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PREFACE

This volume contains the proceedings of the meeting “Geometria de
Lorentz, Benalmadena 2001” on Lorentzian Geometry and its Appli-
cation to Mathematical aspects of General Relativity. It was held on
November 14th, 15th and 16th, 2001 at Alay Hotel in the very friendly
town of Benalmadena, which is located on the Mediterranean coast, in
the center of the Costa del Sol, in Malaga, Spain.

The meeting was born as an attempt to assemble mainly Spanish re-
searchers on the area of Lorentzian Geometry and related mathematical
ones. Among Spanish geometers, this area has shown to be of special
interest. So, the meeting arose as a natural consequence of the state of
the research on this topic. We were also very glad with the contributions
of several foreign researchers which, in fact, made the meeting of interna-
tional character. At the same time, the meeting had a vocation to be the
first one of a forthcoming series on the same topic. When the edition of
these proceedings were finishing, we were glad to know that the second
meeting on this topic “Geometria de Lorentz, Murcia 2003” will be held
on November 12th, 13th and 14th, 2003, at University of Murcia.

The organizers would like to thank all participants, specially the
invited speakers, for their contributions to this meeting. We also would
like to thank the referees which, of course, have contributed to increase
the quality of this volume.

We would like to thank the Department of Geometry and Topology of
University of Granada as well as the Department of Algebra, Geometry
and Topology of University of Malaga for all the facilities and help given
to the organizers of the meeting. We also would like to thank the support
of University of Granada, University of Malaga, Regional government of
Junta de Andalucia, Spanish Ministry of Science and Technology, Town
of Benalmédena, and Patronato of the Costa del Sol.

We also would like to thank the staff of Alay Hotel for their kindness
to the participants, the secretary of the meeting Ms Luisa Gil Aguilar for
her patience and friendship with all of us, Alfonso E. Romero Lépez who
designed and made the official poster of the meeting, and Benjamin Olea
Andrades for his valuable help in the edition of these proceedings. We
specially would like to thank Professor Ceferino Ruiz for his continuous
and valuable help to the organizers of the meeting.

Finally, we really would like to express our sincere thanks to the
Royal Spanish Mathematical Society (RSME) for supporting the young
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researchers attending the meeting with several grants, and for publish-
ing these proceedings in its series Publicaciones no periodicas de la Real
Sociedad Matemdtica Espanola.

We are sure to speak on behalf of all participants to dedicate these
proceedings to the memory of Professor Luis Santalé.

Maria A. Canadas-Pinedo
Manuel Gutiérrez
Alfonso Romero

Organizers of the meeting
and editors of the proceedings
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The Einstein-Lorentz geometry revisited

V. ALDAYA', J.L. JARAMILLO? AND J. GUERRERO?
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Ciencias, Universidad de Granada, Campus de Fuentenueva, Granada

18002, Spain

3 Departamento de Matemdtica Aplicada, Facultad de Informdtica,
Campus de Espinardo, 30100 Murcia, Spain

We should start by explaining the actual meaning of the title of
this talk. Lorentz geometry is precisely the title of the Conference and
everybody associates with it the structure of geodesics and Killing vectors
in a manifold endowed with a metric that locally corresponds to that of
Minkowski space. Adding the adjective Einstein suggests the study of the
kinematics of physical particles that move along geodesics affecting the
value of the metric due to their presence and, maybe more, the dynamics
of the connection itself considered as gravitational fields derived from the
metric as a potential. Well then, we shall keep this meaning and add to
the adjective Lorentz the sense of an electromagnetic force, that is, the
Lorentz force.

Our proposal here is to revisit the concept of Lorentz geometry, in
the usual sense, by considering a background manifold which generalizes
the standard Lorentz manifold according to the Quantum Kinematics. In
fact, Quantum Mechanics suggests a U(1)-extended configuration space
as well as an U(1)-extended kinematical symmetry. Geodesics in such a
generalized geometry are governed by some Christoffel simbols account-
ing for a gravitational force, an electromagnetic potential and, that which
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turns out to be really new, some sort of electromagnetic potential origi-
nated by the mass of the particles rather than the particle charges.

Firstly, let us remind you the origin of this fundamental U (1) or Phase
Invariance in Quantum Mechanics. To this end we shall consider the
behaviour of the Schrodinger equation corresponding to the free quantum
particle

0 h?
h—0 = —— V20 1.1
o 2mV ’ (1.1)
under the Galilei transformations:
¥ = x+a+ut (1.2)
' = t+0b .

The equation (1.1) acquires an extra term,

. 8 . (9\11 h2 2

’Lh%\l/ + Zhv% = —%V' \I/, (13)
which can be compensated by also transforming the wave function. Al-
lowing for a non-trivial phase factor in front of the transformed wave
function of the form

im

U — (vm-l—%v%)lll’ (14)

the Schrodinger equation becomes strictly invariant, i.e.

2

ihi\IJ’ = _

ot 2m

The need for a transformation like (1.4) accompanying the space-time

transformation (1.2) to accomplish full invariance strongly suggests the

adoption of a central extension of the Galilei group as the basic (quantum-

mechanical) space-time symmetry for the free particle [1]. The constant
h is required to keep the exponent in (1.4) dimensionless.

The successive composition of two transformation in the extended

Galilei group G immediately leads to the group law:

VA (1.5)

b’ b +b
' = d+a+b
Vo= v+ (1.6)

ez'd)” _ ez’qb’ eiqbe%[a’v—l-b(v/v—i—%vﬂ)]
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The main feature of the central extension is that of making non-trivial the

commutator between the generators associated with translations X, = P

and boosts X, = K: [P, K] = —mX,, just mimicking the Poisson bracket

between p and x provided tlgat we impose on the wave function the U(1)-
_ oV

function condition X,¥ = % = iU (i.e. homogeneous of degree one on

the new variable €?).

Even though the previous analysis is conceptually purely quantum
mechanical, we point out that this phenomenon of extension of the space-
time symmetry can also be recasted within a semi-classical formalism
(keeping the quantum insights), by requiring the simultaneous extension
of the classical space-time by a new variable ¢, transforming in a non-
trivial way under the U(1)-extended symmetry group. The extension of
space-time is required to represent faithfully the extended symmetry by
means of first-order differential operators. This is the presentation we
shall follow here.

The usual way of introducing an interaction in Physics is through the
gauge principle, which requires the invariance of the Lagrangian of free
matter under a gauge group obtained from an original symmetry group,
the rigid group, by making the group parameter to depend on space-time
variables.

In standard Lagrangian formalism, promoting a given underlying
rigid symmetry to “local” requires the introduction of a connection which
is eventually interpreted as a potential providing the corresponding gauge
interaction. This is essentially the formulation of the so-called Minimal
Coupling Principle, which culminates in Utiyama’s theorem [2]. Inter-
nal gauge invariance had originally led successfully to electromagnetic
interaction associated with U(1), then to Yang-Mills associated with
isospin SU(2) (valid only at the very strong limit), electroweak with
SU(2) ® U(1), and finally to strong interaction associated with colour
SU(3). And, more recently, there have been attempts to unify all of
these into gauge groups such as SU(5). On the other hand, the “local”
invariance under external (space-time) symmetries, such as a subgroup
of the Poincaré group, has been used to provide a gauge framework for
gravity [3], although fully disconnected from the other (internal) interac-
tions. In fact, a unification of gravity and the other interactions would
have required the non-trivial mixing of the space-time group and some
internal symmetry, a task explicitely forbidden by the so-called no-go
theorems by O’Raifeartaigh and McGlinn [4, 5] (see also [6]) long ago,
which stated that there is no finite-dimensional Lie group containing
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the Poincaré group and any internal SU(n) group except for the direct
product. It is worth mentioning that supersymmetry was originally de-
veloped in the 70’s by Salam and Strathdee [7] in an unsuccessful attemp
to invalidate the no-go theorems.

However, the current skill in dealing with infinite-dimensional Lie
groups tempts us into revisiting the question of the mixing of symme-
tries and, accordingly, the unification of interactions in terms of ordi-
nary (though infinite-dimensional) Lie groups. In fact, there is an ex-
tremely simple, yet non-trivial, way of constructing a Lie group contain-
ing the Poincaré group and some unitary symmetry which accomplishes
the above-mentioned task. This consists in looking at the U(1) phase
invariance of Quantum Theory as a 1-dimensional Cartan subgroup of a
larger internal symmetry. Then, turning the space-time translation sub-
group of the Poincaré group into a “local” group automatically promotes
the original rigid internal symmetry to the gauge level in a non-direct
product way. This of course entails a non-trivial mixing of gravity and
the involved internal interaction associated with the given unitary sym-
metry.

In this talk, we shall approach the problem in the simplest and most
economical way, in a Particle Mechanics (versus Field Theoretical) frame-
work, leaving the more mathematically involved field formulation for the
near future. To be precise, we face the situation that arises when pro-
moting to the “local” level the space-time translations of the centrally
extended space-time symmetry (either Galilei or Poincaré group), rather
than the space-time symmetry itself.

The way of associating a physical dynamics with a specific symmetry
can be accomplished by means of the rather standard co-adjoint orbits
method of Kirillov [8], where the Lagrangian is seen as the local potential
of the corresponding symplectic form, or through a generalized group
approach to quantization which is directly related to the co-homological
structure of the symmetry and leads directly to the quantum theory (see
[9] and references there in).

To illustrate technically the present revisited Minimal Coupling The-
ory, let us consider the simpler case of the non-relativistic pure Lorentz
force, keeping rigid the space-time translations. For this aim, we con-
sider the Lie algebra G of the centrally extended Galilei group G (only
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non-zero commutators):

(X, Xi] = X, Xy, Xos] = moyX,
[XJi, XJj] = El’j.kX]k [XJi, ij] = El’j,kak (]_7)
[ij‘, ng] = 6ij‘kak

which leaves strictly invariant the extended Poincaré-Cartan form © =
pida’ — Z-dt + d¢, Lx,© = 0,¥X, € G. This 1-form is defined on the
extended phase space parametrized by (2%, p;, ¢), where € € U(1) is the
phase transforming non-trivially under the Galilei group. It generalizes
the Lagrangian and constitutes a potential for the symplectic form w on
the solution manifold (on trajectories s(t),

2 2

p D
2 )| = (03" — 2|y dt).
5 Nty = (pi 2m)l (1ydt)

Local U(1) transformations generated by f ® Xy, f being a real
function f(Z,t), are incorporated into the scheme by adding to (1.7) the
extra commutators *:

(pi dx' —

[ Xa, fOXy] = (Lx,f) ® Xy (1.8)

Keeping the invariance of © under f® Xy requires modifying © by adding
a connection piece A = A;dx’ 4+ Aydt whose components transform under
U(1)(Z,t) as the space-time gradient of the function f.

The algebra (1.7)4(1.8) is infinite-dimensional but, if the functions
f are real analytic, the dynamical content of it is addressed by the (co-
homological) structure of the finite-dimensional subalgebra generated by
G and the generators f ® Xy with only linear functions. Thus, a very
economical trick (eventually supported on unitarity grounds) for deal-
ing with this sort of infinite-dimensional algebra consists in proceeding
with the above mentioned 15-dimensional electromagnetic subgroup and
then imposing the generic constraint A* = A*(Z,t) on the symplectic
structure. Let us call this group Gg, and the generators associated with
linear functions in f ® X4, Xanu.

The commutation relations of Gp are (we omit rotations, which
operate in the standard way):

[Xt7 Xxl] = 0 [Xta le] = T Ag [Xxi7ij] = m(;UX(ZS
[Xtv XAl] = 0 [Xt7 XAO] — _qX¢ [sz, XAj] = quJXQﬁ
X, Xao] = 0 [Xpy Xai] = 6,Xa0  [Xoi, Xao] = 0

n general, [f ® Xa,9 ® Xp] = (fLx,9) ® Xp — (9Lx, f) ® Xao + (f9) ® [Xa, Xp).
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where we have performed a new central extension parametrized by what
proves to be the electric charge q.

The co-adjoint orbits of the group Gg with non-zero electric charge
have dimension 444 as a consequence of the Lie algebra cocycle piece
¥(Xy, X40) = —q, which lends dynamical (symplectic) content to the
time variable. This is a property inherited from the (centrally extended)
conformal group from which Gg is an Inoni-Wigner contraction. In
the case of the conformal group [10] the symplectic character of time is
broken by means of a dynamical constraint (or by choosing a Poincaré
vacuum) and the dimension 343 of the phase space is restored. Here the
constraint A* = AH(Z,t) also accomplishes this task at the same time as
it introduces the notion of electromagnetic potential.

On a general orbit with non-zero ¢ the extended Poincaré-Cartan
form acquires the expression:

1 —
O =miv-dT — §m172dt +gA - d7 — qA%dt + do (1.9)
After imposing the above-mentioned constraint on A*, we compute the

kernel of the presymplectic form d©, i.e. the vector field (up to a multi-
plicative function) X such that ixd© = 0:

X—a__|_".8__|_i aAj_% j_aAO_aAi 9
“ot e T m|\\or )" T 0x ot | 0w
1, = D
[Gmi” + (i A— A )](%, (1.10)

where Latin indices are raised and lowered by the metric ;;. It defines the
equations of motion of a charged particle moving in an electromagnetic
field:

dr
— =0 1.11
dv = - 0A
b — T A —vAL - ==
m q|UAN(VANA) -V 5 |

which are nothing more than the standard Lorenz force equations. The
same can be repeated with the centrally extended Poincaré group P (see
[10] and references therein) by promoting to “local” the U(1) transfor-
mations and considering the finite-dimensional subgroup Pg analogous
to G E-
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Let us consider now the gravitational interaction. To this end, we
start directly with the centrally extended Poincaré group P and see how
the fact that the translation generators produce the central term under
commutation with some other generators (boosts) plays a singular role
in the relationship between local space-time translations and local U(1)
transformations. Symbolically denoting the generators of translations by
P, Fy, those of boosts by K and the central one by X, we find:

(K, f@ P~ (L f)® P+ f© (B + Xy), (1.12)

which means that turning the translations into local symmetry entails
also the local nature of the U(1) phase. We expect, in this way, a non-
trivial mixing of gravity and electromagnetism into an infinite-dimensional
electro-gravitational group.

We shall follow identical steps as those given in the former example.
The generators of local space-time translations associated with linear
functions will be called X, and the corresponding parameters h*” will
also be constrained, in the form h** = h*(Z,2°), on the symplectic
orbits. However, the co-homological structure of this finite-dimensional
electro-gravitational subgroup, Pgg is richer than that of Pg and the
exponentiation of the Lie algebra Ppe must be made, for the time being
at least, order by order. Then, the explicit calculations will be kept up to
order 3 in the group law. This will be enough to recognize the standard
part of the interaction, i.e. the ordinary Lorentz force and the geodesic
equations, although the latter in a quasi-linear approximation in terms
of the metric g* = n*” 4+ h*. But in addition, and associated with a
new Lie algebra co-homology constant, s, different from m and ¢ and
mixing both interactions, a new term appears in the Lorentz force made
of the gravitational potential h*".

Let us write the algebra Pg¢ in an almost covariant way (the central
extensions and induced deformations are necessarily non-covariant). To
this end, we parametrize the Lorentz transformations with L*” as usual.
The proposed explicit algebra is (we write for short z,, L,,,... instead
of Xyu, Xpuv, ..., and let Greek indices run from 0 to 3):

[muv Lup] = NMopTp — NpuTy + (m =+ RQ)C(U/JM(SB - nuu52)¢
[xua hl/p] = NupZp + NopTy + mc(npu(SS + mﬁg)qﬁ
[xu’ A)] = qMou®
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[Luw Locﬁ] = NawLyus — NpvLpa — Naplovs + MupLlva
[Lyws hag] = Navhus + Ngulipa — Naphus — Nushua —
KC(Naw 0505 — NuadG0, + 1000, (1.13)
—1u0a0,) Ay
[Lyws Al = npwAu — nppds
[hwv hocﬂ] = NowLyus + Ny Lya + Naplovs + NusLuva +

K [Naw 0y, + NawOety, + NauOg + 3000 Ay
(s Apl = N Ay + Mpu Ay

where 522 = 00f — 6704 is the Kronecker tensor.

It should be remarked that a consequence of having extended the
Poincaré group prior to turning “local” space-time translations is the
apearance of a term proportional (k is a new co-homology constant) to
A, on the r.h.s. of the commutator [L,,, hag], which will be responsible
for a piece in the Lorentz force of gravitational origin. But even more,
the term in A, on the r.h.s of the commutator [k, has] could provide a
“mixing vertex” at the Field Theory level.

We shall not dwell on explicit calculations in this letter and simply
give the resulting equations of motion. Even more, we restrict ourselves
to the “non-relativistic” limit stated by the Inoni-Wigner contraction
with respect to the subgroup generated by (xo, L;j, Ax) (the standard
¢ — 00 limit on the Poincaré group is an I-W contraction with respect
to the subgroup (x¢, L;;)). The contracted algebra reads:

[9507 LOJ = I [330, hoo] = —2m¢
[1’07 hoﬂ = T [5607 Ao] = q¢
[LL’i7 LOj} = —(m + /iq)(;ijqb [.Ii, ij] = _5ijxk + 5ikIj
[xz', hoﬂ = m5¢j¢ [961', Aj] = —qf5ij¢
[Loi, Lir] = —0ijLok + dkiLo; [Loi, hoj] = —0diho0 + Kdij Ao
[Loiy Aj] = —d;40 [Lij, L)) = —0kjLa + 0Lk
+0iLji — 0qLjp,
(Lij, hor]) = —0kjhoi + dirhoj [Lij, hit] = —Oriha — 015 L
+0iLji + 0uLj
[Lij7 Ak} - _(5ij1 —|— (SkZAJ [hol', A]] — —51']'140
(1.14)

Writing % for (h%), we finally derive from this algebra the following
Lagrangian and equations of motion, which at this contraction limit are
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indeed exact:

1 .2 . . o
L=(m+rq) @ —g(A" - gfﬂ) +q(A-Zh)@

2
+m(h% + ;LEQ) — mh-i (1.15)
da’ ;
a )
(m—l—/-iq)% = q[ﬁ/\(ﬁ/\ *)—ﬁAO—% (1.16)
— m |[TA(VAR) = Vhe %ﬂ %V(ﬁ-h)
- %[*AWAB)—%V(E-E)—%]

The first three lines in (1.17) correspond to the standard motion of a par-
ticle in the presence of an electromagnetic and gravitational field (note
that h% = g% — 1%), except for the value of the inertial mass, which is
corrected by kq, and within a quasi-linear approximation in the gravi-
tational field. In fact, the third line contains one more order than the
approximation in which the gravitational field looks like an electromag-
netic one (standard gravito-electromagnetism [11]). The fourth, however,
is quite new and represents another Lorentz-like force (proportional to q)
generated by the gravitational potential and which must not be confused
with the previous one. It is worth mentioning that the constant m in
front of the term Vhgo in (1.17), naturally interpreted as a gravitational
coupling, could acquire a different constant value, let us say g, allowed by
the Lie algebra co-homology. Nevertheless, it must be made equal to m
to recover the standard physics when switching the constant x off. In this
way, the equivalence principle between inertial and gravitational mass,
in this co-homological setting, follows from the natural requirement of
absence of a pathological mixing between electromagnetism and gravity
when k = 0.

It should also be noticed that in the standard formulation, and ac-
cording to a reasoning not completely clear, the non-relativistic limit of
the pure gravitational theory leads to just the term VA, Here, the non-
relativistic limit, in general, appears as a clean Lie algebra contraction
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and permits forces derived from h. As far as the magnitude of the new Lie
algebra co-homology constant «, it is limited by experimental clearance
for the difference between particle and anti-particle mass, which for the
electron is about 10~%m,. Even though this is a small value, extremely
dense rotating bodies could be able to produce measurable forces. In the
other way around, a mixing of electromagnetism and gravity predicts a
mass difference between charged particles and anti-particles, which could
be experimentally tested.

Since the present theory has been formulated on symmetry grounds,
it can be quantized on the basis of the group approach to quantization
referred in [9]. Also, a natural yet highly non-elementary extension of
the present theory to Quantum Field Theory is in course.

Finally, and as commented above, considering the group U(1) as
a Cartan subgroup of a larger internal symmetry group, for instance
SU(2) ® U(1) would result in additional phenomenology. Then, and in
a QFT version, the production of Z; particles out of gravity might be
permitted.
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Abstract

In this work we study complete spacelike surfaces with a constant
principal curvature R in the 3-dimensional de Sitter space S3, proving
that if R? < 1, such a surface is either totally umbilical or umbilically free.
Moreover, in the second case we prove that the surface can be described
in terms of a complete regular curve in S3. We also give examples which
show that the result is not true when R2 > 1.

1 Introduction and Statement of the Main Result

Spacelike surfaces in the de Sitter space S? have been of increasing in-
terest in the recent years from different points of view. That interest
is motivated, in part, by the fact that they exhibit nice Bernstein-type
properties. For instance, Ramanathan [7] proved that every compact
spacelike surface in S? with constant mean curvature is totally umbilical.
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This result was generalized to hypersurfaces of any dimension by Mon-
tiel [6]. On the other hand, Li [5] obtained the same conclusion when
the compact spacelike surface has constant Gaussian curvature. More
recently, the first author jointly Romero [3] have proved that the totally
umbilical round spheres are the only compact spacelike surfaces in the de
Sitter space such that the Gaussian curvature of the second fundamental
form is constant.

As a natural generalization of Ramanathan and Li results, the au-
thors [1] have recently proved that the only compact linear Weingarten
spacelike surfaces in S3, (that is, surfaces satisfying that a linear combi-
nation of their mean and Gaussian curvatures is constant) are the totally
umbilical round spheres. In the quoted paper, we also study compact
spacelike surfaces with a constant principal curvature, proving that such
surfaces are totally umbilical round spheres.

In this work we extend the last result to complete spacelike surfaces
in the following terms:

Theorem 1.1 Let vp : M——S? be a complete spacelike surface with a
constant principal curvature R such that R* < 1. Then (M) is either
totally umbilical or umbilically free. In the second case R > 0 and the
surface is not compact and can be described as

b(z,y) = % (Raly) + cos(x)y (y) + sin(@)a(y) ., (L1)

1 - R?
where o is a C*° complete reqular curve in S3 and {vi(y),v2(y)} is an
orthonormal frame of the normal plane along o.
Conversely, given a regular curve o in S3, (1.1) defines an umbilically

free spacelike immersion in S} with a constant principal curvature R such
that 0 < R* < 1.

To finish, in Section 4, we construct some examples which show that
the result is false when R? > 1.
2 Preliminaries

Let L* be the 4-dimensional Lorentz-Minkowski space, that is, the real
vector space R* endowed with the Lorentzian metric tensor (,) given by

(,) = dx3 + da3 + da3 — da3,
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where (xy, Ty, 23,74) are the canonical coordinates of R*. The 3-
dimensional unitary de Sitter space is given as the following hyperquadric
of L*,

S?={zrel': (z,z) =1}.

As is well known, S? inherits from L* a time-orientable Lorentzian metric
which makes it the standard model of a Lorentzian space of constant
sectional curvature one. A smooth immersion ¢ : M? — S? C L* of a
2-dimensional connected manifold M is said to be a spacelike surface if
the induced metric via v is a Riemannian metric on M, which, as usual,
is also denoted by (,). The time-orientation of S allows us to choose a
timelike unit normal field N globally defined on M, tangent to S?, and
hence we may assume that M is oriented by N. Finally, we will denote
by A1, Ag the principal curvatures of M associated to N.

3 Proof of the Theorem

Let v : M? — S? C L* be a complete spacelike surface in S? with a con-
stant principal curvature 0 < A\; = R < 1 (up to a change of orientation).
If there exists a non umbilical point p € M, then we can consider local
parameters (u, v) in a neighborhood U of p without umbilical points, such
that

(dip, dyp) = E du® + G dv?

(dip, —dN) = RE du? + X\oG dv?,
where the principal curvature Ay # R. Then, the structure equations are
given by

E, E,
E, G,
7ﬂuv - ﬁ wu + ﬁ %}
Gy G,
¢””__ﬁ ¢“+ﬁ Yy — AGN — Gy
N, =—R Y,
Nv = _)\2 Q/)v
and the Mainardi-Codazzi equations for the immersion ¢ are
(R - )\Q)EU — 0

G, B
(R= )5 + (R =), = 0.
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Since Ay # R, the coefficient E' does not depend on v, that is, £ = FE(u).

If we consider the new parameters

o= [ VE@ i, y=v

the structure equations become

Yy = —RN — @Z)
Gy
w:py = % wy
G, G
¢yy:_7 @Z]x‘{’ﬁ @Dy_AZGN_G@ZJ
Nz =—-R ¢x
Ny = _)\2 w?p
and the Mainardi-Codazzi equation is
(R— A\ )%+(R—)\) =0
2 2G 2)x — Y.

On the other hand, the Gauss equation is given by

2G 2G
Thus, if we take
1
TTR-N
we obtain from (3.2) and (3.3) that

Ga

Paz = ((f—é)z + (%)2> o =—-R—(1-R*p.

2
(Gﬁ-+c%):R&—1:m&—m+R%4.

(3.1)

(3.4)

Let v, be the maximal line of curvature passing through a point ¢ =
(o, o) € U for the principal curvature R. Then, from (3.1) it follows

that v,(t) = ¢¥(z, + t,y,) satisfies
(Vo) = —R(N ©79) =
(N o)t =—R(vg)s
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so that 7, is a geodesic curve, which is a solution of the differential
equation
(Yg)u + (1 = R*)y, = Ru,

for a constant vector w, € L* Therefore, taking into account that
0<R<1,,is given by

Vg = COS (W t) w; + sin (\/@ t) wa + 1_—RR2 w,  (3.5)

for suitable vectors wy, wy € L.
From (3.4), the principal curvature A, can be calculated on v, as

R— )\ = (acos (\/ﬁ t> + bsin <m t) kT _RRz)l (3.6)

for real constants a, b.
Hence, if 7, (1) is the first umbilical point on ~y,, we obtain from (3.6)
and the continuity of \; that

0=R— Aa(y(t1)) = thjg R — Xa(74(t)) # 0,

which is a contradiction. Therefore, there is no umbilical point on ~,.
Observe that, since M is complete, it follows that the geodesic v, is
defined for all t € R. Moreover R # 0, because in that case

@ CcoS (\/1—7]%2 t> + bsin (\/ﬁ t) =0

for some ¢t € R, which contradicts the continuity of \s.

Let U be the connected component of non umbilical points containing
p. Note that U is an open set, and from the above reasoning, can be
parametrized by (z,y) € (—00,00) X (01, 32) for certain (i, 3, where
—00 < 1 < 3 < 00, so that the immersion can be expressed from (3.5)
as

Y(w,y) = cos (m :v) wi(y)
+ sin (m :U) wa(y) + % wo(y).  (3.7)

Let us suppose now that there exists an umbilical point ¢ € (%D(fj ).
Then there exists a sequence of points ¢, = ¥(x,,y,) tending to g, being



18 COMPLETE SPACELIKE SURFACES IN S3

(Tn,yn) € [0,27/+/1 — R?] x (B1,32). Therefore the sequence of com-
pact geodesics 7, of length 27/4/1 — R? passing through ¢, associated
to the principal curvature R, converges to a compact geodesic 5 passing
through ¢ which is also a line of curvature for the principal curvature R.

Now, from the above argument, it is sufficient to prove that there
exists a non umbilical point on vz In fact, from (3.6) we are able to
choose a point p, € 7, such that A\s(p,) = 1/R # R. Finally, from
an argument of compactness, there exists a subsequence {px} of {p,}
converging to a non umbilical point p € 5.

Consequently M is either umbilically free or totally umbilical.

Observe that (3.7) can be rewritten as

(Ra(y) + cos (V1 — R?z) v1(y) + sin (V1 — R2z) v3(y))
V1—R?

Y(z,y) =

where

1
= Wy,
Vi-m

From the expressions of ¢ and ,,, the Gauss map N can be calcu-
lated using the first equation in (3.1). Thus, since (¢, ) = 1, (Y, Vs) =
1, (N, N) = —1 and they are mutually orthogonal, it follows that «, vy, vo
are orthogonal, and (o, a) = —1, (vy,v1) = 1 and (ve, v5) = 1.

On the other hand, since 9, is orthogonal to 1, and N, we get using
also that (1., N) =0

U1:V1—R2’LU1, ng\/l—RzllJQ.

O/::uopv Uizl*LlP? Ué:,UQPv

where P is the wedge product of o, v; and vo in L%, and p,, p1, po are
C* functions. Moreover, since

Wy»%) = %RQ (Ruo -+ cos <\/1_7R2$> [1 + <in (\/1—7]%235) H2>2

is positive, it follows that u, # 0 and therefore « is a regular curve with
tangent vector P. In particular, {vi(y),v2(y)} is an orthonormal frame
of the normal plane along «. Finally, the completeness of a follows from
the completeness of M.

The converse is a straightforward computation. Anyway, it is worth
pointing out that R # 0 because in other case from (3.6) and the com-
pleteness of the immersion, there would exist a point on v, where

a cos (\/ﬁ t) + bsin (\/ﬁ t) =0
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for some t € R, which contradicts the continuity of As. Therefore the
surface must be a totally umbilical round sphere.

U

Remark 3.1 Observe that we have not assumed that the principal cur-
vatures \i, Ay are necessarily ordered, but

4 Examples

We use the following well-known result (see, for instance, [4])

Given a Riemannian metric I and a symmetric (2,0)-tensor
1T on a simply-connected 2-dimensional manifold M, if I and
11 satisfy the Gauss and Mainardi-Codazzi equations of the
de Sitter space S3, then there exists an only immersion (up to
an isometry) ¢ : M——S3 such that I and II are its first and
second fundamental forms, respectively.

First, we construct a family of complete orientable surfaces in S? with
umbilical and non umbilical points, and a constant principal curvature

R=1

Example 4.1 Let us consider M = R? and 1, the only immersion (up
to an isometry) with first and second fundamental forms given by

1
I, = da* + 1 (2+ (2° - 2)h(y))2 dy?

and
11, = do* + i (2+ 2°h(y)) (2+ (2° — 2)h(y)) dy?

respectively, where h : R—R is a C'*° function which vanishes at some
point such that 0 < h(y) < ¢ < 1 for a constant c¢. Since

1
I =ds* + 2 (z®h(y) +2(1 — h(y)))2 dy® > da® + (1 — ¢)® dy?

and dz?+ (1 — 0)2 dy? is a complete metric, the immersion 1y, is complete
with principal curvatures

2+ 2%h(y)
2+ (22 = 2)h(y)

1 and
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Thus, the set of umbilical points is Q@ = {(z,y) : h(y) = 0}.
It is worth pointing out that the interior of 2 may be non empty.

g

Now we are going to construct a family of complete orientable sur-
faces in S? with umbilical and non umbilical points, and a constant prin-
cipal curvature R > 1.

Example 4.2 Let us consider again M = R? and v, the only immer-
sion (up to an isometry) with first and second fundamental forms

2\
1 <R3h(y) (R eV m x)
]R,h = — dl’Q +

2
R2 R2(R2 _ 1)2 dy

and

1 N
[Iny = de%r(ﬁ oV 7 2

+% (R%@) + (R* — 1)6V@ )) dy?

respectively, where h : R—R is a non negative C'*° function which
vanishes at some point and R > 1. Since

1 1--1 2x
Ipp > o2 (d:z:2 + e\/ R? dy2) ,
the immersion 1, is complete, with principal curvatures

Rh(y) + (R? — 1)eV "7 7

R and R — .
Reh(y) + (R — 1)eV' 72 7

Again, the set of umbilical points is 2 = {(x,y) : h(y) = 0}.
As above, note that this surface can meet a totally umbilical surface
in an open set.

g
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Abstract

The Calabi-Bernstein theorem in the Lorentz-Minkowski space L™ !
states that the only complete maximal hypersurfaces in L"*! are the
spacelike hyperplanes. The present work surveys on the role that this
theorem plays in the global theory of hypersurfaces in L™t!. We shall
describe several applications of the Calabi-Bernstein theorem in the study
of complete spacelike constant mean curvature hypersurfaces in L"*! and
review some of the known proofs of the theorem. Special attention is paid
to the two-dimensional case, in which an Enneper-Weierstrass represen-
tation for maximal surfaces is available.

1 Introduction

A maximal hypersurface in the Lorentz-Minkowski space L."*! is a space-
like hypersurface with zero mean curvature. The importance of maximal
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hypersurfaces (in general Lorentzian ambient spaces) is well known, not
only from the mathematical point of view but also from the physical one,
because of their role in different problems in General Relativity (see for
instance [32] and references therein). From the mathematical viewpoint,
one of the most important global results about maximal hypersurfaces in
L™ is the Calabi-Bernstein theorem. It states that the only complete
maximal hypersurfaces in the Lorentz-Minkowski space are the spacelike
hyperplanes. Equivalently, the only maximal entire graphs in L"*! are
the spacelike hyperplanes.

This theorem was first obtained by Calabi [12] for the case where
n < 4, inspired in the classical Bernstein theorem on minimal surfaces
in R?. Later on, Cheng and Yau [13] extended the Calabi-Bernstein
theorem to the general n-dimensional case. This shows a deep difference
with respect to the Euclidean situation, since the Bernstein theorem for
minimal hypersurfaces in R"*! does not hold for n > 7 (see [11]). After
the general proof by Cheng and Yau, several authors have approached
to the two-dimensional version of the Calabi-Bernstein theorem from
different perspectives, providing diverse extensions and new proofs of
the result for the case of maximal surfaces in L2 [25, 17, 45, 8, 9]. On
the other hand, some other authors have also developed different related
Bernstein-type results on spacelike hypersurfaces in L."*!, looking for the
characterization of spacelike hyperplanes among the complete spacelike
hypersurfaces with constant mean curvature in """ [44, 1, 48, 4].

In this paper we review on the Calabi-Bernstein theorem and other
related results, trying to make the topic comprehensible for a general
audience. For that reason, we start by introducing in Section 2 the
spacelike hypersurfaces of the Lorentz-Minkowski space L"*! and estab-
lishing some of their basic topological properties. In Section 3 we de-
velop the basic formulas for spacelike hypersurfaces in L""!. After those
preliminaries, we exhibit in Section 4 Cheng and Yau'’s approach to the
Calabi-Bernstein theorem [13]. Their approach is based on a Simons-type
formula for spacelike hypersurfaces in L."*!, as well as on an application
of a generalized maximum principle due to Omori [40] and Yau [49].

In Section 5 we introduce some other Bernstein-type results on space-
like hypersurfaces in L"*!. These are applications of the above general-
ized maximum principle, and of Calabi-Bernstein theorem. In particular,
we describe two different results of this type. The first one is a charac-
terization of spacelike hyperplanes as the only complete spacelike hyper-
surfaces with constant mean curvature in the Lorentz-Minkowski space
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whose hyperbolic image is bounded. This characterization was obtained
simultaneous and independently by Aiyama [2] and Xin [48] (see also [44]
for a first weaker version given by Palmer). The second one character-
izes spacelike hyperplanes as the only complete spacelike hypersurfaces
with constant mean curvature in L"™! which are bounded between two
parallel spacelike hyperplanes, and has been recently given by Aledo and
Alfas [4].

It is interesting to remark that Cheng and Yau’s proof of the Calabi-
Bernstein theorem was the first application of a Simons-type formula in
the context of spacelike hypersurfaces in a Lorentz ambient space. Af-
terwards, such Simons-type formulas have been applied in several forms
by different authors, yielding many interesting results on Bernstein-type
problems for spacelike hypersurfaces in Lorentzian spaces [1, 3, 24].

The rest of the paper is devoted to the study of maximal surfaces in
L? and the two-dimensional version of the Calabi-Bernstein theorem. In
Section 6 we introduce the Enneper-Weierstrass representation for max-
imal surfaces in I3 and, as an application of it, we exhibit Kobayashi’s
proof of the theorem [25]. In Section 7 we describe a recent simple ap-
proach to the two-dimensional version of the Calabi-Bernstein theorem.
It was given by Romero in [45], and is based on the Liouville theorem
on harmonic functions on R2. Section 8 deals with a different approach
to the Calabi-Bernstein theorem. This approach is based on finding
adequate local upper bounds for the Gaussian curvature of a maximal
surface. In particular, we describe two different results of this type. The
first one is due to Estudillo and Romero [17], and consists on a point-
wise estimate for the Gaussian curvature of a maximal surface in terms
of the distance of the point to the boundary of the surface. The second
one is a local upper bound for the total curvature of geodesic discs in a
maximal surface in IL3. This upper bound involves the local geometry of
the surface and its hyperbolic image, and it has been recently obtained
by Alfas and Palmer [8]. Finally, in Section 9 we have collected some
further developments on the topic of maximal surfaces in L3, including
some recent advances by the authors [6, 36], jointly with Chaves in [6],
on the so called Bjorling problem for maximal surfaces in L3.

Before closing this introduction, it is worth pointing out that the
Calabi-Bernstein theorem is no longer true for the case of entire time-
like minimal graphs in L"*!, even in the simplest two-dimensional case.
Actually, if x5 stands for the timelike coordinate in I3, then the graph
given by xs = wstanhzy, with (z1,73) € R?, is an example of an entire
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non-planar timelike graph in I3, having zero mean curvature and positive
Gaussian curvature [25, 34].

Nevertheless, in [34] Weinstein (formerly Milnor) obtained a very in-
teresting conformal analogue of the Calabi-Bernstein theorem for time-
like surfaces. Specifically, she proved that every timelike entire graph in
L3 with zero mean curvature is conformally equivalent to the Lorentzian
plane IL? (see also [28, 29] for some extensions of this conformal analogue,
which have recently been given by Lin and Weinstein). On the other
hand, Magid [31] and Weinstein [35] developed independently different
approaches to the study of the Calabi-Bernstein problem for timelike sur-
faces in IL3. In particular, in [31] Magid showed that every timelike entire
graph with zero mean curvature over either a timelike or a spacelike plane
in L3 is a global translation surface. This allows him to obtain a stan-
dard form for all such graphs and to study some geometric properties
of those surfaces. In [35] Weinstein described all entire timelike graphs
with zero mean curvature in L? via a kind of Weierstrass representation.
We also refer the reader to the excellent book [47] by Weinstein, where
the author gives a careful, extensive and detailed study of the topic of
Lorentz surfaces.

2 Preliminaries

Let L™ denote the (n + 1)-dimensional Lorentz-Minkowski space, that
is, the real vector space R"*! endowed with the Lorentzian metric

() = (dz1)* + - + (dzn)” — (dznsr)’,

where (21, ..., Z,1) are the canonical coordinates in R™*1. A smooth im-
mersion 1 : X" — L""! of an n-dimensional connected manifold ¥ is said
to be a spacelike hypersurface if the induced metric via 1 is a Rieman-
nian metric on ¥, which, as usual, is also denoted by (,). A spacelike
hypersurface ¥ is said to be complete if the Riemannian induced metric
is a complete metric on X.

As a first interesting property of the topology of such hypersurfaces,
let us remark that every spacelike hypersurface in L"*! is orientable.
In fact, observe that (0,...,0,1) is a unit timelike vector field globally
defined on L"*!, which determines a time-orientation on L"*!. This
allows us to choose a unique timelike unit normal field N on X which is
in the same time-orientation as (0,...,0,1), and hence we may assume
that ¥ is oriented by N. We will refer to N as the future-directed Gauss
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map of the hypersurface . This future-directed normal field N can be
regarded as a map N : ¥ — H, where H’} denotes the future connected
component of the n-dimensional hyperbolic space, that is

HY = {z e L™ : (z,2) = =1, @11 > 1}.

The image N (X) C H} will be called the hyperbolic image of ¥.
Another interesting remark on the topology of spacelike hypersur-
faces in L™ is that every complete spacelike hypersurface in the Lorentz-
Minkowski space is spatially entire, in the sense that the projection
IT : ¥—R" of ¥ onto the spacelike hyperplane z,,; = 0 is a diffeo-
morphism between > and R™. In fact, it is not difficult to see that
since X is spacelike, IT : ¥——R" is a local diffeomorphism which satisfies
II((,),) = (,), where (,), stands for the Euclidean metric in R”. This
means that II increases the distance. The completeness of 3 implies then
that II(X) = R™ and that II is a covering map [27, Lemma VIIL.1]. Since
R™ is simply connected, IT must be a global diffeomorphism and the hy-
persurface > can be seen as an entire graph over the spacelike hyperplane
(x1,...,2,). As a direct consequence of this, we get the following.

Corollary 2.1 Let ¢ : X" — L™ be a complete spacelike hypersurface
in the Lorentz-Minkowski space. Then

1. X is diffeomorphic to R™.
2. The immersion 1 : " — L™ is actually an embedding.
3. Its image (X)) is a closed subset in L.

In particular, there exists no compact (without boundary) spacelike hy-
persurface in L""!. It is worth pointing out that no converse of the
statements in Corollary 2.1 is true in general. More precisely, there exist
examples of spacelike entire graphs in L."*! which are not complete. For
instance, let ¢ : R—R be a real function defined by

||

o(z) = V1—etdt
0
when |z| > 1, and ¢(z) = f(z) when |z| < 1, where f € C*(R) is a
smooth extension satisfying f/(z)? < 1 for all x € (—1,1). Then the
entire graph given by z,,1 = ¢(z1) defines a spacelike hypersurface ¥ in
L"*! which is not complete. In fact, observe that the curve a : R—3
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given by a(t) = (£,0,...,0,¢(t)) is a divergent curve in ¥ with finite
length, since

o) = [77|o/(8)]dt

= (LI FRdt+2 [T 2d < 2 <1 + %) ,

Therefore, ¥ is an entire spacelike graph which is not complete.

This fact points out a curious difference between the behaviour of hy-
persurfaces in Euclidean space R™*! and that of spacelike hypersurfaces
in the Lorentz-Minkowski space. Actually, let us recall that every em-
bedded hypersurface in Euclidean space which is a closed subset in R?*!
is necessarily complete, while there exist examples of complete embedded
hypersurfaces in R"*! which are not closed. On the other hand, it is also
interesting to point out that in the case where the mean curvature is con-
stant, every embedded spacelike hypersurface in the Lorentz-Minkowski
space which is a closed subset in L™ is necessarily complete [13]. For
more details about this topic, we refer the reader to a series of papers by
Harris [18, 19, 20].

3 Basic formulas

Throughout this paper we will denote by V° the flat Levi-Civita connec-
tion of L"*! and by V the Levi-Civita connection of Y. Then the Gauss
and Weingarten formulas for ¥ in L."*! are given respectively by

VoxY =VxY — (AX,Y)N (3.1)
and
A(X) = —-VEN, (3.2)

for all tangent vector fields X, Y € X(X), where A : X(X)—X(X) stands
for the shape operator of ¥ in L™ with respect to the future-directed
Gauss map N. Associated to the shape operator of ¥ there is the mean
curvature of the hypersurface, which is its main extrinsic curvature and

is defined by

1 1 —
H=—tr(A)=—— i
nr() n;:l“

Here kq,...,k, are the principal curvatures of the hypersurface. The
choice of the sign (—1) in our definition of H is motivated by the fact that
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in that case the mean curvature vector is given by H=HN. Therefore,
H(p) > 0 at a point p € ¥ if and only if H(p) is future-directed in L™,
A spacelike hypersurface is said to be mazimal if H vanishes on X, H = 0.

As is well known, the (intrinsic) curvature tensor R of the hyper-
surface is described in terms of the shape operator of ¥ by the Gauss
equation [41, Theorem 4.5]

R(X,Y)Z = —(AX, 2)AY + (AY, Z)AX (3.3)

for X,Y,Z € X(X). Observe that our criterion here for the definition of
the curvature tensor is the one in [41],

R(X,Y)Z =Vixy)1Z — [Vx,Vyl]Z.
Thus, the Ricci curvature of 3 is written as follows.
Ric(X,Y) =nH(AX,Y) + (AX, AY).

In particular, every maximal hypersurface in L"*! has non-negative Ricci
curvature, that is, Ric(X, X) > 0 for every X € X(X). More generally,

n?>H?
4

for every X € X(X). On the other hand, the Codazzi equation of the
hypersurface is given by

VA(X,Y) = VA(Y, X), (3.5)
where VA(X,Y) = (VyA)X = Vy(AX)—-A(VyX) [41, Corollary 4.34].

