be conveniently represented through a state-space model, in which the

state-transition equation is given by a VAR at the higher frequency and the measure-

ment equation relates the observed series to the underlying, potentially unobserved, lower

frequency variables that are stacked in the state vector.10

Let us assume that the level of quarterly eyq� can be decomposed as the sum of three

unobservable monthly values that correspond to quarter � , eyqt , eyqt�1, eyqt�2. For instance,
the GDP for the third quarter of a given year is the sum of the GDP corresponding to

the three months of the third quarter. Among others, Mariano and Murasawa (2003)

have shown that if the sample mean of the three within quarter monthly observations

can be well approximated by the geometric mean, then the quarterly growth rates can be

decomposed as weighted averages of monthly growth rates. In particular, the quarterly

growth rate, yq� , is approximated by the weighted sum of �ve monthly growth rates:

yq� =
2

3
ymt +

1

3
ymt�1 + y

m
t�2 +

1

3
ymt�3 +

2

3
ymt�4 (10)

It is worth mentioning that in a related paper, Aruoba, Diebold and Scotti (2009)

avoid the geometric approximation but at the cost of assuming that the trend of the

time series can be well described by deterministic trends. However, these authors have

recently acknowledged that the bene�ts of moving to the geometric approximation of �ow

data exceeded the costs of assuming deterministic trends and, in the current versions of

their index of business cycle conditions, which is updated at the Federal Reserve Bank of

10One noticeable recent exception is Ghysels (2012), whose approach does not rely on latent

processes/shocks representations, in part inspired in MIDAS regressions.
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Philadelphia, they use the geometric approximation as well.

The latent month-on-month growths of GDP and the monthly indicator, ymt and xmt ,

are then assumed to follow a bivariate VAR(p) process. Without loss of generality, to

facilitate the description of the model we assume that p = 1 and that there is only one

monthly indicator.11 In this case, the model is0@ ymt

xmt

1A =

0@ c1

c2

1A+
0@ c11 c12

c21 c22

1A0@ ymt�1

xmt�1

1A+
0@ v1t

v2t

1A ; (11)

where (v1t; v2t)
0 � iiN (0;
), with E

�
v21t
�
= !21, E

�
v22t
�
= !22, and E (v1tv2t) = !12.

For clarity, let us start by assuming that all variables are always observed at a monthly

frequency. The MF-VAR speci�cation can be represented as state-space models. The

measurement equation, Yt = H�t + Et , with Et � iid (0; R), can be de�ned as

0@ yqt

xmt

1A =

0@ 2
3

1
3 1 1

3
2
3 0

0 0 0 0 0 1

1A

0BBBBBBBBBBBB@

ymt

ymt�1

ymt�2

ymt�3

ymt�4

xmt

1CCCCCCCCCCCCA
(12)

where Et = 02�1 and R = 02�2. The transition equation, �t = c + F�t�1 + Vt, with

Vt � iid (0; Q), can be stated as0BBBBBBBBBBBB@

ymt

ymt�1

ymt�2

ymt�3

ymt�4

xmt

1CCCCCCCCCCCCA
=

0BBBBBBBBBBBB@

c1

0

0

0

0

c2

1CCCCCCCCCCCCA
+

0BBBBBBBBBBBB@

c11 0 0 0 0 c12

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

c21 0 0 0 0 c22

1CCCCCCCCCCCCA

0BBBBBBBBBBBB@

ymt�1

ymt�2

ymt�3

ymt�4

ymt�5

xmt�1

1CCCCCCCCCCCCA
+

0BBBBBBBBBBBB@

v1t

0

0

0

0

v2t

1CCCCCCCCCCCCA
; (13)

11Models with higher lag orders and additional monthly indicators can be derived in a straightforward

manner by modifying the VAR speci�cation, the state vector and the system matrices accordingly.
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where

Q =

0BBBBBBBBBBBB@

!21 0 0 0 0 !12

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

!12 0 0 0 0 !22

1CCCCCCCCCCCCA
: (14)

H;R; c; F and Q are the so called system matrices. The Kalman �lter could be used to

infer unobserved components.

In empirical applications, yqt is not observed two months of each quarter and at the

end of the sample due to the high publication lag that characterizes the GDP data �ow.

However, the unobserved cells can be treated as missing observations and maximum like-

lihood estimation of a linear Gaussian state-space model with missing observations can be

applied straightforwardly after a subtle transformation of the system matrices.

As described in Mariano and Murasawa (2010), the missing observations can be re-

placed with random draws #t, whose distribution cannot depend on the parameter space

that characterizes the Kalman �lter. Thus, the likelihood function of the observed data

and that of the data whose missings are replaced by the random draws are equivalent

up to scale. In particular, we assume that the random draws come from N(0; �2#). In

addition, the measurement equation must be transformed conveniently in order to allow

the Kalman �lter to skip the missing observations when updating.

Let Yit be the i-th element of the vector Yt and Rii its variance. Let Hi be the i-th

row of the matrix H which has & columns and let 01& be a row vector of & zeroes. The
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measurement equation can be replaced by the following expressions

Y �it =

8<: Yit if Yit observable

#t otherwise
; (15)

H�
it =

8<: Hi if Yit observable

01& otherwise
; (16)

E�it =

8<: 0 if Yit observable

#t otherwise
; (17)

R�iit =

8<: 0 if Yit observable

�2# otherwise
: (18)

This trick leads to a time-varying state space model with no missing observations so the

Kalman �lter can be directly applied to Y �t , H
�
t , E

�
t , and R

�
t .

The way missing observations are treated implies that the �lter, through its implicit

signal extraction process, puts no weight on missing observations in the computation of

the factors. In this way, when no observation is available, the �lter produces a forecast of

the common factors.

The Kalman �lter is extremely useful for computing real-time forecasts that need to be

updated frequently. This is easy to see when the treatment of missing values is adopted for

the computation of these forecasts since one can regard the future values of the time series

as a set of missing observations. After the last observation, we add a series of missing

values to the data set and carry on with the Kalman �lter that accounts for missing data.

Then, the model treats the future observations as missing values in the way described

above.

In addition, one can use the basic �ltering and smoothing algorithms for Markov-

switching state-space models and the maximum likelihood estimation of the unknown

parameters of the models proposed by Filardo (1994) to extend the linear MF-VAR to

nonlinear contexts. A signi�cant example is Camacho (2013), who extend the linear

MF-VAR proposed by Mariano and Murasawa (2010) to account for Markov-switching

dynamics.

The forecasts based on Kalman �lters usually rely on serious dimensionality problems,
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especially when the number of time series or their frequency increase. For example, a

MF-VAR model to forecast GDP from four monthly indicators and p = 2 requires esti-

mating 70 parameters. Several approaches have recently emerged to cope with the high

dimensionality of the parameter space. First, if the cross-autocorrelations in the system

are small, one approach is to take all the o¤-diagonal elements of the polynomial matrices

as zero. However, such constraints may not always be appropriate and will be dictated by

the application at hand. Second, in the context of MF-VAR models, they can be cast in

state-space forms and the parameters can be estimated using Bayesian methods. Eraker,

Chiu, Foerster, Kim, and Seoane (2011) or Schorfheide and Song (2011) are signi�cant

examples.

3.4 Linear factor models

The parameter proliferation problem can also be addressed by means of the well known

reduction dimensionality allowed by factor models. Since macroeconomic data are usually

very collinear, it is reasonable to conjecture that they are multiple, indirect measurements

of some low-dimensional underlying sources, which can be used to reproduce most of the

variability of a data set.

3.4.1 Small scale factor models

Let us assume that a handful set of indicators used in the model are somehow related to the

overall economic conditions. Based on the seminal proposal by Stock and Watson (1991)

to construct a coincident indicator of the economic activity, we consider a single-index

dynamic factor model such that each variable can be written as the sum of two mutually

uncorrelated stochastic components.12 The �rst component, ft, is assumed to be common

for all the time series in the model and typically represents the overall business cycle

in macroeconomic applications. The second component, uit, refers to the idiosyncratic

dynamics of each indicator.

Accordingly, the latent month-on-month growths of GDP and the monthly indicator,

12Allowing for more than one factor is straightforward.
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ymt and xmit , are then assumed to admit the following factor decomposition

ymt = �0ft + u0t; (19)

and

xmit = �ift + uit; (20)

for i = 1; :::; N , where N is the number of monthly indicators used in the analysis.

To complete the statistical speci�cation of the model, both components are modelled by

using the standard techniques of linear autoregressive time series. Therefore, the dynamics

of the model is achieved by assuming that the factor and the idiosyncratic components

evolve according to autoregressive processes:

ft = �f1ft�1 + :::+ �fpf ft�pf + �ft; (21)

ujt = �j1u1t�1 + :::+ �jpjujt�pj + �jt; (22)

where �ft � iiN
�
0; �2f

�
, �jt � iiN

�
0; �2j

�
, with j = 0; 1; :::; N . All the covariances are

assumed to be zero. To achieve identi�cation, the variance of the noise associated to the

common factor, �2f , is assumed to be one.
13

This model can be easily cast in steady state representation. To illustrate this, let us

assume that pf = pj = 1 and that N = 1. In this case, the matrices of the measurement

equation are:

Yt = (yqt ; x
m
t )

0
; (23)

H =

0@ �0
3

2�0
3 �0

2�0
3

�0
3

1
3

2
3 1 2

3
1
3 0

�1 0 0 0 0 0 0 0 0 0 1

1A ; (24)

�t = (ft; ft�1; ft�2; ft�3; ft�4; u0t; u0t�1; u0t�2; u0t�3; u0t�4; u1t)
0 ; (25)

Et = 02�1; (26)

R = 02�2: (27)

13This identifying assumption is standard in dynamic factor models.
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The matrices of the transition equation are:

c = 011�1; (28)

F =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�f1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 �01 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 �11

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (29)

V = (�ft; 0; 0; 0; 0; �0t; 0; 0; 0; 0; �1t) ; (30)

Q = diag
�
�2f ; 0; 0; 0; 0; �

2
0; 0; 0; 0; 0; �

2
1

�
: (31)

So far, our discussion has assumed that all the variables used in Yt are observed.

However, the variables entering the models exhibit missing data either because they are

available only at some periods (in the case of quarterly observations), because they are not

available at the end of the sample (in the case of variables with larger publication delays),

or because they refer to the future (in the case of forecasting). This missing data problem

appears in Mariano and Murasawa (2003), who extend the Stock-Watson approach to

construct a coincident index of business cycles that uses both monthly and quarterly

indicators. These authors were among the �rst to handle the missing observations by

dropping the corresponding observation equations in each recursion of the Kalman �lter

in the way described below for MF-VAR models.

Several empirical applications of these models have appeared in the literature. Us-

ing Portuguese data, Nunes (2005) illustrates the usefulness of the model to compute a

monthly index of coincident indicators as well as estimates of quarterly real GDP growth.

Aruoba, Diebold and Scotti (2009) incorporate indicators measured at high frequencies to
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develop the very popular business conditions index of the US economy, which is updated

by the Philadelphia Fed as new observations arrive. Camacho and Perez Quiros (2010) set

out the Euro-STING dynamic factor model to compute short-term forecasts of the euro

area GDP growth in real-time, which is able to forecast the euro area GDP growth as

well as professional forecasters. Aruoba and Diebold (2010) focus not only on real macro-

economic activity indexes but also on an in�ation index and its interaction with the real

activity index. With Spanish data, Camacho and Domenech (2012) extend the approach

of Camacho and Perez Quiros (2011) to include leading �nancial indicators. Finally, dal

Bianco, Camacho and Perez Quiros (2012) propose a fundamentals-based dynamic factor

model to forecast the weekly changes in the euro-dollar rate.