Ric(X, X) > — | X2 (3.4)

4 Cheng and Yau’s proof of the Calabi-Bernstein
theorem

In this section we shall describe Cheng and Yau’s approach to the Calabi-
Bernstein theorem. One of the main ingredients of their proof is the
obtention of a Simons-type formula for spacelike hypersurfaces in L™,
The idea of this Simons-type formula is to compute the Laplacian of
tr(A?). To do so, let us introduce the following standard notation. Let
S, T X(2) x X(X)—X(X) be two self-adjoint endomorphisms. Then

i=1
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and
(VS,VT) =} ((VS)(Ei, By), (VT)(E;, Ey)),
ij=1
where {E},..., E,} is a local orthonormal frame tangent to ¥. In our

notation, (VS)(X,Y) = (VyS)(X). On the other hand, we also define
AS as the rough Laplacian of the endomorphism field S, that is, AS :
X(X)—X(X) is the endomorphism given by

AS(X) =tr (V28)(X,-,-) = Y (V’S)(X,E;, Ey).
i=1
Recall again that in our notation, (V2S)(X,Y,Z) = (VzVS)(X,Y).
Now, a standard tensor computation implies that

%Atr(AQ) = %A(A,A> = [VA" + (4, 04). (4.1)

Observe that by the Codazzi equation (3.5) V?A is symmetric in the two
first variables

(V2A)(X,Y, Z) = (VPA)Y, X, Z)

for every XY, Z € X(X). On the other hand, it is not difficult to show
that

(VA XY, Z) = Vz(Vy(AX)) - Vy,v(4AX)
—|—A<Vysz) + A(VVZyX)
—Vz2(A(Vy X)) — Vy(A(VzX)),

and

(V2A)(X,2,Y) = Vy(Vz(AX)) = Vy,z(AX)
+A(V Vv X) + A(Vy, 2X)
Uy (A(V2X)) — V4(A(Vy X))

Therefore, VZA is not symmetric in the two last variables (unless R = 0
or A =0) but

(V2A)(X,Y,Z) = (VPA)X,Z,Y) - R(Z,Y)AX + A(R(Z,Y)X).
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By using now the Gauss equation (3.3), we can conclude from here that
AAX) = ) (VA)E, B, X) — Z R(E;, X)A

=1
+ZA (B, X)E;)

= Vx(tr(VA)) +tr(A%)AX — tr(A)A’X
= —nVx(VH)+tr(A*)AX + nHA®’X

In particular, if the mean curvature is constant (not necessarily zero),
then
AA(X) = tr(A*)AX + nHA?X

for every X € X(X). Using this in (3.6) we arrive at the following Simons-
type formula, which holds for spacelike hypersurfaces with constant mean
curvature H in the Lorentz-Minkowski space,

%Atruﬁ) = [VAP + (t2(A%)" + nHir(A%). (4.2)

On the other hand, Cheng and Yau’s proof is also an application of
the following generalized maximum principle for complete manifolds due
to Omori [40] and Yau [49].

Theorem 4.1 (A generalized maximum principle) Let Y be a com-
plete Riemannian manifold whose Ricci curvature is bounded from below
and let u : X—R be a smooth function bounded from below on 3 (resp.
bounded from above on X.). Then, for each € > 0 there exists a point
pe € M such that

1. |Vu(p.)| < e.
2. Au(pe) > —e (resp. Au(p:) < €).
3. infu <wu(p.) <infu+e (resp. supu —e < u(p:) < supu).

Here Vu and Au denote, respectively, the gradient and the Laplacian of
u.

As an application of this generalized maximum principle we have the
following Liouville-type theorem [13, 37]. We also refer the reader to
[15] for a modern accesible treatment of this Liouville-type result and
generalizations.
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Lemma 4.2 Let Y be a complete Riemannian manifold whose Ricci cur-
vature is bounded from below and let u : X—R be a non-negative smooth
function on X. If there exists a positive constant ¢ > 0 such that Au >
cu?, then u vanishes identically on .

Now we are ready to obtain the Calabi-Bernstein theorem. In fact,
if 1 : X" — L is a complete maximal hypersurface in the Lorentz-
Minkowski space, then H = 0 and (4.2) reduces to

SAU(A?) = [VAP + (1x(4%))’. (4.3)

Besides, by (3.4) we know that the Ricci curvature of ¥ is non-negative,
and we may apply Lemma 4.2 to the function u = tr(A?), which by (4.3)
satisfies Au > 2u?. Therefore u vanishes identically on X, which means
that X is totally geodesic in L"*!, and by completeness it must be a
spacelike hyperplane.

5 Other Bernstein-type results on spacelike hyper-
surfaces

In this section we will introduce other Bernstein-type results on spacelike
hypersurfaces of constant mean curvature in L.""!. These are obtained as
an application of the Calabi-Bernstein theorem together with the max-
imum principle given in Theorem 4.1. The first result was obtained
simultaneous and independently by Aiyama [2] and Xin [48], and a first
weaker version of it was given by Palmer in [44]. Specifically, it states
what follows.

Theorem 5.1 The only complete spacelike hypersurfaces with constant
mean curvature in the Lorentz-Minkowski space whose hyperbolic image
N(X) C H7 is bounded in the hyperbolic space are the spacelike hyper-
planes.

The proof of this theorem needs the following standard computations,
which we describe below for our later use. Such computations will be
also useful in Section 7 and Section 8. Let ¢ : ¥ — L"*! be a spacelike
hypersurface in L"*!. For each fixed arbitrary vector a € L"!, let us
consider on 3 the smooth function (a, N), whose gradient is given by

Vi{a,N) = —A(a"), (5.1)
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where a” = a+ (a, N)N denotes the component of a which is tangent to
Y. From V°a = 0, it follows that

Vxa' = —(a, N)AX (5.2)
for every X € X(X), and using the Codazzi equation we obtain that
Vx(V{a,N)) = —(V,7A)X + (a, N)A*X.
Therefore, the Laplacian of {(a, N) is given in general by
Ala, N) = —tr(V,7 A) +tr(A%){a, N) = n(VH,a) + tr(A*)(a, N).
In particular, if the mean curvature H is constant we obtain
Ala, N) = tr(A?){a, N). (5.3)

Proof of Theorem 5.1: Let us assume that the hyperbolic image of X
is contained in a geodesic ball B(a, ) in H} of radius ¢ > 0 centered at
a point a € H’,. Recall that

B(a,o) = {z € H} : 1 < —(a, ) < cosh(p)},
so that for every p € ¥

1 < —(a, N(p)) < cosh(p).

Since H is constant, we know from (3.4) that the Ricci curvature of 3
is bounded from below by the non-positive constant —n?H?/4. Thus we
may apply Theorem 4.1 to the function u = —(a, N), which is bounded
from above on X. Since H is constant, by (5.3) it follows that Au =
tr(A?)u. Applying now Theorem 4.1, we know that for every € > 0 there
exists a point p. € X such that

Au(pa) = tl"(A2)(p£)u(pE) <§g, (54)

and
lim u(p.) = supu < cosh(p).

E—00

Besides, by the Cauchy-Schwarz inequality, tr(A?) > nH? on ¥, which
jointly with (5.4) yields

0 < nH?u(p.) < tr(A%)(p)u(p:) < e.
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Since u(p) > 1 at every point p € X3, we obtain from here that

0<H*>< ——,
nu(pe)

and letting € — 0 we conclude that the constant mean curvature H must
be zero and, by the Calabi-Bernstein theorem, the hypersurface must be
a spacelike hyperplane.

U

Let us recall that every complete spacelike hypersurface in L"*! is
spatially entire. In particular, they cannot be spatially bounded and, for
instance, no complete spacelike hypersurface in "' can be contained in
the slab determined by two parallel timelike hyperplanes. For the case
of spacelike hyperplanes, Aledo and Alias [4] have recently obtained the
following Bernstein-type result.

Theorem 5.2 The only complete spacelike hypersurfaces with constant
mean curvature in the Lorentz-Minkowski space which are bounded be-
tween two parallel spacelike hyperplanes are the (parallel) spacelike hy-
perplanes.

It is interesting to remark that the corresponding result for minimal
surfaces in Euclidean space R? turns out to be false. Actually, Jorge and
Xavier [22] constructed examples of complete non-flat minimal surfaces
in R3 contained between two parallel planes.

Proof. Let a € L™ be the future-directed unit vector such that ¥ (X)
is bounded between the parallel hyperplanes (a,z) = ¢ and {(a,z) = C,
¢ < C. Hence, the height function u = (a, ) is bounded from above and
from below on ¥, and using Theorem 4.1 we get that for each ¢ > 0 there
exist points p., ¢- € X such that

Au(p:) <e, and Au(g.) > —e. (5.5)

Since the gradient of wis Vu = a'

of u is given by

, we know from (5.2) that the Laplacian

Au = —{(a, N)tr(A) = nH{a, N).
Therefore, (5.5) implies that for each € > 0
Au(p.) = nH(a, N(p:)) < e,
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and
Au(q.) =nH{a, N(q.)) > —¢.
Using now that |(a, N)| = —(a, N) > 1, it follows from here that for each
e>0 £ £ £ £
—< - < H< — < —.
n = nl(a, N(p:))| nl{a, N(g:))| ~ n

Therefore, letting ¢ — 0 we get that the constant mean curvature H
must be zero and, by the Calabi-Bernstein theorem, the hypersurface

must be a spacelike hyperplane.
O

Let 2 C R"™ be a domain and u : Q2—R a smooth function on
Q2. Then, the graph determined by w, x,+1 = u(zy,...,x,), defines a
spacelike hypersurface in L"*! if and only if the Euclidean gradient of
u satisfies |Du| < 1 on Q. In that case, the mean curvature H of the
spacelike graph is given by

D
Div <—“> —nH, with [Du|<1, (5.6)

/1 —|Du|?

where Div stands for the divergence in R". Therefore, for every real
number H € R, the solutions to the differential equation (5.6) which are
globally defined on R™ represent the spacelike entire graphs with constant
mean curvature H in L""!. In terms of this constant mean curvature
differential equation, the Calabi-Bernstein theorem can be paraphrased
as follows.

Corollary 5.3 The only entire solutions to the zero mean curvature dif-
ferential equation

/1 —|Du|?

are affine functions.

D
Div (—”) —0, with [Dul<1, (5.7)

On the other hand, if a complete spacelike hypersurface in L"*! is con-
tained in the slab determined by two parallel spacelike hyperplanes, then
it can be seen as an entire graph over one of those spacelike hyperplanes.
Using this, Theorem 5.2 can be also stated in terms of the constant mean
curvature differential equation in the following way.
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Corollary 5.4 The only entire solutions to the constant mean curvature
differential equation

D
Div <—u> —nH, with |Du| <1,

Ji= P
which are bounded on R™ are the constant ones.
Finally, observe that the Gauss map of a spacelike graph
Tpr1 = w(xy, ..., Tp)

in " is given by

1 ou ou
N = e
V1—|Dul? (3$1 Oy, )

This implies that the hyperbolic image of a spacelike graph in L"*! is
bounded in H? if and only if /1 — [Du|? is bounded away from zero.

Thus we can formulate Theorem 5.1 in this way.

Corollary 5.5 The only entire solutions to the constant mean curvature
differential equation

D
Div (_u) =nH, with |[Du/<1—-e<]1,

/1 —|Dul?

are affine functions.

6 The Enneper-Weierstrass representation and its
applications

In [25] Kobayashi provided a new approach to the two-dimensional ver-
sion of the Calabi-Bernstein theorem for maximal surfaces in L3, which
is based on an appropriate Enneper-Weierstrass representation for those
surfaces (see also [33]).

The way we introduce here the Enneper-Weierstrass representation
for maximal surfaces in I3 follows the exposition in [10] for the cor-
responding Euclidean situation. For this, recall that every spacelike
surface 1 : X2 — L3 in IL? is oriented by its future-directed Gauss map
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N : ¥ — Hi Therefore, using local isothermal parameters whose
changes of coordinates preserve the orientation, 3 has in a natural way
a structure of Riemann surface. Define, in terms of a local complex
parameter z = u + iv, the complex functions ¢1, ¢o, @3 given by

Lo _1(0n_ o)
0z 2 '

ou ov
It is not difficult to see that

o

and

e2r

911 + |g2]* — |os|* = - > 0,

where ds? = €?!|dz|* is the Riemannian metric on ¥ induced by the
spacelike immersion . Moreover, the 1-forms given by

(I)kqude, k:172737

are globally defined on 33, have no real periods, and they are holomorphic
if and only if ¥ is a maximal surface in I.3. In that case, the immersion
can be recovered from the holomorphic 1-forms by

w = QRG‘/ ((I)l,q)g,q)g),
Vz

where v, is any path from a fixed base point to z.
Let us assume from now on that ¥ is a maximal surface in L3. Con-
sider the meromorphic function on ¥ defined by

97 9, —idy’
that is, if z is a local complex coordinate such that &, = ¢rdz, then
g = L
¢r — idy

We will see now that g is closely related to the Gauss map of . Define
a stereographic projection o : D — Hi from the unit disc D = {z € C:
|z| < 1} onto H2 as follows

o(z) = (2 Re(z) 2 Im(2) 1—1—\z|2).

L=z 1=z 1 = |2
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Geometrically, o is a conformal bijection between ID and Hi which assigns
to each point z € D the point in H2 obtained as the intersection of H?
and the straight line joining (0,0, —1) and (z,0). It then follows that

g=oc'oN. (6.1)
In particular |g| < 1, so g is a holomorphic function on ¥ and
W = (Dl — 1@2

defines a holomorphic 1-form without zeroes on ¥. This allows us to
state the following Enneper-Weierstrass representation.

Theorem 6.1 Let ¢ : ¥2 — L3 be a mazimal surface in L3, endowed
with its natural Riemann surface structure. Then there exist a holomor-
phic 1-form w = fdz without zeroes on ¥ and a holomorphic function
g : 3 — D such that the immersion 1 is represented (up to a translation)

by
Y= Re/ (1 + ¢*)w,i(1 — ¢*)w, 2gw) . (6.2)

Conversely, let ¥ be a Riemann surface, w = fdz a holomorphic 1-form
without zeroes on ¥ and g : X — D a holomorphic function. Besides,
assume that the following holomorphic 1-forms

1+ ¢)w, i(1-g*w, gw, (6.3)

do not have real periods. Then the map 1 : ¥ — 13 defined by (6.2) is
a maximal surface in 1L3.

The condition that the 1-forms in (6.3) do not have real periods is nec-
essary in order to guarantee that the integral (6.2) depends only on the
final point.

The quantities (g,w) are called the Enneper-Weierstrass data of the
maximal surface. Recall that the holomorphic function g is closely related
to the future-directed Gauss map of ¥, since N = 0 o g. On the other
hand, the metric on X is written as

ds® = [f]*(1 = [g[*)*|d=], (6.4)

where w = fdz locally, and its Gaussian curvature is

B 2|g'| ?
k= (|f\(1— \g\?)z) ' (6.5)
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In particular, either K = 0 or its zeroes are isolated.

In [42, Theorem 8.1] it is shown that the normals of a complete non-
planar minimal surface in R?® are everywhere dense in S?. Of course,
this has as an immediate consequence the classical Bernstein theorem.
Kobayashi’s approach to the Calabi-Bernstein theorem is a simple modi-
fication of the proof of the above theorem, and makes use of the following
auxiliary result due to Osserman [42, 43].

Lemma 6.2 Let f be a holomorphic function on the unit disc D, and
assume that f does not vanish on D. Then there exists a divergent curve

I' in D such that
[1#@lldz] < 0.
r

Kobayashi’s proof of the Calabi-Bernstein theorem: Since Y is complete,
then it is diffeomorphic to R? and, by Koebe uniformization theorem, it
must be conformally equivalent to either the complex plane C or the unit
disc D. Let us see that X cannot be conformally equivalent to . In fact,
if 3 were conformally equivalent to the unit disc, then the holomorphic
I-form w would be w = fdz, with f a holomorphic function without
zeroes on D. Applying Lemma 6.2, there exists a divergent curve 3 in X

such that
/u Jlldz| < .

On the other hand, by (6.4) the length of 3 is

L(8) /w—/u (1 - 1g(2) NMSAU@WA<%

But that means that 3 is a divergent curve in 3 with finite length, which
is a contradiction to the fact that 3 is complete.
Therefore, > must be conformally equivalent to C. In that case,
g : C — D is a holomorphic function which is bounded on C and, by the
Liouville theorem, it must be constant. Equivalently, the Gauss map of
Y is constant and the surface must be a spacelike plane.
O
There are further applications of the Enneper-Weierstrass represen-
tation of maximal surfaces. For instance, as we will see in Section 8§,
Estudillo and Romero [17] use this representation to obtain a univer-
sal inequality for the Gaussian curvature of a maximal surface in L3.
On the other hand, Kobayashi [26] and, more recently, Imaizumi [21]
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apply the Enneper-Weierstrass representation to the study of maximal
surfaces with conelike singularities, obtaining interesting characteriza-
tions of the Lorentz catenoid. In [30] Lépez, Lépez and Souam, also
using this Enneper-Weierstrass representation, classify the family of max-
imal surfaces in I.? which are foliated by pieces of circles. Finally, in [5]
Aledo and Galvez extend the Weierstrass formula to the case of space-
like surfaces in .3 whose mean curvature is a constant multiple of its
Gaussian curvature (maximal linear Weingarten surfaces). By using this
extended complex representation they show the following generalization
of the Calabi-Bernstein theorem: the only complete maximal linear Wein-
garten surfaces in IL? of non-negative Gaussian curvature are spacelike
planes. Nevertheless it is interesting to remark that, opposite to the
case of maximal surfaces, there exist complete non-planar maximal lin-
ear Weingarten surfaces in IL? with negative Gaussian curvature.

7 Romero’s proof of the Calabi-Bernstein theorem

In this section we will describe a recent simple approach to the two-
dimensional version of the Calabi-Bernstein theorem given by Romero
in [45]. His approach is based on the Liouville theorem on harmonic
functions on R2, and it is inspired in a simple proof of the classical
Bernstein theorem given by Chern [14].

Let 1 : ¥2 — L3 be a maximal surface oriented by its future-directed
Gauss map N. For each fixed vector a € L3, let us consider on ¥ the
smooth function (a, N), whose gradient is given by (5.1),

Vi{a,N)=—A(a"), a' =a+ (a, N)N.
Thus |a"|?> = (a, N)* + (a,a) and
|V<CL, N>|2 = <A2(aT)’aT> = K|CLT|2 = K(<a7N>2 + <CL, a))? (71)

since A2X = KX for all X € X(X), because of H = 0. Therefore
tr(A?) = 2K, and from (5.3) the Laplacian of {a, N) is given by

Ala, N) = 2K (a, N). (7.2)

In particular, if @ € L3 is chosen to be lightlike ((a,a) = 0 and a # 0)
with (a, N) > 0, then from (7.1) and (7.2) we get

1 _ _Aa, N) 2|V{a, N)|? _
A (<a, N>) (a, N)? - (a,N)?

)
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that is, 1/{(a, N is a positive harmonic function globally defined on ¥.
On the other hand, if we choose now a future-directed unit timelike

vector b € L3, then (b,b) = —1, (b, N) < —1 and from (7.1) and (7.2) we

obtain

Ab, N) [V (b, N)|?

A (log(1 = (b, N))) = =K,

which means that the conformal metric

g =(1-(bN))g (7.3)

is a flat metric on . Here g denotes the original Riemannian metric on
Y’ induced by the spacelike immersion ).

Moreover, since 1 — (b, N) > 2 on X, we also know that ¢* > 4g,
which implies that the flat metric g* on X is also complete if the original
metric g is complete. For that reason, if 3 is a complete maximal surface
in I3, then we can conclude that (3, g*) is globally isometric to the
flat Euclidean plane R?. The invariance of harmonic functions under
conformal changes of metric and that global isometry between > and
R? allow us to induce 1/{a, N) on a positive harmonic function globally
defined on R?, which by the Liouville theorem must be a constant. Hence
(a, N') is a positive constant on X, which implies by (7.2) that K vanishes
on ¥ and the surface must be a totally geodesic spacelike plane.

It is worth pointing out that the completeness of the maximal surface
¥ : 2 — 1L is used here only to assure the completeness of the conformal
metric ¢g* and the simply-connectedness of . Moreover, this second
condition can be derived from the first one in the following way. Let
1 2% — L2 be a maximal surface in L3 such that the conformal flat
metric g* is complete on X and consider the universal covering projection
II:5 — %. Then o (I S > L3isa simply connected maximal surface
for which the Riemannian metric g = I1*(¢g*) is flat and complete. Then
(EA],/g\) is globally isometric to the flat Euclidean plane R?, and so the
harmonic function f =1Ilo (1/(a, N)) on S induces a positive harmonic
function globally defined on R?. This tells us that 1/{(a, N) is constant
on Y, and hence the maximal surface 9 : ¥? — L3 is totally geodesic.
Finally, since N is constant and ¢g* is complete, we find that our maximal
surface must be a spacelike plane.

All of this shows that Romero’s proof also works under any other
assumption assuring the completeness of g*. This occurs, for instance,
if one assumes the maximal surface to have closed image in L3, or more



42 ON THE CALABI-BERNSTEIN THEOREM FOR ...

generally, if one assumes that the surface is complete with respect to the
metric induced on ¥ by the Euclidean metric in R3. In fact, if we denote
by go this last metric, some computations lead to

g = (1= (N9 > (b, N)g > Son (74)

Hence, ¢* is complete on X if gy complete. Therefore, Romero’s ap-
proach also allows us to obtain a simple direct proof of the following
results, without using the general results by Cheng and Yau and Harris

on the completeness of spacelike hypersurfaces (see the last paragraph of
Section 2).

Corollary 7.1 The only mazimal surfaces in I3 which are complete with
respect to the metric induced by the Euclidean metric in R® are the space-
like planes.

Corollary 7.2 The only mazimal surfaces in I3 whose image is closed
in L? are the spacelike planes.

8 On the Gaussian curvature of maximal surfaces

A different approach to the Calabi-Bernstein theorem can be made by
finding adequate local upper bounds for the Gaussian curvature of a
maximal surface. In this section we shall describe two different results
of this type. The first one is due to Estudillo and Romero [17], and
consists on a pointwise estimate for the Gaussian curvature in terms of
the distance of the point to the boundary of the surface. This result
makes use of the Enneper-Weierstrass representation and the Schwarz
lemma of complex analysis, and it is inspired in a paper by Osserman
[43], where he proves an analogous result for minimal surfaces in R
Actually the results in [17] are more elaborated that the one presented
here, and involve the study of the Gauss map of the surface. Nevertheless,
the result we give here suffices to prove the Calabi-Bernstein theorem as
well as some of its generalizations.

Let 1 : 2 — L3 be a maximal surface in LL.?, and let us denote by
(w, g) its Enneper-Weierstrass data. Now consider on ¥ the metric given
by

do* = |w|?.
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This is a flat metric. In fact, since w = fdz locally and the metric |dz|?
is flat, then the Gaussian curvature K* of do? satisfies

1
FPR" = —5Alog|f* =0,

where we have used that f is holomorphic. Thus K* = 0 and do? is flat.

Now choose p € ¥. We shall asume that N(p) = (0,0, 1), and thus
g(p) = 0, by composing with a rigid motion in L? if necessary. Next let
us consider exp,, the exponential map of (X, do?) at p. It follows from
the Cartan theorem that

exp, : V CT,N—X

is a local isometry with respect to do?. Here V is any neighbourhood of
0 € T,% over which exp, is defined.

Let us choose a disc D(0,7) C V' C T,,3, and denote W = exp,(D(0,7)).
Then W is covered by coordinate systems

{(Va exp, 1)} = {(Va, 2a)},

all of which are in the conformal atlas of 3. This happens because every
Z, is an isometry between the metric |dz|* of T,X = C and the flat
metric do?, which is conformal to the induced metric on X. In this way
we can consider on every (V,, z,) its Enneper-Weierstrass data (fa, ga)-
Thus f,dz, = w and g, = g on V,. Since 2, is an isometry we get
|dzo|* = |w|?, and from there |w|?> = |fal?|d2a]? = | fo|*|w|?. This shows
that |fa] =1 on V,.
Under the identification 7,¥ = C, we can define the map

g:D(0,r)—D

given by

g(w) = g(exp,(w)).
It is obvious that g is holomorphic, with g(0) = ¢g(p) = 0 and §'(0) =
J'(p). Once here let us define G : D—D as

G(n) =g(rn).

Then G is holomorphic and satisfies G(0) = 0. Thus it follows from
the Schwarz lemma of complex analysis that |G’(0)| < 1. Since G'(0) =

rg’ (0) we find that
1

9@)P = FOP < . (5.1)
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Finally, taking into account that g(p) = 0 and |f,] = 1 we obtain by
means of (6.5) that

0< K(p)=4lg () < 5 (3.2)

Of course, if the metric do? is complete we can choose r as large as we
desire. This implies that K(p) = 0 at every point p € 3, and hence the
surface must be a spacelike plane. Besides, it follows directly from (6.4)
that the flat metric do? satisfies ds?> < do?, where ds? is the induced
metric of the surface. This provides us with an alternative proof of the
Calabi-Bernstein theorem.

From (8.2) we can also find the following estimate for the Gaussian
curvature of a maximal surface.

Theorem 8.1 Let v : X2 — L3 be a mazimal surface in IL3. Then the
Gaussian curvature of the surface at an arbitrary point p € X satisfies

4
K(p) < d(p,0%)?

Proof. We keep the notations of the above arguments. We know that if
the flat metric do? is complete the surface is a spacelike plane, and hence
the result holds trivially. If do? is not complete we can choose D(0,7) as
the larger disc over which exp, is defined. In this situation there exists
some wy € OD(0,7) such that the geodesic y(t) of (X, do?) given by

v(t) = expp(two)

is defined on [0, 1), but it cannot be extended to 1. This forbids that
the geodesic () lies in a compact set of X, and thus 7(f) must be a
divergent curve in Y. Furthermore,

dp.0M) < L0 = [as < [lo] =, (8.3)

where we have used that do?(y/(t),7/(t)) = r? for all t. The result then
follows from (8.3) and (8.2).
U

The estimate (8.2) is given in terms of the flat metric do?. Tt is
interesting to note that do? coincides up to a constant with the flat
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metric introduced in (7.3) for the choice b = (0,0, 1). In fact, taking into
account (6.1) we get

1+1g/?
Nb) =
W)= =T
Thus A
g = (1 —(N,b)ds* = ————ds* = 4do*.
(1= (N B)s™ = ey

In this way (7.4) turns into do* > (1/8)go, and we can reobtain Corollary
7.1 and Corollary 7.2.

The second approach to the Calabi-Bernstein theorem of this section
has been recently obtained by Alias and Palmer [8]. It is based on an up-
per bound for the total curvature of geodesic discs in a maximal surface
in I3, involving the local geometry of the surface and its hyperbolic im-
age. Specifically, they have proved the following local integral inequality
for the Gaussian curvature.

Theorem 8.2 Let v : X2 — L3 be a mazimal surface in the Lorentz-
Minkowski space. Let p be a point of ¥ and R > 0 be a positive real num-
ber such that the geodesic disc of radius R about p satisfies D(p, R) CC X.
Then for all 0 < r < R, the total curvature of a geodesic disc D(p,r) of
radius v about p satisfies

0< / KdA < e, (8.4)
D(p,r)

L(r
rlog (R/r)’
where L(r) denotes the length of OD(p, ), the geodesic circle of radius r
about p, and

2 (1 + cosh? p,)?

T >0
= — :
8

cosh g, arctan (cosh g,)

Here o, denotes the radius of a geodesic disc in HY containing the hy-
perbolic image of D(p,r).

This local integral inequality (8.4) clearly implies the global Calabi-
Bernstein theorem. Indeed, if ¥ is complete, then R can approach to
infinity in (8.4) for a fixed arbitrary p € 3 and a fixed r, which gives

/ KdA =0.
D(p,r)
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Taking into account that the Gaussian curvature of a maximal surface
in I3 is always non-negative, this yields K = 0 on X, and ¥ must be a
spacelike plane.

The proof of Theorem 8.2 is an application of the following (intrinsic)
local integral inequality on an analytic Riemannian surface with non-
negative Gaussian curvature.

Lemma 8.3 Let X2 be an analytic surface endowed with an analytic
Riemannian metric with non-negative Gaussian curvature K > 0. Let u
be a smooth function on % which satisfies

ulAu > 0

on Y. Then for 0 <r < R

2L
/ ulAu < isnpuz,
i rlog (R/T) Dy

where D, denotes the geodesic disc of radius v about a fized point in X,
D, C Dr CC %, and L(r) denotes the length of 0D, the geodesic circle
of radius r.

The proof of Lemma 8.3 follows from Lemma 2.1 in [7] and inequality
(2.4) in [7].

Proof of Theorem 8.2: Let us assume that the hyperbolic image of D(p, r)
is contained in a geodesic disc 5((1, 0r) in Hi of radius g, centered at the
point a € H2. Recall that

D(a,o,) ={r € H3 : 1 < —(a,z) < cosho,},

so that 1 < —(a, N(q)) < cosh g, for all ¢ € D(p,r).

Observe that since 1) : 2 — L3 is a maximal surface, ¥ is an analytic
Riemannian surface with non-negative Gaussian curvature, and we may
apply Lemma 8.3 to an appropriate smooth function u. The idea of the
proof is to apply it to the smooth function u = arctan(—(a, N)), which
by (7.1) and (7.2) satisfies

—4K{a, N)

Ve T

ulAu = ¢(—(a, N))K >0, (8.5)
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where ¢ : R—1R is given by

_ Atarctan(t)
olt) = (1 +1¢2)?

The function ¢(t) is strictly decreasing for ¢ > 1, so that for ¢ € [1, cosh o, ]
it is bounded from below by

4 cosh g, arctan(cosh g,.)
(1 + cosh? p,)2 '

o(t) > ¢(cosh g,.) =

Hence, at each point ¢ € D(p,r) we get from (8.5)

4 cosh g, arctan(cosh g, )

u(q)Au(q) > (1 + cosh? o,.)2

K(q) > 0.

Integrating now this inequality over D(p,r) and using Lemma 8.3 we
conclude that

4 h r t h r
cosh g, arc as(coj or) / KdA < / uAudA
(1 + cosh® o,) D(p,r) D(pr)

% L(r)
= 2 rlog (R/r)’

that is,

0< / KdA < CTL,
D(p,r) r 1Og (R/T)

9 Further developments

In this section we include some additional results and topics which are
related to the Calabi-Bernstein theorem. First of all, let us remark that
the classical Bernstein theorem on minimal surfaces in the Euclidean
space R? can be seen as a consequence of the Calabi-Bernstein theorem on
maximal surfaces in L? (and viceversa). This follows from the following
duality between solutions to their corresponding differential equations

9].
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Theorem 9.1 There exists an entire, nonlinear C? solution to the min-
1mal surface equation

D
Minimal[u] = Div <—u) =0,

1+ |Dul?

on R? if and only if there exists an entire, nonlinear C? solution to the
mazimal surface equation

Dw

V1 —|Dwl|?

Maximal[w] = Div ( ) =0, |Dw|® < 1

on R2.

Proof. Assume that u is an entire nonlinear solution of Minimal[u] = 0
in the (z,y) plane. Recall that for a vector field X on R? it holds that

(DivX)dz A dy = dwyx,

where J denotes the usual almost complex structure in the plane and
wyx denotes the 1-form on R? which is metrically equivalent to the field
JX. Then, since the plane is simply connected, we can write

Du
1+ |Dul?

for a C? function w. Since J is an isometry, there follows

= J(Dw) (9.1)

| Duf?

—— _—|DwP <1
1_|_|Du’2 |w| 9
and so ]
1+ |Dul?= ————. 9.2
DUl = 92)

Using that J? = —id, we obtain from (9.1),

D
J(DU) = —\/ 1 + ’DU‘QDU) = —ﬁ,
— w

and so Maximal[w] = 0 follows.
If w were linear, then Dw is a constant vector, | Dw|* =constant, and
then it follows from (9.2) that |Du|? is a constant also. It then follows
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from (9.1) that Du is a constant vector, contradicting the assumption
that u is nonlinear.
A very similar argument, starting with an entire solution of
Maximal[w] = 0, produces an entire solution of Minimal[u]=0.
O

On the other hand, we introduce here an elementary proof of the
Calabi-Bernstein theorem for maximal surfaces in L.3. As we have seen
throughout this paper, many of the known proofs of this theorem are
non-trivial adaptations to the Lorentz-Minkowski space of proofs of the
classical Bernstein theorem. The approach that we present here is in-
spired by a paper of Nitsche [38], where he proves the classical Bernstein
theorem for minimal surfaces in R3. It is amazing that in our case the
proof follows very closely the steps made by Nitsche.

Our proof is a consequence of the following result by Jorgens [23].

Lemma 9.2 (Jorgens theorem) If ¢ : R>——R satisfies the following
differential equation

2
det(D%¢) = oo ( ¢ ) =1,

o022 Oy? 0xy
then ¢ = ¢(x,y) is a quadratic polynomial in x and y.

Actually, let us assume that v = wu(z,y) is an entire solution to the
maximal surface equation on R?, that is,

D
Div [ ——t | = 0, |Dul? < 1,
/1 —|Du|?
or equivalently,
(1 — |Du|*)Au + D*u(Du, Du) = 0, (9.3)

where Au = Div(Du) is the Euclidean Laplacian of u, with |Dul? < 1.
Then, if we define W = /1 — | Du|?, we can easily see from (9.3) that

o (1 (o), 0 (1ouo
or \ W y oy \ W 0z dy
o (1ouony o (1 () (ouy
Ox \ W dx dy oy \ W Ox

0,

and

0.
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This assures the existence of certain functions «, 3 : R>—R such that
da 1 ) ou\’ da 1 Oudu
oxr W ox T 9y Woxoy
08 _ _Lloudu 98 _1( (0u)’
or  Waoxdy oy W oy '

Again, from here we can assure that there exists a function ¢ : R2—R
satisfying 0¢/0z = a and d¢ /0y = (. Therefore

Po 1 [, (ow)’
or2 W ox ’
5o 1 Oudu

oxdy W Ooxoy’ (94)
0%¢ L (,_ (0u ?
2 W (03/) ’
which implies that det(D?¢) = 1. Finally, by applying the Jorgens theo-
rem we obtain that ¢ is a quadratic polynomial in x and y, which implies
by (9.4) that w is linear in x and y.

Finally, let us note that the local surface theory in L? is quite much
more complicate than its Euclidean counterpart. This mainly happens
because the presence in L2 of vectors with different causal characters usu-
ally turns into a wider variety of cases to consider. In [6] Alias, Chaves
and Mira have recently introduced a complex representation formula for
maximal surfaces in I3, obtained by modifying the Enneper-Weierstrass
representation and based in the classical Bjorling problem for minimal
surfaces (see [16, 39]). This representation formula in L3 is quite ade-
quate for describing the local geometry of maximal surfaces, since it splits
this geometric situation into simpler parts, that is, into one-dimensional
objects.

To present this new approach to the local theory of maximal surfaces
we first formulate the Bjorling problem in L3:

Let B : I — L3 be a regular spacelike analytic curve in L3,
and let V : I — I3 be a unit timelike analytic vector field
along ( such that (4',V) = 0. Construct a maximal surface
in I3 containing 3 whose Gauss map along 3 is given by V.
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This Bjorling problem turns out to have a unique solution, which provides
the complex representation formula specified above. The solution to
Bjorling problem for maximal surfaces in L? states what follows [6].

Theorem 9.3 Let 3 : I — L3 be a reqular analytic spacelike curve in
L3, and let V : I — L3 be a timelike analytic unit vector field along
B such that (3, V) = 0. There ezists a unique mazximal surface whose
image contains (3(I) and such that its Gauss map along 5 is V. This
maximal surface is explicitly given by

x(2) = Ref(z) — Im /z V(w) x §'(w)dw. (9.5)

Here 3(2),V (z) are holomorphic extensions of 3(s),V(s) over a certain
simply connected open set 2 C C containing I, and so € I is fived but
arbitrary.

Several applications of this formula have been recently studied in [6, 36].
More specifically, one can use Theorem 9.3 mainly in two directions: the
construction of maximal surfaces with prescribed geometric properties,
and the obtention of new results on maximal surfaces. As an example of
the latter we note the following consequence of Bjérling problem [36].

Theorem 9.4 Let 3 : I — 13 be a reqular analytic spacelike curve of
a semi-Riemannian analytic surface ¥ C L2, and choose ¢ > 0. There
ewist exactly two mazimal surfaces in 13 that intersect ¥ along (3 with
constant angle . Both maximal surfaces can be explicitly constructed as
solutions to adequate particular Bjorling problems.

If ¥ is a non-degenerate plane, those two mazimal surfaces are con-
gruent in L3,
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1 Motivation

The classical model describing the free fall relativistic particle, that is mo-
tion solely under the influence of gravity, is governed by the Lagrangian

F() Zm/wd&

the world trajectories being geodesics of the spacetime. Recently, the
interest in constructing models to describe spinning relativistic particles,
both massive and massless, has been revived (see for example [6, 14, 15,
16, 17, 18, 20, 21, 22, 24] and references therein).

The conventional approach to these models consists in the extension
of the initial spacetime by means of extra spinning degrees of freedom.
However, there is another, less developed way to construct these mod-
els. The main idea is to consider Lagrangians, which are formulated in
the initial spacetime, but depend on higher order derivatives. In other
words, the action depend on the geometrical invariants, curvatures, of
the particle trajectories,
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N(v) = /fﬂfﬁ,m s Kno1),

where k;, 1 < i <n — 1 denote the curvatures in n dimensions.
Several motivations should be considered when regarding this new
approach. Between these, we remember here the following

1. The old idea of modelling the spinning particle without introducing
new additional spinning variables.

2. The consideration of the above mentioned Lagrangians is strongly
related to the development of the bosonic string theory in the sense
of Polyakov.

3. The construction of models for supersymmetric particles.

4. The searching for models of particles with arbitrary fractional spin,
anyons.

5. The theory of particles with maximal proper acceleration.

Certainly, the simplest models are those with Lagrangian density
involving only the first curvature, that is the curvature x which plays
the role of proper acceleration of particle, of the worldlines. In this
paper, I consider models for spinning relativistic particles, both massive
and massless, that are governed by actions with densities being linear
functions of the particle proper acceleration, that is they have rigidity
of order one. In particular, the beautiful Lagrangian system with action
measuring the total proper acceleration is known in the literature as the
Plyushchay model and describe the spinning massless relativistic particle.

Obviously, my interest in these models come from mathematical rea-
sons such as turning tangent or Fenchel program. Also because my in-
terest in the theories of elastic curves, [1, 2, 4, 8] and in topics related
with helices, [3, 4, 5].

When studying these models in backgrounds with constant curva-
ture, I have learned several interesting properties on their dynamical
behaviours so as on the geometry of their world trajectories.

1. The dynamics of these Lagrangian systems takes place in dimension
three.
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2. The geometry of the trajectories in the massive model is completely
determined. Particles evolve along helices. The model is consistent
no matter if the D = 3 background gravitational fields correspond
with either Lorentz-Minkowski, De Sitter or anti De Sitter. More-
over, the moduli space of solutions may be determined from three
different pairs of dependent moduli.

3. In contrast, the trajectories of the massless model, or the Plyushchay
model, are not helices in general. The model is consistent only in
anti De Sitter backgrounds. The moduli space of solutions being
determined from a unique modulus that moves along the space of
smooth functions on either a hyperbolic plane or an anti De Sitter
plane.

4. One can obtain nice quantization principles. For example, the mod-
uli subspace of closed trajectories, in the Plyushchay model on a
D = 3 anti De Sitter space, is quantized via a rational constraint
on one of the moduli.

5. An interesting algorithm to get explicit examples of closed solitons
in Plyushchay model can be exhibited. This involves the following
ingredients.

e An isoareal mapping such as the hyperbolic Lambert projec-
tion.

e The Hopf mapping from anti De Sitter space onto the hyper-
bolic plane.

e A series of classical curves including the elliptic lemniscates
(also called Perseo espiricas), the limagon or snail of Pascal, the
Vivianni ovoides in particular the folium simple of Descartes,
the roses of Gido-Grandi, the quartics of Ruiz-Castizo...

Many of the results of this talk are contained in [6] (see also [1, 2]).

2 The models and the motion equations

Let (M, g =<, >) be a semi-Riemannian manifold with Levi-Civita con-
nection V and curvature tensor R. In this setting, we consider dynamics
associated with Lagrangian that depend linearly from the proper accel-
eration of particles. The space of elementary fields is a certain space of
non-null curves in M, say A and the action is £,, : A — R, given by
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Lnl) = [ () + m) ds
gl
where k denotes the curvature of the curve v € A and m is a coupling
mass parameter which serves as a Lagrange multiplier or it is prescribed
experimentally. The massless model of Plyushchay correspond with the
case m = 0.

The field equations can be computed using a standard argument that
involves some integrations by parts. Therefore, for vy € A and W € T, A,
we have

0L, (W] = / < Qy),W >ds+ [B(y, W)]§

Y
m

— > < VeW,N(s{) = N(s;) >

=1

+ > <W(si), VeN(s{) = VoN(s;) >,
=1

where () and B(vy, W) stand by the Euler-Lagrange and the boundary
operators, given respectively by

Q(7) = (e2857° + e169m k) N — 37, B — e371 — R(N, T)T,

B(y,W)=e3 <VrW,N > +eym < W, T > e37 < W, B >,

T is the unit tangent, N and B are unit normal and binormal respectively.
Also, 1 is a section of the normal sub-bundle of v which is orthogonal
to that generated by {T', N, B}. Here 7 is the torsion and (g1, €2,€3) are
the causal characters of T, N, B, respectively.

It should be noticed that, a priori, curves could have inflection points,
v(si), 1 < ¢ < m. Therefore, if dimension of M is greater than two,
then N is not defined in such points. However, this is not the case
of trajectories. The trajectories of relativistic particles in the model
(M, g, L,,) are nothing but the critical points of £,, : A — R, that is,
those curves v € A that satisfy d£,,(v)[W] =0, VIW € T,A.
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On the other hand, we can consider suitable first order boundary
conditions to drop out the boundary operator. In this case, it is suffices
to take clamped curves, that is, curves that connect two fixed points and
are tangent in these two points. Therefore, we have

Theorem 2.1 (First order boundary conditions or clamped
curves). Let qi and gy two points in M and choose unit vector x; €
Ty, M, 1 <1 <2 to consider the space of curves

A={v:lti,ta] = M : y(t;) = ¢, T(t;) = ;, 1 <i <2},
Then, we have

1. If v € A is the trajectory of a relativistic particle in (M, g, Ly,),
then N, B and 7 are well defined along v, even in the inflection
points.

2. The boundary operator vanishes identically along the trajectories so
the relativistic particles of the model (M, g, L,,) evolve along the
curves that are solution of the following field equation

R(N,TT = (82837'2 + e160m KZ) N — e37sB — e37 1,

Corollary 2.2 (Backgrounds with constant curvature.) If (M, g)
has constant curvature, say c, then the field equations describing the mo-
tion of relativistic particles in the model (M, g, L,,) are

52537’2 +E1E8omkKk = £1¢,
Ts = 07
n = 0.

In particular, we have

1. The motion of relativistic particles with order one rigidity in spaces
with constant curvature takes place in totally geodesic three dimen-
sional submanifolds, [10], which obviously have the same geometry
of the big background, for example have constant curvature, c.

2. The massive (m # 0) relativistic particles with order one rigidity in
spaces with constant curvature evolve along helices in spaces with
dimension three. That is, trajectories have curvature and torsion,
both, constant.
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At this point, we will restrict ourselves to D = 3 Lorentzian space
forms. The curvature and the torsion of trajectories are not independent
but obviously, they determine completely the geometry of these curves,
up to congruences in the spacetime. Moreover, the particle spin, S and its
mass, M, can be determined in terms of those invariants. The converse
also holds, that is, one can determine the curvature and the torsion of
trajectories in terms of S and M, (see [6]). Then, we obtain

Corollary 2.3 In D = 3 spacetimes with constant curvature, the spin-
ning massive relativistic particles with order one rigidity, evolve along
helices. The geometry of a trajectory, (k,T) is equivalent to the particle
dynamics, (M, S). Therefore, each solution of the field equations can be
geometrically determined by the parameters (k,T), or equivalently by its
dynamics parameters, (M,S). In this sense, the motion equation plays,
in the worldline geometry, the role of Regge trajectory in the dynamics
of the particle.

3 The case of AdS;

The three dimensional anti de Sitter space, AdSs, with curvature —1
can be regarded as the hyperquadric in C? given by

AdS; = {z€C? : (2,2) = —1},

endowed with the induced metric.

On the other hand, the hyperbolic plane, H?, and the pseudo-
hyperbolic plane (or anti de Sitter plane), H?, can be viewed as orbit
spaces obtained from AdSs. In fact, just consider the natural action of
the unit circles S! in R? and H' in .2 on AdS3 defined by

a.(z1,22) = (a z1,a z3), aeS or aecH.

Therefore, we obtain two called Hopf fibrations, [7],

HT:AdS3—>H$, r=20,1,

with fibre S! and H*, respectively, where H2 = H2. These become into
semi Riemannian submersions when H? is endowed with the metric with
curvature —4 (see [9, 19] for details on this topic). In particular, one can
prove the following facts, [7],
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e The horizontal lifts of regular curves in H? are space Frenet curves
in AdS3 which have torsion 7 = +1.

e The horizontal lifts of regular curves in H? are space or time Frenet
curves in AdS3 which have torsion 7 = +1.

Next, I will give an algorithm which allows to obtain geometrically
all the helices in AdSs (see [4, 5] for details).

1. First, notice that if 3 is a curve in H?, then IT () is a flat surface
in AdSs. If r = 0, then II;'() is Lorentzian, the Hopf tube of (3,
while if 7 = 1 then II; () is Riemannian or Lorentzian according
to the causal character of 3, in this case the surface is called a B-
scroll, [13]. In both cases, the surface can be parametrized in AdS;
through fibres (s =constant) and horizontal liftings, 3(s), of 3.

_f cos(t)B(s) + sin (t)iB(s), ifr =0,
(s, 1) = { cosh (t)3(s) + sinh (¢)if(s), ifr=1,

2. Now, if 3 has constant curvature, say p, in H?, then the non-null
geodesics of IT71(3) are helices in AdS3. In fact, let g be the slope
of a geodesic, 7, in H2. Then, one can compute the curvature and
the torsion of v in AdSs3 to be respectively

p— e P29
C e (1)

and
(1) +gp+g’
e—(=Drg>

where € and ¢, are the causal characters of 3 and ~, respectively.

T=—(—1)"¢e

3. The converse of the above fact also holds. Every helix, v, of AdSs
is a geodesic in either a Hopf tube or in a B-scroll. In fact, let x, 7
and €1 be the curvature, the torsion and the causal character of ~.
In H?, one considers a curve, 3, with constant curvature

K24+ (=17 (1 — 72
NI

then, one chooses the geodesic in I1;*(3) determined by the slope
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E1+T1
=(=1)" .
g=(=1)"—
It is now easy to see the so obtained curve is congruent in AdS3 to

-

Now, the field equation can be written in terms of the cylindrical
coordinates, (p,g). A geodesic of either a Hopf tube or a B-scroll is
a trajectory of a spinning, massive, relativistic particle with order one
rigidity if and only if its slope, g, and the modulus curvature, p, satisfy
the following equation

29+ p) ((p — e3e(=1)"'m)g* + 2e(—1)"g + e3m) = 0. (3.1)

This algorithm can be combined with Corollary 3 to describe the com-
plete moduli space of massive, relativistic particles of order one rigidity
in AdS,,. They evolve generating trajectories which are helices in AdSs.
Moreover the moduli space of solutions can be described in terms of three
couples of dependent parameters either:

e The curvature, x, and the torsion, 7, of the world line whose de-
pendence define pieces of parabola, or

e The mass, M, and the spin, S, whose dependence gives the Regge
trajectory, or

e The cylindrical coordinates, (p, g), of the trajectory regarded as a
geodesic of a Hopf tube or a B-scroll. In this case the constraint is
given by (3.1).

4 Massive closed trajectories, a quantization prin-
ciple

The Hopf map, my : AdS; — H?2, can be viewed as a principal fibre

bundle on the hyperbolic plane with structure group S* (a circle bundle).

We define a vector potential, w, on this bundle by assigning to each
z € AdS;3 the horizontal 2-plane

H, =<1z >L7
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the canonical principal connection. The field strength, €2, of this principal
connection is given by

Q=mr5(0) with O =—-2dA,

where dA stands for the canonical area form on H?2.

On the other hand, if 8 : [0, L] — H? is an immersed closed curve
with length L > 0 (we always assume that [ is parametrized by its
arclength) and 3 denotes a horizontal lift of 3, then the Lorentzian Hopf
tube, 73, generated by (3 is a flat torus which is embedded in AdS; if 3 is
simple. To compute its isometry type, we essentially use the holonomy of
the above described connection. In fact, notice that the mapping ® when
it is considered on the whole Lorentzian plane, I.? is nothing but a semi-
Riemannian covering. The lines parallel to the t-axis in L.? are mapped
by ® onto the fibres of 7y, while the lines parallel to the s-axis in L2
are mapped by ® onto the horizontal lifts of 3. The later curves are not
closed because the non-trivial holonomy of the involved vector potential,
which was defined before. However, the non-closedness of the horizontal
lifts of closed curves is measured just for the field strength. To see this,
we will apply, without major details, a well known argument which is
nicely exposited in [12]. According to that, there exists § € [—m, )
such that 3(L) = €¥3(0), for any horizontal lift. The whole group of
deck transformations of ® is so generated by the translations (0, 27) and
(L,6). Finally, we have 6 = [ ©, where ¢ is any 2-chain in H? with
boundary dc = (. In particular, we get 6 = 2A. Therefore, we have
obtained the following result.

Proposition 4.1 Let 3 be a closed immersed curve in H? of length L
and enclosing an area A. Then, the corresponding Hopf torus, Tz is
isometric to L2 /T, where T is the lattice in the Lorentzian plane, L* = R?,
generated by (0,2m) and (L,2A).

Now, we can characterize those geodesics of a Hopf torus that are
closed. In particular the closed helices in AdS3. To do it, suppose (3 is a
closed curve, with constant curvature, p, in H?. This means that 3 is a
geodesic circle of a certain radius, say € > 0, in H?. Then its curvature is
p = —2coth 2¢, notice that we used suitable orientation to get negative
values for curvature. The length of § is L = msinh 2¢ and the enclosed
area in H* is A = Z(cosh2e —1). Using the isometry type of 73, we see
that a geodesic, v, of 75 is closed if and only if there exists s, > 0 such

that ®~1(vy(s,)) € T'. Consequently
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27 +A
g_L q T ’

where ¢ is a rational number which we call the rational slope.
This condition can be also written in terms of the the cylindrical
coordinates, (g, p)

1

= 2_4_ -
g=qvp 2,07

where ¢ € Q — {0}.
It should be noticed that p? > 4, recall that H? was chosen to have
constant curvature —4. Hence, the field equation simplifies to

(p— egm)92 +2g +e3m =0.

Then, we obtain the complete class of solutions that correspond with
closed worldlines in the following quantization result

Proposition 4.2 The complete space of closed trajectories correspond
with a rational one-parameter family of helices in AdSs. These lie in
Hopf tori on closed curves with constant curvature in H?, moreover they
are geodesics in those tori and they are obtained when its slope is quan-
tized via a rational constraint.

5 Massless spinning particles

The Plyushchay model for massless spinning particle admits a consis-
tent formulation in anti De Sitter backgrounds. The motion equations
for Plyushchay’s model, in a Loretzian-space-form (or space-time with
constant sectional curvature), turn out to be

—7? =g, =0, 0 =0,

where recall that ¢ is nothing but the background constant sectional
curvature. These equations have strong consequences which can be sum-
marized as follows:

The Lorentzian plane, L2, and the three-dimensional anti De
Sitter space, AdS;3;, are the only of these backgrounds that a
priori could admit a consistent formulation for Plyushchay’s
model massless spinning particle.
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However, the case of the Lorentzian plane is trivial and it could be con-
sidered as a preambule of Fenchel’s theory, [11]. Therefore, we only need
to consider the case of AdSs. In this case, we consider without loss of
generality ¢ = —1, the motion equations reduce to

T==£l1,

and no information on the proper acceleration of particles is obtained.
Therefore, the Plyushchay model lie to put the following problem: to
classify those curves in AdSs with torsion 7 = +1. This innocent ques-
tion is not trivial. However its solution involves the nice powerful of the
geometry of AdSs, [23]. In particular, the main tools to solve this prob-
lem are both: (i) The high rigidity of the standard gravitational field
on AdSs and (ii) The nice geometry associated with the Hopf mappings.
This allow us to generate a beautiful argument to obtain the whole mod-
uli space of massless spinning particles for the Plyushchay model.

First, it should be observed that any horizontal lift via 7, of any curve
in H?, r = 0, 1, has torsion 7 = +1 and so automatically gives a worldline
of a massless spinning particle evolving in AdS3. Conversely, let assume
that a is the worldline of a massless spinning particle in AdSs, then its
torsion is 7 = £1. Denote by k* its curvature function and take v to be
a curve in H2 so that its curvature function is k = 7, ox*. Finally, choose
a horizontal lift, say 7, of 7. Since a and 4 have the same curvature, x*,
and torsion, 7 = £1, then they must be congruent in AdS;.

It should be noticed that, in contrast with the massive models where
two dependent real moduli describe the space of solutions, now the only
modulus moves along the space of smooth functions from, say R, in H?.

Proposition 5.1 For any ¢ € C*(R,H?), denote af the curve (up to
congruence) with curvature function o. Then the moduli space of trajec-
tories in the Plyushchay model is

1
MP = | J{o? : 0 € C*(R,H})}.

r=0

6 Closed trajectories in the Plyushchay model

The moduli subspace made up of closed solutions can be nicely deter-
mined as follows. Let v be a closed curve in the hyperbolic plane with
length L and enclosing an area A. If gamma is any horizontal lift of -,
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then (L) = €?5(0), recall that d is the holonomy number of the above
described vector potential on the circle principal bundle given by the
Hopf map 7 : AdSs — H2. Now, 7 closes up if and only if there exists
n € N such that after n consecutive liftings of v (that means, we lift the
n-fold cover of 7) we get (n.L) = ¢™%(0) = %(0). Then § = 22 for
a certain integer p. On the other hand, we already know that § = 2A.
Consequently, we obtain A = 2. Hence, we have the following quanti-
zation condition to obtain the moduli subspace of closed solutions in the
Plyushchay model for massless spinning particle

Proposition 6.1 The subspace of closed worldlines is obtained when we
lift, some fold cover of closed curves in H? which bounded an area that is
a rational multiple of m.

To illustrate the above result, we will exhibit some explicit examples.

Example 6.2 A rational one-parameter class of closed helices.
The enclosed area of a geodesic circle, v, with radius ¢ > 0 in H? is given
by A = (cosh2e —1)7. Thus a horizontal lift of the n-fold cover of v
closes if and only if £(cosh2e — 1) = 2. We now solve this equation
in € to obtain a rational one-parameter family of radii whose circles lift
to closed worldlines of massless spinning particles in AdS3. Notice that

these world trajectories are helices in anti De Sitter background.

To better understand the next examples, let consider
2 3,.2 .2 .2 1
H* = {(z,y,2) e L° Ja* +y° — = =1 and z > o}.

Pseudo-spherical coordinates, (p,0) can defined on H? by putting
T = —% cospcoshf, y = —% sin ¢ cosh @, 2z = cosh . On the other hand,
by considering cylindrical coordinates, (¢, z) in the Euclidean plane, R?,
we can define a kind of hyperbolic Lambert map, L : H? — R2? by
L(p,0) = (¢, 3 coshf). A simple computation shows that this map pre-
serve the areas of domains, in other words, it is an iso-areal mapping.

Example 6.3 The hyperbolic elliptic lemniscate. In pseudo-spherical
coordinates, (p,6) on H?, we consider the curve given by
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v 3(902 + cosh?0)? = a® cosh? § 4 b%p?,

with parameters a and b satisfying b > 2a%. This curve is nothing but
the image under an appropriate hyperbolic Lambert map of an elliptic
lemniscate in the Euclidian plane (that is the inverse curve of an ellipse,
of axis 2a and 2b, with respect to its centre). The area enclosed by v in
H? is A = $(a® + b*)m. Therefore, if we choose the axis such that a® + b?
is a rational number, say £, with a’?+b? < 1, then, a horizontal lift of the
2q-fold cover of v gives a closed worldline of a massless spinning particle
evolving in AdSs;.

Example 6.4 The hyperbolic limagon or the hyperbolic snail of
Pascal. In H?, we consider the curve that in pseudospherical coordinates
is defined by

v (%gpQ + % cosh? § — 2a¢?)? = h*(* 4 cosh? §),
for suitable parameters a and h. This curve closes because it is obtained
as the image, under a hyperbolic Lambert mapping, of a limacon of
Pascal (the inverse curve of an ellipse with respect to a focus). Hence,
this curve encloses, in H? the area A = (h%+ %az)ﬁ. Again, for a suitable
choice of parameters and by lifting to AdSs3, we get closed worldlines of
the Plyushchay model for massless spinning particle.

Example 6.5 The hyperbolic folium. This element, of the moduli
subspace of closed solutions, is obtained, via a hyperbolic Lambert map,
from the folium simple in the Euclidean plane. In pseudospherical coor-
dinates it is defined by

1
v 5(@2 + cosh?0)? = ap®.

This curve is closed ant it encloses an area, A = 3%61271 For example,
if @ = 1, then a horizontal lift of the 32-fold cover is closed and so it
provides a member of the above mentioned moduli space of massless
spinning particles.
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Example 6.6 The hyperbolic roses. Let n be an integer and define,
in the Euclidean plane, the curve

b :e=csinny,

where (g,1) stand for polar coordinates in the plane and ¢ denotes a
real number. This curve defines a rose in the plane with n petals if n is
odd and 2n petals when n is even. These curves are also called clover
curves (for example, if n = 2 we obtain the four-leaved clover, while if
n = 3 we get the three-leaved clover or trefoil, which are very important
when plotting tensor properties of quaternary and ternary cristals): The
enclosed area in the plane by a clover curve is A = ic2ﬂ if n is odd
and A = %CQﬂ' if n is even. Now, we take the image, under a hyperbolic
Lambert map, of a suitable clover curve, to obtain closed curves in H?
enclosing the same area. Finally, we choose ¢? to be a rational number
and lift them to AdS;, via the Hopf mapping, to get nice examples of
solutions for Plyushchay model of massless spinning particles.
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Abstract

We discuss the use and construction of positive geometric quantities
in Lorentzian geometry. Basic results for causal tensors and superen-
ergy tensors are presented, and applications to classical and generalised
Rainich theory, a way of geometrising physics, is described.

1 Introduction

Positive quantities are fundamental in many parts of mathematics. In
this paper we discuss their constructions and use in Lorentzian geometry.
Sometimes the geometry is used as a model in a physical theory, and in
this case the quantities may correspond to a physical quantity. We will
here however emphasise that the positive geometric quantities we study
do not need to have physical interpretations themselves, even if they are
useful to prove results about other quantities which do have physical
meaning.

We will first briefly present some examples of well known and very
important mathematical results in general relativity. Common for these
is that positivity properties of certain geometric quantities are used or
assumed. The examples are the singularity theorems, the positive energy
theorem, the stability of Minkowski spacetime, and the Penrose inequal-

1ty.
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Causal tensors are tensors with a certain natural positivity property.
A fundamental way of constructing a causal tensor T{A} from any ten-
sor A on a Lorentzian manifold is the so-called superenergy tensor con-
struction, developed in full generality by Senovilla [21]. We review some
general results on causal tensors and superenergy tensors and present
some recent generalisations.

As an application we then discuss the algebraic Rainich theory. This
was originally presented as a theory which gave necessary and sufficient
conditions on the Ricci curvature tensor to correspond via Einstein’s
equations to a spacetime describing an Einstein-Maxwell field (an elec-
tromagnetic field on a curved spacetime). We present various generalisa-
tions, which are most naturally expressed in terms of superenergy tensors,
and discuss some open problems and possibilities for future work.

We use the index free notation as far as possible, thus adopting to
the tradition of Riemannian and Lorentzian geometry rather than to the
tradition of general relativity. However, we sometimes find that the use
of indices simplifies an expression, such indices may however, unless ex-
plicitly stated otherwise, be considered as abstact labels which tells us
what type of tensors we are using or how mappings should be applied
[16]. They do not refer to any basis or system of coordinates, not even
implicitly. We will assume that our Lorentzian manifolds have metrics ¢
of signature +, —, ..., — and our sign conventions for the curvature ten-
sors are those of Penrose and Rindler [16]. We denote the Ricci curvature
tensor by Ric, the scalar curvature by R and the Weyl curvature by C.

2 Positive geometric quantities and some important
results in mathematical relativity

2.1 The singularity theorems

We first consider one version of the singularity theorems, first developed
by Penrose and Hawking in the 1960’s [8, 13].

Theorem 2.1 Assume that M is a globally hyperbolic spacetime and that
—Ric(u,u) >0 for any timelike vector u. If H is a Cauchy hypersurface
with K < ¢ < 0, where K is the trace of the extrinsic curvature and c

1 a constant, then no past directed geodesic can have length greater than
3/|c| from H.
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We note that the spacetime M is a four dimensional Lorentzian mani-
fold, the dimension being essential for the proof. The positivity condition
— Ric(u,u) > 0 is called the strong energy condition. By Einstein’s equa-
tions Ric— %Rg = kT, k a constant and 7" the energy-momentum tensor,
this condition can be expressed T'(u,u) > 1tr(T)g(u,u) and it is an as-
sumption on the matter fields on the spacetime. The condition is used
to control the focusing of nearby geodesics as given by the Raychaudhuri
equation [8]. For a discussion on the physical aspects on the assumption,
see [20]. The interpretation of the assumption K < ¢ < 0 is that the uni-
verse is expanding and the conclusion that its age is finite. No symmetry
assumptions are made. There are other versions of the theorem, some
with weaker assumptions, see [8, 20]. If the time direction is reversed
one obtains theorems predicting singularities in black holes. For a recent
comprehensive review on the singularity theorems we refer to Senovilla
[20].

2.2 The positive energy theorem

The next example is the positive energy theorem [19, 22]. Here we must
again be very brief and refer to the literature for definitions of various
concepts. An asymptotically flat spacetime is a model for an isolated
object and has a curature which in a precise sense tends to zero at “large
distances” from some point, something which does not have an obvious
formulation for the curvature along null directions [16]. The total energy
or momentum of the spacetime can be expressed as limits of certain
curvature expressions and can be thought of as the energy measured by
an observer at a large (infinite) distance from the object. At spacelike
infinity one defines the ADM momentum and at null infinity the Bondi
momentum.

Theorem 2.2 Let M be an asymptotically flat spacetime and suppose
that T'(u,v) > 0 for all causal future directed vectors u and v. Then the
total momentum P (ADM or Bondi) is causal and future directed.

The conclusion means that any observer at infinity measures a posi-
tive total energy.

The condition T'(u,v) > 0 on the energy-momentum tensor is called
the dominant energy condition and is an assumption on the matter fields
on the spacetime. It is considered to be a generally accepted condition
physically.
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Penrose [15] uses a different assumption.

2.3 Stability of Minkowski spacetime

Christodoulou and Klainerman [5] have proved a global existence result
for Einstein’s vacuum equations Ric = 0, which is interpreted as a sta-
bility result for Minkowski spacetime. The statement is essentially the
following;:

Given the initial data C' = 0 outside a compact subset Hy of a Cauchy
hypersurface H and C' “small” on Hy, then there exists a global non-
singular solution to Ric = 0 in the future of H.

The proof is very long and techically extremely complicated [5, 10].
The basic ingredient used to define norms and to find energy estimates
is the Bel-Robinson (superenergy) tensor, which is defined as

%bcd{C} = Caecfcbedf + *Caecf*cbedfa (21>

where *C' is the dual of the Weyl tensor C' (it has only one dual in four
dimensions).
T is completely symmetric, trace-free, and satisfies

T (u®,u® u® @) >0 (2.2)

for all future directed vectors u™™, ..., u®. This is not an assumption

but a property of T, as well as of any superenergy tensor in any dimension
1, 17, 21].

General superenergy tensors T{ A} have also been used to find criteria
for causal propagation of fields A on Lorentzian manifolds [3].

2.4 The Penrose inequality

Our last example is the Penrose inequality. If S is a marginally trapped
surface (two dimensional spacelike) in a spacetime of total mass m, then
Penrose [14] has conjectured that

Area(S) < 16mm?. (2.3)

The conjecture has its origin in the fact that the area of a black hole
is increasing and that the final (stationary) state is given by a Kerr
spacetime where the inequality always holds.

Special cases have been proven [9, 11|, but the general case is still
unproven, see Fraundiener [6].
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A common idea in the proofs of these special cases is to use Hawk-
ing’s quasilocal mass, my(S) = c¢(Area(S))"/?(2m — [, pp), where c is
a constant, and p and p the expansions of outgoing and incoming null
geodesics orthogonal to S [7]. The Hawking mass has monotonicity prop-
erties along families of 2-surfaces from S to infinity, and it approaches
the total mass at infinity.

In this case we want to prove a postivity property of the total mass
by using that a derivative of the Hawking mass is positive.

A related problem in general relativity is that is impossible to define
a pointwise energy or mass density. The total mass is well defined for an
asymptotically flat spacetime but it is not known if the mass contained
in a finite 3-volume is well defined, or rather the mass within a spacelike
2-surface [14].

3 Causal tensors

In Lorentzian geometry a natural positivity concept, which generalises
properties in the examples above, is the following.

Definition 3.1 A tensor T of order r is said to have the dominant
property, T € DP, if
TW, ... u™) >0 (3.1)

for all future directed vectors vV, ... u"). T is causal if T € DP or
—T € DP.

For symmetric tensors of order 2, T' € DP is equivalent to the dom-
inant energy condition.

Some basic properties of causal tensors are [4]:

(i) T € DP <= T(kW,... k") > 0 for all future directed null
vectors kW), ... k(™.

(ii) 0 # T € DP <= T(v",...,v") > 0 for all future directed
timelike vectors vV, ... v,

(iii) 7" # 0 antisymmetric in two positions = T' ¢ DP. '

(iv) T € DP < CJ(T ®t) € DP for any t € DP, where C is a
contraction over one index in 7" and one in t. Especially for tensors of
order 2 we have T'€ DP = T? € DP.

The superenergy tensor T{Q} of a p-form Q, 1 < p < N, is a sym-
metric tensor of order 2 which, in arbitrary dimension N, can be written
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[4, 21]
1
Tab{Q} - k(Qaaz...apra?“ap — Tanl...aanl...apgab)a (32>

where k is a constant depending on p and the signature of the metric.
Note that Top, {2} = T, {*Q2}, where *Q is the Hodge dual of .

As mentioned above, T{Q2} € DP as any superenergy tensor is in
DP [1, 17, 21]

A well known result is the following [16].

Theorem 3.2
T{Q}? = h?g for any p-form Q if N < 4. (3.3)

This does not hold if N > 5 [4].
Recall that a p-form T{Q} is simple if T{Q} = wM A--- Aw® where
w() are 1-forms.

Theorem 3.3
T{Q}* = h2g for any simple p-form Q for any N. (3.4)

We know that T{Q2} € DP, conversely we can represent any sym-
metric tensor in DP with a sum of superenergy tensors of simple forms
[4].

Theorem 3.4 S € DP symmetric =

S=> T{Qy}, (3.5)

where T{Qy,} are superenergy tensors of simple p-forms and r is the
number of null eigenvectors (except that r = 1 also in case there is no null
eigenvector). Q) can be constructed explicitly from the null eigenvectors.

4 Rainich theory and generalisations

The problem of finding all four dimensional Lorentzian manifolds with
Ric = 0 may of course be considered as a purely mathematical problem.
However, this problem also has a fundamental meaning in physics; such
manifolds describe all vacuum spacetimes in general relativity.

One can weaken the conditions on the Ricci curvature in the following
way [12].



G.BERGQVIST 79

Definition 4.1 A Riemann-Rainich space is a four dimensional
Lorentzian manifold on which the Ricci curvature tensor satisfies

(alg.) R =tr(Ric) =0, (Ric)®= itr(RiCQ)g, (Ric)oo <0 (4.1)

(diff.) curl(w/tr(Ric*)) =0; w, = e (Ric)yqVq(Ric)™  (4.2)

Here e is completely antisymmetric of order 4 [16], and (Ric)go is the
pure time component of Ric with respect to some ON basis.

Again this may be seen as a purely mathematical concept. Its im-
portance is explained by an old result of Rainich [18]:

Theorem 4.2 If tr(Ric*) # 0 then M is a Riemann-Rainich space if
and only if Ric — %Rg = —T{F}, where F is a 2-form which satisfies
Mazwell’s equations (and note that in fact tr(Ric) =0).

Therefore, Riemann-Rainich spaces describe gravitation and electro-
magnetism as pure geometry, an already unified theory according to Mis-
ner and Wheeler [12].

It is easy to prove that if F' is a 2-form, then tr(T{F'}) = 0 and T{F}?
is proportional to the metric g. Rainich proved the converse but it was
not widely known before Misner and Wheeler published their paper. Soon
thereafter, other physical fields were geometrised (see [4] for references).
In order to have conditions (alg.) or (diff.) that are independent of
the field equations, the conditions are usually expressed in terms of the
energy-momentum tensor 7' (in the case of an electromagnetic field the
conditions for 7" and Ric are identical).

We will now show some ways of generalising the algebraic part of the
above theory. The complete solution of the equation 7% = fg with T'
symmetric is given by the following theorem.

Theorem 4.3 Suppose that T is symmetric of index 2. Then, for any
dimension N, we have T? = fg < if f > 0: T = £T{Qy,}, where
Qp) is a simple p-form and 2p—N)\/f = xtr(T); if f=0: T = £k®k
with k null.

This was first proved in [4] using the representation theorem. A more
direct proof is given in [2]. Note that the condition 7% = fg automatically
implies that T is causal. The special case N =4, p =2 and tr(T) = 0 is
the classical result by Rainich, Misner and Wheeler.
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Corollary 4.4 Any involutive (symmetric) conformal Lorentz transfor-
mation in any dimension is a superenerqy tensor of a simple form.

Pozo and Parra [17] define superenergy tensors of elements in the
Clifford algebra, such superenergy tensors are not symmetric in general,
and they prove that any conformal Lorentz transformation is such a
superenergy tensor.

Theorem 4.3 gives necessary and sufficient conditions for a geometry
to correspond to a physical field in several cases, and it generalises all
the algebraic results of this type known previously.

As T{Q}? = fg for any p-form Q (also non-simple ones) if N = 4,
there is a freedom, F' — F'cosa + *F'sin «, a so-called duality rotation,
which transforms the non-simple 2-form F' into a simple 2-form without
changing T{Q}.

Recall that the rank of a p-form €2 is the dimension of the subspace
spanned by Q(-,u,...,v) when the vectors u,...,v vary. Thus the rank
of a 2-form is always even and a simple 2-form has rank 2. For 2-forms
of rank 4 we have the following result [2].

Theorem 4.5 Suppose that T is symmetric of order 2. Then, if N > 4,
we have that T is the superenergy tensor of a 2-form of rank at most 4

if and only iof
a) T satisfies the dominant enerqy condition (4.3)

b) (T? - itr(Tz) +

1
A(N —4)

tr(T)*)(T — tr(T)) =0 (4.4

N -4

In dimension N = 5 the rank of a 2-form is at most 4. Theorem 4.5
therefore implies

Theorem 4.6 Suppose that T is symmetric of order 2 and N = 5. Then
T is the superenerqy tensor of a 2-form if and only if

a) T satisfies the dominant energy condition (4.5)

b) (T* - itr(TQ) + itr(T)Q)(T —tr(T)) =0 (4.6)
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As only 2-forms and their dual 3-forms can be non-simple if N = 5,
this theorem together with theorem 4.3 give a complete generalisation
of the classical algebraic Rainich theory in dimension 5. Note that the
condition b) in theorem 4.6 does not imply that £7° € DP, a different
result than in theorem 4.3.

We also remark that the equation b) in theorem 4.6 can be obtained as
a necessary condition from a so-called dimensionally dependent identity.
In dimension 5 any 6-form is zero, hence A(F ® FF® F) = 0 if F is
a 2-form and A denotes the antisymmetric part. Contracting this with
another F'® F' ® F' gives the equation.

The complexity of algebraic Rainich theory grows with the rank of the
forms and the dimension of the space. We have seen that in dimensions
up to 4 any superenergy tensor satisfies a polynomial of degree 2, and
in dimension 5 a polynomial of degree 3. In dimension 6, however, the
degree of the polynomial can be 6 [2].

For tensors of higher order no Rainich theory has been developed.
One can prove that in dimension N = 4, the Bel-Robinson tensor 7°
satisfies Topea 7 = fgq°. It is not known, however, if the equation
TopeaT® = fgs° together with the assumptions that the tensor T of
order 4 is completely symmetric and trace-free, implies that T is the
superenergy tensor of a tensor with the symmetries of a Weyl tensor.
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Abstract

Let R? be the semi-riemannian space of signature (s,n — s). In this
ambient, we define pure and piece-pure manifolds according to the causal-
ity of their tangent spaces. Moreover, we obtain some integral formulas,
named of Crofton “s type, using the invariant measure of indefinite Grass-
mann manifolds. In the last section we show in L? the reverse of the well
known isoperimetric formula.

1 Introduction

The causality is a jealous condition demanding to choose be spacelike or
timelike. As a consequence of that, we introduce in [2] the notion of pure
curves, and since it deals with right lines in R ? a metric characterization
is given.

Now, we think it is interesting and useful to characterize the causal
condition of differentiable oriented manifolds. For higher dimensions the
metrical criterion does not seem appropiate and we define the causality
of any r-subspace R" in R] with respect to the unitary sphere. We also
define the causality of any hyperplane R"~! in R} in terms of its normal
vector.

From these concepts we generalize [2] for piece-pure manifolds and
pure and piece-pure indefinite Grassmann manifolds.
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In the third section we generalize the, so called, reproductive formulas
by Banchoff & Pohl using the concepts defined in the previous section
and the density or invariant measure for pure and piece-pure indefinite
Grassmann manifolds.

In the last section we study the classical isoperimetric problem in R?
(or L?) and as we find an inequality reversed from the usual one in the
euclidean plane, we call it anti-isoperimetric inequality.

2 Preliminaries and Definitions

Let R? be the semi-euclidean space of signature (s,n — s) with inner
product

S n
- _ Gt Japd
(Vp, wp) = E v'w' + g v w
i=1

Jj=s+1

and S”! be the unit sphere of R”. Let f : M™ — R” be an immersion
of a compact oriented differentiable semi-riemannian manifold M™.

In the following we want to define subspaces of R according to its
causality.

In this ambient we will consider the set of r-subspaces through the
origin and we will name them G, ,,.

As well as R} becomes a semi-riemannian manifold, an analogous
structure is induced on G, which we can call the real indefinite Grass-
mann manifold. The signature of a given r-subspace may be (p,q) in
such a way that p + ¢ = r, where p indicates the number of ”minus ”and
q indicates the number of ”"plus ”of the metric tensor of the r-subspace.

Naturally, for 0 < p < 5,0 < g <n —s they verify

0<p<min(r,s)and r —p=q¢ <n-—s.

Now, fixing p and ¢, G, 45, Will denote the Grassmann manifold
of subspaces of signature (p,q) in R?. This concept corresponds to the
Gp.s—piqn—q of Wolf, [7].

Definition 2.1 Let R" and S™~! be the n-dimensional semi-riemannian
space of signature (s,n-s) (for s > 0) and the unit sphere in it, respec-
tively.
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a) Forn > 3,s < n — 2 we will say that the subspace R" is timelike

. 0 forr<n-—2r<s
T n—1 __ = PR
if BEOS _{ S fors<r=n-—1

in RML.

b) For r < n — 1 we will say that the subspace R’ is spacelike if
R NSt = 8™V where ST is the (r-1)-euclidean sphere.

where S"™? is the unit sphere

For n =2, the case is trivial, and thus its measure is finite and of easy
computing.
In particular, for r =n —1,s = 1, we add

Definition 2.2 Let R} be the semi-euclidean space of signature (1,n—1)
with the corresponding inner product and R™™* be an hyperplane in RY.
Let N be its normal vector ( respect to the lorentzian metric) then R is
a spacelike (timelike) hyperplane if and only if N is a timelike (spacelike)
vector.

Now, we are going to define the notion of pure manifold; following
the idea of [5] and [2] we want to characterize the causal condition of a
differentiable manifold in terms of the causality of its tangent space.

Definition 2.3 We will say that a differentiable semi-riemannian man-
ifold M" is pure if at every point p € M, its tangent space T,M (= R")
15 timelike or spacelike. We can be more explicit saying pure timelike or
pure spacelike.

We also generalize the concept of piece-pure curve:

Definition 2.4 We will say that a differentiable semi-riemannian man-
ifold M" s piece-pure if the measure of its set of null points vanish.

We call G5, the indefinite Grassman manifold of p-timelike sub-
spaces in R} . Analogously, G 4.5, is the indefinite Grassman manifold of
g-spacelike subspaces in RY.

If | Gposn| (*) and | Gogsn | (**) are the invariant measures
of these disjoint manifolds, we can not express the invariant measure
| Gpgsn | In terms of (*) and (**). But we can assert that upon a set of
measure zero we have

/ ‘ Gp,q;s,n |:/
G G

| Gooen |+ [ 1 Gogun |- 21

D,q;S,m p,0;5,m 0,q;s,n
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3 Crofton’style formulas

Now, following Banchoff &Pohl, we will show that some formulas pre-
sented in [1] are still valid for indefinite Grassmann manifolds.

[1] asserts “Let f: M™ — R" be an immersion of a compact oriented
differentiable manifold M™. Let A(M™) be

A(M™) = Km,n/ )\2(h) ] dH, 15 | (3.1)
G
where H,,_,,,_1,, denotes the Grassmann manifold of all (n-m-1)-planes in
R" h € Hy_ym—1n, A(h) is the linking number of h, and

n

I'((y+1)/2
Ky = H L~ (mt1)n/2 (G +1)/2)

AL o~ m)/2)
If ¢ >n—m—1, then
[ i AM™NH,) |dH,, |= AM™), (3.2)
where
K q n+m 'n q—1
lm,n, = el Sz’
! Kq-nimyg Hk OSk le
and S; = 2mE D2 e the surface area of the unit j-sphere. ~

I((7+1)/2)
A(M™) generalizes the volume bounded by a simple subspace (K, ,, =

1) and, in particular, for m=1 q=1, n=2, (3.1) is one of the classical
Crofton’s formulas. For n=2 and q=1, we show, in [2], that the Crofton’s
formulas are valid in the Lorentzian plane.

The result (3.2) is called the reproductive property of A. Such a
property hold for pure manifolds, we mean, if M™ is pure timelike
(spacelike) the property is still valid. Comparing notations we have that
Gyn = Gogon, for ¢ >n—m —1, and | dG,,, | is the invariant measure
or density.

Let f: M™ — R? be an immersion of a compact oriented differen-
tiable manifold M™. As in [1], let A(M™) be

AM™) = K., / X(h) | dGon |, (3.3)
Gq,n
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where h € Gy, A(h) is the linking number of h, and

T —(mADn/2 I'((+1)/2)
Koo = 11 (G —m)2)

Theorem 3.1 Let f,A(M™), Ky, and ly, 4 be as above.
a) If M™ is a pure timelike manifold and G is a timelike q-subspace
s=qg=n—m—1, then
bnuna g, ACM™ 01Gy) | G |= ACM™),
o Kmn Hq oS g n—q— l
Kq n+m,q Hk osk H
b) If M™ is a pure spacelike mamfold and Gy+ 15 a spacelike g-

subspace,
s>n—q, ¢q>n—m—1, then

where  lypq =

b / AM™AGy) | dGyp |= AM™),
H,

q

K, Hq ptms n—q— 1
m,n
where lnpg = 2 Hk = 3 |

c) If M™ is an oriented compact piece-pure semi-riemannian mani-
fold in R} and G, Gy are spacelike and timelike subspaces, respectively
(q=qy+q-) q- < s, then

A(Mm) = lmnq_ fcq_ A(Mm N Gqf) | dGqﬂO;p,n ’ +

Flmngt qu+ AM™N Gq+) | dGo,g+:pn -

Proof. a) and b) Let f : M™ — R be an immersion of a compact
oriented differentiable manifold M™

The g-planes in G, can be thought as euclidean. Then, from Defi-
nition 2.3, when M™ and G, have the same causality, we are under the
hypothesis of Banchoff & Pohl’s theorem, [1], and the formulas (3.1) and
(3.2) are still valid.

c) As the properties of being timelike or spacelike is a disjoint con-
dition for manifolds, if M™ is an oriented compact piece-pure semi-
riemannian manifold in R? then we can state from a), b) and Definition
4 that

AM™) = by g qu, AM™ NGy ) | dGg_opn | +

+lm,n,q+ qu+ A(Mm N Gq+) ‘ dGO,qu;p,n ‘
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4 Anti-isoperimetric inequality

Let L? be the Lorentzian plane provided with metric of signature ( +,-);
it is well known that in L? there are timelike lines, L;, and spacelike lines,
Ly, [2]. The general equation of the timelike lines is

L, = xchv —yshv —p =0, (4.1)

and of the spacelike lines is

L, = xshv —ychv —p =0, (4.2)

where p = p(v) is the distance from the right line to the origin and v € R
is such that v = (1, ctghv) .
From (4.1), notating with " the derivation with respect to v, we have,

p = xchv — yshv

p = xshv — ychwv.

From the preceding equations we can not find the radius of curvature
of the evolvent, since ds in terms of p and p’ vanish.

This situation is different from that in R?, [6], we mean that in L? the
function p = p(v) is not a support function of the lines L; (analoguosly
Ly).

Also from [2] we know that the density for timelike lines can be
expresssed by

dL; = dp A dv, (and analogously for dL;) .

Let D be a convex domain in L? which area is F, its border 0D = C
is a pure, closed, simple curve of length [, [2] and [3]. We assume that L,
intersects D in a timelike (spacelike) point.

Naming u = u(s) the angle between the tangent to C in the point
given by the arc-length parameter s and the y-axis and taking w =
v —u(s) we can rewrite, [2],

dL; = sh | w | ds A dw

and analogously for dL;.
Classically, [6], we name oy, (05), the length of the chord L;N D, (LsN
D).
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Considering the timelike lines Ly, (or spacelike ones L), which in-
tersect the curve C in two points 17,75, (S1,.S2), both timelike, ( both
spacelike) we have

o:dL; = shwyshwyds;dss (4.3)

analogously osd L, where w; is the angle between the line and the tangent
to the curve at the intersection point .

From [3] it is known that the curve C has four vertex, which will be
named P, (@, R, S, running the curve in counter-clock sense. In conse-
quence, the arcs PQ) and RS are part of timelike curves and the arcs QR
and SP are part of spacelike curves.

Applying (4.3) to the non-oriented lines L;, analogously L, we have,

[6],
/ O'tst = / O'SdLs = F7T/2 (44)
L:NC LsNC
If the right lines are oriented
/ O'tst = / USdLS = Fm. (45)
LinC LsNC

Without loss of generality, we know that, up to a set of measure zero

/ odL = / oydL; + / osdLg = (4.6)
LnC LinC LsNC

—A—|—/ O'tst—F/ Udes )
Li(PQ)UL¢(RS) Ls(QR)ULs(SP)

where A is the area of the cuadrangle PQRS. Now, we can apply formulas
(4.5) and (4.6) because the right lines intersect the border in points with
the same causality, then we have

/ odL = A+ / shwyshwyds;dss+
LNC Li(PQ)UL(RS)

+ / shuishuqadsidss .
Ls(QR)UL4(SP)

Having in mind that shw;shwy = 1/2{ch(wy + wq) — ch(w; — wy)}
and that the integral
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/ ch(wy — we)dsy
L

is equal to the projection of C on the right line which is tangent to the
other intersection point, (and in consequence is equal to zero), we obtain

/ odlL = A+ 1/2/ ch(wy + we)dsidss+
LNC Li(PQ)UL+(RS)

+1/2/ ch(uy + ug)dsidsy > A+ 1/212.
Ls(QR)UL4(SP)

Sustituting (4.5) in the preceding expression and using the corre-
sponding analogous, we get

2nF > A+ 1/21

or equivalently

4rF —12>2A>0 (4.7)

which we call anti-isoperimetric inequality.
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Abstract
Let M = Mj x R be a Lorentzian manifold equipped with a static
metric v, = (a(x)-,-) — B(x)dt*> where 3 has a subquadratic growth.
Then, fixed Py, P; submanifolds of M, a suitable version of the Fermat
principle and the classical Ljusternik—Schnirelman theory allow to prove
that the existence of normal lightlike geodesics joining Py x {0} to P, xR
is influenced by the topology of Mg, Py and P;.

1 Introduction

In these last years an increasing interest has been turned to the study of
geodesics in Lorentzian manifolds by using variational tools and topolog-
ical methods.

In fact, if (M ,~;) is a Lorentzian manifold, or more in general a
semi—-Riemannian manifold, it is well known that the geodesic equation

Dz =0

has a variational structure; so, a smooth curve z : [0,1] — M is a
geodesic if and only if it is a critical point of the action functional

f(z) = / (5(5), £(5))y, ds
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in a suitable manifold of curves Z which depends on the required “bound-
ary conditions” (see Section 2).

But unlike to the Riemannian case, in the Lorentzian one the func-
tional f is not bounded both from above and from below; moreover, its
critical points have infinite Morse index. Hence, classical topological the-
ories, as the Ljusternik—Schnirelman or the Morse one, can not be applied
directly to the research of critical points of f in Z.

A way to overcome these difficulties is selecting some classes of semi—
Riemannian manifolds in which a suitable new variational principle allows
to introduce a new functional, bounded from below, whose critical points
are related to those ones of f.

In this approach the main idea is that, when the metric v, admits
Killing vector fields, then the negative contribution of the variational
problem in the directions of the Killing vector fields can be “factored
out” (see, for examples, in [3, 14] for standard stationary and static
manifolds, in [5] for plane fronted waves, in [8] for Gddel type Space—
Times). Moreover, if we are interested in lightlike geodesics, a variational
principle similar to the Fermat principle in optics allows to define another
good enough functional (cf. [11, 12]).

So, in order to give an idea of possible variational tools, we just point
out how to solve a particular problem in a simple model of Lorentzian
manifold.

Definition 1.1 A Lorentzian manifold (M ,~r) is static if there ezists
a connected finite dimensional Riemannian manifold (Mg,~), a smooth
symmetric linear strictly positive operator a(x) : T,Mo — T, Mg and a
smooth strictly positive scalar field 3 : My — R such that M = Mg x R
and

= {a(x)-,-) = B(x) dt? (L.1)
on any tangent space T,M =T, Mo xR, z = (z,t) € M.
Definition 1.2 Let (M ,~1) be a Lorentzian manifold and let No, Ny be

two submanifolds of M . A curve z : [0,1] — M is a normal geodesic
joining Ny to Ny if it is a geodesic in M such that

2(0) € My z(1) e My
2(0) € TuoNg- 2(1) € TNt

where, for i € {0,1}, Tz(i)./\/iL denotes the orthogonal space of T.;)N; in
T M with respect to the Lorentzian metric vr.
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From now on, let M = M, x R be a Lorentzian manifold equipped
with the static metric (1.1) and consider Ny = Py x {to} and N7 = P, xR
with ¢y € R and P, P, two submanifolds in M.

Roughly speaking, we say that a curve z : [0,1] — R, z = (z,1),
joining Nj to Np has arrival time in the future if it is ¢(1) > ¢, while in
the past if it is (1) < to.

Remark 1.3 If there exists £ € Py N Py, then the constant curve (z, t()
is a (constant) lightlike normal geodesic joining Ny to Nj.

Aim of this paper is to show that the minimum number of (non—
constant) lightlike normal geodesics joining Ny to A; depends on the
topology of Fy, P, and Mj; moreover, some of them have arrival time in
the future while some others in the past.

More precisely, the following results can be stated (here and after,
d(-,-) is the distance induced on M, by its Riemannian metric v, see
(2.1), while cat(-) is the Ljusternik—Schnirelman category, see Definition
3.

1).

Theorem 1.4 Let M = MyxR be a Lorentzian manifold equipped with
the static metric vy, defined in (1.1). Suppose that

(H1) (Mo,7) is a complete C* Riemannian manifold;

(Hsy) there exist A\, v > 0, R1, Ry > 0, ¢ € [0,2][ and a point xy € M
such that

()€, €6) > MN(E,E) forall§ € TuMy, z € My,  (1.2)
v < fB(z) < R+ Ry d¥(z,z0) forallx € M,. (1.3)

Moreover, let Ny = Py x {to}, N1 = P, X R be two submanifolds of M
such that tg € R and

(Hs) Py and Py are closed submanifolds of My and one of them is com-
pact;

(Hy) PN P =0.

Then, at least two lightlike normal geodesics joining Ny to N ewist: one
with arrival time in the future and the other one in the past.
Furthermore, the hypothesis

(Hs) Py and Py are both contractible in Mg
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implies the existence of at least cat(Pyx Py) of such geodesics with arrival
time in the future and cat(Py X P;) ones with arrival time in the past.