3.4.2 The role of N in factor models

Due to the recent advances in information technology, there are thousands of time series

available in real time whose information could be used to forecast the variable of interest.

Signi�cant examples are disaggregations of time series indicators, which can be obtained

with an unprecedented degree of disaggregation by sectors, kind of goods, regions and

so on; and �nancial variables, which can be obtained at daily, hourly or even higher fre-

quencies. Aruoba, Diebold and Scotti (2009) have recently assessed that comparative

assessment of experiences and results from forecasting with a relatively small set of prese-

lected indicators versus forecasting from relatively large set of indicators would be a good

place to develop further analyses.

To address the role of using many predictors in short-term forecasting, we propose the

following framework. To facilitate the analysis, the goal is to compute one-period forecasts

of yt from N candidate predictors x(N)t = (x1t; :::; xNt)
0, with t = 1; :::; T , where T is large

N could be large. The forecasting equation is

yt+1 = �0 +

pX
j=1

�jyt�j + 

0x
(N)
t + et+1; (32)

where 
 = (
1; :::; 
N )
0 and the one-period forecast error, et+1, is white noise. When the

number of predictors becomes large, the estimation of the model is not be feasible. In
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these cases, it is standard to assume that the predictors admit a factor representation

x
(N)
t = BFt + ut; (33)

where Ft = (f1t; :::; frt)
0 is the vector of r common factors, B is the N � r matrix of factor

loadings and ut is the idiosyncratic noise. Both the common factors and the idiosyncratic

noises are allowed to exhibit (weak) cross and serial dynamics. So, the forecasts are

computed from a factor augmented autoregression

yt+1 = �0 +

pX
j=1

�jyt�j +  
0Ft + et+1; (34)

where  = ( 1; :::;  r)
0. Thus, the forecaster gets the bene�t of using all the predictors by

using only a small set of factors. However, it is not clear that increasing the number of

predictors is useful to improve the forecasts.

According to Stock and Watson (2011), the estimation of these models can be classi-

�ed into three generations. The �rst generation of models are estimated using Gaussian

maximum likelihood estimation and the Kalman �lter. An advantage of this formulation

is that it can handle data irregularities easily. However, the number of parameters to be

estimated increases with the number of predictors, which complicates estimation when N

is large. Aruoba, Diebold, and Scotti (2009) and Camacho and Perez Quiros (2010) are

recent examples.

When N is su¢ ciently large, the second generation of models rely on nonparametric

cross-sectional averaging methods, mainly based on principal components, to estimate the

space spanned by the factors consistently. The result typically relies on the assumptions

that the cross-correlation of the idiosyncratic components is weak and that the variability

of the common component is not too small. In these cases, the common factors of the

principal component estimator are consistent, as both N and T go to in�nity. See, for

instance, Stock and Watson (2002a) and Forni et al. (2000, 2005).

The third generation of models are based on hybrid methods that use consistent non-

parametric estimates of the factors, which are then used as regressors to estimate the

parameters of the state space representation. Finally, the model is written in state space

form and the parameters are used in the Kalman �lter to improve the e¢ ciency of the
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estimation of the common factors. Doz, Giannone and Reichlin (2011) and Doz, Giannone

and Reichlin (2012) are good references.

In practice, the number of predictors used to extract the factor varies considerably

across applications. For example, the set of predictors used by Stock and Watson (2002b)

and Forni et al. (2003) comprised 215 and 447 time series, respectively. Can it be possible

that increasing N does not improve the precision of the factor estimates? The literature

about the number of series in dynamic factor models when they are used as forecasting

tools is still scarce. Boivin and Ng (2006) �nd that factor-based forecasts extracted from

40 variables perform better than those extracted from 147 variables. Based on several

simulations with principal component estimators, they suggest that the composition of

the dataset as well as the properties of the idiosyncratic errors are crucial in determining

the most convenient number of series. Using Kalman �lter estimators, Alvarez, Camacho

and Perez Quiros (2012) also relate the forecasting performance of the common factors

forecasts to the composition of the dataset and to the persistence of the idiosyncratic

component. Caggiano, Kapetanios and Labhard (2011), based on the principal component

estimator, show that factors extracted from pre-screened series often yield satisfactory or

even better results than using larger sets of series. Banbura and Runstler (2011), within

the Kalman �lter framework, �nd that around 30 variables are enough to estimate the

common factors.

As regards the �rst generation of factor models, the Kalman �lter provides expressions

for the Mean Squared Error (MSE) for every time period and any number of series. In

time-invariant systems, the �lter reaches the steady state and the expression of the MSE

of the estimator of the common factors no longer depends on time so it can be reduced

by enlarging the number of predictors (see Peña and Poncela, 2004). Recently, Poncela

and Ruiz (2012) provide a comprehensive analysis of how the uncertainty in the forecast,

estimation and smoothness of the common factor is related to the number of series N:

They conclude that around 30 series are enough to obtain common factors estimated with

very low MSE, even in models with more than one common factor and serial dependence

in the idiosyncratic noises. However, if the serial correlation in the idiosyncratic noises is

very persistent, more variables might be needed to obtain the same MSEs, especially if
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the common factor is also highly persistent.