Theorem 1.5 Let M = My x R be a static Lorentzian manifold such
that (Hy) and (Hy) hold. Moreover, consider Py and P, which satisfy the
assumptions (Hs) and (Hs). If My is not contractible in itself then there
exists a sequence of (non—constant) lightlike normal geodesics joining Ny
to N1 with arrival times diverging positively and a sequence with arrival
times diverging negatively.

If M is a (standard) stationary Lorentzian manifold some similar
results have been already obtained in [11, 12] if both F, and P, are
reduced to single points (see also [14]) and in [6] if Py, P, satisty (H3)
but the coefficient 3 in (1.1) is bounded.

2 Variational setting

Let (M ,7g) be a static Lorentzian manifold with M = M, x R and
vr as in (1.1), where (Mo, ) is a Riemannian manifold such that (H;),
(Hs) hold. Moreover, let Py and P; be two submanifolds of M, which
satisfy (H3). For simplicity, assume to = 0 and I = [0,1]. Assume
A/O:POX{O},N1:P1XR.

Let us remark that we are interested in lightlike normal geodesics
joining Ny to N, i.e., we look for smooth curves z : I — M | z = (z,1),
such that

<z() (s))r =0 forall sel,

with boundary conditions
(0) € P07 t<0) = 07
(a(2(0))2(0),£) = 0 for all £ € T0) Py

{ z(1) € P, t(l) 0,
(a(z(1))2(1),€) =0 foraugeT VP

{ () =0 for all s € I,
z

So, in order to solve this problem with variational tools, let us introduce
a suitable variational setting.

Since M = M, x R, the infinite dimensional manifold H'(I, M )
is diffeomorphic to the product manifold H'(I, My) x H'(I,R) and is
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equipped with a structure of an infinite dimensional Riemannian manifold
1 by setting

1 1 1 1
-~ d D.&, D) d 2 245,
(¢, On /0 (€,6) ds + /0 (D&, Dg&) ds + /0 Tds + /0 72ds

for any z = (z,t) € H'(I,M ) and ¢ = ({,7) € T.H'(I,M ) =
T,HY (I, My) x H'(I,R).

By the Nash Embedding Theorem we can assume that M, is a
submanifold of an Euclidean space RY and + is the restriction to M,
of the Euclidean metric of RY while d(-, -) is the corresponding distance,

o d(z1, z2) = inf {/01 V(i A)ds : 7y € Am,m} (2.1)

if 1, xo € My, where v € Ay, 4, if v: 1 — M, is a piecewise smooth
curve such that v(0) = z1, y(1) = 5.

Hence, it can be proved that the manifold H'(I, M) can be identified
with the set of the absolutely continuous curves x : I — R with square
summable derivative such that x(I) C M.

Furthermore, since M is a complete Riemannian manifold with re-
spect to v, also HY(I, M) is a complete Riemannian manifold equipped
with the previous scalar product.

Let Z be the smooth manifold of all the H'(I, M )—curves joining
N to N while Q(P,, P;) denotes the smooth submanifold of H*(I, M,)
which contains all the curves joining Py to Py (cf. [13]). From the product
structure of H'(I, M) it is

ZEQ(PU,P1>XVI/,

where W = {t € H'(I,R) : t(0) = 0} is a subspace of H'(I,R).
Clearly, it is

T.7 =T,Q(Py, P,) x W forall z=(z,t) € Z.

Proposition 2.1 Since the hypotheses (Hy), (Hs) hold, then the sub-
manifold Q(Py, Py) is complete and Z is complete, too.

By (1.1) it follows that the action integral f : Z — R is defined as

= [ = [ @i - i) as
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for any z = (x,t) € Z. It is easy to prove that f is a C'* functional with
Fréchet differential

Fe = / (o (2)[€] &) ds +2 / (a(a)i, &) ds
_/o B'(z)[¢] 12 ds—2/0 ﬁ(x)zfi' ds,

for all z = (x,t) € Z, ( = (&, 7) € T,Z, where o and (' denote, re-
spectively, the derivatives of a and 3 with respect to the Riemannian
structure on M.

In a quite standard way it can be proved that a curve z : [ — M
is a lightlike normal geodesic joining Ny to A if and only if z € Z is
a critical point of the action functional f such that f(z) = 0 (for more
details, see, e.g., [7, Proposition 2.1]).

As already remarked in the introduction, a similar variational prin-
ciple holds also for the study of normal geodesics joining two given sub-
manifolds in a Riemannian manifold (cf. [13]), but in the Riemannian
case the action functional is bounded from below while it is not more
true in the Lorentzian case. But the coefficients in the metric (1.1) are
time—independent so it is possible to get over such a difficulty by intro-
ducing a new functional which depends only on the Riemannian variable
x.

Anyway, in this particular case there is a one more problem: the
arrival time is unknown, so we can not work “directly” as in [4]. By
the way, a Fermat type principle introduced in General Relativity by
D. Fortunato, F. Giannoni and A. Masiello allows to overcome such a
trouble (see [11]). The idea is to express the arrival time by means of
a new functional whose critical points in {2(Fy, P;) are related to those
ones of f in Z with null energy.

Thus, let A € R be fixed and consider the set of curves

Zy=A{z€Z:z=(x1), t(1) = A}.

If fx = flz,, then z = z(s) is a lightlike normal geodesic joining Ny to N;
with arrival time A if and only if 2z € Z, is such that f{(z) = fi(z) = 0.

The following propositions can be proved.

Proposition 2.2 Let z = (z,t) € Z\. Then, Z is a critical point of
the action functional f\ in Zy if and only iof T 1s a critical point of the
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functional
1
Ia(z) = /(a(:v)x',js) ds — N K(z)
0
in Q(Py, P1), while it is

f(s) = \K (%) /Osﬁda, with K ( /ﬁ

In both these cases it is f\(z) = J\(Z).

(For the proof, see [3, Theorem 2.1] or also [4, Proposition 2.2]).

Thus, Proposition 2.2 implies that we have to look for z € Q(Fy, P;)
such that

Ji(x) = Jy(z) =0, (2.2)
where it is Jy(z) = 0 if and only if

N /01<a(x)¢,g;~> ds~/1 (1)

Defined H : (A, z) € R x Q(Py, P1) — Jy(x) € R, (2.2) is equivalent
to look for (A, z) € R x Q(Fy, P;) such that

oH
Ox

where (1.3) implies that Z£(X,z) = 0 if and only if A = 0, ie., z is
constant.
In order to apply the Fermat principle, let us define the two func-

tionals Fy : Q(Fy, P) — R such that

= :I:\//01<04(x)x',j:> ds - /01 % ds

Obviously, it is /.. = —F.. Thus, let us consider F' = F.

By simple calculations it is possible to prove that F' is continuous
but not differentiable at level zero while it is smooth everywhere else.
Clearly, it is F\(x) > 0 for all z € Q(Fy, P;) and F(z) = 0 if and only if

x is a constant function.

—(\z)=H(\z)=0, (2.3)

Remark 2.3 If (H,) holds, then (P, P;) has no constant at all. Thus,
F is always different from zero and C' in Q(Py, P).
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Proposition 2.4 Let x € Q(FPy, P1) be such that
F'(z) =0, F(z) > 0. (2.4)
Then, taken A = F(z), (A, x) solves (2.3).
Proof. If we define the manifold
Gy ={(\z) e Ry x Q(Py, P1) : H(\, z) = 0},

it is easy to verify that it is the graph of the functional F'; whence, the
conclusion follows by the Fermat principle (for more details, see, e.g., [14,
Theorem 6.2.2]).

U

Thus, from now on, our aim is to solve (2.4); hence, to look for strictly
positive critical levels of F'in Q(Fy, P).

3 Ljusternik—Schnirelman Theory

First of all, let us recall the main tools of the Ljusternik—Schnirelman
Theory (for more details, see, e.g., [1, 14, 15]).

Definition 3.1 Let X be a topological space. Given A C X, the Ljusternik—
Schnirelman category of A in X, briefly catx(A), is the least number of
closed and contractible subsets of X covering A. If it is not possible to
cover A with a finite number of such sets, it is catx(A) = +o0.

We denote cat(X) = catx(X).

Definition 3.2 A C! functional g on a Riemannian manifold Q) satisfies
the Palais—Smale condition at level a € R, briefly (PS),, if any (z,), C
Q such that

g(z,) —a and ¢(x,) —0 as n — +0oo
converges in £ up to subsequences.

Theorem 3.3 Let Q be a complete Riemannian manifold and g a C*
functional on Q which satisfies (PS), for all a € R. Taken any k € N,
k>0, let us define

cp = inf supg(z) with Ty ={A C Q: catq(A) > k}. (3.1)
A€Ty, T€A
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Then, ¢ 1s a critical value of g for each k such that Ty # 0 and ¢, € R;
if, moreover, g is bounded from below then g attains its infimum and has
at least cat(Q)) critical points.

Remark 3.4 Let 2 and g be as in Theorem 3.3. If g is bounded from
below, then for all ¢ € R it is

catq(g¢) < 400,
where ¢° = {z € Q: g(x) < c}.

Remark 3.5 Let g be a positive functional not differentiable at level
zero while it is smooth elsewhere in a complete Riemannian manifold 2.
If (PS), holds at any level @ > 0, then it can be proved that ¢ is a
critical value of ¢ for all k such that I'y, # 0 and ¢; > 0.

In order to apply Theorem 3.3 to the functionals Fy and F_ defined
in the previous section, we need evaluating the Ljusternik—Schnirelman
category of the manifold of curves Q(FP,, P;).

Proposition 3.6 Let (Mg,~y) be a smooth complete connected finite di-
mensional Riemannian manifold and let Py, Py be closed submanifolds
both contractible in My. Then

C&t(Q(Po, Pl)) > C&t(Po X Pl) .
(For the proof, see [6, Theorem 3.7]).

Proposition 3.7 Let (Mg, ) be a smooth complete connected finite di-
mensional Riemannian manifold and let Py, P; be two of its closed sub-
manifolds. If My is not contractible in itself while both Py and P, are
contractible in My, then Q(Py, P1) has infinite category and possesses
compact subsets of arbitrary high category.

(For the proof, see [9, 10]).

4 Proof of the main theorems

Let M = Mj x R be a static Lorentzian manifold such that (H;) and
(H3) hold; moreover, let Py and P; be two submanifolds of M, which
satisfy (Hj).
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As already remarked in Section 2, now we have to apply the Ljusternik—

Schnirelman Theory to the study of strictly positive critical levels of F
in Q(Po, Pl)

To this aim, first of all we need some more information on F.

Lemma 4.1 The functional F is coercive with respect to ||2]|* = fo &, &)d
i.e.,
F(z) — +o0 if ||Z|| — 4o0.

Proof. By (1.2) the proof is trivial if M is compact.
On the contrary, by the hypothesis (Hs), (2.1) and some comments (for
example, see [4, Lemma 4.1]) it follows that there exists a constant R* > 0
such that

Il
L+ [z
with ¢ < 2. Hence, the proof is complete.

F(z) > R*

U
Proposition 4.2 Taken any a > 0, the functional F satisfies (PS),.
Proof. Taken a > 0, let (x,), C Q(FP, P1) be such that
F(x,) —a and F'(z,) —0  asn — +oo. (4.1)

Clearly, Lemma 4.1 and (4.1) imply that (||4,]|), is bounded; hence, by
(Hj) it follows that (z,), is bounded in Q(P,, P;).
Then, there exists x € H'(I,R") such that, up to subsequences,

r, — r weakly in H'(I,RY), =z, — z uniformly in I.

By Proposition 2.1 it is € Q(F, P1); furthermore, by [2, Lemma 2.1]
there exist two sequences (£,)n, (Vn)n C HY(I,RY) such that

&n €T, QUPy, P1), xp—x=& +1p for all n € N,
& — 0 weakly and v, — 0 strongly in H*(I,RY).  (4.2)

Thus, (4.1) implies that (F(z,)), is bounded and far from zero if n is
large enough; moreover,

o(l) = F'(iﬁln)[ﬁn]
_ (/0 (0 (@) Enlins ) + 2@ )iims n) /

_ 1Ozx b S ﬂ(xn)[én} L
/0< (s u) ds = | o) >2F<xn>

7
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whence,
o(l) = /0(<O/(J7n)[§n]j7mj7n>+2<a(xn)x.”’€”>) ds'/o ﬁ(in) ds
— 10493 Ty, Tp) ds - 1% 5

On the other hand, (¢/(z,)), and (8'(z,)), are bounded while &, — 0
uniformly in I; hence, (5(z,)), bounded and far from zero and (||Z,]|)n
bounded imply

/01<a(xn)§nxn,xn / S s = ol
/Ol(oz(xn Vi, o) / B'(@n)len] ”’” 5” — o(1).

/0 (@), ) ds = o(1),

with z, = x + &, + v,; hence, by (4.2) it follows

So, it is

/0 <&(xn)£n7 £n>d5 = 0(1)

which implies &, — 0 strongly in H*(I,RY).

Lemma 4.3 For all c € R it is
cato(p,p ) (F¢) < 400, (4.3)
where F° = {x € Q(FPy, P1) : F(z) < c}.

Proof. If PyN P, = (), then the result follows by Remarks 2.3 and 3.4.
By the way, more in general, I is not differentiable at level zero but work-
ing as in the proof of Lemma 4.1 it follows that there exists a constant
R > 0 such that

F(a) > R[4, (1.4)

with ¢ < 2 as in (1.3).
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Thus, let us consider the functional
1
g:x € QPFy, P) r—>/ (t,&) ds € R.
0

It can be proved that g is a smooth positive function which satisfies
the Palais—Smale condition at any real level on the manifold of curves
Q(Py, P1); hence, by Remark 3.4 it follows that

cato(p,p)(g ©) < +oo, forall ceR. (4.5)

On the other hand, (4.4) implies that for all ¢ € R there exists ¢ € R
such that F¢ C g ¢ whence, by (4.5) it follows (4.3).

g

Proof of Theorem 1.4. By (H,), Remark 2.3, Proposition 4.2 and The-
orem 3.3 imply that F' has at least cat(2(FPp, P1)) critical points whose
critical levels are the arrival times of the corresponding lightlike normal
geodesics (see Proposition 2.4). On the other hand, the same arguments
apply to . = —F so by Theorem 3.6 the proof is complete.

U

Proof of Theorem 1.5. First of all let us remark that, in general,
Q(Fy, P) can contain some constants; hence, F' attains the value zero.
By the way, in the given hypotheses Proposition 3.7 implies that Iy, # ()
for all k € N (with I'y as in (3.1) with Q = Q(F, P)); so, in order to
apply the result in Remark 3.5, it is enough to prove that a sequence
(k;); C N exists such that

0 < g, < cg with ¢, = inf sup F(z) ifi€ N,

7 1
i+ AEFki €A

Clearly, this is true if we prove that fixed any a > 0 there exists k € N
such that

Bely; = BNEF,#0, (4.6)
where F, = {x € Q(Fy, P1) : F(z) > a}. In fact, (4.6) implies ¢ > a and
the result follows by the arbitrariness of a > 0.
In order to prove (4.6), suppose that it does not hold for some a > 0.
Then, there exists a sequence (B,), of subsets of Q(Fy, P;) such that

cato(p,p)(Brn) >n and B, C F* for alln € N

which implies catq(p,, p)(F*) = +00 in contradiction with Lemma 4.3.

g
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Abstract

Some characterizations of certain semi-Riemannian product, warped
product and twisted product structures of semi-Riemannian manifolds by
the existence of nontrivial solutions to certain partial differential equa-
tions on semi-Riemannian manifolds are surveyed.

1 Introduction

In analysis, mostly the existence of a nontrivial solution to a differential
equation on a certain domain is argued. But in geometry, one can also
argue the existence of a manifold structure for a differential equation to
possess a nontrivial solution. This may be considered as an analytic char-
acterization (or representation) of a manifold structure by a differential
equation if this manifold structure serves as a unique domain structure
for this differential equation to possess a nontrivial solution in a certain
class of manifolds.
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In this survey, we give several analytic characterizations of semi-
Riemannian product, warped product and twisted product structures of
semi-Riemannian manifolds by differential equations, that is, by the ex-
istence of nontrivial solutions to some differential equations on certain
semi-Riemannian manifolds. In Section 3, we survey the analytic char-
acterizations of the above product semi-Riemannian structures of semi-
Riemannian manifolds by the existence of solutions to Eikonal equation,
Obata’s equation and Mo6bius equation in each subsection, respectively.
We mostly concentrate our attention to the cases of Riemannian and
Lorentzian manifolds to obtain the strongest results. Unfortunately, in
generic semi-Riemannian cases, the results are mostly weak when they
involve the linear algebra of indefinite inner product spaces.

In fact, the purpose of this survey paper is to call some attention to
characterizations (or representations) of product semi-Riemannian struc-
tures analytically by differential equations on certain classes of semi-
Riemannian manifolds determined by mild geometric/topological assump-
tions. Although we expect that every manifold structure cannot be
characterized (or represented) by a differential equation, such manifold
structures that can be characterized by differential equations may be
a larger class of manifold structures than semi-Riemannian product,
warped product and twisted product structures of semi-Riemannian man-
ifolds. In any case, having a better knowledge about characterizations
of manifold structures by differential equations may lead us a better
understanding of a possible relation between differential equations and
differential geometric structures.

2 Preliminaries

Here, we briefly state the main concepts and definitions used throughout
this paper.
Let (Mi,g1) and (Ms, g2) be semi-Riemannian manifolds of dimen-

1 2

sions n; and ny with Levi-Civita connections ¥V and V, respectively, and
let f: (M, q1) — (Ma, g2) be a map. We denote the set of vector fields
on M; by I"I'M; and the set of vector fields along f by I'/T'M,. We also

2 2
denote the pullback of ¥ along f by V. Recall that the map

Vi TTM, x I'TM; — T'fT M,
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defined by
(VE)(X,Y) =Yy LY — f(Vy Y)

is called the second fundamental form of f. The trace 7(f) of V f, with
respect to g; is called the tension field of f. That is,

7(f) = traceVf,

=Y (X X)(V (X X,

i=1

where {X1, -+, X, } is a local orthonormal frame for TM;. If Vf, =0
then f is called affine (or totally geodesic), and if 7(f) = 0 then f is
called harmonic.

Let (M, g) be an n-dimensional semi-Riemannian manifold and let
V denote both the Levi-Civita connection and the gradient operator on
(M, g). The Hessian tensor hy of a function f: M — R is defined by
hi(X)=VxVf, where X € I'T'M. Also the symmetric (0, 2)-tensor field
Hy defined on (M, g) by Hf(X,Y) = g(hs(X),Y) is called the Hessian
form of f, where X,Y € I'T'M. We define the Laplacian A f of a function
fon (M,g) by Af =divV f (= trace hy), where div is the divergence.
Note that, in particular, if f = (f1,---, fm): (M, g) — (R™, g), where g
is a semi-Euclidean metric tensor on R™, then

@ 9, = 0
V= ng% of and 7(f)= ;(Aﬁ)% o,
where (z!,--- ,2™) is the usual coordinate system of R™.

Next we recall some notation and terminology on product struc-
tures to be used throughout this note. Let (B, gg) and (F, gr) be semi-
Riemannian manifolds of dimensions r and s, respectively, and let, 7: B x
F — B and 0: B x F — F be the canonical projections. Also let
A B x F — (0,00) be a smooth function. Then the twisted product of
(B,gp) and (F, gr) with twisting function A is defined to be the prod-
uct manifold M = B x F with metric tensor ¢ = gg ® M\gr given
by g = 7 g + M\0*gr. For brevity in notation, we denote this semi-
Riemannian manifold (M, g) by B x ,F. In particular, if A only depends
on the points of B then B x yF' is called the warped product of (B, gg)
and (F, gr) with warping function A.
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A local characterization of twisted and warped products can be stated
in terms of the extrinsic geometry of the foliations Lp and L of the
product manifold M = B x F as follows. Let g be a semi-Riemannian
metric tensor on the manifold M = B x F' and assume that the canonical
foliations L5 and L intersect perpendicularly everywhere. Then g is the
metric tensor of (see [18])

(i) a twisted product B x ,F' if and only if Lp is a totally geodesic
foliation and L is a totally umbilic foliation,

(ii) a warped product B x ,F' if and only if Lp is a totally geodesic
foliation and L is a spheric foliation,

(iii) a usual product of semi-Riemannian manifolds if and only if L5 and
L are totally geodesic foliations.

Note that the condition relating (i) and (ii) in the above is the nor-
mal parallelism of the mean curvature vector field of the totally umbilic
foliation L. This can be equivalently described by a curvature condition
on the Ricci tensor of (M, g) as follows: a twisted product M = Bx ,F'is
indeed a warped product if and only if the Ricci tensor of (M, g) satisfies
Ric(X,V) =0 for every X e 'TB and V € IT'TF [6].

3 Characterizations of Product Semi-Riemannian
Structures

In this section, we survey the known differential equations characterizing
product semi-Riemannian structures, that is, we state the known differ-
ential equations defined on certain classes of semi-Riemannian manifolds
which uniquely determine the certain semi-Riemannian product, warped
product and twisted product structures as their domain structures in the
case of the existence of nontrivial solutions to these differential equations.
In the following subsections, we discuss the characterizations by eikonal
equation, Obata’s equation and Mdobius equation, respectively.

3.1 Characterizations by Eikonal Equation

In this subsection, we state some results related to the characteriza-
tions of certain Riemannian and Lorentzian product structures in semi-
Riemannian geometry by eikonal equation. Let (M, ¢g) be an n-dimensional
semi-Riemannian manifold. A map f: (M,g) — R is said to satisfy an
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eikonal equation on (M, g) if g(Vf,V f) = ko, where kg is either of —1,0
or 1. (See [10, Chapter 6]).

Here, from the viewpoint of this survey, we consider special cases
of eikonal equation on Riemannian and Lorentzian manifolds where we
obtain the strongest splitting results due to this equation.

Proposition 3.1 Let (M, g) be an n(> 2)-dimensional Riemannian (re-
spectively, Lorentzian) manifold and f: (M,g) — R be a map. Then, f
satisfies the equation g(Vf,V f) =1 (respectively, g(Vf,Vf)=—1) on
(M,g) if and only if f: (M,g) — (R,dt?) (respectively,
f: (M, g) — (R, —dt?)) is a semi-Riemannian submersion.

Proof. See [10, Proposition 6.1.1].

O

In fact, the following property of the solutions to eikonal equations
in the above proposition yields the characterization of semi-Riemannian
product structures by a splitting result of Innami [12]. In the Proposi-
tion below, by the timelike nonnegative Ricci curvature of a Lorentzian
manifold (M, g), we mean Ric(z,z) > 0 for all timelike z € T'M. This
condition is also called timelike convergence condition in relativity the-
ory.

Proposition 3.2 Let (M, g) be a connected, n(> 2)-dimensional com-
plete Riemannian (respectively, timelike geodesically complete Lorentzian)
manifold with nonnegative (respectively, timelike nonnegative) Ricci cur-
vature, and let f: (M,g) — R be a map. If f satisfies the equation
gV, Vf) =1 (respectively, g(Vf,NVf) = —1) on (M,g) then f is an
affine map on (M, g), that is, Hy = 0.

Proof. See [10, Proposition 6.2.5].

O

Remark 3.3 In the proof of the Lorentzian case of the above theorem,
the diagonalizability of the Hessian tensor of f satisfying eikonal equation
g(Vf,V[f)= —1plays acrucial role. In general, this is not true in generic
semi-Riemannian manifolds. Indeed, solutions of the Eikonal equation
with nondiagonalizable Hessian tensor are constructed in [11] for non-
Lorentzian signatures.
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Hence, by using the Main Theorem of [12], we obtain the following
splitting result due to eikonal equation.

Theorem 3.4 Let (M, g) be a connected, n(> 2)-dimensional complete
Riemannian (respectively, timelike geodesically complete Lorentzian) man-
ifold with nonnegative (respectively, timelike nonnegative) Ricci curva-
ture. Then, a necessary and sufficient condition for (M, g) to be isomet-
ric with a Riemannian (respectively, Lorentzian) product (Rx N, dt*®gy)
(respectively, (R x N, —dt> ® gn)) is the existence of a nonconstant map
f: (M,g) — R satisfying the equation g(Vf,Vf) = 1 (respectively,
g(Vf,Vf)=—1)on (M,g), where (N, gn) is a Riemannian manifold.

Proof. See [10, Theorem 7.2.2] and [10, Theorem 7.3.2].
U

Remark 3.5 Note here that, by the above theorem, the differential
equation g(Vf,Vf) = 1 (respectively, g(Vf,Vf) = —1) on a con-
nected, n(> 2)-dimensional complete Riemannian (respectively, time-
like geodesically complete Lorentzian) manifold (M, g) with nonnega-
tive (respectively, timelike nonnegative) Ricci curvature, has a nontriv-
ial solution if and only if its domain manifold (M, g) is a Riemannian
product (R x N,dt* @ gy) (respectively, a Lorentzian product (R x
N, —dt* @ gn)). Hence the differential equation g(Vf,Vf) = 1 (re-
spectively, g(Vf,Vf) = —1) may be considered as an analytic charac-
terization (or representative) of Riemannian products (R x N, dt* @ gn)
(respectively, Lorentzian products (R x N, —dt* @ gy)) among the con-
nected, n(> 2)-dimensional complete Riemannian (respectively, timelike
geodesically complete Lorentzian) manifolds (M, g) with nonnegative (re-
spectively, timelike nonnegative) Ricci curvature.

Finally in this subsection, we state a result of Sakai [19] related to
eikonal equation characterizing a specific warped product in Riemannian
geometry.

Theorem 3.6 Let (M, g) be a connected, n(> 2)-dimensional complete
Riemannian manifold with Ric(z,z) > —(n — Dk, k > 0, for all unit
z € TM. Then, a necessary and sufficient condition for (M,g) to
be isometric with a Riemannian warped product (R x N,dt* & ¢*gn),

where ¢(t) = e=VE and (N,gn) is a complete Riemannian manifold
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of nonnegative Ricci curvature, is the existence of a monconstant func-
tion f: (M, g) — R satisfying the equations g(V f,Vf) =1 and |Af]| =
(n—1)k on (M,g).

Proof. See [19, Theorem 3.5] and [19, Remark 3.6].
0J

Remark 3.7 As in Remark 3.5, by the above theorem, the simultane-
ous differential equations g(Vf,Vf) = 1 and |Af| = (n — 1)k, k > 0,
may be considered as an analytic characterization (or representative) of
Riemannian warped products (R x N, dt2 & ¢%gy), where ¢(t) = e*VH
and (N, gn) is a complete Riemannian manifold of nonnegative Ricci cur-
vature, among the connected, n(> 2)-dimensional complete Riemannian
manifolds (M, g) with Ric(z,z) > —(n—1)k, k > 0, for all unit z € T M.

From the viewpoint of this survey, here we only considered the
strongest consequences of eikonal equation related to splitting results for
Riemannian and Lorentzian manifolds. More detailed analysis of eikonal
equation in semi-Riemannian geometry may be found in [10]. Also a de-
tailed analysis of eikonal equation in Riemannian geometry may be found
in [7] and [8].

Note that timelike eikonal equation has a special significance in gen-
eral relativity. In fact, a spacetime (M, g) is stably causal if and only
if there exist a real function with timelike gradient (||Vf|| < 0), i.e., a
solution of the timelike eikonal inequality. Now, it is easy to check the
existence of a conformal metric on M where the timelike eikonal equation

admits a solution. Indeed, f itself satisfies gc(% f,% f) = —1, where

ge = (—g(Vf,Vf))g and V is the ge-gradient operator. Then, one has
the following singularity versus splitting result [9]

Theorem 3.8 Let (M,g) be a stably causal spacetime. Then, either
(M, g.) is timelike geodesically incomplete or else, (M, g) is conformally
diffeomorphic to a parametrized Lorentzian product (R x N, —(dt ® dt) ®
gt), where g. = —g(Vf,Vf)g and f is a time function for a synchroniz-
able reference frame on (M, g).

In particular, if there exists a proper time synchronizable reference
frame on (M, g) then, either (M, g) is timelike geodesically incomplete or
else, (M, g) is isometric to timelike geodesically complete a parametrized
Lorentzian product (R x N, —(dt @ dt) & g).
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Recall here the construction of a parametrized product structure. Let
(a,b) be an open interval in R furnished with the usual negative definite
metric tensor —dt ® dt, where t is the usual coordinate on (a,b). Let N
be a manifold and let g; be a smooth 1-parameter family of Riemannian
metric tensors on N parametrized over (a,b). Then the parametrized
Lorentzian product of (a,b) and N is defined to be the product manifold
M = (a,b) x N with Lorentzian metric tensor g = —(dt ®dt) @ g;, where
¥ : (a,b) — (0,00) is a smooth function.

Note that, if (M, g) = ((a,b) x N, —p(dt @dt) ® g;) is a parametrized
Lorentzian manifold then (M, g) is a stably causal spacetime. Indeed, if
f=torl: M — R, then g(Vf,Vf) = —ﬁ < 0. In particular, if
1 = 1 then f = tox! is a solution of the timelike eikonal equation of

(M, g).

Remark 3.9 Special cases of parametrized Lorentzian products are as
follows

(i) If g:(q) = \¢t,q)%gn(q), where X : (a,b) x N — (0,00) and gy
is a fixed Riemannian metric on N, then (M, g) is the Lorentzian
twisted product of ((a,b), ¥ (dt ® dt)) and (N, gy) with twisting
function A.

(i) If g; = A(t)?gn, where A : (a,b) — (0,00) and gy is a fixed Rieman-
nian metric on N, then (M, g) is the Lorentzian warped product of
((a,b), ¥(dt ® dt)) and (N, gyn) with warping function A.

(iii) If g; = gn, where gy is a fixed Riemannian metric tensor on N, then
(M, g) is the Lorentzian product of ((a,b), ¥(dt ® dt)) and (N, gn).

Note here that the special cases above can be detected through the
eikonal equation, under some additional conditions on the solutions (cf

[9])-

3.2 Characterizations by Obata’s Equation

In this subsection, we state some results related to characterizations of
certain Riemannian product and warped product structures in Rieman-
nian geometry by Obata’s equation. On an n(> 2)-dimensional Rieman-
nian manifold (M, g), the differential equation Hy + kfg = 0, k € R,
where f: (M,g) — R is a function, is known as Obata’s equation. In
fact, the existence of a nontrivial solution to the equation Hy + kfg =
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0, k > 0, on a connected, n(> 2)-dimensional complete Riemannian man-
ifold (M, g) has a very strong consequence that (M, g) is isometric with
the Euclidean sphere S™(k) of sectional curvature k. (See [36, Theorem
A], and also [1] for a survey of known results related to the characteriza-
tions of certain rank-one symmetric Riemannian manifolds by differential
equations). However the differential equation Hy + kfg = 0, k < 0, is
not as deterministic in characterizing its domain Riemannian manifold
(M, g) as in the case of £ > 0. Yet the results obtained by Kanai [13] for
the case & < 0 of Obata’s equation are of interest from viewpoint of this
survey in characterizing certain Riemannian product and warped prod-
uct structures in Riemannian geometry. First we consider the case k =0
in Obata’s equation. In fact, the theorem below is also a consequence of
the Main Theorem of [12].

Theorem 3.10 Let (M, g) be a connected, n(> 2)-dimensional complete
Riemannian manifold. Then, a necessary and sufficient condition for
(M, g) to be isometric with a Riemannian product (R X N,dt* ® gy)) is
the existence of a nonconstant map f: (M, g) — R satisfying the equation
Hy =0 on (M,g), where (N, gn) is a Riemannian manifold.

Proof. See [13, Theorem B| or [20, Theorem 2].
U

Remark 3.11 As in Remark 3.5, by the above theorem, the equation
H; = 0 may be considered as an analytic characterization (or represen-
tative) of Riemannian products (R x N, dt? ® gx) among the connected,
n(> 2)-dimensional complete Riemannian manifolds (M, g).

Concerning the case £k < 0 of Obata’s equation, Kanai showed in
[13] (also see [20]) that, a necessary and sufficient condition for a con-
nected, n(> 2)-dimensional complete Riemannian manifold (M, g) to be
isometric with a connected component H' (k) of the real hyperbolic space
H"(k) of sectional curvature k(< 0) (respectively, with a warped prod-
uct of the Euclidean line and a complete non-Fuclidean Riemannian
manifold, where the warping function ¢: R — R* satisfies the equa-
tion ¢" + k¢ = 0, k < 0), is the existence of a nonconstant function
f: M — R with a critical point (respectively, without critical points)
satisfying the equation Hy + kfg = 0, k < 0, on (M,g). Note here
that, a connected component H'; (k) of the real hyperbolic space H" (k)
of sectional curvature k(< 0), is the warped product of the Euclidean
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line and the Euclidean space with warping function ¢(t) = e*V=* on R.
Thus, we combine the above two results of Kanai to give a characteriza-
tion of certain warped products in Riemannian geometry by differential
equations.

Theorem 3.12 Let (M, g) be a connected, n(> 2)-dimensional complete
Riemannian manifold. Then, a necessary and sufficient condition for
(M, g) to be isometric with a Riemannian warped product (R x N, dt* &
&*gn), where (N, gn) is a complete Riemannian manifold and the warp-
ing function ¢ satisfies the equation ¢" + k¢ = 0, k < 0, is the ex-
istence of a monconstant function f: M — R satisfying the equation
Hi+kfg=0,k<0, on (M,g).

Proof. See [13, Corollary E].
O

Remark 3.13 As in Remark 3.5, by the above theorem, the equation
H;y+kfg=0, k<0, may be considered as an analytic characterization
(or representative) of Riemannian warped products (R x N, dt* ® ¢*gn),
where (N, gy) is a complete Riemannian manifold and warping function
¢ satisfies the equation ¢"+k¢ = 0, k < 0, among the connected, n(> 2)-
dimensional complete Riemannian manifolds (M, g).

Remark 3.14 Note that, Theorem 3.6 has a similar prediction (in fact,
stronger) as of Theorem 3.12. Indeed, it can be shown by using the
Bochner identity $Ag(Vf,Vf) = ||| + Ric(Vf,Vf) + g(VAF, V)
(see [10, pag. 79]) and the fact that ||h]|* > (7%22 for a function f sat-
isfying ¢(Vf,Vf) =1 on an n(> 2)-dimensional Riemannian manifold
(M, g) that, the function f in the statement of Theorem 3.6 also satisfies
the equation Hy —kfg =0, (k > 0), on the Riemannian manifold (M, g)

in the statement of Theorem 3.6.

3.3 Characterizations by Mobius Equation

In this subsection, we state some results related to the characterizations
of certain semi-Riemannian twisted product and warped product struc-
tures in semi-Riemannian geometry by Mobius equation. Let (M, g;)
and (Ms,g2) be semi-Riemannian manifolds of dimensions dim M; =
ny > ng = dim My > 1. A submersion f: (M, g1) — (Ma, g2) is called
nondegenerate if the fibres of f are semi-Riemannian submanifolds of
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(Mi,g1). (Note that, if (M, g1) is connected then these fibres are all
semi-Riemannian submanifolds of the same metric index).

Definition 3.15 Let (M, g1) and (Ms, go) be semi-Riemannian mani-

folds of dimensions ny > no > 1. A nondegenerate submersion
f: (M, q1) — (Ms, go) is said to satisfy the local Mébius equation if

Vi) = g xy

(V)X U) = 0
for all X,Y € Tkerf, and U € T'(ker f,)*.

Now we state a local characterization of semi-Riemannian twisted
products by the local Mobius equation.

Theorem 3.16 Let (M, g1) and (Ms,g2) be semi-Riemannian mani-
folds of dimensions ny > ny > 1. If there exists a nondegenerate sub-
mersion f: (M, g1) — (Ma, go) satisfing the local Mdébius equation then
(My, g1) is locally a semi-Riemannian twisted product (M{ x M3, g &
\2g3), where (M}, gi) and (M%,g?) are semi-Riemannian manifolds and
f: M} x M} — M is the projection.

Conversely, if (M, g1) = (M{ x M, gt ®N?g?) is a semi-Riemannian
twisted product, where (M}, g}) and (M%, g}) are semi-Riemannian man-
ifolds, then the projection map m: M} x M} — M} satisfies the Mobius
equation.

Proof. See [3, Theorem 1] and [3, Theorem 2].
0J

Remark 3.17 Note that, by the above theorem, the local M6bius equa-
tion may be considered as an analytic characterization (or representative)
of locally twisted product semi-Riemannian manifolds.

Recall that a map f: (My,g1) — (Ma, g2) between semi-Riemannian
manifolds (M, g1) and (Ma, g2) is called harmonic if f satisfies the differ-
ential equation 7(f) = 0. Also, with this additional differential equation
to the local Mobius equation, we can characterize locally product semi-
Riemannian manifolds.
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Theorem 3.18 Let (M, g1) and (M, g2) be semi-Riemannian mani-
folds of dimensions ny > no > 1. If there exists a nondegenerate sub-
mersion f: (M, g1) — (Ma, go) satisfying the local Mébius equation with
7(f) = 0 then (My,q1) is locally a semi-Riemannian product (M x
M, gl & g?), where (M}, g}) and (M}, g?) are semi-Riemannian mani-
folds and f: M} x M? — M is the projection.

Conversely, if (My,g1) = (M} x M2, gt ® g3) is a semi-Riemannian
product, where (M}, gt) and (M2, g?) are semi-Riemannian manifolds,
then the projection map w1 : M{x M? — M} satisfies the Mobius equation
with T(m ) = 0.

Proof. See [3, Corollary 1].
U

Remark 3.19 Note that, by the above theorem, the local M6bius equa-
tion together with the equation 7(f) = 0, may be considered as an ana-
lytic characterization (or representative) of locally product semi-
Riemannian manifolds. Note also that, if (M, g1) = (M, g) is a Rieman-
nian manifold and (M, g.) = (R,dt?) in the above theorem, then we
obtain a local version of Theorem 3.10.

Also, with an additional differential equation to the local Md&bius
equation, we can characterize locally warped product semi-Riemannian
manifolds.

Theorem 3.20 Let (M, g1) and (Ms,g2) be semi-Riemannian mani-
folds of dimensions ny > no > 1. If there exists a nondegenerate sub-
mersion f: (M, 1) — (Ms, g2) satisfying the local Mébius equation with
(VVINX,Y,Z) =0 for all X,Y,Z € Tkerf, then (M, g1) is locally a
semi-Riemannian warped product (M} x M2, gl & N\2g?), where (M}, gi)
and (M3, g?) are semi-Riemannian manifolds and f: M} x M} — M is
the projection.

Conversely, if (My, g1) = (M} x M}, gi ®\2¢?) is a semi-Riemannian
warped product, where (M}, gi) and (M}, g}) are semi-Riemannian man-
ifolds then the projection map w: M} x M} — M} satisfies the Mébius
equation with (VVT)(X,Y,Z) =0 for all X,Y,Z tangent to the copies
of M? in M} x M}.

Proof. See [3, Theorem 4] and [3, Theorem 5].
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Remark 3.21 Note that, by the above theorem, the local M6bius equa-
tion together with the equation (VV f,)(X,Y,Z) = 0 for all X,Y,Z €
TCker f., may be considered as an analytic characterization (or represen-
tative) of locally warped product semi-Riemannian manifolds.

It is shown in [6] that, a semi-Riemannian twisted product (M, g) =
(N1 x Na, gn, © N?gy,) can be written as a warped product if and only if
(M, g) is mixed Ricci-flat, that is, Ric(X,U) = 0 for all X and U tangent
to the copies of Ny and Ny in Ny X Ny, respectively. (See [6, Theorem
1]). Thus, we also have the following version of Theorem 3.20.

Theorem 3.22 Let (M, 1) and (Ms,g2) be semi-Riemannian mani-
folds of dimensions ny > ny > 1. If f: (My,91) — (Ms, g2) is a nonde-
generate submersion satisfying the local Mébius equation and Ric(X,U) =
0 for all X € Tkerf, and U € T'(kerf,)* then (My, g,) is locally a semi-
Riemannian warped product (M} x M3, gt & Ng?), where (M}, g1) and
(M}, g3) are semi-Riemannian manifolds and f: M} x M} — M} is the
projection.

Conversely, if (My, g1) = (M x M2, gi ®X?g?) is a semi-Riemannian
warped product, where (M7}, g1) and (M3, g}) are semi-Riemannian man-
ifolds, then the projection map m : M} x M? — M satisfies the Mdbius
equation and Ric(X,U) = 0 for all X and U tangent to the copies of M
and M? in M} x M}, respectively.

Proof. Immediate from Theorem 3.16 and [6, Theorem 1].

O

In literature, a function f on an n(> 2)-dimensional semi-Riemannian
manifold (M, g) is said to satisfy the Mébius equation if

Hy—df @ df —_[Af — (V1 V)lg =0

on (M, g). (See [17]). Also, by making the transformation ¢t = e~/ the
Mobius equation becomes the

At
H = —y
n

on (M, g), which we call the localized M6bius equation. (Indeed, if ¢ is a
solution of the equation H;, = %g then f = —log |t| satisfies the M&bius
equation Hy—df @df —2[Af—g(V f, Vf)]g = 0 on the subset of M where
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t # 0). The localized Mobius equation has been analyzed in the literature
in detail. (See for example, [14] and [15] and the references therein). One
of the results related to localized Mobius equation which is of interest
from viewpoint of this survey is the following: Let (M, g) be an n(> 2)-
dimensional semi-Riemannian manifold. If a nondegenerate submersion
f: (M, g) — R satisfies the equation Hy = %g on (M,g) then (M, g)
is locally a semi-Riemannian warped product of a semi-Euclidean open
interval and a semi-Riemannian manifold. (See [15, Lemma 2.3]).

Meanwhile note that, if such an f satisfies the local Mobius equation
then, by Theorem 3.16, (M, g) is locally a semi-Riemannian twisted prod-
uct of a semi-Euclidean open interval and a semi-Riemannian manifold.
The reason is, in the latter case, f satisfies the equations Hy(X,Y) =
2Lg(X,Y)and Hy(X,U) = 0forall X,Y € Tker f+ and U € I'(ker f,)*.
But this yields loss of information which is used to show that the totally
umbilic semi-Riemannian fibres of f are spherical. (See [14, Lemma 11]).
In fact, this lack of information is recovered in Theorem 3.20 and The-
orem 3.22 with additional assumptions. Nevertheless, the local Mobius
equation is of interest in relativity theory. Although the time functions
of physically realistic spacetimes do not satisfy localized M&bius equa-
tion, they satisfy local Mobius equation, hence yield splitting results for
these spacetimes. For example, see [4] and [5] for the applications of local
Mobius equation in relativity theory.
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Abstract

In a Lorentzian space (or more generally in a pseudo-Riemannian
space) appears a class of submanifolds where the induced metric is degen-
erate; they are called lightlike submanifolds. This work tries to give some
relations between geometric objects of a lightlike submanifold and those
ones of a Riemannian submanifold in a Lorentzian space. These rela-
tions allow us to obtain some characterization results for totally geodesic
submanifolds in Lorentzian space forms.

2000 Mathematics Subject Classification: 53B30, 53C50, 53A04.

1 Introduction

It is well-known that in a Lorentzian manifold we can find three causal
types of submanifolds: spacelike (or Riemannian), timelike (or Lorentzian)
and lightlike (degenerate or null), depending on the character of the in-
duced metric on the tangent space. The growing importance of lightlike
submanifolds in global Lorentzian geometry, and their use in general
relativity, motivated the study of degenerate submanifolds in a semi-
Riemannian manifold. Due to the degeneracy of the metric, basic differ-
ences occur between the study of lightlike submanifolds and the classical
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theory of Riemannian as well as semi-Riemannian submanifolds (see, for
example, [1], [3], [5], [7), [11], and [14]).

Lightlike submanifolds (in particular, lightlike hypersurfaces) appear
in many papers in physics. For instance, the lightlike submanifolds are
very interesting in general relativity, since they produce models of dif-
ferent types of horizons (event horizons, Cauchy’s horizons, Kruskal’s
horizons). The idea that the Universe we live in can be represented as a
4-dimensional submanifold embedded in a (4+d)-dimensional space-time
manifold has attracted the attention of many physicists. Higher dimen-
sional semi-Euclidean spaces should provide a theoretical framework in
which the fundamental laws of physics may appear to be unified, as in
the Kaluza-Klein scheme. Lightlike hypersurfaces are also studied in the
theory of electromagnetism (see, for example, [4], [15] and [16]).