Assume that the vector of N � 1 monthly indicators admits a single factor model de-

composition and that the population parameters are known. Then, the vector of observed

series is generated as

x
(N)
t = B(N)ft + u

(N)
t (35)

where B(N) = (�1; :::; �N )
0 is the N � 1 loading vector, and u(N)t is an N � 1 vector of

zero mean Gaussian white noise with �nite and positive de�nite covariance matrix R(N),

which might be non-diagonal. Notice that the the dependence on the number of series

N is explicitly stated through the superscript. The common factor follows an AR(1) as

in (21) with pf = 1 and an autoregressive parameter �11. Poncela and Ruiz (2012) show

that the one-step-ahead steady-state MSE, given by the solution of the Riccati equation,

is

V (N) =
�2fT (N)� 1 + �

2
11 +

r�
�2fT (N)� 1 + �

2
11

�2
+ 4�2fT (N)

2T (N)
; (36)

where

T (N) = B(N)0
�
R(N)

��1
B(N): (37)

The �ltered steady-state MSE is given by

W (N) =
V (N)

1 + V (N)T (N)
(38)

and the smoothed steady-sated MSE is given by

S(N) =
V (N)

�
1 + V (N)T (N)� �211

�
(1 + V (N)T (N))2 � �211

: (39)

Note that the dependence on the number of series comes through T (N), which becomes

the sum of the signal to noise ratios, T (N) =
PN
i=1

�2i
�2i
, when R(N) is diagonal.14

Poncela and Ruiz (2012) show that, adding an additional predictor, the �ltered and

the smoothed steady-state MSE typically decrease. They remain constant only if (i) the

common factor is static, �11 = 0; or (ii) the additional predictor is not informative,

�N+1 = 0 and its corresponding idiosyncratic noise, uN+1; is not correlated with any of

the predictors already included in the system.

14The result is also true for the nonstationary case, in which �11 is allowed to reach 1.
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This framework helps to evaluate how many predictors lead to signi�cant reductions

in MSE. When the parameters of the models are known, the authors show that adding

variables beyond a relatively small number (30 in the simulated experiments) does not

decrease the �lter uncertainty signi�cantly. When the parameters must be estimated

in empirical applications, using additional predictors leads to a trade o¤ between the

reductions in �lter uncertainty and the increases in estimation uncertainty, which grows

with the additional number of parameters that must be estimated, especially when the

sample size is small.15 Using Monte Caro, the authors show that for sample sizes of

T = 100, the total uncertainty increases around 5% when the parameters of the model are

estimated.

Notably, they show that the curve of the MSE against the number of series is U-

shaped. Therefore, the uncertainty starts to increase beyond a certain number of variables.

In particular, they �nd that the percentage of the parameter uncertainty over the total

uncertainty is minimum when the number of variables is around 10.

In the context of the second generation of factor models, Bai (2003) gives the expression

for the asymptotic variance of the principal component estimator of the common factor.

To check the �nite sample performance of the estimator in empirical analyses, Boivin and

Ng (2006) compute the statistic

Sf;f0 =

tr

�
f 00
bf � bf 0 bf��1 bf 0f0�
tr(f 00; f0)

where f0 and bf are T � r matrices of population factors and estimated common factors

and r is the number of factors. They simulate series according to the properties of the

idiosyncratic noises and allow for heteroskedasticity and cross-correlation across categories.

They check the e¤ects of oversampling by extracting the factors from predictors that show

very low factor loadings. Interestingly, they �nd average values of the statistic around 0:6,

with a large associated dispersion that can go down to around 0:5 if oversampling occurs.

They also �nd that it is useful to weight the data by their properties when constructing the

factors. In addition, they �nd that oversampling, cross correlation and heteroskedasticity

in the idiosyncratic noises deteriorate the forecasting performance. Using the database
15Note that the parameters uncertainty falls with the sample size T:
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suggested by Stock and Watson (2002b), Boivin and Ng (2006) show that factors extracted

from as few as 40 pre-screened series often yield satisfactory or even better forecasting

results than using all the series.

In an independent paper, Alvarez et al. (2012) examines the empirical relative fore-

casting performance at di¤erent horizons of factor models that belong to the �rst and

the third generations by using both Monte Carlo exercises and US actual data. Since the

data are collected from economic categories in the empirical economic applications, they

evaluate the e¤ects of cross-correlation across and within categories, the e¤ects of dealing

with oversampled categories and the e¤ects of serial dependence of both the factors and

the idiosyncratic components. Their results suggest that the forecasts from a factor model

of the �rst generation that uses a set of preselected predictors outperform the forecasts

from a factor model of the third generation that uses all the available predictors when the

data exhibit the typical problems that characterized the empirical applications. Particu-

larly, the gains appear when (i) the cross-correlation across the idiosyncratic errors within

the same category is high, (ii) when there are oversampled categories and, especially, (iii)

when the persistent of the common factor and/or the idiosyncratic components become

moderately high.

3.4.3 Forecasting using targeted predictors

Although much professional attention has recently turned to big data approaches, the

previous section states that bigger amounts of information are not necessarily better in

forecasting accuracy. It now seems reasonable to think that the selection of indicators is

a crucial step before building a model to forecast a variable of interest. However, the way

in which the indicators are selected from a large set of potential candidates is still an open

question and probably the source of intense debates in the near future.

In our opinion, the �nal set of indicators should exhibit the following characteristics,

whose achievement must be used as a guidance in the selection procedure. First, the

indicators must be updated in a timely manner and, therefore, they must be published

before the variable of interest is released. Second, the indicators must be reliable. They

should not be revised substantially after they are �rst published since the preliminary
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�gures would incorporate noisy signals of the variable of interest.

Third, if one is interested in using the movements of the promptly available indicators

as early signals of changes in the variable of interest, the indicators must be related to the

variable of interest in the sense that they may cohere. Therefore, the factor extraction

should not be independent of the target forecast. Some predictors might not be informative

and the uncertainty of their coe¢ cients in the factor extraction might not compensate their

forecasting content.

Last, but not least, the �nal set of indicators obtained from selection procedures must

be economically meaningful. It makes sense that the set of �nal indicators must comprise

some representative indicators from all the economically relevant categories of data for the

objective of forecasting a speci�c series, unless they are proven to be clearly useless in the

model. In addition, it is hard to explain the selection of some disaggregated indicators

when the total and most representative indicator of a category is skipped from the sample

following pure statistical selection criteria.

Bai and Ng (2008) propose several methods to perform forecasts from targeted pre-

dictors. The �rst method simply uses regressions of the target over each predictor and

select those with t-statistics over a certain threshold. Then, the principal component esti-

mator is applied over the selected predictors. One of the main drawbacks of this selection

procedure is that it does not consider the correlation across the predictors. A trivial but

illustrative example is the case that an informative predictor is, by mistake, saved twice

in the database. In this case, the uninformative predictor would be selected twice.

To perform principal components over a reduced number of predictors, these authors

also apply other subset selection methods that are based on modi�ed least squares. Skip-

ping details, the methods rely on the minimization problem of the sum of squared residuals

of the regression of the target variable on all the available regressors, which is modi�ed

by di¤erent penalty functions. The Ridge Regression (RR) estimator uses the sum of

the squared parameters, the Least Absolute Shrinkage and Selection Operator (LASSO)

estimator uses the sum of the absolute value and the Elastic Net (EN) estimator uses a

combination of these two approaches. Based on the previous methods, one can obtain an

ordering of the predictors taking into account the penalty. Then, principal components is
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performed over the top ranked predictors. Using a database of 132 predictors, they show

important reductions (up to one half) in in�ation forecast errors from targeted predictions

over the principal component forecasts that does not perform targeting at all. The gains

are more evident when the forecasting horizon increases.

Fuentes, Poncela and Rodriguez (2012) develop a forecasting method that combines the

Partial Least Squares (PLS) estimator, where the factors are formed from an eigenvalue

decomposition that captures the covariance between the predictors and the target, with

the targeted predictors framework, which sets the parameters of uninformative predictors

to zero by using penalty functions in the optimization procedure.16 Using the database

of Bai and Ng (2008), they show that the in�ation forecasts of the Sparse PLS estima-

tor outperform the forecasts of principal component estimators even in short forecasting

horizons.

To reduce the number of predictors used in the principal component estimator, Boivin

and Ng (2006) focus on the view that problems of this method tend to arise when the

idiosyncratic errors are cross-correlated. Therefore, they hey propose removing the time

series with highest correlation of idiosyncratic components. This selection procedure leads

to a �nal set of 40 predictors often yield satisfactory or even better forecasting results

than using from an initial set of 147 series.

Alvarez et al. (2012) show that focusing on the correlation of idiosyncratic compo-

nents typically leads to �nal sets of predictors with low economic content. In particular,

the method selects disaggregated concepts from each category instead of the headline con-

cepts. Sometimes, some economically interesting categories are not represented and some

others become oversampled. To overcome this drawback, they select one representative

variable of each category as the variable with highest correlation within the indicators

of the same category. In practice, they �nd that the selected indicator of each category

typically coincides with the aggregate headline concept, which converts the proposal in

an economically meaningful selection criterion. Alvarez et al. (2012) show that this selec-

tion method leads to signi�cant forecasting improvements with respect to the statistical

method proposed by Boivin and Ng (2006).

16Examples of PLS estimators appear in Groen and Kapetanios (2008) and Kelly and Pruitt (2012).
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3.5 Markov-switching factor models

Diebold and Rudebusch (1996) were the �rst to suggest a uni�ed model that captures

the notions of comovements and asymmetries that characterize the business cycle features

from a set of economic indicators. Comovements are captured with a dynamic factor model

as in Stock and Watson (1991) while asymmetries are modelled by using the Markov-

switching speci�cation advocated by Hamilton (1989). Kim and Yoo (1995), Chauvet

(1998) and Kim and Nelson (1998) integrate the two features in a single Markov-switching

dynamic factor model (MS-DFM). Camacho, Perez Quiros and Poncela (2012a) �nd that

the fully non-linear multivariate speci�cation outperforms the �shortcut�of using a linear

factor model to obtain a coincident indicator, which is then used to compute the Markov-

switching probabilities.

To account for the business cycle asymmetries, these models assume that the dynamic

behavior of the factor is governed by an unobserved regime-switching state variable, st.

Accordingly, the dynamics of the factor is extended to account for nonlinearities as follows:

ft = �st + �f1ft�1 + :::+ �fpf ft�pf + �ft; (40)

where �ft � iiN
�
0; �2f

�
.17 Within this framework, one can label st = 0 and st = 1 as the

expansion and recession states at time t. In addition, it is standard to assume that the

state variable evolves according to an irreducible 2-state Markov chain whose transition

probabilities are de�ned by

p(st = jjst�1 = i; st�2 = h; :::; It�1) = p(st = jjst�1 = i) = pij ; (41)

where i; j = 0; 1 and It is the information set up to period t.

The particular form of the state space representation for the switching dynamic factor

comes from subtle modi�cations of the state space speci�cation of the linear model. Under

the simplifying assumptions used in the linear factor model, the nonlinear state space form

only requires adding �
�st ; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0

�
(42)

17The dynamics can be adapted to account for regime shifts in the autoregressive parameters and in the

variance. In addition, the nonlinearities can be assumed in the mean or in the drift of the factor.
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to the linear measurement equation.

It is worth mentioning that both the measurement and the transition equations could

be regime switching. To handle this nonlinear dynamics, Kim (1994) proposes a useful

nonlinear discrete version of the Kalman �lter which is combined with Hamilton�s non-

linear �lter in one algorithm. However, each iteration of the Kalman �lter produces a

twofold increase in the number of cases to consider, which would become computationally

unfeasible since it would lead to 2T number of states to consider in the likelihood function.

Kim (1994) proposes an approximation that consist of a weighted average of the updating

procedures by the probabilities of the Markov state, in which the mixture of Gaussian

densities is collapsed after each observation.18

The main advantage of these nonlinear models is that they convert the information

contained in the economic indicators about the business cycle into inferences of the prob-

abilities of recession. Hence, they provide economic agents with statistical de�nitions of

some terms usually employed in business cycle analysis, such as green shoots, double-dip

recessions, recoveries or turning points, which, in this context, are very easy to interpret

and can be timelily and automatically updated. Needless is to say, the probabilities of

recession computed from a statistical model are transparent, objective and free of units of

measurement, which facilitates international business cycle comparisons.