In the following section we introduce the necessary geometric objects
to study the geometry of lightlike submanifolds. The aim of this work is
to relate the geometry of a lightlike submanifold in a Lorentzian space
with the geometry of a Riemannian submanifold in the same ambient
space. Making use of the well known results in the non-degenerate ge-
ometry we obtain some interesting results for lightlike submanifolds. In
the last section, and as an application of the results obtained before,
we completely describe the totally geodesic lightlike submanifolds in a
Lorentzian space of constant curvature.

2 Preliminaries

Let (M, N°) be an (n + 1)-dimensional Lorentzian manifold endowed
with a metric g (also denoted by (,)). An m-dimensional submanifold
P™ in M is said to be a lightlike submanifold if the induced metric
on P™ is degenerate. In the sequel, and for simplicity of notation, we
will write M and P instead of M7 and P™, respectively. Also, we will
suppose that m > 3.

The notation and basic facts on lightlike submanifolds are taken from
[5]. The tangent vector bundle on M restricted to P can be, not uniquely,
decomposed as

TM|p=TP & tr(TP) = S(TP)L(K & K)LS(TP"), (2.1)

where K is the 1-dimensional radical distribution of TP, that is, K =
TPNTP*, K is called a lightlike transversal vector bundle, and S(T'P)
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and S(TP1) are called a screen distribution and a screen transversal
vector bundle of P, respectively. They satisfy

TP=S(TP)LK and TP*=S(TP+)LK.
Bearing in mind the decomposition
TM|p=TP&tr(TP),
we obtain the Gauss formula for lightlike submanifolds,
NYY =VxY +0(X,Y), forall XY e 'TP,

where VxY = (NV2Y) " and 0(X,Y) = (NY)" stand for the tangential
and transversal parts, respectively. V is called the induced connection
on P and 6 the lightlike second fundamental form of P C M, which is
bilinear and symmetric. If U and X are normal and tangent sections,
respectively, we can consider

Ap(X) = =S (NxU),

where S : I'TP — ['S(T'P) denotes the projection map on the screen
distribution. The operator Ay is called the lightlike shape operator with
respect to the section U. The properties of these operators can be found
in [5]. Now we will restrict our attention on a special type of lightlike
submanifolds defined by Kupeli, [11].

Definition 2.1 A lightlike submanifold P of M is said to be irrotational
if Ny& € TTP for all tangent section X of P, where £ is a section of the
radical distribution K.

It is easy to check that this definition is independent of the choice of &,
and equivalent to the condition 6(X, &) = 0 for any decomposition.

A submanifold P is called geodesic or totally geodesic if it contains the
geodesics of M which are somewhere tangent to it. In other words, if q €
P and v € T, P, then the geodesic v in M with initial conditions v(0) = ¢
and 7/(0) = v lies in P. This is equivalent to saying that the vector fields
on P are invariant by covariant derivation (this equivalence is valid for
all torsion free connections, [9]). Although there is no way to induce
connections on arbitrary lightlike submanifolds, the totally geodesic ones
have such a connection, which is compatible with the degenerate metric
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but not derived from it, as degenerate metrics do not have Levi-Civita
connections.

Trivial examples of irrotational submanifolds are the totally geodesic
lightlike submanifolds, since N3Y = VxY, or equivalently, § = 0. An-
other important example are the lightlike hypersurfaces, since (N3E, &) =
0 and so the transversal part vanishes.

Definition 2.2 Let P be an m-dimensional lightlike submanifold of an
(n 4+ 1)-dimensional Lorentzian manifold M. We say that P is a to-
tally umbilical lightlike submanifold if for all U € TP, there exist a

differentiable function Ay verifying
Ap(X) =A\SX, forall X e I'TP. (2.2)

This definition is independent of the choice of the distribution S(7'P).
If P is an irrotational lightlike submanifold, for ¢ € TK, U € I'TP+
and W € I'S(T'P), we have

(NEUW) = = (NEW,U) =0,
then S(NfU) = 0, which implies
Ap(X) = Ay(SX), forallU e TTPH X € TTP. (2.3)

From now on, {E1,..., Eyn_1,§,n,Ny,..., Ny} will denote a pseudo-
orthonormal basis of T'M|p adapted to the decomposition (2.1), where

E;, € TS(TP), N; e 'S(TP*), ¢ e TK, n € 'K, satisfying

<E17EZ> = <Nj7Nj> = <5777> = 17 <£7£> = <7]777> = 0.

The following proposition can be found in [11, page 80]. Here we
present a different point of view.

Proposition 2.3 Let P be an m-dimensional irrotational lightlike sub-
manifold of a Lorentzian manifold M. The following statements are
equivalent:

(i) There exist a transversal section H satisfying that

0(X,Y)=(X,Y)H, foral X,Y eI'TP.

(i1) P is totally umbilical.
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Proof. Let {Ey,..., Eyn_1,§,m, N1, ..., Ny} be a pseudo-orthonormal
basis adapted to T'M|p. We claim that 0(X,Y) = 0(SX,SY) for X, Y €
['"T'P. The proof is a consequence of the following computation

0(SX,SY) = (Ngx SY, &) n+ Y (NgxSY, Nj) N;
j=1
:_<N§X€>SY>U_ Z<NSOXNJ78Y> Nj (24>
j=1
= (A(SX), SY)n + (AN, (SX),SY) N;.

1

3

J

Let us assume (i). Then 0(SX,SY) = (SX,SY) H, H being
H =X+ M\Nj, (2.5)
j=1

and so, combining this equality with (2.4), we obtain
(Ae(5X),8Y) =A(SX,8Y), (Ay,(SX),SY) =), (5X,5Y).
These equations are equivalent to
(Ae(SX) = ASX,SY) =0, (An,(SX)—X5X,5Y)=0
VX,Y € I'TP, which imply
Ae(X) = Ac(SX) = ASX,  An,(X) = An,;(SX) = \;5X
VX,Y € I'TP. Taking into account that {&, Ny,..., N,_,,} is a basis of
T P+, we obtain (ii).
Conversely, if P is totally umbilical, then equation (2.2) implies that
there exist differentiable functions A, \; satisfying A¢(X) = ASX and

An;(X) = A;8X for all X € I'T'P. Substituting these equalities in (2.4)
we complete the proof.

O

If P is irrotational, we know that S(NZ€) = 0, and so there exist a
differentiable function p such that Ngg = —p&. As a consequence of this
computation we have the following result.
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Proposition 2.4 Let P be an irrotational lightlike submanifold of a
Lorentzian manifold M. Then the integral curves of & € 'K are null
pregeodesics of M.

Proof. Let h be a function such that {(logh) = p, and take & = hé.
It is easy to check that A/ % & = 0, hence the integral curves of ¢ are
geodesics and, in consequence, the integral curves of £ are pregeodesics.

g

The above statement is true for all lightlike hypersurfaces. Further-
more, if M have constant curvature, it is well know that the null geodesics
are null lines, which implies that P is swept out by null lines.

3 Lightlike submanifolds and submersions

Let P be an m-dimensional lightlike submanifold immersed in an (n+1)-
dimensional Lorentzian manifold M by ¢ : P — M. Let 7 : M — B
be a Lorentzian submersion of codimension one (that is, dim(B)=1), and
set m = mo1. Let us assume that 7 : P — B = 7(P) is a submersion,
or equivalently, P is not contained in any fiber of 7.

Let us denote by F; and ¥; the fibers of m and 7, respectively. It is
clear that ¥; is a Riemannian submanifold immersed in F;. The following
diagram illustrates the situation:

(Fo Np) —— (M,N°) —"— B

St L w

SN —2> (P,V) —— B= n(P)

The Levi-Civita connections ./T/;O and Ji\/'t on F; and >, respectively,
can be extended to connections A and A on the vertical distributions
V(TM) and V(TP), respectively.

Our aim now is to define geometric objects with respect to these
submersions.

Definition 3.1 Let P be a lightlike submanifold of a Lorentzian man-
ifold M and w : M — B a submersion as before. The screen vector
bundle S(T'P) = V(TP) on P is called the canonical screen distribution
associated to the submersion .



ANGEL FERRANDEZ, ANGEL GIMENEZ AND PASCUAL LUCAS 131

Bearing in mind the above diagram, definitions and notations, we
can split the tangent vector bundle T M |p in a different way from (2.1),
as follows,

TM|p=V(I'M)|pLH(TM)|p
= (V(TP)LV(TP)*") LH(TM)|p (3.2)
=S(ITP)& (V(TP)"LH(TP)),

where V(T P)* denotes the orthogonal of V(T'P) in V(T'M)|p. Com-
paring the decompositions (2.1) and (3.2) we deduce

(K® K)LS(TP*)= V(TP):L H(TP).

Let x € H(TM) be a unit local basic vector field with respect to 7
and write x = x|p € H(TP). Since P is not contained in any fiber of
7, then (£, x) # 0 for £ € 'K, so that K & H(TP) is a hyperbolic plane.
Choose K suchthat 1= K® K = K@ H(TP). We can construct local
frames {&,n} and {N, x}, with N € V(TP)* and n € K, satisfying

e=(N,N)=—(x. ), 52%(N+ 0. n=(V- ). (33

where e = +1. In this case S(T'P1) is necessarily the orthonormal com-
plementary of span {N} in V(T'P)*.

Definition 3.2 The section & and the vector bundle S(TPL) defined
above are called the canonical radical section and the canonical screen
transversal vector bundle associated to the submersion .

If M is time-oriented, we can choose £ and n pointing out to the future.
In this case they are completely determined by the submersion 7. Under
these conditions, if {Ng = N, Ny,..., N,,_,,} is a basis of V(T'P)*, where
{Ni, ..., Np_n} expands the canonical screen transversal vector bundle,
we consider the operators

Ay, : V(TP) — V(TP) o: V(T'P)x V(TP) — V(T'P)*
- N i
W~ = V(NI?VNj) (Wi, Wy)  ~ ( 17VIW2>
where 0 < 7 < n —m. Moreover, these operators restricted to each fiber

are the shape operator respect to N; and the second fundamental form
of the immersion v, : ¥, — F;, respectively.
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On the other hand, bearing in mind the diagram (3.1), we can con-
sider the operators defined by

~

A V(TM) — V(M) 6°: V(TM) x V(TM) — H(TM)
Voo —Npx (Vi.Va)  ~  H (N} Va)

These operators, restricted to each fiber F;, are the shape operator and
the second fundamental form of the immersion #; : F; — M. We will
consider both operators acting on V(T'M)|p.

We can write the following equations relating the above geometric
objects,

WVe = N Va + 6, Vo) = Ny Vo — 2 (A°(V0), W2) x,
1;/1W2 = '&\/'W1W2 + U(W17W2)

= N, Wy + € ( Ay (W1), Wa) N + 3 ( Aw, (W), Wa) Ny,
j=1

(3.4)

where Wy, Wy are sections on V(T'P) = S(T'P) and V;, V; are sections on
V(TM)|p. These equations restricted to each fiber represent the Gauss
equations of both immersions F; C M and ¥, C F;, respectively.

We are going to state some results relating the different geometric
objects defined above. From these relationships we will obtain interesting
applications for particular cases.

Proposition 3.3 Let P be an m-dimensional irrotational lightlike sub-
manifold of an n + 1-dimensional Lorentzian manifold M, and let
m: M — B be a totally umbilical semi-Riemannian (Riemannian or
Lorentzian) submersion. Let S(T'P) be the canonical screen distribution,
& the canonical radical section associated to m and {N, N1,..., Ny_n} an
orthonormal basis of V(T P)*. Then the following statements hold:

(i) Ny & = Ae(W), for all W € T'S(TP).

(ii) An; = An, for 1 <i<n—m, and A¢ = \%( An + pld), where p

is the differentiable function satisfying the equation AO(V) = uV.

Proof. (i) By hypothesis, N3¢ is a section of TP. The proof follows by
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showing that (N3,€, 1) = 0. Indeed,

L s v _
ENW(NJr X); \/E(N X)>
= 2 (= VN, X0+ (N 0 )
=Ny x, N)

- s<—AO(W),N> —0.

Wi =

(ii) Clearly, Ay, = Ap, since S(T'P) = V(TP). Bearing in mind
the above statement and that the fibers of 7 are totally umbilical, that
is, A°(W) = uW, we obtain

1

V2
1 (o) (o]
=5 (N N + Ny x)
1 Ao Ao
=-7 (NWN A (W)>

1
ZE<AN(W)+MW)‘ -

Proposition 3.4 Let P be an irrotational lightlike submanifold of a
Lorentzian manifold M and m : M — B a totally umbilical submer-
sion with semi-Riemannian fibers F;. Let m be the submersion induced
by m on P with fibers 3;. Then P is totally umbilical if and only if ¥; is
totally umbilical in F; for allt € w(P).

Ae(W) = ——=Nip(N + )

The proof is a direct consequence of Proposition 3.3. In particular, for
totally geodesic lightlike submanifolds we have Ay, =0,1 < j <n—m,
and Ay = —pld. Then if the fibers F; are totally geodesics (u = 0),
then the immersions ¥; C F; are totally geodesics.

4 Applications to Lorentzian space forms

This section contains some applications to Lorentzian manifolds of con-
stant curvature M;""!(c). In particular we describe the totally geodesic
lightlike submanifolds in M}"*'(c). We study separately the ambient
spaces R S"1 and H} .
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Lightlike submanifolds in R}"!

As it is well known, an irrotational lightlike submanifold is swept out
by null geodesics, and these ones can be naturally extended to complete
geodesics. The problem is the appearance of singular points, but we can
work locally.

Fix a vector a € Ry™ such that (a,a) = —1 and consider 7, :
R7*t — R the map defined by m,(z) = (z,a). It is easy to prove
that 7 is a totally geodesic submersion with Riemannian fibers, and =
is a submersion, since P can not be contained in any fiber (they are
Riemannian). In particular, if we choose a = (1,0,...,0) we obtain a
submersion where the fibers are {t} x R".

We have the following situation:

{t} x R0 — RO _To, R

I R

5, 25 P T n(P)

Remark 4.1 Whenever P is a lightlike hypersurface of the (n + 1)- di-
mensional Lorentz-Minkowski space and 7, is as above, with a = (1,0, ...,
the lightlike transversal vector bundle expanded by the vector field n, given
by (3.3), agrees with the canonical lightlike transversal vector bundle in-
troduced in [2] (up to the orientation). In particular, if n = 3, the Gauss
map Nt of the immersion 3; C F; defined by

Ny, — S?
p ~ Nlig(p)

where the N is given by (3.3), agrees with the Gauss map associated to
a lightlike hypersurface P with base ¥, introduced by Kossowski in [10].

It is well-known that the only totally geodesic submanifolds of R"™
are pieces of r-planes, with 2 < r < n. Moreover, the only non geodesic
totally umbilical hypersurfaces of R™ are pieces of spheres. Then from
this fact and by using Proposition 3.4 we deduce the following results
already known.

Proposition 4.2 The only totally geodesic lightlike submanifods in the
Lorentz-Minkowski space Ri™ are pieces of null m-planes.
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Proof. We know that P is sweot out by null lines, and the sections
Y; provided by the submersion 7 are (m — 1)-planes. We only have to
prove that £ is a parallel section with respect to V(T'P) = S(TP). Using
Proposition 3.3 we have

wE=A(W)=0, forall WelS(TP),
which is the desired conclusion.
O

The following result, already proved by Akivis and Goldberg in [1],
can also be easily deduced.

Proposition 4.3 The only totally umbilical lightlike hypersurfaces in
R ' are the lightlike cones.

Proof. Let P be a totally umbilical lightlike hypersurface, then the
fibers X; are spherical. It is easy to see that there are only two lightlike
hypersurfaces that contain the fiber 3;, but we can construct two lightlike
cones containing ;. This concludes the proof.

O

Lightlike submanifolds in the De-Sitter space S'!

Fix a vector a € R?"? such that (a,a) = —1 and consider as before 7, :
R}*? — R the map defined by 7,(x) = (z,a). It is not difficult to prove
that 7, = 7, spt1 is a totally umbilical submersion with Riemannian
fibers. To simplify the computations, choose a = (1,0,...,0). Then,
for each ¢t € R, the fiber F; = 7, !(¢) is a totally umbilical hypersurface
with shape operator A° = wul, where = t/+/t> + 1. Therefore F; have
positive constant curvature 1/(¢? + 1), so that F; is a sphere of radius
V1?2 + 1. Note that the fiber Fy is totally geodesic (u|z = 0). We have

the following situation:

{t} x R*1 v LR T, R
{t} x SM(1/(1 4+ 1?)) —— Syt T2y R- (4.2)

] O

2, I, p T 1(P)
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Proposition 4.4 The m-dimensional totally geodesic lightlike submani-
folds P in the De-Sitter space S}t C RY™ are exactly the intersections
of null (m + 1)-planes in RY* through the origin with Syt

Proof. Consider 7, : S7*' — R with a = (1,0, ...,0), defined as above.
Then the fibers F; are exactly S™(1/(1+#%). Since totally geodesic light-
like submanifolds are swept out by null lines, then it is very important
to study the immersion 3y C Fy = S"(1). We work in Fy because it is
the unique totally geodesic fiber in St

By using Proposition 3.3, for a suitable basis {N, Ny,..., N,_,} of
V(TP)*+, we have

AéZ%(AN—F/LId), ANj: ANj, 1§j§n—m

Then P is totally geodesic if and only if Ay, =0 and Ay = —uld. In
particular, if we restrict these operators to the fiber ¥y, then Ay = 0 and
consequently the immersion >y C S" is totally geodesic. It is well-known
that the totally geodesics submanifolds of S™ are (m — 1)-dimensional
spheres of maximum radius (that is, intersections of m-planes through
the origin with S™). Until now, we have proved that 3 = II" NS"™ where
II™ is an m-plane contained in Fy = R*"!. We are going to prove that &
is a parallel section on X in R} *2,

We denote by v the normal vector field of the immersion S7*! C
R}*? so that the shape operator of ST*! is given by A, = —Id. If
W e S(TP)= V(TP) and ¢ is the canonical radical section, then

Vo, & = NSE+ (A (W), &) v = A (W) = 0.

Let IT be the null (m+1)-plane given by II = II"™ Lspan {v}, where v have
the same direction of &|x,, then it is easy to check that P = II NS},

g

Lightlike submanifolds of the Anti-De Sitter space H} '

We can obtain similar results as in the De Sitter space. Fix a vector
a € Ry such that (a,a) = 1 and let us consider 7, : Ry — R the map
defined by 74(z) = (z,a). Consider my = Tq|yn+1. It can be proved that
T, is a totally umbilical submersion with Lorentzian fibers. The fibers
Fi = m; }(t) are totally umbilical hypersurfaces with shape operator A° =
(—t/\/t2 + 1)I. Then they are of negative constant curvature —1/(1+2)
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and therefore they are pseudo-hyperbolic spaces H}(—1/(1 + t?)). Note
that the fiber F is totally geodesic in H™'. The induced map = is not
in general a submersion, but in this case, since the fibers are again anti
De-Sitter spaces, we can suppose that P is not contained in any fiber
and then 7 is a submersion. Choosing the point a = (0,...,0,1), we are
in the following situation.

{t} x RpH! L Ry T, Rt
5] CR
{t} x Hy(—1/(1 +3)) —— Hj™' " R* (4.3)
th Td) Tz
DA i, P T (P)

Denote by IZIZ;H an (m + 1)-plane through the origin of R}, where i
and r denote the index and the dimension of the radical distribution,
respectively. In the semi-Euclidean space R5™ there exist six different
types of (m + 1)-planes, they are: Iy ", T, T3, 74, T and
gt

" The intersection of (m -+ 1)-planes of index 0 with the Anti De-Sitter
space is empty. On the other hand, IITf" N H{™ is a hyperbolic space
H™ and 55" N HY*' is an Anti De-Sitter space HP*. The following

proposition describes the intersection TI7;™ N H} ™.

Proposition 4.5 The m-dimensional totally geodesic lightlike subman-
ifolds P of the Anti De-Sitter space H Y c Ry are exactly the in-
tersections of the (m + 1)-planes HT{’I in RYT? through the origin with
L

Proof. Consider the submersion 7, : H}*' — R defined above and
let 7 be the submersion induced by m. Similar considerations as in
the De-Sitter space apply to this case, and prove that P is of the form
Yo x £ where ¢ stands for a constant null direction and ¥ is an (m —
1)—dimensional totally geodesic Riemannian submanifold of Fy = HY,
that is, ¥g = H™ !, Actually, we can write ¥y = II™NH", where II" is a
Lorentzian plane of dimension m. Take IITf" = II"™ Lspan {v}, where v
have the same direction of £, then it is easy to show that P = II{'NH{*.

O
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Abstract

In some Lorentzian manifolds the problem of the geodesic connect-
edness can be reduced to a topological problem related to Brouwer’s
degree. This approach allows us to obtain the geodesic connectedness of
some important spacetimes as multiwarped ones or the exterior region
of slow Kerr spacetime. Other related properties of interest can be also
studied.

1 Introduction

This talk is based on the results obtained in the articles [11], [12], [13]
and [14]. Our main aim is to describe briefly a new technique for the
study of the geodesic connectedness in Lorentzian Geometry, that is, the
problem of finding a geodesic joining two given points in a connected
Lorentzian manifold (M, g). This problem is not easy (even if M is com-
pact, the geodesic connectedness may fail), and different techniques have
been developed to solve it (see [23] for a survey). Recall that these tech-
niques are related to methods of groups theory [9], geometrical methods
(introduced in [8] and studied in the book [2]), variational methods (in-
troduced in [3]; see for example [18] or [23]) and methods based on a
direct integration of the geodesic equations (for example [22]). Other
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techniques allow the study of the existence of geodesics with a defined
causal character between two given points. Among the results for these
geodesics, we emphasize the classical Avez-Seifert one: in a globally hy-
perbolic spacetime, two points can be joined by a causal geodesic if and
only if they can be joined by a causal curve.

In Section 3 we introduce our topological technique. Given a splitting
manifold, we give an overview of the steps to obtain conditions which
imply the geodesic connectedness of the manifold.

After a brief description of multiwarped spacetimes, in Section 4 we
stablish the results on geodesic connectedness obtained when the topo-
logical methods are applied to this class of spacetimes. In the particular
case of Generalized Robertson-Walker (GRW) spacetimes, the results on
existence are more accurate and we also give results on multiplicity, con-
jugate points and Morse type relations.

Finally, in Section 5 we apply the technique to Kerr spacetime. Here
we obtain results not only on connectedness but also on non-connectedness
of different natural regions of this spacetime.

From now on, we will assume for the manifolds to be connected.
Given a Lorentzian manifold (M, g), a tangent vector v will be called
timelike (resp. lightlike, causal; spacelike) if g(v,v) < 0 (resp. = 0 and
v#0;<0and v#0; >0o0rv=0).

2 A topological technique

First, let us explain intuitively the relation between geodesic connected-
ness and topological arguments. Consider two points py # p; of a split-
ting manifold M™*!, and fix a topological sphere of the tangent space
to po, S C T,,M, such that the vector 0 is included in the interior of
S. Consider now the subset exp,,sS, for each s € R, yielded by the
geodesics emanating at py (exp,, is the exponential map at pg). Initially,
for small s, p; is outside exp,,sS, but for some bigger s, p; may lie inside
expp,$S. This topological change (from being outside to being inside the
exponential of a sphere) reflects that py and p; can be connected by a
geodesic, and suggest to use a topological argument.

Even though this is quite intuitive, the mathematical formalization
of these ideas is rather long. More precise mathematically, consider the
following steps:

— Step 1. Assume that M is an open subset of R"™!, and consider the
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function
F:DCT,,M=R"" SR F)=1)—-p, (2.1)

where 7, is the unique geodesic starting at py satisfying 7. (0) = v,
for any v € T,,M, and v, is defined at 1 for all v in the domain
D. Now, the zeroes of the function F correspond with geodesics
connecting py and p;. (If M is not included in R™*', assume that
suitable coordinates can be chosen. Otherwise, the structure of the
spacetime may also make useful the idea underlying in (2.1), as in
multiwarped spacetimes).

— Step 2. Suppress the degree of freedom associated to the repara-
metrization of the geodesics and reduce the problem to find zeroes
of a new function F : D — R"™, where the new domain D is also
included in R".

— Step 3. Assume that, as in most classical spacetimes, a partial inte-
gration of the geodesics equations can be done (by Noether Theorem
this is possible if there exist Killing vector fields on M). Then, when
possible, rewrite F and D in terms of the constants of motion as-
sociated to the partial integration or Killing vector fields (typically,
D may be chosen as a compact n-rectangle).

— Step 4. If F satisfies certain conditions at the boundary of D then
Brouwer’s topological arguments may imply the existence of a zero.
In dimension n = 1 these conditions will be quite trivial: if [a,b] C
D and F(a) - F(b) < 0 then F will have a zero. For dimension
n = 2 and, say, [a,b] x [a/,V] C D, F = (7l($,y),3’_:2(:v,y)), if
Fllay) - F(by) < 0¥y € [a,V], Fla,d) F(z,b) < 0,Yz €
[a,b], then the degree of F will be # 0, and F will have a zero;
natural extensions of these conditions will be needed for n > 3.

More exactly, we will need some variations of previous arguments.
For example under, say, the condition for ?l, ?1(a, Y) -?l(b, y) <
0,Vy € [d/,V], a connected set C of zeroes of F' which joins the
horizontal lines y = a/,y = b’ can be found. Then, we will look for

a zero of ?2 in C. Some other subtleties will be taken into account
for specific applications.
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3 Application to multiwarped spacetimes

The first class of Lorentzian manifolds where our technique was applied,
is the class of multiwarped spacetimes, which have a remarkable role in
General Relativity.

Consider n Riemannian manifolds (F}, g;), an open interval I =
(a,b) C R with opposite metric to the usual —d7r?, and n differentiable
functions f; > 0 ¢ = 1,...,n on I. A multiwarped spacetime with
base (I, —dr?), fibers (Fj,9;) i = 1,...,n and warping functions f; > 0,
i = 1,...,n is the product manifold M = I x F; x --- x F,, endowed
with the Lorentz metric:

g=—midr* + Z(fZ om)’mig = —dr* + Z fai,
i=1 i=1

where 7y and 7m; ¢ = 1,...,n are the natural projections of I x F; X
.-+ x F, onto I and F7,..., F,, respectively.

Examples of multiwarped spacetimes are the following:

(1) For n = 1 fibers these manifolds correspond with Generalized
Robertson-Walker (GRW) spacetimes (I x F,—dr? + f*gr), which are
natural generalizations of Friedmann-Lemaitre-Robertson-Walker cosmo-
logical spacetimes [1], [22].

(2) Two classical spacetimes can be seen as particular cases when
n =2 [21):

Consider the metric on (r_,r,) x R x S?

2 2 2 2\
—(1—;@+ﬁ%)m?+(1——fhk%) dr? + 12(d6? + sin? 0dy?)
rooor I
being e, m constants (m positive), e < m?, r € (r_,ry), r-=m—
(m? —e)V2 ry =m+ (m?—e?)Y2 ¢t € R and 0, ¢ are the spherical
coordinates on S?. [Notice that the new variable 7 € (0,7,) obtained

from 12
2 2\~
dr = (_H_m_%) dr
T T

provides the interval I and the warping functions in our definition of mul-
tiwarped spacetime]. When e = 0 this metric represents the Schwarzschild
black hole, generated by a spherically symmetric massive object. When
e # 0 this metric is the intermediate zone of usual Reissner-Nordstrom
spacetime, generated by a spherically symmetric charged body.
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(3) Moreover, multiwarped spacetimes include Bianchi type I1X space-
times as Kasner’s, and may also represent relativistic spacetimes together
with internal spaces attached at each point or multidimensional inflation-
ary models (see [19] and references therein).

In order to apply the topological technique, the following subtleties
must be considered in relation to the four steps of Section 3:

Step 1 and 3. Multiwarped spacetimes are not included in R"™, but
the projection of a geodesic y(s) on each fiber F; is a pregeodesic v;(s).
Fixed x;, 2, € F; we will assume that 7;(s) is the reparametrization of a
minimizing geodesic, and the only relevant degree of freedom will be its
initial velocity ¢; = (f o 7) - g;i(dv;/ds, dv;/ds). On the other hand, the
projection on the base 7(s) is then characterized by 7/(0); by technical
reasons, a new parameter K € R directly related to 7/(0) is introduced.
So, every geodesic 7(s) is characterized by (K, cy,...,¢,) which takes
values in R"™.

Step 2. Every geodesic is reparametrized by the component 7. Thus,
the points with 7/(s) = 0 must be specifically studied.

Step 4. Given the two points to be connected zy = (79,2), 2, =
(14,2") € I x (Fy X -+ x F,), one can prove first an Avez-Seifert type
result (see below) and thus, if |7] — 7y is big enough the two points can be
joined by a causal geodesic. For the intermediate values of 7 € [a, 13] some

functions ?1, ., F of (K,c1,...,¢,) can be defined. The simultaneous
zeroes of these functions correspond with geodesics joining z, with a
point in the line {(7,2) : 7 € (a,b)}. The boundary conditions of the

F’s ensure the existence of a connected set of zeroes C which correspond
with geodesics joining 2y and (74,2') for any 7} in an interval which
includes [a, b].

As consequence, the problem of the geodesic connectedness is essen-
tially solved if we assume weak convezity for every fiber F;, that is, each
two points z;, , € F; can be joined by a minimizing F;-geodesic (the fiber
is strongly convex if previous minimizing geodesic is the unique one). In
fact, we have:

e An (Avez-Seifert type) result on geodesic connectedness [12, Th.
2]: in a multiwarped spacetime with weakly convex fibers two points
causally related can be joined by a causal geodesic.

e A result with a natural geometric interpretation [12, Th. 1]:
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Theorem 3.1 A multiwarped spacetime (I X Fy X --- X F,, g) with
weakly convex fibers is geodesically connected if the following condi-
tion holds: every point z = (t,x) € I x (Fy X --- x F,,) and every
line L[z'] = {(1,2') : 7 € I},2' € Fy x --- x F,, can be joined by
both a future and a past directed causal curve.

Previous condition is equivalent to the following property on the
warping functions fi,..., fu:

c b
/fﬁ(f%+~~+%>”2=oo, /fi2<fi12+---+%>1/2=oo,

for all i and for ¢ € (a,b).

This condition seems appropriate when either I = R or f; goes
to zero at the extremes. But, for example, a strip I x R", I # R
in Lorentz-Minkowski spacetime L"*! does not satisfy this condi-
tion. However, Theorem 3.1 does not cover all the possibilities of
the technique, and we can obtain results stronger (although under
more intrincated hypotheses on the f;’s). As a consequence, all
previous results are reproven or extended; in particular, geodesic
connectedness of Reissner-Nordstrom Intermediate spacetime is re-
proven [12; Section 6] by using a technique completely different to
the one in [15] (and without the restriction 2r_ > 7, in this refer-
ence). Moreover, the accuracy of our technique is shown by proving
the geodesic connectedness of Schwarzschild black hole [12, Th. 6].
The geodesic connectedness of spacetimes as Kasner’s can be triv-
ially determined by using our results.

Finally, we remark that these results are easily extendible to the
case that every fiber F; is a manifold with boundary 0F; (improving
results in [16]). In fact, in this case the problem is reduced to answer
when the structure of OF; imply that F; is weakly convex (if F;UJF;
is a complete smooth manifold with boundary, F; is weakly convex
if and only if the second fundamental form of the boundary, with
respect to the interior normal, is positive semidefinite; for more
general results see [6]). Of course, the results work when we consider
strips (a, 1;) XDy x---xD, CIxF;x---xF,. Moreover, further
multiplicity results can be obtained if the topology of one of the
fibers is not trivial (see for example [11, Th. 3])
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As we commented before, we can give more accurate conditions for the
geodesic connectedness when only n = 1 fibers are considered (Condi-
tions (A), (B), (C) and (R) in [11, Section 3]). These conditions are
somewhat cumbersome, because they yield not only sufficient but also
necessary hypotheses for geodesic connectedness. More precisely, if the
fiber is strongly convex then the GRW is geodesically connected if and
only if one of the Conditions (C) or (R) in [11] holds (Condition (A) in
[11] is less accurate than (C), but it is translatable to any multiwarped
spacetime to obtain geodesic connectedness; Condition (B) is an interme-
diate condition). Nevertheless, from these conditions it is easy to obtain
simple general sufficient conditions for connectedness. For example (see
[11, Lemmas 3 and 9]), if the GRW spacetime is not geodesically connected
then f must admit a limit at some extreme of the interval I = (a,b); if
this extreme is b (resp. a) then f' must be strictly positive (resp. neg-
ative) in a non-empty subinterval (b,b) C (a,b) (resp. (a,a) C (a,b)),
(etc.)

On the other hand, this machinery allows us to obtain a precise rela-
tion between the conjugate points zy = (79, 20), 2, = (7, xp) of a geodesic
v(s) = (7(s),vr(s)) in the GRW and the points x¢,x; of its projection
vr(s) on F' (recall that yg(s) is a pregeodesic on F). Concretely, if m is
the multiplicity of conjugation along v of zy, 2| then the multiplicity of
the projections zy, xj along v is m’ € {m, m —1}. In particular, if 2o, 2,
are non-conjugate then so are xg, z,. Even more, if 7 is a causal geodesic
(or any geodesic without zeroes in d7/ds) then m’ = m [11, Th. 4].

From here, Morse type relations which relate the topology of the
space of curves joining two non-conjugate points with the Morse indexes
of the geodesics joining them can be obtained [11, Section 5]. Finally, all
these results can be applied to the following two cases [11, Section 6].

— F'is an interval of R and, thus, —g is static standard. Our results
improve the previous ones in [5] obtained from completely different
techniques. Concretely, we obtain:

Corollary 3.2 Given (yo,xo), (Y}, xy) in the static spacetime (K x
J CR? g5 = dy? — f*(y)dz?), these points are
(i) spacelike related (i.e. timelike related for —gs) if and only if

y?f] f7V > d(xg, x}). In this case there exist a unique geodesic which
joins them; this geodesic is necessarily spacelike and without conju-
gate points.
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(i1) lightlike related (connectable with a lightlike curve) if and only
if yzf) [~V = d(wg,z}). In this case there exist a unique geodesic
which joins them; this geodesic is necessarily lightlike and without
conjugate points.

(iii) timelike related if and only if fy@g’ [t < d(zo,xp). All points
which are timelike related can be joined by a geodesic (necessarily
timelike) if and only if either Condition (C) or Condition (R) holds.

Ric(0;,0;) > 0 (& f” < 0). This hypothesis is natural from a
physical point of view (it is implied by the timelike convergence
condition and, thus, by some energy conditions). Concretely, we
obtain:

Corollary 3.3 An inextendible GRW spacetime (i.e. with f de-
fined on a mazimal interval 1) with Ric(0.,0;) > 0 and weakly
convezx fiber satisfies

(i) Each two causally related points can be joined with causal geodesic,
which is unique if the fiber is strongly convex.

(i1) The spacetime is geodesically connected. Moreover, each strip
(@,b) x F C I X F, a<a<b< b with the restricted metric is
geodesically connected if and only if f'(a) > 0 and f’(l;) <0 (i.e.
f'(@)- f'(b) <0).

(111) There exist a natural surjective map between geodesics connect-
ing zo = (10, 20), 2y = (15, 24) € I x F and F-geodesics connecting
xo and xi. Under this map, when the geodesic connecting zy and z,
15 causal then the multiplicity of its conjugate points is equal to the
multiplicity for the corresponding geodesic connecting xo, ;.

(iv) If (F,gr) is complete and F' is not contractible in itself, then
any zo, 2y, € I X F can be joined by means of infinitely many spacelike
geodesics. If xg, xy, are not conjugate there are at most finitely many
causal geodesics connecting them.

Other applications (for example an extension of [24, Th. 5.3] for
GRW spacetimes) are possible.

4 Application to Kerr spacetime

Kerr spacetime represents the stationary axis-symmetric asymptotically
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flat gravitational field outside a rotating massive object. The simplest
description of the Kerr metric tensor is in terms of the time coordinate
t on R and spherical coordinates 7, 6, ¢ on R* (f denotes colatitud and
¢ longitud), which are called Boyer-Lindquist coordinates (we follow the
notation in [20, Section 1.1]). Let m > 0 and a be two constants, such
that m represents the mass of the object and ma the angular momentum
as measured from infinity. In previous coordinates, Kerr metric takes the
form
ds® = gudt® + grpdr® + go.pd0” + gy od0 + 29, dipdt

with
r,0)? mra? sin? :
mrasin?
90,0 = P(T, 0)2 Gpt = —2 p(r,0)2 d

2mr

gip = —1+ 2(r.0)%
and being
p(r,0)? =r* +a*cos’d and A(r) =r? —2mr +a’.

Halting the rotation by setting a = 0, Kerr spacetime becomes
Schwarzschild spacetime; if, then, the mass is removed (m = 0) only
(empty) Lorentz-Minkowski spacetime remains.

Formulae above show that Kerr metric fails when either p(r,0)* = 0
or A(r) = 0. The zeroes of the function p(r,6)* correspond with a
physical singularity. On the other hand, the function A(r) has the zeroes

ry =m+vm?—a?and r_ =m —vm? — a? and,
Alr) = (r—r_)(r —ry).

However, these zeroes do not correspond with singularities in the curva-
ture. In fact, the hypersurfaces R x {x € R* : 7 =r, } and R x {z € R?:
r =r_} are event horizons. More precisely:

— If a®> < m? (slow Kerr spacetime) we have two event horizons r =
and r =1_.

— If a®> = m? (extreme Kerr spacetime) we only have one event horizon
r=ry=71_.

— Finally, if a®* > m? (fast Kerr spacetime) we do not have event
horizons.
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The region in slow Kerr spacetime satisfying r > ry (resp. r_ <r < ry;
r < r_) is called exterior (resp. intermediate; interior) Kerr spacetime.
Intermediate Kerr spacetime has a strange physical behaviour: matter
might disappear in finite proper time, or suddenly appear from nowhere.
In interior Kerr spacetime, the ring singularity appears with its associated
time machine.

In order to apply the topological technique, the following subtleties
must be considered:

Stepl. Even though Kerr spacetime is an open subset of R*, arbitrary
values for coordinates 6, ¢ will be permitted for convenience.

Step 2. We reparametrize our geodesic by the component r. So, the
points with r(s) = 0 must be specifically studied.

Step 3. The partial integrations are given by the constants of motion
L (angular momentum; 0, is a Killing vector field), E (energy; 0 is a
Killing vector field), ¢ (normalization of the geodesic; rest mass) and K
(Carter constant).

Step 4. In this case we actually consider a sequence of increasing
rectangles [a,, by] x [a) b ] x [a”,b"] C D, and the function F =
(3?1, 7, J’_ES) will have the boundary conditions i (A, Y, z)~7—"1 (b, y, 2) <
0 Y(y,z) € [al,,b,] x [al, bl], ]_:Z(x,ajn,z) '?2($,b;n,2) <0 VY(z,z2) €

[, brn] X [a”,b"]. So, a sequence of connected sets C,, of zeroes of F

and F~ connecting the faces z = b/ and z = a” can be found and, for
m big enough, the existence of a zero in some C,, for Fis proved.
Then, the following result is obtained:

Theorem 4.1 Exterior Kerr spacetime K with a®> < m? is geodesically
connected [14].

In particular, this result reproves that (outer) Schwarzschild spacetime
is geodesically connected (see also [4] or [13, Th. 6]).

Even more, by using exactly the same technique we obtain the geodesic
connectedness of the Schwarzschild black hole (r < ry, a = 0) [10]. No-
tice that this result has been obtained only by applying our technique,
and can be obtained in two different ways: (1) considering Schwarzschild
black hole as a multiwarped spacetime, and (2) working as in a region of
Kerr spacetime.

It is worth pointing out that our technique circumvents the following
difficulties:

(1) In K there is not a globally defined timelike Killing vector field
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K (if K existed the problem would be reduced to a “Riemannian” one,
where variational methods yield very precise results).

(2) Another possibility would be to consider K as a splitting manifold
as those studied by using variational methods and Rabinowitz’s saddle
point Theorem in [17]. But these results are specially appropiate to study
globally hyperbolic spacetimes under a splitting with complete Cauchy
hypersurfaces ¢ = constant and no clear choice of the time function ¢
seems to be natural to apply such techniques for K.

(3) At any case, the role of the event horizon r = r, seems to be
unavoidable (under our approach, geodesics approaching to the event
horizon play an essential role). As we have commented, the convexity
of the boundary of a semi-Riemannian manifold sometimes yields the
geodesic connectedness of the manifold, especially in the Riemannian
case [23]. The boundary r = r; of K is singular, and the approaching
hypersurfaces r = r + v, v > 0, are not convex (regions r > r, + v are
not geodesically connected, see below). In the Riemannian case, there
are techniques to measure if the lack of convexity goes to zero, when
v — 0, yielding geodesic connectedness, [6]. In the static case, some of
these techniques are translatable [7], and geodesic connectedness of some
spacetimes with singular boundary, including Schwarzschild spacetime,
has been proven [4]. But none of these techniques seem appliable to a
non-stationary situation.

On the other hand, we obtain the non-geodesic connectedness of some
regions of the slow, extreme and fast Kerr spacetime [15, Section 4].
Firstly, we have:

Theorem 4.2 Stationary Kerr spacetime M® = R x {x € R* : r >
m?2 — a?cos? 0} with 0 < a®> < m? is not geodesically connected.

Even more, we prove that (stationary or not) regions R of exterior
Kerr spacetime with a? < m? satisfying » > r, + v (v > 0) are not
geodesically connected. Moreover, no region M® = Rx{xz € R3:r > m+
vVm? + e — a2 cos? 0} with a* < m? and € > 0 is geodesically connected.

Finally, for fast Kerr spacetime we have:

Theorem 4.3 (i) Stationary fast Kerr spacetime is not geodesically con-
nected (if we assume r > 0 as well as if r € R).

(ii) Regions (stationary or not) of fast Kerr spacetime determined by
r > v for some v > 0 are not geodesically connected.

(7ii) The whole fast Kerr spacetime (including non-stationary regions
and r € R) is not geodesically connected.
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Abstract

In this work we define and study the relations between Lorentzian
manifolds given by the diffeomorphisms which map causal future directed
vectors onto causal future directed vectors. This class of diffeomorphisms,
called proper causal relations, contains as a subset the well-known group
of conformal relations and are deeply linked to the so-called causal ten-
sors of Ref.[1]. If two given Lorentzian manifolds are in mutual proper
causal relation then they are said to be causally isomorphic: they are
indistinguishable from the causal point of view. Finally, the concept of
causal transformation for Lorentzian manifolds is introduced and its main
mathematical properties briefly investigated.

1 Basics on causal relations

In this section the definitions of the basic concepts and the notation
to be used throughout this contribution shall be presented. Differen-
tiable manifolds are denoted by italic capital letters V, W, U, ... and, to
our purposes, all such manifolds will be connected causally orientable
Lorentzian manifolds of dimension n. The signature convention is set to
(+ —---—=). Tp(V) and T;(V) will stand respectively for the tangent
and cotangent spaces at © € V', and T(V) (resp. T%(V)) is the tangent
bundle (cotangent bundle) of V. Similarly the bundle of j-contravariant
and k-covariant tensors of V' is denoted 7,/ (V). If ¢ is a diffeomorphism
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between V and W, the push-forward and pull-back are written as ¢ and
©* respectively. The hyperbolic structure of the Lorentzian scalar prod-
uct naturally splits the elements of T,(V) into timelike, spacelike, and
null, and as usual we use the term causal for the vectors (or vector fields)
which are non-spacelike. To fix the notation we introduce the sets:

Ot(z) = {X eT,(V):X is causal future directed},
O(z) = O*(2)UO (2), et(v)=[J o

zeV

with obvious definitions for ©~ (z), ©~ (V) and ©(V'). Before we proceed,
we need to introduce a further concept taken from [1].

Definition 1.1 A tensor T € T°(z) satisfies the dominant property if

-

for every El, e lg,n € O7(x) we have that T(El, ooy k) >0.

The set of all r-tensors with the dominant property at x € V will be
denoted by DP; (x) whereas DP; (x) is the set of tensors such that —T €
DP/}(z). We put DP,(z) = DP;(z) UDP, (x). All these definitions
extend straightforwardly to the bundle Z,°(V) and we may define the
subsets DP(U), DP; (U) and DP,(U) for an open subset U C V as
follows:

DP;(U) = | J DPf(x), DP.(U) =DP; U)UDP, U).

zeld

The simplest example (leaving aside R™) of causal tensors are the causal
1-forms (= DP1(V)) [1]}, while a general characterization of DP, =
DP;/ (V) is the following (see [3] for a proof)!:

Proposition 1.2 T € DP; if and only if the components Ty, ;, of T in
all orthonormal bases fulfill Ty o > |T;,..i.|, Vi1 ... 4., where the 0-index
refers to the temporal component.