Although some recent empirical proposals try to examine the empirical reliability of

these models in computing real-time inferences of the US business cycle states (see Chauvet

and Hamilton, 2006, Chauvet and Piger, 2008, and Hamilton, 2011), the analyses are not

developed in actual real time. The original MS-DFM was originally designed to deal with

balanced panels of business cycle indicators so it could not handle the typical problems of

the day-to-day monitoring of economic activity: mixed frequencies and ragged ends.

To overcome these limitations, Camacho, Perez-Quiros and Poncela (2012b) adapt the

MS-DFM to permit whatever business cycle economic indicator, regardless of publication

delays and frequency. Based on the techniques described in the linear context to handle

missing data, their procedure deals with missing observations by using a time-varying

18Kim and Nelson (1998) use an alterative approach which is based on Gibbs sampling by casting the

model in a Bayesian framework.
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nonlinear Kalman �lter. Whenever the data is not observed, the missing observations

are replaced by random draws from a variable whose distribution cannot depend on the

parameter space that characterizes the Kalman �lter or the Markov-switching chain. The

corresponding row is then skipped in the Kalman recursion and the measurement equation

for the missing observation is set to the random choice.

The analyses developed in an actual real-time scenario by Camacho, et al. (2012b)

suggest that MS-DFM identi�es the NBER turning point dates in real time with reason-

able accuracy. Accordingly, this model appears to be a reasonable framework to track the

US business cycle in real time. In addition, Camacho et al. (2013) show the usefulness

of MS-DFM to obtain an indicator of the overall economic activity and to compute busi-

ness cycle inferences in the euro area. Their �ndings indicate that the model exhibits a

remarkably ability to track the CEPR (Center for Economic Policy Research) Business

Cycle Dating Committee chronology as captured in the state probabilities for the overall

economic indicator. However, MS-DFM provides improvements over the NBER and the

CEPR in the timeliness with which they identify business cycle turning points.

3.6 A critical overview

Essentially, MIDAS and bridge equation models are both based on single-equation models,

which are usually enlarged with auxiliary regressions to update the forecasts of the ex-

planatory variables when computing iterative forecasts. By contrast, MF-VAR and factor

models are multivariate speci�cations and can compute forecasts of the individual indica-

tors. This is of special interest when the analysis of the economic developments focuses

not only on forecasting by how much the variable of interest is revised as new information

become available, but also on assessing the revisions. In other words, modeling the joint

dynamics of the higher-frequency indicators and the lower-frequency variables in a uni�ed

framework facilitates the analysis of the relative impact of each of the arrivals on the

variable of interest.

MF-VAR and factor models are model-driven as they are cast in state space forms

and estimated by using the Kalman �lter. However, MIDAS and bridge equations are

observation-driven as they are formulated exclusively in terms of observable data and do
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not involve latent processes, which avoids the need to formulate measurement equations

and �ltering. In addition, MIDAS models are very parsimonious since the lag polynomials

are represented as functions of a very reduced number of parameters. Therefore, they

require less parameters and they are also computationally much less demanding, especially

when using very high frequency indicators.

State-space models can be quite appealing, as one explicitly sets the speci�c dynamics

for all the series involved, the high-frequency data series, the latent high-frequency series

treated as missing and the low-frequency observed processes, and their respective rela-

tionships. This enables the forecasters to evaluate the information content of the arriving

information. In addition, they are suitable representations to account for the speci�c

aggregation equations that comes from the handling �ow data at di¤erent frequencies.

The models reviewed in this paper establish that although some series could be in-

tegrated they are not cointegrated. Clements and Hendry (1995) analyze the need to

incorporate the cointegration relations in forecasting with VAR models. However, the

general implication of cointegration for forecasting in the wide spectra of models cov-

ered in this paper is still not available. Very recently, Banerjee, Marcellino and Masten

(2013) have analyzed the advantages in forecasting with Factor-Augmented Error Cor-

rection Models which combine error-correction, cointegration and dynamic factor models.

Goetz, Hecq and Urbain (2012) have proposed forecasting models that incorporate cointe-

gration relations within the MIDAS framework. Alternatively, the nonstationary common

trends can be modelled. In the latter case, Peña and Poncela (2004) show that the gain

in precision, in terms of the prediction MSE, of small nonstationary factor models with

respect to univariate ARIMA and pooled forecasts depends on the common information

and increases with the number of time series and the sum of the relative sizes of the factor

loadings. Fuleky and Bonham (2013) analyze empirically the forecasting performance of

small mixed frequency factor models when the observed variables share stochastic trends.

One alternative to be pursued is to consider the combination of the forecasts from

some or all the models described in this section, as in Diron (2008), Kuzin at al. (2011)

or Timmermann (2006). Although this is beyond the scope of this paper, there are a

number of open questions in the empirical application of pooling for short term forecasting.
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Examples are how to determine the number of models involved in the combination and

how to perform the combinations in real-time since it may lead to multiple forecasts when

forecasting in changing environments.

This discussion reveals that it is di¢ cult to rank all the alternative forecasting ap-

proaches purely on the basis of theoretical considerations. Their relative merits will de-

pend on the speci�c empirical analysis to be developed. Therefore, their performances are

better assessed in speci�c economic applications.

Finally, after reviewing all these forecasting techniques, it is convenient to point out

that all these �engineering type�models that we have surveyed are algorithms that try

to mimic the way in which business cycle professional forecasters update their views of

the economy by incorporating newly release of information. In this sense, these are not

�structural�models that try to capture casual relations. These are reduced form mod-

els that are designed to be automatically updated to predict the variable of interest by

exploiting just cross-correlations or non-linear comovements.