We are now ready to present our main concept, which tries to capture
the notion of some kind of relation between the causal structure of V and

W ([2]).

Definition 1.3 Let ¢ : V. — W be a global diffeomorphism between two
Lorentzian manifolds. We shall say that W is properly causally related

1See also Bergqvist’s and Senovilla’s contributions to this volume.
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with V' by ¢, denoted V- <, W, if for every X € 05(V) we have that

gOIX belongs to OF(W). W is said to be properly causally related with V,
denoted simply as V- < W, if Jp such that V <, W.

Remarks

1. This definition can also be given for any set ¢ C V' by demanding
that (¢ X)) € OF(p(z)) VX € 0F(z), Vo € C.

2. Two diffeomorphic Lorentzian manifolds may fail to be properly
causally related as we shall show later with explicit examples.

Definition 1.4 Two Lorentzian manifolds V' and W are called causally
isomorphic if V. <W and W < V. This shall be written as V ~ W.

We claim that if V' ~ W then their causal structure are somehow the
same.
Let g and g be the Lorentzian metrics of V' and W respectively. By
using
gv X,9Y) = ¢" g(X,Y), (1.1)
we immediately realize that V' <, W implies that ¢* g € DP4 (V).
Conversely, if ¢* g € DPF (V) then for every X € O (V) we have that
(0" g)(X,X) = g(¢'X,¢'X) >0 and hence ¢’ X € O(W). However,
it can happen that ©7(V) is actually mapped to O~ (W), and ©~ (V)
to ©F(W). This only means that W with the time-reversed orientation

is properly causally related with V. Keeping this in mind, the assertion
¢* g € DP3 (V) will be henceforth taken as equivalent to V <, W.

2 Mathematical properties

Let us present some mathematical properties of proper causal relations.
Proposition 2.1 IfV <, W then:
1. X € ©1(V) is timelike = ¢' X € (W) is timelike.

2. X €OT(V) and ¢’ X € ©F(W) is null = X is null.
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Proof. For the first implication, if X € O©T(V) is timelike we have,
according to equation (1.1), that ¢* g()?,)?) = g((p’)?,(p’)?) which
must be a strictly positive quantity as ¢* g € DPy (W) [1]. For the
second implication, equation (1.1) implies 0 = ¢* g(X, X) which is only
possible if X is null since ¢* g € DPF (V) and X € OF(V) (see again
[1])-

g

Proposition 2.2 V <, W <= ¢ X € Ot(W) for all null X €
ot (V).

Proof. For the non-trivial implication, making again use of (1.1) we can
write:

Y X et VXmulline* (V) e ¢ g(X,Y)>0VX,Y nulinO®" (V)
which happens if and only if ¢* g is in DP3 (V) (see [1] property 2.4).
U

Proposition 2.3 (Transitivity of the proper causal relation)
If V<, W and W <y, U then V <y, U

Proof. Consider any X € ©F(V). Since V <, W, ¢ X € ©F(W) and
since W <y, U we get ¢/'[¢ X] € ©F(U) so that (o) X € OF(U) from
what we conclude that V' <y, U.

0

Therefore, we see that the relation < is a preorder. Notice that if
V ~ W (that is V. < W and W < V) this does not imply that V' = W.
Nevertheless, one can always define a partial order for the corresponding
classes of equivalence.

Next, we identify the part of the boundary of the null cone which
is preserved under a proper causal relation. A lemma is needed first.
Recall that X is called an “eigenvector” of a 2-covariant tensor T if

—

T(-, X) = Ag(-, X) and X is then the corresponding eigenvalue.

Lemma 2.4 If T € DP} () and X € O () then T(X,X) =0 <= X
15 a null eigenvector of T.
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Proof. Let X € O (z) and assume 0 = T(X, X) = T,,X°X". Then
since T, X® € DP{ (z) [1] we can conclude that X, and T,,X° must be
proportional which results in X being a null eigenvector of T,,. The
converse is straightforward.

0

Proposition 2.5 Assume that V <, W and X € ©%(z), = € V. Then
©' X is null at o(x) € W if and only if X is a null eigenvector of o* g(z).

Proof. Let X be in ©T(z) and suppose ¢’ X is null at ¢(z). Then,

according to proposmon 2.1, X is also null at z. On the other hand
we have 0 = g(¢'X, goX) = ¢* g(X,X) and since ¢* g|, € DP(x),
lemma 2.4 implies that X is a null eigenvector of p* g at x.

O

The vectors which remain null under the causal relation ¢ are called
its canonical null directions. On the other hand, the null eigenvectors of
T € DP; can be used to classify this tensor, as proved in [1]. As a result
we have

Proposition 2.6 If the relation V <, W has n linearly independent

canonical null directions then ¢* g = \g.

Proof. If there exist n independent canonical null directions, then ¢* g
has n independent null eigenvectors which is only possible if ¢* g is
proportional to the metric tensor g ([1, 3].)

0

Proposition 2.6 has an interesting application in the following theo-
rem

Theorem 2.7 Suppose that V- <, W and W <,-1 V. Then ¢* g = A\g
and (p~1)*g = ﬁ g for some positive function A defined on V.

Proof. Under these hypotheses, using proposition 2.1, we get the fol-
lowing intermediate results

X € 0 (W) null and X € ©7(V) = X is null,
(™Y e (V) null and Y € ©F(W) = Y is null.
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Now, let X € ©+(V) be null and consider the unique ¥ € T(V) such
that X = (0 1)’Y. Then Y = ¢'X and Y € ©T(W) as ¢ sets a proper
causal relation and X is in ©1 (V). Hence, according to the second result
above Y must be null and we conclude that every null X € Ot (V) is
push-forwarded to a null vector of © (W) which in turn implies that

©* g = Ag. In a similar fashion, we can prove that (¢')*g = u g and
hence (o~ 1)*A = 1/p.

g

Corollary 2.8 V <, W and W <,V <= ¢ is a conformal relation.

3 Applications to causality theory

In this section we will perform a detailed study of how two Lorentzian
manifolds V' and W such that V' <, W share common causal features.
To begin with, we must recall the basic sets used in causality theory,
namely I*(p) and J*(p) for any point p € V (these definitions can also
be given for sets). One has ¢ € J*(p) (respectively ¢ € I (p)) if there
exists a continuous future directed causal (resp. timelike) curve joining
p and ¢. Recall also the Cauchy developments D*(() for any set ( C V
[4, 5, 6]. Another important concept is that of future set: A C V is said
to be a future set if IT(A) C A. For example I*(() is a future set for any
(. All these concepts are standard in causality theory and are defined in
many references, see for instance [4, 5, 6].

Proposition 3.1 If V. <, W then, for every set ¢ C V, we have
p(I7(Q)) € IF(0(C)) and (J*(C)) € J*(¢(C)).

Proof. It is enough to prove it for a single point p € V' and then getting
the result for every ( by considering it as the union of its points. For
the first relation, let y be in p(I7(p)) arbitrary and take x € I (p) such
that ¢(z) = y. Choose a future-directed timelike curve 7 joining p and
x. From proposition 2.1, ¢(7) is then a future-directed timelike curve
joining ¢ (p) and y, so that y € I (p(p)). The second assertion is proven
in a similar way using again proposition 2.1. The proof for the past sets
is analogous.

g
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The converse of this proposition does not hold in general unless we
impose further causality conditions over our spacetime.

Definition 3.2 A Lorentzian manifold V is said to be distinguishing if
for every neighbourhood U, of p € V' there exists another neighbourhood
B, C U, containing p which meets every causal curve starting at p in a
connected set.

We need some concepts of standard causality theory. For any p € V
one can introduce normal coordinates in a neighbourhood N, of p (see,
e.g. [6]). Then the exponential map provides a diffeomorphism exp :
O C T,(V) — N, where O is an open neighbourhood of 0 € T,(V).
The interior of the future (past) light cone of p is defined by C =
exp(int(©*(p)) N O), and obviously C5 C I*(p) [6]. Other important
issue deals with the chronology relation << between two points. We have
p << q if there exist a future timelike curve joining p and ¢. See [7] for
an axiomatic study of this relation.

Proposition 3.3 Let v be a continuous curve of the Lorentzian manifold
(V,g) and assume that -y is a total set with respect to the relation << (that
is to say every pair of elements of the curve is comparable by <<.) Then
v s timelike iff V' is distinguishing.

Proof. Clearly if v is timelike then v must be a total set for the relation
<< (this is true for every spacetime). For the converse consider a curve
~ which is total with respect to << and let ¢ € v be an arbitrary point of
the curve. If we take a normal neighbourhood of ¢, AV, then we may find
a neighbourhood U, of ¢ which is intersected in a connected set by every
causal curve meeting ¢q. Now, if we pick up a point z € v N U, we have
that either ¢ << z or z << ¢. Assuming the former we deduce that there
exists a timelike curve < joining ¢ and z which implies that v N Uy is
a connected set. This property together with the distinguishability of V'
implies that ~ must be a subset of U, and hence v C N from what we
conclude that v C C, ([6]) and hence z € C, Vz € y N U, which is only
possible if v N U, timelike. By covering v with sets of the form v N U,
q € v we arrive at the desired result.

U

Proposition 3.4 Let ¢ : V — W be a diffeomorphism with the property
o(It(p)) C I (p(p)) Vp € V. Then if W is distinguishing, ¢ is a proper
causal relation. A similar result holds replacing It by 1.
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Proof. From the statement of this proposition is clear that V p,q of V
such that p << ¢ then ¢(p) << p(q). Therefore every timelike curve «y of
V' is mapped onto a continuous curve in W total with respect to << and
hence timelike due to the indistiguishability of W. Furthermore if the
curve - is future directed then ¢() must be also future directed since <<
is preserved which is only possible if every timelike future-pointing vector
is mapped onto a future-pointing timelike vector. As a consequence, if k
is a null vector, @’E must be a causal vector (to see it just construct a
sequence of timelike future directed vectors converging to E) which proves
that ¢ is a proper causal relation.

O
The results for the Cauchy developments are the following:

Proposition 3.5 If V <, W then D*(p(¢)) C ¢(D*(()), V¢ C V.

Proof. It is enough to prove the future case. Let y € DT (p(()) arbi-
trary and consider any causal past directed curve V10 C V' containing
o Y(y). Since the image curve by ¢ of Vo1(y) is a causal curve passing
through y, ergo meeting ¢(¢), we have that Vp-1(y) Must meet ¢ from
what we conclude that y € p(D*(¢)) due to the arbitrariness of v_, )"

i

Corollary 3.6 If S C W is a Cauchy hypersurface then ¢~ 1(S) is also
a Cauchy hypersurface of V.

Proof. If S is a Cauchy hypersurface then D(S) = W, and from propo-
sition 3.5 D(S) C p(D(¢7(S))). Since ¢ is a diffeomorphism the result
follows.

g

One can prove the impossibility of the existence of proper causal
relations sometimes. For instance, from the previous corollary we deduce
that V' < W is impossible if W is globally hyperbolic but V' is not. Other
impossibilities arise as follows. Let us recall that, for any inextendible
causal curve v, the boundaries /% () of its chronological future and
past are usually called its future and past event horizons, sometimes also
called particle horizons [4, 5, 6]. Of course these sets can be empty (then
one says that v has no horizon).
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Proposition 3.7 Suppose that every inextendible causal future directed
curve in W has a non-empty 01 () (0I*(vy)). Then any V such that
V' < W cannot have inextendible causal curves without past (future) event
horizons.

Proof. If there were a future-directed curve v in V with 01=(y) =
0, I=(y) would be the whole of V. But according to proposition 3.1
©(I7 (7)) € I (¢(y)) from what we would conclude that I~ (p(y)) =W
against the assumption.

O

The class of future (or past) sets characterize the proper causal rela-
tions for distinguishing spacetimes as it is going to be shown next (every
statement for future objects has a counterpart for the past).

Lemma 3.8 If A is a future set then p € A <= IT(p) C A.

Proof. Suppose I*(p) € A. Then since C; C I'(p) and p € Cf we
have that U, N C; # () for every neighbourhood U, of p which in turn

implies that U, N A # @_ and hence p € A. Conversely, let p be any point
of A then I'M(p) CIT(A)=17(A) C A.

O

Theorem 3.9 Suppose that (W, g) is a distinguishing spacetime. Then
a diffeomorphism ¢ : (V,g) — (W, g) is a proper causal relation if and
only if o~ (A) is a future set for every future set. A C W.

Proof. Suppose A C W is a future set, V <, W and take p~1(A) C V.
Proposition 3.1 implies o(IT(¢™1(A))) C It (p(p 1 (A))) = IT(A) C A
which shows that T (o7 1(A)) C o 1(A). Conversely, for any p € V take
the future set IT(p(p)) and consider the future set o= '(IT(po(p))). As
o(p) € IT(p(p)) then p € p~1(I*(p(p))) and according to lemma 3.8
I (p) € o Y I (p(p))) so that p(IT(p)) C I (p(p)). Since this holds
for every p € V and W is distinguishing, proposition 3.4 ensures that ¢
is a proper causal relation.

O

This theorem has important consequences.
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Proposition 3.10 IfV ~ W then there is a one-to-one correspondence
between the future (and past) sets of V and W.

Proof. If V.~ W then V <, W and W_yV for some diffeomorphisms
¢ and U. By denoting with Fy and Fy the set of future sets of V' and
W respectively, we have that ! (Fy) C Fy and ¥~1(F) C Fw, due
to theorem 3.9. Since both ¢ and ¥ are bijective maps we conclude that
Fv is in one-to-one correspondence with a subset of Fy, and vice versa
which, according to the equivalence theorem of Bernstein 2, implies that
Fv is in one-to-one correspondence with Fyy.

g

4 Causal transformations

In this section we will see how the concepts above generalize, in a natural
way, the group of conformal transformations in a Lorentzian manifold V.

Definition 4.1 A transformation ¢ : V. — V is called causal if V <,
V.

The set of causal transformations of V' will be denoted by C(V'). This
is a subset of the group of transformations of V' which is closed under
the composition of diffeomorphisms, due to proposition 3.9, and contains
the identity map. This algebraic structure is well-known, see e.g. [9],
and called subsemigroup with identity or submonoid. Thus, C(V) is a
submonoid of the group of diffeomorphisms of V. Nonetheless, C(V')
usually fails to be a group. In fact we have,

Proposition 4.2 FEvery subgroup of causal transformations is a group of
conformal transformations.

Proof. Let G C C(V) be a subgroup of causal transformations and
consider any ¢ € G, so that both ¢ and ¢! are causal transforma-
tions. Then ¢ is necessarily a conformal transformation as follows from

Theorem 2.7.

g

2See e.g. [8].
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From standard results, see [9], we know that C(V)NC(V)~! is just the
group of conformal transformations of V' and there is no other subgroup
of C(V') which contains C(V)NC(V)~!. The causal transformations which
are not conformal transformations are called proper causal transforma-
tions.

It is now a natural question whether one can define infinitesimal gen-
erators of one-parameter families of causal transformations which gener-
alize the “conformal Killing vectors”, and in which sense. Notice, how-
ever, that if {¢g}scr is a one-parameter group of causal transformations,
from the previous results the only possibility is that {¢s} be in fact a
group of conformal motions. On the other hand, things are more subtle
if there are no conformal transformations in the family {¢s} other than
the identity, in which case it is easy to see that the ‘best’ one can ac-
complish is that either GT = {@s}ser+ or G= = {@s}ser- is in C(V).
If this happens one talks about maximal one-parameter submonoids of
proper causal transformations. Of course, it is also possible to define lo-
cal one-parameter submonoids of causal transformations {y; }sc; for some
interval I = (—¢,¢€) of the real line assuming that {¢s}sc(,) consists of
proper causal transformations. In any of these cases, we can define the
infinitesimal generator of {p,} as the vector field & = d, /ds|,—o. Given
that pfg € DP, for all s > 0 (or for all non-positive s), one can somehow
control the Lie derivative of g with respect to E For instance, it is easy
to prove that £ gg(l;, l;) >0 (or < 0) for all null k, clearly generalizing
the case of conformal Killing vectors. An explicit example of this will be
shown in the next section.

5 Examples

Example 5.1 Einstein static universe and de Sitter spacetime.
Let us take V' as the Einstein static universe [{] and W = SS as de
Sitter spacetime. In both cases the manifold is R x S® and hence they are
diffeomorphic. By proposition 3.7 we know that VA W because every
causal curve in de Sitter spacetime possesses event horizons. However,
the proper causal relation in the opposite way does hold as can be shown
by constructing it explicitly. The line element of each spacetime is (with
the notation dQ? = df? + sin® 0d¢?):

Vo ds® =dt* — a®(dx® + sin® xdQ?)
W: ds?=df*—o?cosh?(f/a)(dx? + sin® xdQ?) ,
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where x,0,¢ (and their barred versions) are standard coordinates in S®
and a,a are constants. The diffeomorphism ¥ : W — V' is chosen as
{t=0t,x =x,0=0,0 = ¢} for a constant b. One can readily get U*g

(U*g)pdrda® = b2dt* — a*(dx* + sin® YdQ?)

which on using proposition 1.2 shows that ¥*g € DP (W) if b? > a*/a?
and therefore U is proper causal relation for those b.

Example 5.2 Consider the following spacetimes: 1L, is the region of
Lorentz-Minkowski spacetime with R > a > 0 in spherical coordinates
{T,R,0,d}; W, is the outer region of Schwarzschild spacetime with
r > ¢ > 2M in Schwarzschild coordinates {t,r,0,¢}. Define the dif-
feomorphism ¢ : L, — W, given by {t = bT,r = R—a+c,0 = ©,¢ = ®}
for an appropriate positive constant b, so that we have

2
(90* g)abdl’adl’b — b2 (1 — R_Q—]C\f_f_c) de—%_(R—a—f—C)deQ.
—a+c
By choosing b and a one can achieve p* g € DP4(V,) whenever ¢ > 2M,
while for ¢ = 2M ¢ fails to be a proper causal relation. Actually L, £
Wanr due to corollary 3.6 as Waps 1s globally hyperbolic but L, is not.
Take now the diffeomorphism V : W. — L, defined by {T =t,R =
7,0 =0,® = ¢}, so that V*g reads (V*g)dztda® = dt? — dr? — r2dQ?
from where we immediately deduce that U*g € DP4 (V) for every ¢ > 2M
as long as a > 2M. We have thus proved that W, ~ L. if ¢ > 2M, but
not for ¢ = 2M. This is quite interesting and clearly related to the null
character of the event horizon r = 2M in Schwarzschild’s spacetime.

Example 5.3 (Friedman cosmological models with p = vp.) Let
us take as (W, g) the flat Friedman-Robertson- Walker (FRW) spacetimes
in standard FRW coordinates {t, x,0, ¢} with line element given by

ds® = dt* — a*(t)(dx* + \*d??)

and assume that the source of Finstein’s equations is a perfect fluid with
equation of state given by p = ~p (p = pressure, p = density, v €

(—1,1) constant). Then the scale factor is a(t) = C+505 with constant
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C. By straightforward calculations, it can be proven the following causal
equivalences:

W ~ Ly for v = —1/3 where Ly is the whole Minkowski spacetime
W ~V for~ # —1/3 where (V,g) is the steady state part of SS, [4].

These causal equivalences are rather intuitive if we have a look at the
Penrose diagram of each spacetime (figure 1).

N
t=00 :ﬁ

x=0
x=0

b) ©)

Figure 1: Penrose’s diagrams of FRW spacetimes for a) —1/3 < v < 1, b)
—1 <~y < —1/3 and ¢) v = 1/3. Notice the similar shape of diagram c) with
that of IL, and of the steady state part of SS with a) and b) [4].

Example 5.4 (Vaidya’s Spacetime.) Let us show finally an example
of a submonoid of causal transformations. Consider the Vaidya spacetime
whose line element is [10]

2M (t
ds? = <1—J>dt2—2dtdr—r2d§22, —oco<t<oo, 0<r<oo

r

where t is a null coordinate (that is, dt is a null 1-form), and M(t) is
a non-increasing function of t interpreted as the mass. Take the diffeo-
morphisms ps 1t — t+s. Then pig can be cast in the form

2
pig =g~ ~(M(t+s) = M(t))dt ® dt.
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Hence, ¢ig € DP3(V) iff M(t +s) — M(t) < 0, which implies that
{@s}s>0 are causal transformations, so that {@s}ser is a mazimal sub-
monoid of causal transformations. The differential equation for the in-
finitesimal generator 5: 0/0t of this submonoid is easily calculated and
reads

—

£(&)g = —%M(t)dt ®dt.

This is a particular case of a proper Kerr-Schild vector field, recently
studied in [11]. Notice that Schwarzschild spacetime is included for the
case M =const., in which case gz’s a Killing vector. This may lead to a
natural generalization of symmetries.

6 Conclusions

In this work a new relation between Lorentzian manifolds which keeps
the causal character of causal vectors has been put forward. With the
aid of this relation, we have introduced the concepts of causal relation
and causal isomorphism of Lorentzian manifolds which allow us to estab-
lish rigorously when two given Lorentzian manifolds are causally indis-
tinguishable regardless their metric properties. This tools could be also
useful in order to find out the global causal structure of a given spacetime
by just putting it in causal equivalence with another known spacetime.

Finally a new transformation for Lorentzian manifolds, called causal
transformation has been defined. These transformations are a natural
generalization of the group of conformal transformations and their actual
relevance is one of our main lines of future research.
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Abstract

An integral inequality on a compact Lorentzian manifold admitting
a timelike conformal vector field is shown under some assumption on
its conjugate points along null geodesics. The inequality relates the be-
haviour of these conjugate points to global geometrical results. As an ap-
plication, several properties of the null geodesics of a natural Lorentzian
metric on each odd dimensional sphere are obtained.

1 Introduction

In [5], [6] the authors have introduced a new integral inequality on a re-
markable family of compact Lorentzian manifolds. It reproves a classical
result of M. Berger and L.W. Green in Riemannian geometry [4, Theors.
4.2, 5.3, and, in a suitable way, extends it to the Lorentzian setting.



172 CONJUGATE POINTS ALONG NULL GEODESICS

The main aim of this note is to show the use of that integral inequality
to the study of conjugate points along null geodesics on Lorentzian odd
dimensional spheres. In fact, each odd dimensional sphere may be en-
dowed with a natural Lorentzian metric (section 3). Our method permits
us to study null conjugate points without using the Jacobi equation and
related techniques. Moreover, as far as we know, there are not many
examples of compact Lorentzian manifolds where the behaviour of their
null geodesics, null conjugate points and null conjugate loci have been
described.

Compact Lorentzian manifolds have been historically neglected be-
cause of both physical and mathematical reasons. Recall that they have
closed timelike curves, and therefore they are acausal (in particular, they
cannot be isometrically immersed in a Lorentz-Minkowski space of any
dimension) and not physically admissible. On the other hand, a com-
pact Lorentzian manifold may be geodesically incomplete (this fact is
well known) and the elliptic model of Lorentzian space form is not com-
pact (contrary to the Riemannian case). However, it has been recently
argued [20] that the study of field theory on compact spacetimes could
be interesting for Physics and it could give valuable information about
the underlying manifold, complementary to the one obtained from the
Riemannian theory. From a mathematical point of view, the lack of
completeness in the compact case gave rise to the obtention of extra
conditions which joint to compactness would imply completeness of the
Lorentzian manifold. For instance, in [10] it has been proved that ev-
ery compact Lorentzian manifold with constant sectional curvature is
geodesically complete (the flat case was previously shown in [2]); in [16]
that every compact Lorentzian manifold which admits a timelike confor-
mal vector field is geodesically complete (see also [14] for a wide infor-
mation on completeness of Lorentzian manifolds). Physicists are famil-
iarized with the study of conformal vector fields, in fact the assumption
of their existence on spacetime is a way to impose some symmetry use-
ful, for instance, to study the Einstein equations (see, for example [3]).
Finally, recall the outstanding role of timelike conformal vector fields
in the introduction of Bochner’s technique in Lorentzian manifolds [17],
(18], [13].

The content of this note is organized as follows. Section 2 is first
devoted to recall the notion and main properties of the null congruence
associated to a timelike conformal vector field on a Lorentzian manifold.
In the compact case, an integral inequality is shown, Theorem 2.1, and,
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using a well known result of H. Karcher, it is analyzed when the equality
holds. Moreover, we also show that Theorem 2.1 provides information
on the manifold from the nonexistence of null conjugate points.

Finally, in section 3 we consider a natural Lorentzian metric g on
each sphere S*"*! (it was called canonical in [20]) which is introduced
from three different procedures. It is shown that ¢ has a large group of
isometries, an isotropic property for null tangent directions and that it
is homogeneous, Proposition 3.2. Its null geodesics are studied, showing
that no null geodesic is closed. Null conjugate points and null conjugate
loci are analyzed, Proposition 3.3. In fact, it is shown that all past
(or future) null geodesics starting from a point p meet at the second
conjugate point of p, and that the null conjugate locus at every point is
an imbedded (2n — 1)—dimensional sphere S**~1.

2 Preliminaries

Let (M,g) be an n(> 2)—dimensional Lorentzian manifold; that is a
(connected) smooth manifold M endowed with a non-degenerate metric
g with index 1, i.e. with signature (—,+,...,+). As usual, 7,M denotes
the tangent space at p € M, TM the tangent bundle of M, and 7 :
TM — M the natural projection. We shall write V for the Levi-Civita
connection of g, R for the Riemannian curvature tensor (our convention
on the curvature tensor is R(X,Y)Z = VxVyZ — VyVxZ — Vixy1Z),
Ric for the Ricci tensor, Ric for the corresponding quadratic form, S for
the scalar curvature and dj, for the canonical measure induced from g.

The causal character of a tangent vector v € T,M is timelike (resp.
null, spacelike) if g(v,v) < 0 (resp. g(v,v) =0 and v # 0, g(v,v) > 0 or
v=0). If v € T,M then, 7, will denote the unique geodesic such that
v(0) = p and 7,(0) = v. It is well-known that the causal character of
the velocities 7/(t), for any geodesic «y of (M, g), does not depend on the
parameter t. In particular, a null geodesic v of (M, g) is a geodesic such
that +/(¢) is a null vector. A vector field K € X(M) is said to be timelike
if K, is timelike for all p € M. A timelike or null tangent vector v € T,M
is said to be future (resp. past) with respect to K if g(v, K,) < 0 (resp.
g(v,K,) > 0). We will write U = hK where h = [—g(K, K)~z] and so
g(U,U) = —1 holds on all M.

Let g be the Sasaki metric on T M induced from the Lorentzian metric
g. We point out that it may be introduced in a similar way to the
Riemannian case. But now g is semi-Riemannian with index 2, and
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the fact that the natural projection 7 : (T'M,gq) — (M, g) is a semi-
Riemannian submersion remains true.

Throughout the remainder of this paper, (M, g) will denote a Lorentzian
manifold with dimension n > 3, time oriented by a timelike vector field
K. Recall [8], [12] that the null congruence associated to K is defined as
follows:

This subset of T'M has the following nice properties [5], [6]:

(1) For each null tangent vector v, there exists a unique ¢ € R such that
tv € Cx M, and the map v — [v] is a diffeomorphism from Cx M to the
manifold N' = {[v] € PM : g(v,v) = 0} of the null directions of M (here
PM denotes the projective fiber bundle associated to T'M).

(#7) Tt is an orientable imbedded submanifold of TM with dimension
2(n — 1). Moreover (Cx M, m, M) is a fiber bundle with fibre type S"~2,
and so C'x M will be compact if M is assumed to be compact.

(737) The induced metric on Cx M from the Sasaki metric of 7'M, which
we agree also to represent by ¢, is Lorentzian. Moreover, the restriction
of m to Cx M is a semi-Riemannian submersion with spacelike fibers.

Sectional curvature of a Lorentzian metric can be defined for non-
degenerate tangent planes but it cannot be stated for null planes (i.e.
degenerate planes). If v is a null tangent vector and ¢ a null plane con-
taining it, the null sectional curvature with respect to v of the plane o is
defined to be K, (o) = g(R(u,v)v,u)/g(u,u), where {u,v} is a basis of &
(7], [8], [1, Def. A.6]. Note that K,(0) does not depend on the choice of
the non-zero spacelike vector u, but it does quadratically on v.

From now on let us suppose that a null congruence associated with
a timelike vector field K has been fixed. Then, we may choice, for every
null plane o, the unique null vector v € Cx M No, thus the null sectional
curvature can be thought as a function on null tangent planes. In this
note we always use such convention, and we will call it the K —normalized
null sectional curvature.

Until now, no extra hypothesis on the timelike vector field K has
been assumed. Recall that a vector field X is called conformal (resp.
Killing) if each of its (local) fluxes consists of (local) conformal (resp.
isometric) transformations. It is well known that X is conformal if and
only if the Lie derivative of g with respect to X satisfies Lxg = pg, where
p: M — R (Killing when p = 0). If K is assumed to be conformal,
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then every null geodesic v, of (M, g) with v € CxM, provides us with
the null geodesic 7, of (CxM,q). Furthermore, each null geodesic /3 of
(M, g) may be reparametrized to obtain a null geodesic a which satisfies
o/(t) € CxgM. In fact, consider the real number a = g(#', K3), which
satisfies a # 0. If we put a(t) = 8(%), then g(o/, K,) = 1 holds for all
t. Null geodesics will be considered to be parametrized by this K —affine
parameter.

We will next assume that (M, g) is a compact Lorentzian manifold
and K a timelike conformal vector field. Recall that in this case (M, g)
is geodesically complete [16]. The following integral inequality is the key
tool to relate null conjugate points to global geometric properties:

Theorem 2.1 [5, Theor. 3.5] Let (M, g) be a compact Lorentzian man-
ifold which admits a timelike conformal vector field K. If there exists
a € (0,400) such that every null geodesic 7, : [0,a] — M, with
v € Cx M, has no conjugate point of v,(0) in [0,a), then

a2

/Mh"—wg g g /M [nfiTc(U) + S| htdp,. (22)

Moreover, equality holds if and only if (M,g) has U—normalized null

sectional curvature —5—.
a’h

Observe that if equality holds in (2.2) then the U—normalized null
sectional curvature of (M, g) is an everywhere non-zero point function.
On the other hand, it was proven by H. Karcher, [9] the following result:

Let U be a unit timelike vector field on an n(> 4)— dimensional
Lorentzian manifold (M, g). The U—normalized null sectional curvature
is an everywhere non-zero point function if and only if the following con-
ditions hold:

1. The distribution U+ is integrable.

2. The integral manifolds of U+ are totally umbilic and have constant
sectional curvature.

3. (M, g) is locally conformal to a flat Lorentzian manifold.

Combining Theorem 2.1 and Karcher’s result we can give a charac-
terization of the equality in (2.2) in terms of the distribution U+ (= K1)
and the locally conformal flatness of (M, g).
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Moreover, Theorem 2.1 provides also information of (M, g) from the
nonexistence of null conjugate points. In fact, if it is assumed that every
null geodesic does not contain a pair of mutually conjugate points, then
(2.2) is valid for any positive real number a. Therefore it must happen

/ [nfi?c(U) + S| h"dp, <0. (2.3)
M

In the next section we will use the integral inequality (2.2) to get a
bound of a for a relevant family of compact Lorentzian manifolds which
admit a unit timelike Killing vector field.

3 Lorentzian Odd Dimensional Spheres

We consider R**2 identified to C"™' as usual: (z1,...,Toni2) =
(21, oy Zn41), With z; = ; + ix,4145. So that, the unit sphere of R?"*2
is written

n+1

Sl = {z = (21, 2mt1) €CPH Y |2 = 1}.

j=1

Let U € X(S?"!) be given by U, = iz at any z € S*L. For the
canonical Riemannian metric g, of S**!, U is Killing and satisfies
9ean (U, U) = 1. Therefore, ViU = 0, where V is the Levi-Civita connec-
tion of geqn; that is, the integral curves of U are geodesics of gean.

Let w be the 1—form metrically equivalent to U with respect to geqn.
A Lorentzian metric on S***! can be defined by

J = Gean — 2W R w. (3.1)

This construction of g from g.4, is standard, but the Lorentzian metric g
deserves of making stand out among all the Lorentzian metrics of S?**1,
In fact, it has previously considered [20]. It is not difficult to show that
the Levi-Civita connection V of g satisfies:

VyY = VyY — 2w(X)VyU — 2w(Y)VxU, (3.2)

where X,Y € X(S*!). Moreover, the vector field U satisfies g(U,U) =
—1, it is Killing for g and VU = 0; so that, its integral curves are unit
timelike geodesics of g. On the other hand, observe that the inclusion
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Sl §PHL < my (21, Z001) = (215 Z0g1, 0, .0, 0) 1S a totally

geodesic Lorentzian submanifold, when both spheres are endowed with
the corresponding Lorentzian metrics (3.1).

Recall now the classical Hopf fibration IT : (S*"™, g..,,) — (CP", grs),
z — [z], where CP" is the complex projective space endowed with its
Fubini-Study Kéahler metric gpg of constant holomorphic sectional cur-
vature 4 [11, p. 273]. Recall that I permits to consider S*"*! as a
principal fiber bundle over CP™ with structural group S'. Moreover, II
is a Riemannian submersion with totally geodesic fibres. If the Rieman-
nian metric g.q, is replaced by the Lorentzian metric g, then II becomes
a semi-Riemannian submersion from (S?***!, g) to (CP", gpg) with time-
like totally geodesics fibres. Let us remark that g may be considered as
a particular case of a Kaluza-Klein metric. In fact, if we put s' = iR
for the Lie algebra of S' then iw is a connection form on S?"*!  and
g =M"(grs) —w@w, [15].

As a third description of the Lorentzian metric g, note that it can be
characterized from the properties:

9y = —Yeanlys Gl = YGeanlys g(Va H) = 07 (33>

where V and H are respectively the vertical and the horizontal distribu-
tions for the canonical connection of the Hopf fibration.

Now recall that if U is a unit timelike vector field on a Lorentzian
manifold (M, g), and p € M, (M,g) is said to be spatially isotropic
with respect to U at p if for every two unit vectors uy,us € U]j there
exists an isometry ¢ : M — M such that ¢(p) = p, d¢,(U,) = U, and
dop(ur) = uy. (M, g) is said to be spatially isotropic with respect to U if
it is spatially isotropic with respect to U at every point, [19, p. 47]. The
following results are easy to show:

Lemma 3.1 Let (M, g) be a Lorentzian manifold which admits a unit
timelike vector field U. Then (M, g) is spatially isotropic with respect to
U if and only if for every p € M and for every u,v € (CyM), there
exists an isometry ¢ : M — M such that ¢(p) = p, d¢,(U,) = U, and

dop(u) = v.

Proposition 3.2 [5, Prop. 4.2] (S*"™!, g) is spatially isotropic with re-
spect to U and the unitary group U(n+1) acts transitively by g—isometries
on SZn-ﬁ-l'
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Now note that in order to analyze the behaviour of the null geodesics
of the Lorentzian odd dimensional spheres, it suffices to consider the
ones starting from the specific point p = (1, ...,0) € S?**1. Observe that
v € (CyS*™ ), if and only if v = (—i,vq, ..., vy 1) With 2?221 | v; |?=1.

If we agree to represent v, (t) = (0}(t), ..., On,1(t)), with ©F : R — C,
1 <k <n+1, then we get:

0U(t) = 2 _4\/§ o(—2-V2)it + 2 +4\/§ o(—2+V2)it

The following figures show each kind of components of a lightlike
geodesic.

From the previous equations the following facts directly follow:

(1) There is no closed null geodesic in (S***1, g),

(2) For every v,u € (CyS*™™),, v # u, v,(t) = v.(t) holds if and
only if t = f/—g for some k € Z.

Now we pay attention to curvature properties of (S*"*! g). Its scalar
curvature S can be computed to obtain S = 2n(2n + 3). On the other
hand, we get Ric(U) = 2n and the U —normalized null sectional curvature
of (§**1,g) is a point function if and only if n = 1, with &C,(vt) = 8
for any v € CyS?, (see [5] for details). So, it should be pointed out that
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the first conclusion in Karcher’s theorem does not remain true if it is
assumed dim M = 3, because of non integrability of the distribution U*.

We end this note with an application of our integral inequality (2.2)
to the study of the behaviour of conjugate points along null geodesics in
Lorentzian odd dimensional spheres.

Proposition 3.3 [5, Prop. 4.4] For every null geodesic v, of (S*"*1, g)
with v € CyS*™ 1, the points 7,(0) and %(ﬁi) are conjugate and there is

no conjugate point to ~,(0) on [0, %) Moreover the past null conjugate
locus of each point p € S*" ™! is a (2n — 1)—dimensional imbedded sphere.

Observe that previous result may be dualized to analyze the future
null conjugate locus.

Remark 3.4 A conjugate point y(a) of v(0) = p along a null geodesic
can be interpreted as an “almost-meeting point” of null geodesics starting
from p. In our case, the first conjugate point along any null geodesic is
exactly at the middle of the path to the first “meeting point” which is
the second null conjugate point. Thus, null geodesics of S***! have an
“Auf wiedersehensflichen” type property as in Riemannian case, but in
contrast to that, in the Lorentzian setting the first “meeting point” is
not the first conjugate point.
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Abstract

The variational properties of the action integral on a semiriemannian
manifold are studied. In particular we state the Morse Inequalities for
the geodesics joining two nonconjugate points on a Lorentzian manifold.

1 Introduction

We consider a semiriemannian manifold (M, g), where M is a smooth,
connected, finite dimensional differentiable manifold and ¢ is a metric
tensor on M. For any z € M, the tensor g defines a bilinear form g(z)
on the tangent space T,,M at z to M such that g(z) is symmetric and
nondegenerate. The number of the negative eigenvalues of the bilinear
form ¢(z) does not depend on z and such number is called the index of the
metric g and it is denoted by v(g). The semiriemannian manifold (M, g)
is called Riemannian if v(g) = 0 and it is called Lorentzian if v(g) = 1.
We refer to the books [4, 29] for the basic properties of semiriemannian
manifolds.
A smooth curve 7 :]a,b[— M is said geodesic if

Dy =0, (1.1)
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where D, denotes the covariant derivative along « induced by the Levi-
Civita connection of g and # is the tangent vector field along ~. It is
well known that the geodesics joining two points on a semiriemannian
manifold satisfy a variational principle. Indeed the geodesics joining two
fixed points p and ¢ on M are the extremals of the action integral

/() = / 9(=(8))[E(5), 5(5)]ds (1.2)

defined on the infinite dimensional Sobolev manifold of Q%2(p, ¢; M) of
the curves z(s) : [0,1] — M such that z(0) = p, 2(1) = ¢, z is con-
tinuous and its derivative Z is square integrable. It is well known that
the space Q%2(p, ¢; M) is equipped of a structure of infinite dimensional
manifold modelled on the Sobolev—Hilbert space H'%([0,1],R") of the
absolutely continuous curves on R", n = dim M, having square inte-
grable derivative. If z € QV2(p, ¢; M), the tangent space T.QY%(p, ¢; M)
at z is given by

T.Q%(p, ; M) = {¢ € 2*((p,0),(¢,0); TM) : o ¢ = z},

where T'M denotes the tangent bundle of M and 7: TM — M is the
bundle projection. In other words T,Q%2(p, q; M) consists of the vector
fields ¢ along z of class H'? and having null boundary conditions.

The study of the existence and the multiplicity of geodesics joining
two points on a Riemannian manifold and the relations between the set
of such geodesics and the topology of the manifold M have played a
central role in the XX century in the development of what is called now
the Calculus of Variations in the Large and in particular in the Critical
Point Theory, the study of the critical points of a functional which are
not only global or local minima (or maxima) as in the classical Calculus of
Variations, but also saddle points. This kind of studies take their origin
essentially by the seminal work of Henri Poincaré on celestial mechanics
and dynamical systems. After some first results by G. Birkhoff on closed
geodesics on compact surfaces, the major impetus on Critical Point The-
ory came with the fundamental work by M. Morse in the U.S.A and by
Ljusternik and Schnirelmann in the U.S.S.R. In particular Morse devel-
oped an exhaustive theory for geodesics on Riemannian manifolds, while
Ljusternik, Schnirelmann obtained many results about another classical
and difficult problem in Differential Geometry as the existence of closed
geodesics on a compact Riemannian manifold, which has been completely
solved only few years ago, see the book of Klingenberg [25].
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The extension of the results of Morse, Ljusternik and Schnirelmann to
semiriemannian manifolds of positive index presents immediately many
difficulties with respect to the Riemannian case. If the semiriemannian
manifold (M, ¢) has index v(g) > 0, the action functional (1.2) is strongly
indefinite, i.e. now f: Q“2(p, ¢; M) — R is unbounded both from below
and from above, so the direct methods of the Calculus of Variations
can not be directly applied. Moreover any critical point of f (i.e. any
geodesic joining the points p and ¢) has its Morse index equal to +o0.
This means that any geodesic is an infinite dimensional saddle point for
the functional f. For these reasons the classical Morse Theory and the
classical Ljusternik—Schnirelmann Theory do not allow to obtain results
for semiriemannian manifolds with positive index, as for instance for
Lorentzian manifolds.

Critical Point Theory for strongly indefinite functionals has been the
object of several deep studies in the last twenty-five years and it has many
applications in the study of Hamiltonian systems, nonlinear hyperbolic
equations and in symplectic geometry, related to Floer homology and the
resolution of Arnold conjectures. We refer to a recent book by Alberto
Abbondandolo [1] on strongly indefinite functionals and applications to
Hamiltonian systems.

In this paper we present some recent results obtained in collabora-
tion with Alberto Abbondandolo, Vieri Benci and Dino Fortunato [2].
We shall state the Morse inequalities for the geodesics joining two non-
conjugate points on two classes of Lorentzian manifolds, the stationary
and the orthogonal splitting Lorentzian manifolds. The Morse inequal-
ities are obtained by applying an abstract Morse Theory for a class of
strongly indefinite functionals developed in [2].

In order to study the variational properties of geodesics as criti-
cal points of the action integral, is fundamental to evaluate the sec-
ond derivative f”(z) at a geodesic z. Let (M, g) be a semiriemannian
manifold, fix two points p and ¢ in M and let z: [0,1] — M be a
geodesic joining p and ¢. It is well known that the second derivative
f"(2): T.QY2(p, ¢; M) x T.QY%(p, ¢; M) — R of the action integral at z
is given by

1

(26, = / 9(2)[D.C, DLC)ds — / (RG24 Cs,  (13)

0

for any ¢,{’ € T.QY(p, ¢; M), where R denotes the curvature tensor for
the metric g.
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Formula (1.3) clearly shows as the index v(g) influences on the spec-
tral properties of f”(z). Indeed if g is a Riemannian metric, then f”(z)
is a Fredholm operator and it is a compact perturbation of a positive
definite bilinear form. On the other hand, if v(g) > 0, then f”(2) is still
a Fredholm operator, but now it is a compact perturbation of a sym-
metric bilinear form which is both negative definite and positive definite
on an infinite dimensional subspace of T,Q"%(p, ¢; M). Then the Morse
index of any geodesic is finite for Riemannian metrics, but it is equal
to +oo if v(g) > 0. This makes difficult to apply the classical results
of critical point theory (and in particular the Morse Theory) based on
the deformation of the sublevels of the functional by the gradient flow,
because critical points having Morse index equal to +o0o0 do not change
the homotopy type of the sublevels of a functional (we are attaching in-
finite dimensional handles and the infinite dimensional unit sphere on a
Hilbert space is contractible !!).

A geodesic z € Q%2(p, ¢; M) is said nondegenerate if it is a nonde-
generate critical point of the action integral f, i.e. the second derivative
defines an invertible linear operator on the tangent space T,Q*(p, ¢; M)
with respect to some H'? inner product on T,Q"%(p, ¢; M). Since f”(z)
defines a Fredholm operator of index 0, this is equivalent to require that
the kernel of f”(z) is trivial and this is equivalent to say that there are no
solutions of the Jacobi equations D?¢ 4+ R((, 2)z = 0 such that ¢(0) = 0,
¢(1) =0.

Two points p and ¢ of a semiriemannian manifold (M, g) are said
nonconjugate if any geodesic joining p and ¢ is nondegenerate. From a
variational point view, the nonconjugation of the points p and ¢ means
that the action integral (1.2) is a Morse function, i.e. its critical points
are nondegenerate. Using the Sard theorem it can be proved that all the
couple of points in M, except for a nowhere dense set, are nonconjugate

(cf. [28]).

2 A review of Classical Critical Point Theory

We present the classical results on critical point theory and the applica-
tions to Riemannian Geometry, in particular to the geodesics joining two
points on a complete Riemannian manifold, see [9, 25, 26, 28, 30].

Let (X, h) be a (possibly infinite dimensional) Riemannian manifold
and f: X — R a C? functional, a point € X is said critical point of f
if f'(z) = 0. A number ¢ € R is said critical value if there exists a critical
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point = of f such that f(x) = ¢, otherwise c is called regular value. Let
x be a critical point of f and denote by T, X the tangent space at x to
X. The Hessian f"(z) : T,X x T, X — R at z is defined in the following
way. For any £ € T, X we set

ﬂmmﬂ=(£%§mlﬂ

(where v :] — e,e[— X is a smooth curve such that v(0) = x,%(0) =
¢) and then we extend f”(z) by polarization to any couple of tangent
vectors.

The critical point = is said nondegenerate if the linear operator in-
duced on T, X by f”(z) is an isomorphism. The functional f is said
to be a Morse function if all its critical points are nondegenerate. The
Morse index m(z, f) is the maximal dimension of a subspace of T, X
where f”(x) is negative definite. The augmented Morse index is given by
m*(z, f) = m(z, f) + dim Ker f”(x), where

Kerf"(z) ={{ € LX | f"(x)[£.§'] = 0,v¢" € T, X}

Clearly if dim X = 400, the Morse index and the augmented Morse
index can be infinite. We recall now the Palais-Smale (PS) compactness
condition.

Definition 2.1 Let f : X — R be a C' functional defined on a Rieman-
nian manifold (X, h) and let F' be a closed subset of X, then the functional
[ satisfies the Palais-Smale condition on F if for any sequence (x,,),,cn
of points of F, such that

RS (@)}, is bounded;

)|V f () — 0,
there exists a converging subsequence. Here ||-|| denotes the norm induced
on the tangent bundle by the fixed Riemannian metric h on X.

For any ¢ € R we set

fo={reX|fx)<d,
fo={reX|f(z)>c}. (21)

Moreover for any a < b we set

fl={reX|a< f(z) <b}. (2.2)
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We present now the main results of Critical Point Theory. They are
all based on the following deformation theorems which show the relations
between the changes of the homotopy type of the sublevels of a functional
and the presence of critical points of the functional itself.

Theorem 2.2 Let f: (X,h) — R be a C' functional defined on a com-
plete Riemannian manifold (X, h), let a < b be two reqular values of f
and assume that there are no critical points in f° and f satisfies the
Palais-Smale condition on the closed set f.

Then there exists a continuous deformation of f° onto f?, i.e. there
exists a continuous homotopy H : [0,1] x f* — f° such that

(i) H(0,z) = z, for any x € f°;

(1) H(t,y) =y, for any t € [0,1] and for any y € f*;

(iii) H(L, f*) = f°.

The proof of the previous theorem can be found in the book of J.
Mawhin and M. Willem [27]. The idea is to construct the homotopy H
using the flow lines of the gradient vector field V f of the functional f with
respect to the Riemannian structure h of the manifold X. The absence
of critical points of f on f? and the Palais—Smale condition on the same
set assure that the flow starting from f° reaches the sublevel f¢ in a
finite time, remaining f¢ fixed. Such idea works only for C? functionals,
for which the gradient is locally Lipschitz continuous and the Cauchy
problems for the gradient flow have an unique solution. The proof for
functionals of class C! is obtained using the notion of pseudogradient
field introduced by R. Palais.

The deformation lemma can be extended to in the case of presence
of critical points of the functional. We present now a version describing

the behavior of the functional nearby a critical value, see for instance
[27] for the proof.

Theorem 2.3 Let [ : (X,h) — R be a C' functional defined on the
complete Riemannian manifold (X, h), let c € R and let K. = {zx € X :
f(x) = ¢, f'(x) = 0} be the set of the critical points of f at the level c
(the Palais—Smale condition implies that K. is a compact set).

Then, for any neighborhood U of K., there exists a positive number
go such that for any e €]0,¢e¢[ there exists a continuous homotopy H. :
[0,1] x fre\U — ft¢\ U such that

(i) H.(0,2) = o, for any = € [\ U;

(1) H.(t,y) =y, for any t € [0,1] andy € f<=\U;
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(111) He(1, fete\U) = fe=.

The two previous lemma are the basic tool to deduce some results on
the existence and the multiplicity of critical points of functionals bounded
from below and satisfying the Palais—-Smale condition.

Theorem 2.4 Let f: (X,h) — R be a C' functional defined on a com-
plete Riemannian manifold (X, h), bounded from below and satisfying the
Palais—Smale condition on X.

Then the infimum is attained and there exists a point xo € X such

that f(x¢) = infy f.

The proof of this theorem is a simple consequence of the first defor-
mation lemma. If the topology of the manifold X is rich, we have the
following estimate from below of the number of critical points of a func-
tional in terms of a topological invariant of the manifold, the Ljusternik—
Schnirelmann category of X. We recall that for any topological space X,
the Ljusternik—Schnirelmann category cat(X) is equal to the minimal
number of closed and contractible subsets which cover X itself. If such
a minimal number does not exist, it is cat(X) = +oo.

Theorem 2.5 Let f: (X,h) — R be a C' functional defined on a com-
plete Riemannian manifold (X, h), bounded from below and satisfying the
Palais—Smale condition.

Then the functional f has at least cat(X) critical points. Moreover,
if cat(X) = 400, then there exists a sequence x,, of critical points of f
such that f(x,) — +oc.

The proof of this theorem was obtained by Ljusternik and
Schnirelmann at the end of the twenties of the last century. A mod-
ern proof can be found in the book of Mawhin and Willem.

Finally we present the results of classical Morse Theory for a func-
tional f bounded from below and satisfying the Palais-Smale condition.
Morse Theory gives more precise estimates for the critical points of a
functional defined on a Hilbert manifold, in particular it gives some es-
timates on the number of critical points having a fixed Morse index.
However, in order to prove the results of Morse Theory, we have to pay
two costs. Firstly we have to assume that the functional is of class C?
and secondly all the critical points of f have to be nondegenerate, i.e.
the functional f is a Morse function. We state these results using co-
homology groups rather homology groups, because cohomology seems to
be more useful in extensions to strongly indefinite functionals.
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Let (A, B) be a topological pair, that is A is a topological space and B
is a subspace of A and let K a field. For any k € N, H*(A, B; K) denotes
the k-th relative cohomology group (with coefficients in K) of the pair
(A, B) (cf. [32]). Since K is a field, the cohomology group H*(A, B; K)
is a vector field and its dimension 3%(A, B;K) is called the k-th Betti
number of (A, B) (with respect to K). The Poincaré polynomial of the
pair (A, B) is defined by setting

P(A,B;K)(r) = > B*(A, B; K)r*.

k=0

In general P is a formal series whose coefficients are positive cardinal
numbers (possibly +00).

We state now the Morse Relations for a Morse functional, bounded
from below and such that the Morse index of any critical point is finite.
We deduce as a consequence the classical Morse Inequalities proved by
Morse, which relate the numbers of critical points having index k with
the k—th Betti number of the manifold. For the proof see the article of
Bott [9] or [27].

Theorem 2.6 Let f: X — R be a C? functional defined on a complete
Riemannian manifold (X, h). Assume that [ is bounded from below and
satisfies the Palais—Smale condition (PS) on X. Moreover assume that
all the critical points of f are nondegenerate and the Morse index m(x, f)
of any critical point x of f is finite.

Then for any field IC there exists a formal series Q(r), whose coeffi-
cients are positive cardinal numbers, such that

S mEh = PX,K) () + (1+1)Q(r). (2.3)

zeK(f)

Notice that under the assumption of the previous theorem, the num-
ber of critical points of the functional f is countable, because nondegen-
erate critical points are isolated, and the Palais-Smale condition holds
on the whole manifold X.

We state now the classical Morse inequalities, whose proof is a trivial
consequence of (2.3).

Theorem 2.7 Under the assumptions of Theorem 2.6, let I be a field,
let k € N be a positive integer and denote by (*(X;K) the k—th Betti
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number of the manifold X (with respect to the field ) and by M(f, k)
the number of critical points x of f such that m(z, f) = k.
Then, for any k € N, the following Morse inequality holds:

M(f,k) > B*(X;K). (2.4)

We apply now the abstract results above to the action integral of
a Riemannian manifold, getting existence and multiplicity results and
a Morse Theory for geodesics on a Riemannian manifold. These results
were already the core of the results of Morse, Ljusternik and Schnirelmann,
obtained essentially using finite dimensional reductions of the problem
(see the classical book of J. Milnor [28] on Morse Theory). The infinite
dimensional approach using Hilbert manifolds, gradient flows and the
Palais—Smale condition was introduced by R. Palais in the celebrated
paper [30].

Let (M, g) be a complete Riemannian manifold, let p and ¢ two points
of M and consider the action integral f(x) = fol g(x(s))[z(s), z(s)]ds on
the manifold Q'%(p, ¢; M). Then f is bounded from below and it satisfies
the (PS) condition, see [30]. By Theorem 2.4, there exists a minimum of
f, so there exists a minimal geodesic joining p and ¢. This is a variational
proof of the geodesic connectedeness of a complete Riemannian manifold,
which is usually proved as a consequence of the well known Hopf-Rinow
Theorem in Riemannian Geometry. In order to obtain multiplicity re-
sults for the geodesics joining p and ¢, variational methods seem to
be necessary. In particular Fadell and Husseini have proved [12] that
the Ljusternik—Schnirelmann category cat(QV?(p, ¢; M)) is equal to +oo
whenever the manifold M is noncontractible into iteself. In this case, for
any couple of points p and q of M, there exists infinitely many geodesics
joining p and ¢ and there exists a sequence (z,) of such geodesics such
that the action integral f(z,) tends to +oo. This result was already
proved by Serre [31] in the case of a compact and simply connected man-
ifold.

Finally, if p and ¢ are nonconjugate (a condition which holds al-
most surely), the Morse Relations and the Morse inequalities hold for
the geodesic joining p and ¢. So, the variational properties of the action
integral can be completely described. In particular the Morse inequalities
hold, then the number G(p, ¢; k) of geodesics joining p and ¢ and having
index k € N and the k-the Betti number 5*(Q2(p, ¢; M); K) are related
by the formula

G(p,q; k) = B°(Q"*(p, ¢; M); K).
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Moreover, since the infinite dimensional manifold Q%2(p,q; M) is ho-
motopically equivalent to the based loop space (M), then their coho-
mology groups are isomorphic, so we have a full relation between the
differential structure of the geodesics of the complete Riemannian met-
ric g and the topological structure of the manifold M and the following
inequality holds:

G(p,q; k) = B*(QUM); K).

Whenever the M is contractible, then cat(2%?(p,¢; M)) = 1, and the
only nonnull Betti number of Q(M) is 3°((M); K) = 1. Then both the
Ljusternik—Schnirelmann and Morse Theory gives the existence of at least
one geodesic joining two points p and ¢ on M, the minimal one. On the
other hand there are situations in which the numbers of geodesics can be
greater than one. Such cases are interesting in the study of the geometric
causes of the so called multiple image effect, studied in Astrophysics to
describe the gravitational lens effect. We cite the paper [20] for some
results in these directions.

3 Variational properties of geodesics on Lorentzian
manifolds

We consider now a semiriemannian manifold (M, g) of index v(g) > 0,
in particular a Lorentzian manifold. As we said in the Introduction,
the geodesics for the metric g joining two points p and ¢ on M are still
the critical points of the action integral f(z) = fol g(z(8))[2(s), 2(s)]ds on
the manifold Q'2(p, ¢; M), but now the variational properties of the func-
tional f are completely different from the case of a Riemannian manifold.
Now the functional f is unbounded both from below and from above, the
Morse index m(z, f) of any geodesic joining p and ¢ is equal to +o0o0 and
finally, the functional f does not satisfy, in general, the (PS) condition.
These three facts makes very difficult the problem to find a critical point
for f, proving the geodesic connectedeness of a semiriemannian manifold.
One finds further difficulties to prove multiplicity results or to develop a
Morse Theory for the functional f.

These difficulties are not only of technical nature to develop varia-
tional arguments. Indeed, there are rather important counterexamples
to the geodesic connectedeness of a Lorentzian manifold. For instance
there exists Lorentzian manifolds which are geodesically complete, but
not geodesically connected. We recall that a semiriemannian manifold
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is geodesically complete if and only if any maximal geodesic is defined
on the whole real line R. The Hopf-Rinow shows that a Riemannian
manifold is geodesically complete if and only if it is complete, so any
geodesically complete Riemannian manifold is geodesically connected.

Moreover, there exists a compact Lorentzian manifold which is not
geodesically connected, see [26] and its references for such counterexam-
ples. It is not still known a complete geometric theory for the geodesic
connectedeness of a semiriemannian manifold, as for the Riemannian
case. The only classical result is the Avez—Seifert theorem on the exis-
tence of a maximal causal geodesic joining two causally related points
in a globally hyperbolic Lorentzian manifold, see [4]. Such a result was
proved using a maximization argument not far from the proof of Theo-
rem 2.4.

In the recent years the problem of the existence of geodesics (without
any restriction on the causality of such geodesics) joining two points in a
Lorentzian manifold has been studied by some authors using variational
methods, see [26] for an almost exhaustive literature on the topic. Other
results using arguments not variational in nature have been recently ob-
tained for the class of generalized Robertson—Walker spacetimes, see [15].
Here we present the results obtained via variational methods and in par-
ticular we state the Morse Inequalities for the geodesics joining two non-
conjugate points on a stationary or an orthogonal splitting Lorentzian
manifold.

We introduce now the notion of splitting Lorentzian manifold, which
is the most general class of Lorentzian manifold we shall study. Indeed,
orthogonal splitting and standard stationary Lorentzian manifolds are
two subclasses of it.

Definition 3.1 A Lorentzian manifold (M, g) is said splitting if M =
My x R, where My is a smooth connected manifold, and the metric g
has the following form. For any z = (x,t) € M and for any ( = (£, 7) €
TZM = TzMo X R,

9(2)[¢,¢] = (alx, 1), €) +2(5(x, 1), )7 — B (2) 7%, (3.1)

where (-,-)is a Riemannian metric on My, a(x,t) is a positive linear
operator on T, My, smoothly depending on z, §(x,t) is a smooth vector
field tangent to My and (3 (2) is a smooth scalar field on M.

The metric g is said orthogonal splitting if the vector field §(z,t) = 0,
while the metric g is said standard stationary if the linear operator o, the
vector field & and the scalar field 5 do not depend on the variable t.
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If the metric is stationary we can assume without any loss of gener-
ality that the the linear operator a(x) is equal to the identity map and
the metric has the following form:

9(2)[¢, ¢} = (€. &) + 2(6(2), &) — B(2)7%, (3-2)
while an orthogonal splitting metric takes the form
9(2)[¢, ] = {alz,1)§, &) — Bz, )T°. (3-3)

Remark 3.2 We recall a result of Geroch (see [17]) which states that any
globally hyperbolic Lorentzian manifold is diffeomorphic to a splitting
Lorentzian manifold. The problem on the geometric conditions which
assure that a Lorentzian manifold is splitting has been widely studied
(see for instance [4]).

We point out that the definition of splitting Lorentzian manifold
can be given intrinsically. Indeed a Lorentzian manifold is splitting if
and only if it admits a time function 7" on the manifold such that the
timelike vector field VT' is complete. Moreover a standard stationary
Lorentzian manifold is a particular case of a stationary Lorentzian man-
ifold, i.e. a Lorentzian manifold admitting a global timelike Killing field.
We shall focus our attention on orthogonal splitting and standard sta-
tionary Lorentzian manifold. For the most general cases of splitting
Lorentzian manifolds see [19] and for stationary Lorentzian manifolds
see [23].

We introduce now a notion of regularity for orthogonal splitting and
standard stationary Lorentzian manifolds. They require the completeness
of the Riemannian factor of the manifold and some growth condition at
the spacelike infinity of the coefficients of the metric.

Definition 3.3 A standard stationary Lorentzian manifold (M, g), M =
Mo x R, is said to be reqular if it satisfies the following assumptions:
Ay) The Riemannian manifold (Mo, (-,-)) is complete;
Ay) There exists two positive constants 0 < v < M such that for any
z e M,
v < B(z) < M;

As) sup{(d(x),d(x))o,z € Mo} < 4o0.

Definition 3.4 An orthogonal splitting Lorentzian manifold (M, g) is
said to be reqular if it satisfies the following assumptions:
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By) The Riemannian manifold (M, (-,-)) complete;
Bo) There exists A > 0, such that for any z = (z,t) € M, and for

any & € T, Mo,
(a(2)€,8) > ME, 6);

B3) there ezists two positive constants 0 < v < M such that for any
zeM,
v < B(z) < M;

By) there exists L > 0 such that for any z € M,
(a(2)6, )1 <L,  [Bi(2)| <L

where oy and By denote respectively the partial derivative, with respect to
t, of a and 3;
Bs)

hmsupt—>+oo <at (Q?, t>£7 €> S 07
liminf, (o (z, )€, &) > 0,

uniformly in © € My and £ € T,Mo, (§,&) = 1.

The first main result about regular orthogonal splitting or regular
standard stationary Lorentzian manifold is the following theorem.

Theorem 3.5 Let (M, g) be a regular standard stationary Lorentzian
manifold or a reqular orthogonal splitting Lorentzian manifold.

Then (M, g) is geodesically connected, i.e. for any couple of points
p = (xo,tg) and q = (x1,t1) € M = My x R, there exists a geodesic
joining p and q.

Theorem 3.5 has been proved in [5, 18] for standard stationary
Lorentzian manifolds and in [6] for orthogonal splitting manifolds. The
proofs of the results above are of variational nature. It is shown that if the
Lorentzian manifold is regular standard stationary or regular orthogonal
splitting, the action integral (1.2) has a critical point, which is an infinite
dimensional saddle point. In [18] a variational principle for the geodesics
on a stationary Lorentzian manifold is proved. Such a principle, obtained
using a global saddle point reduction and the implicit function theorem,
allows to characterize the spatial part of a geodesic as a critical point of
a new functional J defined on the manifold Q42(zg, z1; My). If the sta-
tionary Lorentzian manifold is regular, the functional J is bounded from
below and satisfy the (PS) condition. So the critical point theory devel-
oped in Sect. 2 permits to obtain the geodesic connectedeness of regular
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stationary Lorentzian manifold. If the coefficients of the Lorentzian met-
ric depend on the time variable, no global reduction permits to reduce the
problem to a Riemannian one and genuine methods for strongly indefinite
functionals have to be applied. In particular the geodesic connectedeness
of a regular orthogonal splitting Lorentzian metric is obtained applying
to the action integral (1.2) the so called Rabinowitz saddle point theorem.
Indeed, the assumption for an orthogonal splitting Lorentzian metric to
be regular imply that the action integral has the saddle point geome-
try. One finds further difficulties because in this case the action integral
does not satisfy the (PS) condition and the results are obtained using a
perturbation argument. We refer to [6, 26] for the details.

If the topology of the regular Lorentzian manifold is nontrivial, we
have the following multiplicity result.

Theorem 3.6 Let (M, g) be a reqular standard stationary Lorentzian
manifold or a reqular orthogonal splitting Lorentzian manifold. Assume
that the manifold M is noncontractible into itself.

Then, for any couple of points p = (xg,t9) and q = (x1,t1) € M =
My X R, there exist infinitely many geodesics joining them. Moreover
there ezists a sequence (z,,) of such geodesics such that f(z,) — +00

The previous results have been proved in [5, 18] for a regular station-
ary Lorentzian manifold and in [19] for an orthogonal splitting Lorentzian
manifold. So, for these two classes of regular Lorentzian manifolds there
hold the analogous existence and multiplicity results that for Rieman-
nian manifolds. The proof for the stationary case is obtained applying
the Ljusternik-Schnirelmann Theory to the functional J obtained by the
global saddle point reduction described above. The case of regular, or-
thogonal splitting manifolds is more delicate. In order to get multiplicity
results for critical points of strongly indefinite functionals, a new topo-
logical invariant, the relative category was introduced by some authors
[16]. Fadell and Husseini [13] have shown that for a noncontractible man-
ifold, this invariant takes arbitrarily large values on subsets of its based
loop spaces. Then, their results can be applied to obtain multiplicity of
geodesics, see [19].

Assume now that the points p and ¢ are nondegenerate, so that the
action integral is again a Morse function as for the Riemannian case. In
order to develop a Morse Theory for the geodesics joining p and ¢, some
further difficulty immediately arises. Indeed, since any geodesic joining
p and ¢ has Morse index equal to 400, the statements of Theorem 2.6
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and of Theorem 2.7 do not make any sense.

Morse Theory for strongly indefinite functionals has been the object
of several studies in the last years. In particular the definition of the
index for a critical point of a functional such that the second differential
at the critical point is a Fredholm operator of index 0 has been studied
by many authors [1, 2, 3, 10, 11, 33].

We define here a relative indez of a class of bilinear form on a Hibert
space. Let H be a real Hilbert and let a: H x H — R be a continuous,
symmetric, nondegenerate bilinear form on H such that a = a¢ + k,
where aq is another continuous, symmetric, nondegenerate bilinear form
on H and k is a compact form. Let A and Aj be the linear isomorphisms
on H induced by the forms a and ay and denote by V*(A4) and V~(A)
the maximal A—invariant subspaces on which A is respectively positive
definite and negative definite. Analogously, the Ap—invariant subspaces
V+(Ap) and V~(Ap) on which Ay is positive definite and negative definite
are defined. Then the index of a relatively to ag, denoted by j(a, ag) is
defined as follows:

j(a,a0) = dim(V-(A) NV*H(A)) — dim(VT(A) N (V7 (4))). (3.4)

The relative index j(a, ap) is a relative integer number and coincides with
the Morse index of the form a (i.e. the maximal dimension of a subspace
where a is negative definite) if ag is positive definite.

Now, let (M, g) be an arbitrary semiriemannian manifold and let p
and ¢ two nonconjugate points of M. Let z be a geodesic joining p and
q, then it is a nondegenerate critical point of the action integral f(z) =
folg(z(s))[é(s),z’(s)]ds. The second derivative f”(z): T.Q%2(p, q; M) X
T.Q%%(p,q; M) — R of the action integral at z is given by (see (1.3))

PG = /0 9(2)[DsC, D(')ds — /0 g()R(C 22 s, (3.5)

Then f”(z) defines a Fredholm operator of index 0 on the tangent space
T.Q%(p, q¢; M). Indeed we have that that f”(z) = ag(z) + k(z), where
ap(z) = fol 9(2)[DsC, Ds(C'lds is nondegenerate and k(z) =
— fol g(2)[R(C, 2)%,("|ds  defines a compact linear operator on
T.Q"%(p, q; M).

We can define the relative indez for a geodesic joining two points on
a semiriemannian manifold, see [2]
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Definition 3.7 Let (M,g) be a semiriemannian manifold and let
z:[0,1] — M be a geodesic joining p = z(0) and ¢ = z(1). The rel-
ative index j(z) of the geodesic z is defined setting

](va) :J(f”(z)vao(z))v (36)

where f"(z) is the second differential evaluated at the geodesic z of the
action integral f.

By the abstract definition of the relative index, it follows that the
index for a semiriemannian geodesic z is a relative integer j(z) € Z, so it
could be negative. If the metric g is Riemannian, then the bilinear form
ao(z) is positive definite and so the relative index j(2) reduces to the clas-
sical Morse index m(z, f) of the geodesic. If the metric is Lorentzian,
the spectral properties of f”(z) are partially known and one can conclude
that if z is a causal geodesic, then j(z) € N, see [4, 7]. It would be inter-
esting to give examples or describe completely the (spacelike) geodesics
with negative index.

We state now the Morse inequalities for Lorentzian geodesics on reg-
ular standard stationary or regular orthogonal splitting Lorentzian man-
ifolds, see [2] for the proof.

Theorem 3.8 Let (M, g) be a regular standard stationary or a regular
orthogonal splitting Lorentzian manifold and let p and q two nonconjugate
points of M. Moreover, for any k € N, let G(p,q; k) be the number of
geodesics z for the metric g, joining p and q and such that the relative
index j(z, f) is equal to k.

Then, for any k € N and for any field IC we have

G(p,q; k) > B*(Q2(p, ; M)), (3.7)

where B8(QY2(p,q; M)) is the k-th Betti number of the manifold
QL2 (p, ¢; M) with respect to the field K.

Since the manifold Q'?(p, ¢; M) is homotopically equivalent to the
based loop space (M) of the manifold M, the Morse inequalities (3.8)
can be stated as G(p,q; k) > B%(Q(M)) and this relates the differen-
tial structure of the geodesics for the Lorentzian metric ¢ joining two
nonconjugate points and the topological structure of the manifold M.

Under the assumptions of the previous theorem, whenever the man-
ifold M is noncontractible into itself, there exits a sequence of geodesics
(zm) of geodesics joining the points p and ¢q. The topological properties of
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the based loop space Q(M) (cf. [12]) allows to estimate the relative index
J(2m, f) of such geodesics showing that j(z,, f) — 400 as m — +o0,
see [2].

The Morse inequalities allows to estimate the number of geodesics
having positive index in terms of the singular cohomology groups of the
based loop space. If one wants to give some estimates on the number of
geodesics with negative index, classical homological or cohomological the-
ories (as singular homology or singular cohomology) do not work. From
the variational point of view, the classical theories are not affected by at-
taching an infinite dimensional cell, because the infinite dimensional unit
sphere is contractible. The study of cohomology theories for strongly
indefinite functionals is an active field of interaction between Algebraic
Topology and the Critical Point Theory (see [1, 33] for some recent re-
sult).

The proof of Theorem 3.8 is a consequence on some abstract results
on a Morse Theory for a class of strongly indefinite functionals, devel-
oped in [2]. The action integral for a standard stationary or a orthogonal
splitting Lorentzian manifold belongs to such a class of functionals. The
case of a regular standard stationary follows by a direct argument, be-
cause the action integral (1.2) of a regular standard stationary Lorentzian
manifold

F6) = ft) = [ [(0) + (0G0, )i = 5] ds

satisfies a variant of the (PS) condition, the so called (PS)* condition,
which is very useful for the study of strongly indefinite functionals. The
proof in the case of regular orthogonal splitting Lorentzian manifolds is
quite involved. Indeed, in this case the action integral (1.2),

F2) = fat) = [ llatet)id) = 3(a. 0 ds

does not satisfy the (PS) or the (PS)" condition, see for instance [26]. In
this case an approximation scheme with a family of functionals converging
in the bounded sets to the functional f and satisfying the (PS)" condition,
allows to pass to the limit in the approximation and to prove the Morse
inequalities for f as limit if the Morse inequalities of the approximating
functionals. We refer to [2] for the details.

While the classical Morse Inequalities hold both for regular standard
stationary and orthogonal splitting Lorentzian manifolds, the Morse Re-
lations as in Theorem 2.6 hold for regular standard stationary Lorentzian



200 GEODESICS ON LORENTZIAN MANIFOLDS

manifolds, but actually it is an open problem to prove them for regular
orthogonal splitting Lorentzian manifolds. This is due to the fact that
the lost of the (PS)* for the action integral f does not allow to control the
growth of the infinite dimensional cohomology (introduced by Szulkin in
[33]) of the sublevels f¢ of the functional f, as ¢ — 400, see [2].

Previous results on a Morse Theory for Lorentzian geodesics have
been proved by some authors. In [34] a Morse Theory for timelike
geodesics joining two chronologically related fixed points in a globally
hyperbolic Lorentzian manifold. In this paper the set of such timelike
geodesics is related to the topology of the space of the timelike curves
joining the fixed points. We would like to point out the evaluation of the
topological invariants of such a space, as for instance the Betti numbers,
is not known.

In some papers a Morse Theory for the lightlike geodesics joining an
event with a timelike curve representing the world line of a light source
is developed [14, 21, 34]. These results are obtained using a relativistic
version of the Fermat principle of classical optics and it has permitted to
produce a mathematical model of the gravitational lens effect in Astro-
physics. Such results have been extended to timelike geodesics in [22].

Some kind of Morse Relations for the geodesics joining two non-
conjugate points on stationary Lorentzian manifolds and on Generalized
Robertson-Walker spacetimes have proved in some papers [8, 15, 24].
The results of these papers are based on a reduction argument which
allows to deduce the Morse Relations by applying the classical Morse
Theory to a suitable functional, bounded from below, satisfying (PS)
and whose critical points have finite Morse index. However the index as-
sociated is always positive, so such Morse Relations are not obtained with
the natural Morse Index j(z, f) of a geodesic z. It is an open problem
to understand if these results are equivalent to the results presented in
this note. If the geodesic is causal, the equivalence between the theories
is true.

4 Conclusion

We have presented some recent results on the variational theory for
geodesics on Lorentzian manifolds and we have presented also some open
problem. For metrics g of index v(g) greater that 2, we do not know any
result in these directions and much work must be done to understand the
variational properties of the action integral f(z) = fol g(z(8))[2(s), 2(s)]ds.



ANTONIO MASIELLO 201

References

[1] A. ABBONDANDOLO, Morse theory for Hamiltonian systems. CRC
research Notes in Mathematics 425, Chapman and Hall UK, London
(2001).

[2] A. ABBONDANDOLO, V. BENCI, D. FORTUNATO, A. MASIELLO
Morse Relations for geodesics on Lorentzian manifolds, preprint.

3] H. AMANN AND E. ZEHNDER, Nontrivial solutions for a class
of monresonant problems and applications to nonlinear differential
equations, Ann. Scuola Normale Superiore Cl. Sci. (4), 8, 539603,
(1980).

[4] J. K. BeEem, P. H. EHrLICH AND K. L. EASLEY, Global
Lorentzian Geometry, Marcel Dekker Inc., New York (1996).

[5] V. BENCI AND D. FORTUNATO, On the existence of infinitely many
geodesics in space—time manifolds, Adv. Math, 105, 1-25, (1994).

6] V. BEnci, D. FORTUNATO AND A. MASIELLO, On the geodesic
connectedeness of Lorentzian manifolds, Math. 7, 217, 73-93,
(1994).

[7] V. BENCI, F. GIANNONI AND A. MASIELLO, Some properties of

the spectral flow in semiriemannian geometry, J. Geom. Phys, 27,
267280, (1998).

[8] V. BENCI AND A. MASIELLO, A Morse index for geodesics in static
Lorentz manifolds, Math. Ann, 293, 433-442, (1992).

9] R. BotT, Morse Theory old and new, Bull. Am. Math. Soc, 7,
331-358, (1982).

[10] K. C. CuANG, J. Q. Liu aAND M. J. Liu, Nontrivial periodic
solutions for strong resonance Hamiltonian systems, Ann. Inst. H.
Poincaré, Analyse Nonlineaire, 14, 103-117, (1997).

[11] C. CONLEY AND E. ZEHNDER, Morse type index theory for flows

and periodic solutions for Hamiltonian systems, Comm. Pure Appl.
Math, 37, 207-253, (1984).

[12] E. FADELL AND S. HUSSEINI, Category of loop spaces of open sub-
sets of Euclidean spaces, Nonlinear Anal. T.M.A, 17, 1153-1161,
(1991).



202 GEODESICS ON LORENTZIAN MANIFOLDS

[13] E. FADELL AND S. HUSSEINI, Relative category, products and co-
products, Rend. Sem. Mat. Fis. Univ. Milano, LXIV, 99-117, (1994)

[14] D. FORTUNATO, F. GIANNONI AND A. MASIELLO, A Fermat prin-

ciple for stationary space—times with applications to light rays, J.
Geom. Phys 15, 159-188, (1995).

[15] J. L. FLORES AND M. SANCHEZ, Geodesic connectedeness and
conjugate points in GRW space—times, J. Geom. Phys, 36, 285-314,
(2000).

[16] G. FOURNIER AND M. WILLEM, Relative category and the cal-
culus of variations, IN Variational Problems, H. BERESTICKY, J.
M. CORON AND I. EKELAND ED, BIRKHAUSER, BASEL, 95-104,
(1990).

[17] R. GEROCH, Domains of dependence, J. Math. Phys, 11, 437-439,
(1970).

[18] F. GIANNONI AND A. MASIELLO, On the existence of geodesics in

stationary Lorentz manifolds with convex boundary, J. Funct. Anal,
101, 340-369, (1991).

[19] F. GIANNONI AND A. MASIELLO, Geodesics on product Lorentzian
manifolds, Ann. Inst. Henri Poincaré Analyse Nonlineaire, 12, 27-

60, (1995).

[20] F. GIANNONI, A. MASIELLO AND P. PiccCiONE, Convezity and

the finiteness of geodesics. Applications to the multiple image effect,
Class. Quant. Grav, 69, 731-748, (1999).

[21] F. GIANNONI, A. MASIELLO AND P. PICCIONE, The Fermat prin-
ciple in General Relativity and applications, J. Math. Phys, 43, 563—
596, (2002).

[22] F. GIANNONI, A. MASIELLO AND P. PICCIONE, A Morse Theory

for massive particles and photons in General Relativity, J. Geom.
Phys, 35, 1-34, (2000).

[23] F. GiaNnNONI AND P. PICCIONE An intrinsic approach to

the geodesical connectedenss of stationary Lorentzian manifolds |
Comm. Anal. Geom, 7, 157-197, (1999).



ANTONIO MASIELLO 203

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

F.GIANNONI, A.MASIELLO, P. P1CCIONE AND D. TAUSK, A Gen-
eralized index theorem for Morse-Sturm systems and applications to
semi-riemannian geometry, Asian J. Math, 3, 441-472, (2001).

W. KLINGENBERG, Riemannian Geometry. 2nd edition, W. De
Gruyter, Berlin (1995).

A. MASIELLO, Variational Methods in Lorentzian Geometry , Pit-
man Research Notes in Mathematics 309, Longman, London (1994).

J. MAWHIN, M. WILLEM, Critical Point Theory and Hamiltonian
Systems, Springer Verlag, Berlin (1989).

J. MILNOR, Morse Theory. Ann. of Math. Studies 51, Princeton
Univ. Press, Princeton (1963).

B. O’NEILL, Semiriemannian Geometry with applications to Rela-
tivity, Academic Press, New York (1983).

R. PALAIS Morse Theory on Hilbert manifolds, Topology, 2, 299-
340, (1963).

J. P. SERRE, Homologie singuliere des espaces fibres, Ann. of Math,
54, 425-505, (1951).

E. H. SpPANIER, Algebraic Topology, Mc Graw Hill, New York
(1966).

A. SzZULKIN, Cohomology and Morse Theory for strongly indefinite
functionals, Math. Z, 209, 375-418, (1992).

K. UHLENBECK, A Morse Theory for geodesics on Lorentz mani-
folds, Topology, 14, 69-90, (1975).






Proceedings of the meeting

Lorentzian Geometry-Benalmadena 2001
Benalmadena, Mélaga, Spain

Pub. de la RSME, Vol. 5 (2003), 205-214

A uniqueness result for Willmore surfaces in the
Minkowski space

JOSE A. PASTOR!

! Departamento de Matemdticas, Universidad de Murcia, 30100
Espinardo, Murcia, Spain

Abstract

We prove that a Willmore surface in the Minkowski space with spher-
ical boundary and which intersects the plane of the circle in a constant
angle is a hyperbolic cap or a flat disc.

1 Introduction

On the last years, there has been some great efforts trying to determine
the compact surfaces satisfying a certain geometric condition in the Eu-
clidean space and having their boundary in a round circle. The surfaces
which satisfy such geometric condition — for example, constant mean
curvature surfaces or Willmore surfaces — admit an alternative charac-
terization as solutions of a variational problem. Therefore, the problem
mentioned above may be reformulated in the following terms: does a so-
lution of a variational problem necessarily inherit the symmetries of the
boundary?

The same situation can be considered in the Minkowski space for
spacelike compact surfaces with boundary. The author, jointly with Alias
and Lépez, gave a uniqueness result for constant mean curvature surfaces
in the Minkowski space with circular boundary (see [1]). In this paper,
we consider Willmore spacelike compact surfaces with circular boundary
and we prove the following uniqueness result:
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Theorem 1.1 Let ¢ : ¥ — L2 be a compact spacelike Willmore surface
in the Minkoski space with circular boundary. Assume that the surface
intersects the plane of the circle in a constant angle. Then, the image
W(X) is a hyperbolic cap or a flat disc.

The corresponding problem for the Euclidean space has been solved
by Palmer in [5]. Our approach here is similar but there exist some
differences: for instance, our result is true independently of the surface
topology. Moreover, we present here a proof based in vector fields and
the divergence theorem in contrast with the forms and the flux formula
given in Palmer’s work.

2 Preliminaries

Let us denote by I3 the three-dimensional Minkowski space, that is, the
real vector space R? endowed with the Lorentzian metric

() = (dz1)* + (dw2)” — (dws)?,

where (21, 72, 23) are the canonical coordinates in R3. A smooth immer-
sion ¢ : ¥ — L3 of a 2-dimensional connected manifold ¥ is said to be a
spacelike surface if the induced metric via v is a Riemannian metric on
¥, which, as usual, is also denoted by (, ). If we denote by {e1, €2, €3} the
canonical basis in L2, we must observe that es is a unit timelike vector
field globally defined on I3 which determines a time-orientation on L3.
Thus, we can choose a unique unit normal vector field N on ¥ which is
a future-directed timelike vector in L3, and hence we may assume that
Y. is oriented by N.

Next, we will denote by V° and V* the Levi-Civita connections of
L3 and ¥, respectively. Let A stand for the Weingarten endomorphism
associated to N. Then the Gauss and Weingarten formulas for the surface
Y. are written respectively as

VY = VY — (A(X),Y)N,

and
AX) = —V%N,

for all tangent vector fields X,Y to ¥. The mean curvature function on
Y. is defined by H = —(1/2)traceA — hence the mean curvature vector
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field is given by H = HN. Let K be the Gaussian curvature of 3. The
Gauss equation for ¥ in L3 is given by

K = —detA.

In this context, we will say that a surface ¢ : ¥ — LL? is a Willmore
surface if it is a critical point of the functional

W(w):/E(H2+K) dA

with respect to compactly supported variations of the surface. Here dA
stands for the area element of ¥ with respect to the induced metric and
the chosen orientation.

Throughout this paper we will deal with compact spacelike surfaces
immersed in L3. Let us remark that there exists no closed spacelike
surface in 3. In order to see this, let a € L3 be a fixed arbitrary vector,
and consider the height function (a,z) defined on the spacelike surface
Y. The gradient — in the induced metric — of (a, ) is

V{a,r) =a" = a+ (a, N)N,
where aT is tangent to ¥, so that
V(a,2)* = (a,a) + (a, N)* > (a,a).

In particular, when a is spacelike the height function has no critical points
in X, so that ¥ cannot be closed. Therefore, every compact spacelike
surface . necessarily has non-empty boundary OM. As usual, if ' is a
simple closed curve in L3, a spacelike surface v : ¥ — L3 is said to be
a surface with boundary T if the restriction of the immersion ¢ to the
boundary 9% is a diffeomorphism onto I'.

In what follows, ¢ : ¥ — L3 will be a compact spacelike surface
with boundary ¢ (0%X) = I', and we will consider ¥ oriented by a unit
future-directed timelike normal vector field N. The orientation of X
induces a natural orientation on the curve 0% as follows: a tangent vector
v € T,(0%) is positively oriented if and only if {u,v} is a positively
oriented basis for 7,2, whenever u € 7,2 is outward pointing. We will
denote by v the outward pointing unit conormal vector field along 9%,
whereas 7 will denote the unit tangent vector field to the boundary such
that {v,7} is a positively oriented orthonormal frame. Thus, in each
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point of the boundary, we can consider a positively oriented orthonormal
basis in I3 given by {v, 7, N}.

Throughout this work we will assume that the boundary I' = ¢ (93)
is contained in a fixed plane IT of IL3. Since I' is a closed curve, it follows
that the plane II is spacelike (we can assume without loss of generality
that IT is the plane x3 = 0). Moreover, in this particular case we have
the following result (see, for example, [1]) concerning the topology of the
surface.

Lemma 2.1 Any compact spacelike surface 1 : ¥ — L3 with boundary a
planar simple closed curve I' is a spacelike graph over the planar domain
bounded by I'. Therefore, the surface is a topological disc.

3 Proof of the Theorem

An important construction concerning Willmore surfaces is the conformal
Gauss map. Let H{ denote the anti deSitter space given by

Hi = {Y = (Y,V1,Y2,Y3,Y)) € B} | V.Y =—1},

where - stands for the natural product in E5 with signature (+, +, +, —, —).
If » : ¥ — L3 is a spacelike surface, then the conformal Gauss map
Y : ¥ — Hj assigns to each p € ¥ a certain oriented 2-sphere (see
[2] for the details). The map Y can be expressed in terms of canonical
coordinates on Ej as

+ ((¥(p), N(p)), N(p), (¥(p), N(p))) -

It can be proved that, except for umbilical points, Y defines a conformal
spacelike immersion from ¥ into H{. Moreover, it was shown in [2] that
¥ is a Willmore surface if and only if Y defines a zero mean curvature
immersion on Y minus the umbilic set. In this case we have that the
i-th (metric) component of the map Y on the canonical basis {e;}o<i<4,
which we will denote by Y; =Y - ¢;, satisfies the equation

AY; —2(H* + K)Y; =0 (3.1)
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where 0 < ¢ < 4 and A stands for the Laplacian on ¥ with respect to
the induced metric. Now, let us consider the following vector fields over
)y

X,y = Y.VY, —Y,V,
where 0 <17 < j < 4. Since 1 is a Willmore immersion, it is clear from
(3.1) that X;; are divergence free, that is, div.X;; = 0 where div stands for
the divergence operator on > with respect to the induced metric. Now,
applying the divergence theorem we have

OZ/dIVXUdA:/ <XZJ,V>dS (32)
by ox

where ds is the induced line element on 9.
Our aim is to develop the formula (3.2) for certain particular cases.
For example, let us begin with ¢ = 0,5 = 4. In that case we have

R )
VYy = —HyT - VHWQ_ Lo awm),
vi=n o,
Vi = BT v ),

From now on, let us assume that I' is a unit circle in the xs-plane, that
is, (¢, e3) = 0 and (¢, ¢) = 1. With such hypothesis we have

Xos = (0, N)VH + H*" + HA(Y"). (3.3)

Let us observe that the vector position v is a unit vector such that
(1, 7y = 0. Moreover, for every boundary point p € 9%, we have that
{T(p),¥(p),es} is a basis for the Minkowski space satisfying

T =T,
v =Wy — (N, )N, (3.4)
es = (v,es)v — (N, e3)N.

Along the boundary, we can define a hyperbolic angle function 3 given by

the expression coshf3 = — (N, e3). Then, equation (3.4) may be rewrited
as
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v = coshfv 4+ sinhN,
ez = sinhfv + coshfN.

In order to simplify the equation (3.3) we may write
" = coshfv

whereas
(1, N) = —sinhg.
Then
(Xos, V) =(—sinhV H, v) + H?cosh3 + H(A(coshfv),v) =
= —sinh3(VH,v) + H?coshf3 + HcoshB{A(v),v).

Taking into account that —2H = traceA = (A(v),v) + (A(7), ) we can
write

(Xo4,v) = —sinh3(VH,v) — H*cosh3 — Hcosh3{A(7),T).

If we define the normal curvature of the curve 0¥ as k,, = —(A(7),7)
and we apply the divergence theorem we get finally

O = f82<X047y>d8 = (36)
= [y (—sinh3(VH,v) — Heosh3(H — k,,)) ds.

Let us compute an analogous formula for the indexes i = 0,7 = 3. In
this case, for Y3 we have the expression

Yz =—H(i,e3) + (N, €3)
whereas for its gradient we get
VYs = —Hes — (1,e3)VH — A(ez ).

Remember that, since I' is a planar curve contained in the z3-plane, we
have that (1, e3) = 0. Moreover, from (3.5) we have e; = sinhfv and
T = coshfBv, so we get

Xo3 =HsinhfBe; + sinhBA(e3 ) — coshBHy" —

T (3.7)
—coshfBA(WY") = —Hv — A(v).
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Applying the divergence theorem we have
0 :/ (Xos,v)ds = / ((Hv+ A(v),v))ds =
) 0%
:/ (H + (A(v), v)) ds = / (5 — H) ds.
o%

ox

(3.8)

Finally, let us consider now the case ¢ = 3,5 = 4. Then, we have
Y3VYy = (—coshB)(Hy" + VH + A1)

whereas
Y,VYs = —(H +sinh3)(He; + Ae;)).

Finally
X34 = —Hv — A(v) — coshBVH + sinhGH (Hv + A(v)).

The divergence theorem for this vector field give us
0= / (X34, v)ds = / (Hsinhf(k, — H) — cosh(VH,v))ds. (3.9)
ox. ox.