4 An empirical example

The purpose of this section is to examine the real-time forecasting performance of US

GDP in a horse race of the models described below which use as input several monthly

economic indicators that provide early signals of GDP changes. Of course, the selection

of the set of indicators is not trivial and a source of debate. To this end, we bene�t from

the selection of indicators developed by the NBER�s Business Cycle Dating Committee to

maintain the chronology of the U.S. business cycle. The Committee acknowledges on its

website that it applies its judgment based on the behavior of various measures of broad

activity: real GDP, employment, real income, sales and industrial production.

According to the Committee�s criterion, we use a dataset that comprises, apart from

real GDP, four monthly indicators: industrial production index, nonfarm payroll employ-

ment, personal income less transfer payments and real manufacturing and trade sales. A

similar set of monthly indicators has extensively be used in the literature to compute coin-

cident indexes of the US economic activity as the composite index of coincident indicators
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released by the Conference Board, the old Stock-Watson Experimental Coincident Index

(see Stock and Watson, 1991). Recently, several empirical analyses have been developed by

enlarging the set of monthly indicators with quarterly GDP, as in Mariano and Murasawa

(2003, 2010), Aruoba and Diebold (2010), Camacho et al. (2012a, 2012b) and Camacho

(2013).

To perform a realistic assessment of the actual empirical reliability of the competing

models, we evaluate their forecasting performance through a data set that consists of the

vintages available at the time of each forecast. In particular, the forecasts are computed

from recursively estimated models that use the information available in the middle of each

month t over a sample of 13 years that covers the period December, 1998 to January,

2011. Therefore, the real-time analysis does not include the data revisions that were not

available at the time the model would have been used and has to manage with incomplete

data sets at the time of each inference.

To clarify understanding, let us describe the publication calendar of the economic

indicators used in the real-time analysis. At the end of month t, Industrial Production is

published on the 15th of the month t+ 1; Non-farm Employees is published on the 8th of

the month t+ 1, Real Personal Income is published on the 27th of the month t+ 1, Real

Manufacturing and Trade Sales is published on the 27th of the month t + 2,19 and GDP

is published on the 15th of t+ 2, whenever t is March, June, September or December. To

simplify the real-time analysis, we consider that the forecasts are computed on the 15th of

each month, where employment and industrial production are available for the previous

month.

According to the interest of business people in following the real-time developments of

the current economic activity, we focus on the forecasts for the GDP growth of a given

quarter that are computed during the quarter and after the quarter. To understand how

the sequence of forecasts works in practice, based on di¤erent sets of monthly information,

let us examine the stylized example of data releases depicted in Figure 1. The next three

forecasts computed of GDP growth of quarter Q corresponds to the forecasts computed

from the information set that is available in the �rst, second and third months of this

19The nominal indicator is published on the 14th of t+ 2.
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quarter, respectively. Therefore, they are labeled as �rst, second and third nowcasts of

GDP growth of quarter Q. Since the GDP �gure for this quarter is not available until

about the second month of quarter Q+1, we perform the last forecast of GDP growth

of quarter Q in the �rst month of quarter Q+1, which we take as the ending point to

produce forecasts for this quarter. We denote this forecast as the backcast of quarter Q

to emphasize the fact that it refers to a prediction of the past.

All the series are seasonally adjusted. To make them stationary, we take the �rst

di¤erence of the natural log of each series and multiply it by 100, which is approximately

equal to the quarterly or monthly percentage growth rate. Bridge equations, MF-VAR and

factor models are estimated by maximum likelihood while MIDAS models are estimated

by nonlinear least squares.

Forecasts from bridge equations and MIDAS models come from multivariate speci�-

cations, where the four monthly indicators and one lag of GDP growth are included in

the right-hand-side speci�cations described above. Bridge equations are estimated with a

maximum lag length of 2 lags for quarterly variable and 12 lags of monthly indicators. In

the MIDAS speci�cations, the parameters of the exponential lag function are restricted to

�1 < 5 and �2 < 0 and the maximum number of lags chosen is K = 12 months, following

Kuzin et al. (2011). Concerning the MF-VAR model, the maximum the lag order is p = 2

in order to ensure that the number of parameters to be estimated within the model is

feasible.

With respect to the linear factor model speci�cation, we focus exclusively on the small-

scale dynamic factor models, although acknowledge that comparisons of forecasts from

large-scale factor models some of the alternative approaches described in this paper would

clearly be of interest. The maximum lag length of the autoregressive processes are set to

pf = pj = 2, j = 0; 1; :::; 4. Before estimating the model, the variables are standardized

to have a zero mean and a variance equal to one. Therefore, �nal forecasts are recursively

computed by multiplying initial forecasts of the model by the standard deviation, and then

adding the means, which are also recursively recomputed. Apart from these assumptions,

in the Markov-switching speci�cation we follow Camacho and Perez Quiros (2007) and

assume that pf = 0 so all the common dynamics come from the switch from one state to
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the other, while linear serial correlation is added through the idiosyncratic noises.20

In the empirical literature that compares some of the models outlined above, the au-

thors �nd no clear winner in terms of forecasting performance. Bai, Ghysels, and Wright

(2011) examine the relationship between MIDAS regressions and state-space models ap-

plied to mixed-frequency data and conclude that Kalman �lter forecasts are typically a

little better, but MIDAS regressions can be more accurate if the state-space model is

misspeci�ed or over-parameterized. Kuzin, Marcellino, and Schumacher (2011) compare

the accuracy of Euro Area GDP growth forecasts from MIDAS regressions and MF-VARs

estimated by maximum likelihood and �nd that the relative performances of these models

di¤er depending on the predictors and forecast horizons.

Table 1 reports the performance of the model to forecast US GDP growth in real time.

In particular, the table shows the mean squared errors, which are computed by as averaged

deviations of the real-time (1998.1 an ending in 2011.01) forecasts from the �nally revised

GDP growth �gures. According to the forecast experiment design, nowcasting refers to

the forecasts computed within the reference quarter and backcasting refers to the forecast

computed one month after the end of the reference quarter.

The most relevant result that derives from the table is that there is a major gain in

forecasting using indicators, no matter which model is used. A simple autoregressive model

is notably improved by all the models considered in this survey. The old story that the

autoregressive models are di¢ cult to beat, does not hold when using real time available

indicators which contain reliable information about the current activity. In addition,

another result that is common to all the models is that the upcoming information from

the monthly indicators is important to improve upon the forecasting accuracy in real time.

The table reports that, for all the speci�cations, the forecast uncertainty falls drastically as

more information becomes available when computing the forecasts. All the models exhibit

much lower averaged mistakes when performing the GDP growth backcasts with respect to

the nowcasts because almost all the monthly information relative to the reference quarter

is available at the time of computing the backcasts.

The relative performance of one model versus the others is more di¢ cult to distin-

20Note that this assumption avoids identi�cation problems.
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guish, because the gains from one model to another are only marginal, although the factor

models and the VAR have the advantage of allowing a joint forecast of all the variables

of interest. In addition, the nonlinear approach o¤ers the interesting additional infor-

mation of converting the business cycle signals provided by the economic indicators into

recession probabilities. Figure 4 plots the values of the real-time recession probabilities

in each period t, which are inferred by using the latest vintage. What it is clear, as a

lesson to practitioners, is that it is always better to forecast with models that incorporate

updated information of current activity. The decision of which model to use depends on

the additional information that the practitioner wants to produce.

5 Conclusion

The Great Recession has led to renewed scienti�c interest in short-term forecasting. Nowa-

days, the monitoring of the real-time economic developments through some key economic

aggregates is a plentiful source of debate. How to deal with the lack of information hin-

dering timely publication of macroeconomic variables, how to �ll in the missing values

when the time series exhibit di¤erent frequencies, how to use the economic aggregates

with short time spans, and how many and which kind of variables should be included in

the forecasting models are still open questions.

The traditional literature and methodology on macroeconomic forecasting usually as-

sumed either that all processes were sampled at the same frequency and that their updates

were available at the same time, or accommodated the time series accordingly. However,

some key macroeconomic variables for Central Banks, Governments and private research

institutions, such as GDP, are unavailable at frequencies higher than quarterly. In addition,

the publication calendar of the national statistical agencies are hardly often synchronized,

which, added to the publication lags that characterize the data �ow, requires the forecast

model to be able to deal with unobservable data at the end of the data vintages.

This paper reviews the recent developments on short-term forecasting by trying to

address all the practitioners�concerns on the day-to-day analysis of the economic devel-

opments which means dealing with these real-time forecasting problems. In particular,
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we perform a critical overview of bridge equations, MIDAS models, mixed-frequency VAR

speci�cation and linear and nonlinear factor models.

It is di¢ cult to rank the short-term forecasting approaches purely on the basis of

theoretical considerations. Ultimately, their relative merits will depend on their success in

forecasting the variable of interest. Therefore, we believe that their performances are better

assessed in speci�c economic applications. For this purpose, we establish the overall real-

time forecasting performance of these models to forecast US GDP growth rate from a set of

monthly indicators that include industrial production, employment income and sales from

January 1998, and ending in January 2011. Notably, the forecasts are computed recursively

using only information available at the time the forecasts are made. We �nd that the

Markov-switching dynamic factor model outperforms the alternatives. Additionally, we

check that this model is able to infer the US business cycle in real time, with notable

accuracy.

The short-term forecasting approaches reviewed here can be extended in several po-

tentially fruitful directions, including, but not limited to, the following. First, it will be of

interest to attempt to include indicators beyond macroeconomic and �nancial data, such

as headline news, social networks and searches that take place over the internet. Second,

due to recent advances in information technologies, data are becoming increasingly avail-

able with unprecedented complexity and degree of disaggregation. Since more data are

not necessarily better for empirical forecasting, the problem of systematically selecting

some key indicators from the huge set of potentially available indicators deserves further

studies from both theoretical and empirical perspectives. Third, although combining fore-

casts from the alternative models could yield sizeable gains, the huge number of potential

combinations and di¤erent ways to perform the forecast combinations precluded us from

exploring this possibility in the paper. Finally, exploring the consequences of incorporat-

ing cointegration relations in all the di¤erent forecasting speci�cations could also be a line

for future research.
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Table 1. Real-time forecasting accuracy

Bridge MIDAS MF-VAR DFM MS-DFM AR

Nowcasting 0.341 0.379 0.387 0.328 0.325 0.416

Backcasting 0.232 0.257 0.302 0.234 0.224 0.416

Notes. The table shows the mean squared errors, which are computed by as averaged

deviations of the real-time (1976.12 an ending in 2011.01) forecasts from the �nally revised

GDP growth �gures. Nowcasting refers to the forecasts computed within the reference

quarter and backcasting refers to the forecast computed one month after the end of the

reference quarter.
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Figure 1. Forecast timeline

Notes. The timeline shows information available for forecasting the quarterly growth rates of the variable of 

interest at Ty+3, which appears in red. This variable is expressed at monthly frequency in the first row so the 

first two figures of each quarter are not observed. The underlying unobserved monthly growth rates appear in 

the second row. The monthly growth rates of the indicator appear in the third row and its latest available 

figure is dated as Tx. The last row refers to the skip sampled indicator. Observed figures are in black and 

unobserved figures are in blue.
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Figure 2. Mixing quarterly and monthly observations

Notes. The line and the bars refers to the latest available time series of industrial production monthly growth 

rates and GDP quarterly growth rates.
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Figure 3. exponential Almon weighting function
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Figure 4. Filtered probabilities of recession
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Notes. Shaded areas correspond to the NBER recessions. The figure plots the probabilities of 

recession in real time in period t using an unbalanced panel with published information in t.