When the angle along the boundary curve is constant we are able to
obtain some interesting integral formulas involving the equations (3.6),
(3.8) and (3.9). Therefore, let us assume that the function g3 is con-
stant. The first integral formula can be obtained multiplying by coshf3
the equation (3.6) and subtracting sinh/3 times equation (3.9). This give
us

0= /82 (H(k, — H))ds. (3.10)

On the other hand, if we multiply by sinh( the equation (3.6) and sub-
tract coshf times equation (3.9) we get

0= /BE<VH, v)ds. (3.11)

Now, let us denote by “prime” the differentiation with respect to arc
length on the boundary 0%. Since I' is a circle we have that ¢’ = 7 and
" = —1). Then we get

k= —(A(T),7) = (V2N,7) = (N',¢') = =(N,¢") = (N, ¢) = —sinhp.
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So, we have that k, is constant along the boundary. Using a classical
theorem by Joachimsthal adapted to the Minkowski space we have that,
since the angle between the surface ¥ and the plane x5 = 0 is constant
along the boundary I', the boundary is a line of curvature. Thus, let

k1 = —ky, and kg = —2H + k,, denote the principal curvatures of ¥ along
0X. Then (3.8) and (3.10) yield

0= /az (k1 — K2)ds (3.12)

and
0 :/ (k7 — K3) ds. (3.13)
ox

Applying Holder’s inequality, we get for i = 1,2

1/2
/ Kkids S/ |kilds < (/ /ffds) (2m)1/2. (3.14)
0% o %

Let us observe now that, since k; is constant, we have equality in (3.14)
for i = 1. Using equations (3.12) and (3.13) it is easy to conclude that ko
is also a constant. Thus we get that H is constant along the boundary
and every boundary point is umbilic.

From now on, the proof follows an argument given by Palmer in [5].
Nevertheless, we include it here for the sake of completeness. Let Iy
denote the second fundamental form of the immersion Y. Let us consider
the 4-form

Q= 11",

This form was introduced by Bryant in [3] when the conformal Gauss
map was considered for the Riemannian space forms. In this Lorentzian
context, () verifies the same properties as in the Riemannian one: it
defines a holomorphic quartic differential on any Willmore surface which
is given locally in terms of a complex coordinate on ¥ by Q = gdz* where
(see [4])

(¢*/4)(H? + Alogg), it ¢ #0,

q =
0. H,, if  =0.

Here, ¢dz? is the Hopf differential which is the (2,0) part of the second
fundamental form of . In this complex coordinate, the Codazzi equation
on ¥ takes the form

— (3.15)
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where e?dz? is the local expression of the metric. It is a well known fact
that the zeros of ¢ correspond to umbilics on . Thus, we have that
¢ vanishes on 0%. Since the surface Y is a topological disc, we may
parametrize Y globally by the complex coordinate z = re?. Therefore,
since ¢ along the boundary is zero we get

99

V=20

=i(z¢, — Z¢z). (3.16)
On the other hand, since H is constant along the boundary we have

_OH

0= %3¢

— i(zH, — ZH-). (3.17)

Now, for the boundary points we get using the equations (3.15),(3.16)
and (3.17) that

=(2)%e’H? = (2)%e’2H? = (2)*¢’H,H; (3.18)
where we have used this expression for ¢ since along the boundary ¢ = 0.
Since q is holomorphic on the disc X, it then follows that the function
2*q is holomorphic on the disc and is real valued on the boundary by
(3.18). By elementary theory on complex analysis we get that 2'q = a
for some real constant a. In particular, for z = 0 we get a = 0 and then
g =0 on X. Applying the results on [3], it then follows that either 1)(X)
is, after a conformal transformation, a maximal immersion or ¢(3) is
part of a hyperbolic space. In the first case, we have a maximal surface
with a boundary made up entirely of umbilics. It follows then that the
surface is a flat disc since its Hopf differential vanishes identically. In the
the remaining case, we have that the surface is a hyperbolic cap.
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Abstract

The question whether a semi-Riemannian manifold is geodesically
connected (i.e.: if each two points can be joined by a geodesic) is a basic
geometric property. Moreover, in the Lorentzian case problems as “when
a pair of causally related points can be joined by means of a causal
geodesic” becomes natural from a physical viewpoint.

We will summary the different techniques and concepts relevant for
these problems. This includes geometrical, variational and topological
techniques, as well as comparations with the Riemannian and affine cases.
Lorentzian manifolds which serve as models of relativistic spacetimes are
specially considered.

1 Introduction

In this talk, we will wonder the following question: Let (M, g) be a semi-
Riemannian manifold. Which hypotheses are natural to ensure that it is
geodesically connected?

There are several reasons to study it. From a purely geometrical
viewpoint, geodesic connectednes is a basic property, closely related to
other elementary properties of a manifold. This is the reason why, in dif-
ferent contexts and decades, authors with very diverse viewpoints have
obtained results on geodesic connectedness; say, from Hopf-Rinow theo-
rem to the results in [43], [15], [32], [12], [35] or [24], to be commented
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below. So, it is not strange that, recently, this problem has been studied
very widely.

On the other hand, geodesic connectedness is the more representa-
tive one of a series of geometrical problems, some of them with clear
applications to General Relativity. For example, in a spacetime (i.e.,
time-oriented Lorentzian manifold):

e When can two chronologically or causally related points (events)
be joined by means of a causal geodesic? The interpretation of this
question is straightforward: if, say, p lies in the chronological past
¢, can we go from p to ¢ freely falling, or must we accelerate? A
standard result is the following one, obtained independently by Avez
and Seifert [3], [42]: in a globally hyperbolic spacetime, each two
causally related events can be joined by a causal geodesic. Of course,
it is interesting either to extend this result to other spacetimes or
to wonder when the connecting geodesic is unique.

e When can an event p and a timelike curve v be joined by means of
a lightlike geodesic? Or, say: if v is the trajectory of a star, can
this star be observed from p? This problem is related to topological
properties of the set of timelike curves joining p and the points in
v, and was studied in globally hyperbolic spacetimes by Uhlenbeck
[44].

e In previous problem, if there exists a connecting lightlike geodesic,
is it unique? Otherwise, the lens gravitational effect appears, being
the oddity of the images of the observed stars a well-known exper-
imental fact, with some theoretical justifications (see for example,

[31])-

The purpose of this article is to give a brief survey about the results
and techniques for the problem of geodesic connectedness. We start by
the Riemannian case, where sharper results can be obtained, Section
2. Next, we consider manifolds endowed only with an affine connec-
tion; the results are then applicable to the Levi-Civita connection of any
semi-Riemannian manifold, Section 3. Then, two very particular cases
of Lorentzian manifolds (but also very interesting cases from a mathe-
matical viewpoint) are studied, Lorentzian surfaces and spaceforms. For
Lorentzian surfaces, we rewrite in a modern language all previous results
known by us, and discuss them, Section 4. The results for spaceforms
were obtained in the Lorentzian case by Calabi and Markus [15], with
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some extensions to the semi-Riemannian case in [46]; these results are
briefly recalled in Section 5. Finally, in the last two sections we sum-
marize the results obtained recently by using variational and topological
techniques. This survey also summarizes and updates pedagogically the
one by the author in [41], including new references and discussions.

2 Riemannian case

Let M = (M, (-,-)) be a n-dimensional connected Riemannian manifold.
As in any semi-Riemannian or even affine manifold, we can wonder if it
is geodesically connected, that is:

For any p,q € M, there exists some geodesic connecting them.

But because of the existence of a distance canonically associated to any
Riemannian metric, now we can wonder if the manifold is (weakly) con-
ver, i.e.:

For any p, g € M there is some distance-minimizing connecting
geodesic.

(If the distance—minimizing geodesic is unique the Riemannian manifold
will said to be strongly convez).
When M is complete, it is well-known:

1. M is convex (Hopf-Rinow).

2. If M is not contractible!, then each p,q € M, can be joined by
infinitely many geodesics, with diverging lenghts (Serre-type result
obtained by using Ljusternik—Schnirelman theory; see for example

[35])-

These results are quite definitive; so, in the Riemannian case one has to
wonder just what happen in the incomplete case. On the other hand,
this case is natural because:

(i) In the semi-Riemannian indefinite case, there is no associated dis-
tance; moreover, there is no any relation between (geodesic) completeness
and connectedness.

(ii) Consider a trajectory x(s) for an autonomous potential, that is,
a solution of z” = —VV for some function V' on M. Any such trajectory

Lthat is, there exists zo0 € M and a continuous map H : [0,1] x M — M such that:
H(l,z) = 0 = H(t,20),Vt € [0,1],Vz € M.
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will have a constant energy E = (1/2)(x'(s),2'(s)) + V(x(s)). When
E >V, this trajectories are pregeodesics for the Jacobi metric (-, )p =
(E — V){(-,-); of course, this metric maybe incomplete even if (-, ) is
complete, or maybe studied just in the open subsets where £ > V. So,
the possibility of connecting each p,q € M by trajectories for V' with
a fixed energy F > V is equivalent to the geodesic connectedness for a
(possibly incomplete) Riemannian metric. This problem is also related
to other variational problems, as the existence of a closed trajectory for
a potential with either a fixed energy or a fixed period (see for example
(34]).

First, let us consider the following particular (simplest) case. As-
sume that M is complete, and D C M is a domain (open connected
subset) of M with differentiable boundary 0D; D = D U dD. One ex-
pects that “good properties” of 0D should imply convexity of D. These
good properties are related to the following different notions of convexity
for a boundary. Fix p € 9D.

e 0D is Infinitesimally convex at p (I1C,) if o, > 0, that is, the sec-
ond fundamental form, o,, with respect to the interior normal, is
positive semidefinite.

e 0D is wvariationally conver at p (VC,) if for one (and then for all)
C? function ¢ : U N D — R, where U C M is a neighborhood of
p, such that (i) ¢71(0) = U NID, (ii) ¢ > 0, on U ND and (iii)
do(q) # 0,Yq € U N OD one has:

Hy(p)[v,v] <0 (resp. <0) Vv e T,0D.

e 0D is locally convex at p € 9D (LC,)) if there exists a neighborhood
U C M of p such that

exp,, (1,0D) N (U ND) = 0.

e OD is geometrically convez (GC) if any in D with endpoints in D
is contained in D.

e Dis (geodesically) pseudoconvex (PC) if for each compact set K C
D there is a compact set H C D such that each geodesic segment
with extremes in K lies in H.
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T (92)

exp, (T, (92))
=0 QD

Figure 2: Locally convex domain D at p.

Figure 3: Non-geometrically convex domain.

DD > BB

Figure 4: A complete surface with infinite holes is not PC (put K = {p, q}).
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LC
Disho ‘U‘
shoyp Germinario LCe IC® Ve Ge
GC D
! PC
IC &> VC

Figure 5: Summary for differentiability C*.

Recall that the three first notions are applied to each point of the bound-
ary; 0D will be called IC (resp. VC, LC) if it is IC, (resp. VC,, LC,)
Vp € 9D. For the definition of VC, recall that a function ¢ globally
defined on 0D satisfying (i), (ii) and (iii) can be found. The concept GC
is globally defined on all the boundary, and PC applies to the domain or
manifold, rather than to its boundary.

It is straightforward to check that /C, and V (), are equivalent. More-
over, IC, < LC, but the converse does not hold; for a counterexample,
just take: D = {(z,y) € R* : y > 23}, p = (0,0). For the whole bound-
ary, it is not difficult to show that PC is a more restrictive concept than
IC, VC, GC, LC. Essentially, these last four concepts are equivalent, but
some of the equivalences are not as trivial as may sound. Bishop [14]
showed IC = LC (using explicitly differentiability C*), and Germinario
[27] showed, when D is complete, VC = GC (using differentiability C?;
as a technical simplification she also uses Nash’s theorem which needs
C3). Taking into account the straightforward implications, one has Fig.
4 as a summary (see [41], [6] for further discussions). The expected result
for convexity is then the following:

Theorem 2.1 When D = D U D is complete, then D is convez if and
only if OD is conver.

Of course, the hypothesis on completeness is essential. Recall that if M
is complete then so is D. Even though the converse is not true, there
is no loss of generality if we assume it (if M is not complete, then the
metric can be deformed out of D to obtain the completeness of this new
metric on M).

Sketch of geometrical proof for Theorem 2.1. Fixed p,q € D, consider
piecewise smooth curves in D joining p,q. The infimum L of the lengths
of these curves is equal to the distance in D between p, g, and one can
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prove: (i) if only piecewise geodesics are taken into account, the infimum
is still L, (i) a curve 4 of minimum length in D must exist; out of the
boundary, this curve must be a geodesic, and (iii) as ¢ > 0, 7 cannot
touch 0D.

O

Sketch of variational proof for Theorem 2.1. Essentially, geodesics joining
p and ¢ are the critical points of the functional:

fla) = 3 | Gals)ate)ds (21)

defined on absolute continuous curves z : [0,1] — D, z(0) = p,z(1) = q.
This functional is positive definite, but, because of the lack of complete-
ness of D, we cannot ensure the existence of a minimum a priori. Nev-
ertheless, the functional can be penalized by using the function ¢ in the
definition of VC:

folw) = %/01 ((ﬂiﬁ(s),:’v(s» + %) ds.

When a curve approaches 0D, f. diverges; this is the key why f. attains
a minimum x. for each . A priori estimates ensure that the z.’s lie
uniformly far from the boundary, and a minimum of f can be found by
taking ¢ — 0.

O

Now, let us consider the general case when either 9D may be non-
differentiable or D is not complete. This case was first studied in [32]
and, with full generality, in [6]. From Theorem 2.1, it is straightforward
(see Fig. 5):

Corollary 2.2 [f there exists a sequence (D,,), m € N of complete open
submanifolds of D with convex (differentiable) boundary such that

Dy C Dpg1 and D= | ] D, (2.2)

meN

then D is geodesically connected.
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Figure 7: When Corollary 2.2 is applicable, D may be non-convex, if D is not
an open subset of a complete Riemannian manifold. (The length of the tubes
can be controlled in such a way that any geodesic from p to ¢ through the
tube 1), is strictly longer than the geodesic through the tube T},41.)

Nevertheless, D is not necessarily convex; in fact, geometrical arguments
as those in the proof of Theorem 2.1 yields: if D is complete then D is
conver (Fig. 6). From these elementary considerations, the results in
[32] can be re-proven and extended.

Variational methods permit to extend these results. In fact, when M
is complete, if the boundaries 0D,,,’s in Corollary 2.2 are not convex but
their lack of convexity goes to zero and can be suitably controlled, then
the convexity of D still holds [6, Theorem 1.6]. When M is not complete,
the geodesic connectedness of D can be studied intrinsically by using the
Cauchy boundary 0,D (this concept is also useful for the complete case,
[6]). Let D. = D U 9.D be the canonical Cauchy completation of D
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Figure 8: Each point of the boundary 0D = G corresponds to two points of
the Cauchy boundary 0.D = G U Gbs.

(obtained by means of Cauchy sequences). As a difference with 0D,
Cauchy boundary 0.D has an intrinsic meaning for D. For example, let
M = C be an (infinite) cylinder and D the domain obtained by removing
the generatrix G. Clearly 0D = G but 9,D is the set of two lines, which
can be seen as the boundary of a strip in R? (see Fig 7). In general, if
M is complete, then a quotient set of 9.D is identificable to 0D; if M
is not complete then there are points in 0,D with no relation with 0D.
Because of the intrinsic meaning of 0.,D we can assume M = D. The
following result is then an extension of previous ones:

Theorem 2.3 Let (M, (-,-)) be a Riemannian manifold, and M, = M U
0.M 1its canonical Cauchy completation. Assume that there exists a pos-
itive differentiable function ¢ on M such that:

(i) lim, 9.0 ¢(x) = 0; o
(ii) each y € O.M admits a neighbourhood U C M, and constants
a,b > 0 such that
a<||Vé(z)| <b VYre MnU;

(iii) each y € O.M admits a neighbourhood U C M. and a constant
m € R such that inequality

H¢($)[U, U] < m(”? U>¢(l’)

holds for all x € M NU and for all v e T, M.

Then M 1is convex.
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On the other hand, by using Ljusternik—Schnirelman theory, multiplicity
results can be obtained in all previous results when the (geodesically
connected) manifolld is not contractible.

3 Affine case

Let M be a (connected) manifold endowed with an affine connection V; as
we are interested in geodesic connectedness, there is no loss of generality
assuming that V is symmetric. In comparison with the Riemannian case,
we have the following facts:

1. All previous notions on convexity for 9D can be translated directly,
but IC. Nevertheless, this concept was completely equivalent in the
Riemannian case to VC, which still makes sense.

2. It is not difficult to show the equivalences LC = GC = V(' (we
do not know counterexamples to the converses).

3. Good conditions on the boundary D of D (even under good condi-
tions on geodesic completeness) do not imply connectedness. In fact,
a complete affine manifold is not necessarily geodesically connected.
Even more:

e For each n > 0 there exist a complete affine manifold with the
following property: in order to connect each two points with
broken geodesics, it is necessary to use a broken geodesic with
at least n breaks (Hicks, [33]).

e Geodesically disconnected complete affine tori exist (Bates,

[9])-

It is not difficult to construct Bates’ torus. Just consider on R? the mov-
ing frame (X7 = cos x0,+sin 20, Xo = — sin x0,+cos x0,) and define the
connection V which parallelizes it. Any geodesic (s) = (x(s),y(s)) is a
integral curve of a linear combination of X; and Xs; thus, v is complete
and z(s) lies in an interval of length < 27. So, the induced connection
of the torus T2 = R*/4nZ* is geodesically complete and geodesically
disconnected.

Some relevant concepts for connectedness where introduced by Beem,
Parker and Low (see for example [12], [11]). Among them, the concepts
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Figure 9: Affine connection such that Vx, X; = 0. No geodesic which crosses
the line x = 0 can reach x = 7.

>
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=24.-

of pseudoconvex manifold, as defined in Section 2, and geodesically dis-
prisoning manifold, i.e.: for any (inextendible) geodesic 7 : (a,b) — M
and any compact subset K C M,

Htn} — at {sn} =07 1 (tn),V(sn) € K,¥n € N.

On the other hand, it is also relevant the space of unreparametrized
geodesics G(M). In this space, tangential convergence is considered: a se-
quence converges tangentially, when it is possible to choose (inextendible)
reparametrizations v, :|an,b,[— M for the sequence and v :]a,b[— M
for the candidate to limit such that 7/ (t9) — +'(to) (for some ty €]a,b]
contained in all |ay,, b,[ but a finite number). Remarkably:

e In this case: lim sup{a,} < a < b <lim inf{b,} and {v/,} converges
uniformly on compact subsets of |a, b[ to 4. Nevertheless, there is no
relation between the completeness of the elements of the sequence
and the completeness of the limit (even in a Lorentzian torus [37]).

e [t is easy to see that a sequence may have more than one limit.
Nevertheless, if G(M) is Hausdorff then the sky of p is closed, where,
following [11],

Sky(p) := {q € M connectable to p by means of a geodesic}.

Disprisoning and pseudoconvexity implies that G(M ) is Hausdorff. Thus,
one have the following implications, valid for any affine manifold.

Dispr. + psdoc. = G(M) Hausdorff = Sky(p) closed ,Vp € M
Inexistence of conjugate points = Sky(p) open ,Vp € M

M geodesically connected.
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Some extensions of these results are: (1) previous implications can be
extended to a class of (disprisoning and pseudoconvex) sprays, [21], and
(2) G(M) Hausdorff implies geodesic connectedness if the affine manifold
is wnitrace (and, thus, it satisfy that, for each p € M there exists a
neighborhood U such that any geodesic which enters U either leaves and
never returns or retraces the same path every time it returns) [11].

4 Lorentzian surfaces

Now, let us consider the simplest semi-Riemannian case, that is,
a Lorentzian manifold with dimension 2 (surface). Recall that, among
indefinite semi-Riemannian manifolds, only in the Lorentzian case there
is something related to a distance, the time-separation or Lorentzian dis-
tance, based in the local maximazing properties of causal curves (see,
for example, [10], [36]). The properties of this distance are essential to
prove the Avez-Seifert result on geodesic connectedness for causally re-
lated points (Section 1). But, in principle, it cannot be used for the case
of non-causally related points. Moreover, as in the affine case, neither
completeness nor compactness imply connectedness.

For an orientable and time-orientable Lorentzian surface there is a
pair of transverse null foliations, generated by lightlike geodesics. Two
Lorentzian metrics on a surface are pointwise conformal if and only if
their pairs of null foliations coincide. A Lorentz surface is defined as
a surface endowed with a class of conformally equivalent (oriented and
time-oriented) Lorentzian metrics. Their systematic study is carried out
in [45], and their properties depends on the properties of their pairs of
null foliations. By taking into account these foliations, the following
result on geodesic connectedness was proven in [43]:

Theorem 4.1 A Lorentzian surface (S, g) is geodesically connected if it
is globally conformal to Lorentz-Minkowski plane L.

Proof. This result can be proven nowadays as a corollary of Avez-Seifert
one. In fact, recall first that global hyperbolicity is a conformal invariant
and, thus, g as well as —g are globally hyperbolic metrics. Therefore, any
p,q € S can be joined either by a causal curve or by a spacelike curve
(with non-vanishing velocity). In the first case, p and ¢ are causally
related for g, in the latter case, they are causally related for —g; thus,
one has to apply Avez-Seifert result either to g or to —g.

O
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Remark 4.2 Recall that, in previous proof, it is essential that ¢ as well
as —g are both globally hyperbolic. But a simply connected globally hy-
perbolic Lorentz surface maybe non-geodesically connected, as the uni-

~2
versal covering of 2-dimensional de Sitter spacetime S; shows (see next
section). In fact, this spacetime is a counterexample to the main result
in [30].

Theorem 4.1 can be applied to some non-trivial examples. Consider first
the following result in [40].

Theorem 4.3 Let (T? g) be a Lorentzian torus with a Killing vector
field K(# 0). The following properties are equivalent:

(1) (T?, g) is globally conformally flat.

(i) The sign of g(K, K) is constant (either positive or negative or 0
on all T?).

(iii) (T?,q) is (geodesically) complete.

(iv) All the timelike (resp. lightlike; spacelike) geodesics are complete.

If (¢)—/(iv) holds the universal covering of the torus is globally conformal
to 2. Thus, as a consequence of the last two thheorems, one reobtains
the following result in [40]:

Corollary 4.4 Any complete Lorentzian torus with a Killing vector field
K (#0) is geodesically connected.

Nevertheless, in the incomplete case, i.e., if sign(g( K, K)) is not constant,
then the torus may be geodesically disconnected. Remarkably, this hap-
pens if we consider Bates’ example in Section 3, and take the Lorentzian
metric g such that X, Xy are lightlike and ¢g(X;, X3) = —1. The result-
ing torus is geodesically disconnected; in fact, there are two points in 7?2
such that no curve with a definite causal character (i.e., no timelike, no
lightlike and no spacelike -with non-vanishing velocity- curve) can con-
nect them. Nevertheless, as a relevant difference with Bates’ example,
this torus is not geodesically complete (g(K, K) is not constant for the
Killing vector K = 0,). In fact, we do not know any example of complete
and geodesically disconnected Lorentzian torus.

5 Indefinite spaceforms

We mean by a indefinite spaceform a complete semi—Riemannian n—
manifold M of index v € {1,...,n — 1} and constant curvature C. It is
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well known about them (ssee for example [36]):

(1) M is covered by the model (1-connected) space of the same di-
mension, index and curvature M (n,v,C), that is: M = M(n,v,C)/T,
where I' is the fundamental group of M.

(2) The case C' = 0 is trivial for our problem (the model space
M(n,v,0) = R} is geodesically connected); thus, it will not be taken
into account in what follows.

(3) Up to a homothety, we can assume C' = 1 (the homothetic factor
may be positive as well as negative).

(4) If n > 3, the model space is then the pseudosphere S, (spacelike
vectors of “norm” 1 in R”™). The Lorentzian pseudosphere S7 is also
called de Sitter spacetime. This spacetime is globally hyperbolic, thus, if
M = S}/T, causally related points are connectable by causal geodesics.
For n = 2 the pseudosphere S? is not 1-connected; recall that its universal
covering Si is globally hyperbolic.

(5) From a direct computation of the geodesics, no indefinite pseu-
dosphere S, 0 < v < n is geodesically connected. In fact, for n = 1, two
points p,q € S} are connectable by a geodesic if and only if (p,¢); > —1,
where (-, -); is the usual Lorentzian product of L' (= R}*).

The main result on geodesic connectedness is given in the following the-
orem [15]. Recall that M is called starshaped from a point p € M if the
exponential at p, exp, : T,M — M, is onto.

Theorem 5.1 Forn > 2, (v=1):

(1) ST is not starshaped from any point.

(2) Any spaceform M = S7/T,M # S} is starshaped from some
pe M.

(3) A spaceform M = SY/T is geodesically connected if and only if it
is not time-orientable.

The points (2) and (3) show a possibility which is striking from the
Riemannian viewpoint: a complete semi-Riemannian manifold maybe
starshaped from a point, but not from another point.

Theorem 5.1 solves completely the geodesic connectedness of Lorentzian
spaceforms with positive curvature and n > 3. Extensions of this result
for arbitrary index v (including the case v = n— 1, which is equivalent to
the Lorentzian case of constant negative curvature) and n > 3 are given
in [46]. The additional assumptions to obtain a result are:
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1. The fundamental group I is finite. This assumption is necessary in
order to work with the barycenter of the orbits. It is automatically
satisfied if 2v < n.

2. The non time-orientability must be replaced by the inexistence of
a proper time-axis. By a time-axis T" we mean a one-dimensional,
[-invariant, negative-definite linear subspace of RZH. T is proper
if I' acts trivially (i.e., as the identity) on 7.

6 Variational Methods for the Lorentzian case

As in the Riemannian case, geodesics joining two fixed points p,q in
a semi-Riemannian manifold (M, (-,-)) are critical points of the action
functional (2.1). Nevertheless, this functional is strongly indefinite and
does not have a priori good properties from a variational point of view.
The application of critical point theory started with some papers by
Benci, Fortunato and Giannoni (see the book [35]); since then, many
authors have used variational methods. Essentially, two classes of space-
times has been studied, stationary and splitting type ones. We review
briefly these results, pointing out some new references since [41].

A. STATIONARY SPACETIMES. These spacetimes are Lorentzian mani-
folds admitting a (globally defined) timelike Killing vector field K. A
standard stationary spacetime is a product manifold M = R x M, en-
dowed with a metric

(-,") = —Bdt* + 2w ® dt + go,

where dt? is the usual metric on R, 3 : My — R is a positive function, w is
a 1-form on M, (if w = 0, the spacetime is static), and g is a Riemannian
metric on M. Locally, every stationary spacetime looks like a standard
one (K = 0,).

In order to see the key for the variational approach, consider the
standard case. Let z : [0,1] — M, z(s) = (t(s),x(s)) be a curve joining
two fixed points (¢1, z1), (t2, x2) € M. The action functional f(z) in (2.1)
is invariant by the flow of K = 0;. Thus, if z(s) = (#(s), z(s)) is a critical
point then:

(0, 2') (= —B(x(5))E(s) + 2w(E(s)) + go(d(s), (s))) = C. (constant).
(6.1)



230 A SUMMARY ON GEODESIC CONNECTEDNESS

Thus, from (6.1): (i) the value of #(s) can be written in terms of x(s)
and C,, and (ii) the condition fol t(s)ds = ty — t; allows to obtain C. in
terms of x(s). This suggest to replace the inicial functional f(z) by a new
functional J defined only on curves x : [0, 1] — My which join z; and s,
say J(z) = f(z) where the part t = t(s) of z = (¢, z) is computed from
(6.1) (by taking into account previous comment (ii) on the value of C,).
One can check that critical points of J are in bijective correspondence
with critical points of f.

Summing up, the initial functional f is replaced by a new functional
J on the “Riemannian part” M,. The expression of J is not as simple as
the expression of f (J is non-local, recall (ii) above), but it is bounded
from below and, under reasonable assumptions, it satisfies good varia-
tional properties as the well-known “condition C of Palais—Smale”. As
a consequence, one obtains (dy, || - ||o will denote, resp. the go-distance
and norrm on M):

Theorem 6.1 A stationary spacetime is geodesically connected, if: (i)
go is complete, (ii) 0 <Inf(B) < Sup(f) < oo, and (ii) the go-norm of
w(z) has a sublinear growth in My, that is, || w(x) ||o< A-do(z, po)*+ B,
for some A,B € R, € [0, 1], po € M.

It is worth pointing out:

1. When M is not contractible, infinitely many (spacelike) connecting
geodesics can be obtained. Moreover, the existence of infinitely
many timelike geodesics connecting a point z € M and a line L[z] =
{(t,x)|t € R}, x € My, can be proven (see [35]).

2. One can also wonder when the number of connecting geodesics is
finite; in the case of lighlike geodesics, this is related to the multiple
image and gravitational lens effects [28].

3. More intrinsic hypotheses (valid for non-standard stationary space-
times) can be found [29].

4. Assume that Dy C M, is a domain with differentiable boundary,
and consider the open submanifold R x Dy C M. In this case
VC <= GC and, under the assumptions in Theorem 6.1, R x D,
is geodesically connected (the problems relative to the boundary
are exhaustively studied in [4], see also [7]). These results admit
some extensions to non-differentiable boundary, at least in the static
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case. In fact, outer Reissner-Nordstrom and outer Schwarzschild
spacetimes are shown to be geodesically connected [13].

5. Related techniques can be applicated to other spacetimes, as Godel
type (where two independent Killing vector fields -none necessarily
timelike- span a Lorentzian plane) [20] or gravitational waves [16].

6. A natural extension to the problem of geodesic connectedness is the
existence of geodesics connecting two submanifolds. It is not diffi-
cult to check that, among these geodesics, those which are orthog-
onal to the submanifolds are also critical points of the functional
(2.1); for this problem see [19]. It is specially interesting the case
of lightlike geodesics joining the two submanifolds (say, one of the
submanifolds may be the worldline of a star), [18].

7. Finally, it is worth pointing out that connectedness by geodesics can
be generalized to the problem of connectedness by trajectories of
more general Lagrangian systems as, for example, trajectories un-
der an electromagnetic field. Static manifolds with potential vector
fields independent of time were studied in [5], for more general re-
sults, see [8] and references therein.

B. SPLITTING TYPE SPACETIMES. In what follows, a Lorentzian split-
ting manifold (M, (-, -)) will be a product manifold M = R x M, endowed
with a Lorentzian metric type:

() = =B(t, 2)dt? + 2w(t, x) @ dt + gz, (6.2)

where [ is a function on all M, w is a 1-form on M, which depends on
each point (t,x) € M, and g4, is an Euclidean scalar product in the
tangent space to each slice {t} x My > (¢,x). We can put:

g(t7x)('7 ) = gO('v Oé(t, ZL’)H),

where gy is a complete Riemannian metric on M;. When w = 0 the
splitting is orthogonal.

In this case, a reduction to a “Riemannian” problem is not possible,
and the key for the variational approach is to use Rabinowitz’s Saddle
Point Theorem, but taking into account: (i) to solve the possible absence
of Palais—Smale condition, the action functional is approximated by a
family of penalized functionals, and (ii) In Rabinowitz’s theorem, the
independent directions where the functional goes to —oo are finite; so,
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a Galerkin finite-dimensional approzimation is carried out. A standard
general result is the following (see [35] and references therein):

Theorem 6.2 A splitting spacetime (M, (-,-) is geodesically connected,
if:

(1) go is complete and there exists X > 0 such that g, > Ago for all t.

(2) 0 <Inf(3) and B(x,0), || w(z,0) ||o are bounded.

(3) g:/6(t,x) (resp. w/B(t,x)) is bounded by a function on M type:
bo(z) + by (x)|t|*, with p € [0, 1] (resp. p € [0,2[)

(4) Consider the natural derivatives Oy, 0,3,0:0 of «, 3,0 with re-
spect to t. Then the gi—norms of /v, 0,3/ 3,00 are bounded at each
hypersurface with constant t, and its supremum when t — £o00 goes to 0.

Remarks:

1. The case with boundary becomes more complicated. Neverthe-
less, strips type D =la, b[x M, with variationally convex boundary
are shown to inherit geodesic connectedness. When M is not con-
tractible, the existence of infinitely many connecting geodesics can
be ensured by using the relative category, a topological invariant
somewhat subtler than Ljusternik-Schnirelman category.

2. More accurate results for the orthogonal splitting case can be given,
[2]. Connectedness of two submanifolds by normal geodesics can be
also studied, [17]; for trajectories under an electromagnetic poten-
tial, see [1].

7 A topological method

Recently, the geodesic connectedness of some spacetimes have been proven
by using topological arguments [24], [26]. This method is explained in
another talk of these proceedings, [25]. Thus, we will give here just some
comments in relation to the results in previous sections.

JFrom the viewpoint of differential equations, fixed two points p, ¢,
of a Lorentzian manifold, the existence of a connecting geodesic is just
the existence of a solution for a system of equations. Except in very
particular cases, the complexity of this system of differential equations
make impossible to ensure the existence of a solution, even in spacetimes
where the geodesic equations can be integrated (notice that a solution
with the “initial” condition p and the “final” condition ¢ is needed).
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Roughly, this problem is equivalent to the existence of zeroes for some
function F. And it is well-known that, under certain conditions, the
existence of such zeroes is ensured by using Brower’s topological degree.
At any case, in order to apply this degree, it is necessary to ensure
some boundary conditions on function F. Thus, some qualitative knowl-
edge on the behaviour of the geodesics is needed, and the existence of
some partial integration of their equations becomes specially useful. This
is the reason why the topological method works well for “classical rela-
tivistic spacetimes” (say, spacetimes with a “proper name”, which present
some symmetries). In fact, the topological method has been used to en-
sure the connectedness of spacetimes as the Schwarzschild black hole or
the exterior part of Kerr spacetime, which were not covered by previous
techniques. Summing up, the obtained results are the following:

1. Consider a multiwarped spacetime M = [ X F} X --- X F},,
g=—d’+> _ fi(t)’g.

where I C R is an interval and the fibers (F;, g;) are convex Rieman-
nian manifolds.

e In the case n = 1 (Generalized Robertson-Walker spacetimes)
a very general sufficient condition for geodesic connectedness
can be given. In fact, this condition becomes necessary and
sufficient if the fibers are strongly convex [22].

e When n > 1, a sufficient condition very close to a necessary
one can be given (including the case with boundary), [24]. In
particular, Schwarzschild black hole and generalizations of In-
termediate Reissner Nordstrom spacetimes are shown to be
geodesically connected.

e The connectedness by causal geodesics can be studied, extend-
ing Avez-Seifert result [38].

Summing up, the problem is solved completely for this type of
spacetimes.

2. Consider the exterior region of low rotating Kerr spacetime, that is
the region with radial coordinate r greater than the radius r of the
first even horizont. This region is not stationary; in fact, one can
show that the stationary part is not geodesically connected [23].
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Nevertheless, an accurate use of the topological technique shows
that it is geodesically connected [26].

In conclusion, we can say that variational methods give a general and
rough estimate about when stationary or splitting spacetimes are geodesi-
cally connected. But, frequently, classical spacetimes need more accurate
estimates. This can be seen clearly in Godel type spacetimes. The geo-
desic connectedness of many such spacetimes can be proven by using
variational methods. But classical Godel spacetime itself is not covered
in this way. This spacetime needs a specific proof taking into account the
first integrals of its geodesic equations and some topological arguments
[20]. For Godel spacetime these topological arguments become rather
trivial, but for other classical spacetimes as the ones above, they become
subtler.

Finally, it is worth pointing out the case of causal geodesics. In
general, Avez-Seifert type-results (obtained by using either the time sep-
aration or topological ideas) are sharper than the results obtained by
using variational methods [39]. Neverhteless, when these methods are
applicable, the multiplicity of connecting geodesics can also be ensured.
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Abstract

We give a theorem about intersection of reductions of a principal
fiber bundle. As an application, we show that the intersections of confor-
mal and volume structures, considered as G—structures of first order, are
precisely the (semi)Riemannian structures. Also, we can apply it to the
intersection of both, a projective structure and the first prolongation of a
volume structure, considered as G—structures of second order. A possible
application for a better understanding of the General Relativity theory
is pointed out.

1 Introduction

The most of differential geometrical structures commonly used can be
understood as G—structures of first or second order. A G-structure of
first order (or, simply, a G-structure) on a manifold M is a reduced
bundle of the linear frame bundle LM with structure group a subgroup
G of GL(n,R). Examples of G-structures that we are interested in are
(semi)Riemannian, conformal and volume structures. A G-structure of
second order is a reduced bundle of the second order frame bundle F?(M)
with structure group a subgroup G of G?(n). Examples of it are symmet-
ric linear connections, projective structures and the first prolongations
of G—structures of first order which admit symmetric connections.
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In this communication we state a result about intersection of reduc-
tions of principal fiber bundles, which has an immediate lecture in terms
of G—structures of first or second order. Two applications of this result
are given. The first shows that (semi)Riemannian structures belonging
to a given conformal structure on a manifold are in bijective correspon-
dence with the volume structures on the manifold (for us, volume struc-
ture refers to a little generalization of volume element, which does not
need the orientability of the manifold to be defined). A second appli-
cation shows that a given volume structure selects a symmetric linear
connection belonging to a given projective structure.

The General Relativity theory maintains that the space—time geom-
etry is given by a Lorentzian metric structure. It is well understood
([3]) that the physical phenomenon of light propagation determines a
Lorentzian conformal structure. Then, the first application suggests us
to investigate in the physical motivation that would conduce to the intro-
duction of a volume structure as an ingredient of the space-time geometry.

2 A theorem on intersection of reduced bundles

We will understand a manifold M as a C*°, second countable, manifold
of dimension n. Let G be a Lie group. Let H be a closed subgroup of
G. Let u™": G x (G/H) — G/H, p°"(a,bH) = py " (bH) := abH, be the
natural left action of G on the homogeneous manifold G/H.

It is well known ([7, Ch.I, Prop.5.6]) the bijective correspondence be-
tween the H-reductions of a principal bundle, P(M, G), and the sections
of its associated bundle which corresponds to the left action p°". We
already know that the sections of an associated bundle are in bijective
correspondence with the equivariant functions of the principal bundle
into the typical fibre of the associated bundle, G/H in our case. Then we
can prove the following result. This result can be obtained as a conse-
cuence of the work of Bernard ([2, Sec. 1.6]) but we prefer this approach
technically more clear and perfectly adapted to the applications which
we are interested in.

Theorem 2.1 Let H, K be two closed subgroups of a Lie group G such
that G = HK (i.e. Va € G, 3b € H, c € K: a = bc). Let Q(M,H) and
R(M,K) be two reductions of a principal bundle P(M,G). Then, QN R
15 a reduced bundle of P, with HN K as structure group.

We give a previous lemma.
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Lemma 2.2 Let H, K be two closed subgroups of a Lie group G such
that G = HK. Then, the application p: G/K — H/(HNK), p(aK) =
b(HNK), with b'a € K, is a diffeomorphism.

Proof. We prove that p is well defined: (i) Since G = HK, given a € G,
there exists b € H, Wlth b la € K and, if other b € H also verifies
b~'a € K then, H 3 b~ 'b = (b~ )(b ! ) ! € K, which implies that
bmmK):MHmm.u)f K = aK and b~'a, b~ 'a € K, with
b, b e H, then H> b b= (b'a)(a'a)(b'a)"! € K, which implies that
b(HNK) = b(HNK).

The application p is bijective: () It is clearly onto. (i) If a,a € G
and BHNK) = b(HNK), with b, b € H and b~la, b~'a € K, then
a'a = (b~'a)"Y(b~'0)(b~'a) € K, which implies that aK = aK.

The application p~! maps b(H N K) into K. This is an immersion

([5, Ch.IL, Prop.4.4(a)]). But a bijective immersion is a diffeomorphism
([9, Ch.I, Exer.6]). Thus p is a diffeomorphism.

O

Proof of the theorem. Let f: P — G/K be the function uG'Kfequiva—
riant corresponding to R(M,K). This means that, Va € G, fo R;D =
uj’_li o f, with R" being the principal right action of G on P, and
“'{K}) = R. We will prove that @ N R is a reduction of @, which
corresponds to the equivariant function po f|,: Q@ — H/(HNK):
(i) Let d € H and a € G be given, and let b € H be such that
b~la € K. We obtain that

(popg)(aK) = p(d~"aK) = p(d~'PK) = d"'b(H N K)

— 4 p(aK) = (uy"™ 0 p)(aK).

Now, given q € ), d € H, we obtain that

(0o flooR@) = (pofoRy)g) = (pougof)q)=

= (g opofly)q).

Thus the function po f|, is pM ™ —equivariant.

(1) Given g € Q, if (pof|,)(q) = HNK, then we have f(q ) = fly(q) =
p~'(HNK) = K, which implies that ¢ € R. Thus (po f|,)~ ({Hﬂ b=
QNR.
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The theorem follows from the fact that a reduction, @ N R, of a
reduction @) of P is a reduction of P.

O

As an (H N K)-reduction of P trivially extends to an H-reduction

and to a K-reduction of P, it is inmediate to prove the following result.

Corollary 2.3 Let H, K be two closed subgroups of a Lie group G such
that G = HK. Let P(M,G) be a principal bundle. The (HNK)-reductions
of P are precisely the intersections of H-reductions with K-reductions of
P.

3 Conformal and volume structures

Let G be a closed subgroup of GL(n,R). A G-structure of first order on
a manifold M is a G-reduction of the linear frame bundle LM.

Let n be the standard scalar product on R" of a fixed signature. We
define the adjoint with respect to 1, af, of a € GL(n,R) as the unique
matrix such that n(v, a'w) = n(av,w), Yv,w € R*. A conformal struc-
ture on M is a G-structure with G = CO(n) := {a € GL(n,R): ala =
kI, k > 0}, where [ is the identity matrix in GL(n,R).

We define a volume structure on M as a G-structure with G =
SL*(n) := {a € GL(n,R): |det(a)] = 1}. Note that the existence of
volume structures does not depend on the orientability of M as in the
case of SL(n)-structures.

Theorem 3.1 The (semi)Riemannian structures on M are the intersec-
tions of conformal and volume structures on M.

Proof. It is clear that
CO(n) NSL*(n) = O(n) := {a € GL(n,R): a'a = I}.

Then, by the results of the previous section, we only need to prove that

GL(n,R) = CO(n)SL*(n). This follows from the fact that
a = (|det(a)|V/"1) (|det(a)|~*"a), Ya € GL(n,R) .
U

It is usual to define a conformal structure on M as the set [g] of metric
tensors which are proportional by a positive factor to a given metric
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tensor g on M, ie. ¢ € [g] if and only if ¢ = wg, with w: M — R*.
In this context, the CO(n)-structure P corresponding to [g] is composed
of all the linear frames [ € LM, that considered as basis of the tangent
space T,, M in some point m € M, are orthonormal for some ¢' € [g].

We can also understand a volume structure () C LM as a selection,
for every point m € M, of a maximal set of basis of T}, M with the same
unoriented volume, in the sense of linear algebra.

It is intuitively clear that if we intersect a conformal structure P
or, equivalently, [¢] and a volume structure @), we are selecting, at each
point m € M, all the linear frames of P with the same unoriented volume
defined by ). But this procedure is equivalent to select the tensor metric
in [g] for which these linear frames are orthonormal. This metric is unique
because two tensor metrics, which are proportional and distinct in a point
m € M, have orthonormal basis in 7,,M with different volume.

4 G-structures of second order

The second order frame bundle F?*(M) over a manifold M (see [6, Ch.4,
Sec.5b] and see [8] for more details) is the principal fibre bundle, whose
fibre over each point m € M is the set of second order frames at m, i.e.
the set of 2—jets

{j2(z™"): x is a chart of M with z(m) = 0}.
Its structure group is the Lie group of 2-jets
G*(n) := {j§(¢): ¢ is a local diffeomorphism of R" with ¢(0) = 0}.

Let G be a subgroup of G*(n). A G—structure of second order on M
is a G-reduction of F?(M).

Let S?(n) be the set of symmetric bilinear maps ¢: R” x R" — R",
considered as an additive Lie group. For each t € S?(n), we will write
' = u'(t(ej, ex)), with {eq, ..., e,} and {u', ..., u"} being the usual ba-
sis of R™ and R™, respectively. We set GL(n,R) 2 S%(n) for the semidi-
rect product of Lie groups, whose product law is given by (a,t)-(d/,t') :=
(ad’,a' 't(a’,a’) +t'). There is a canonical isomorphism ([8, Lem.1], see
also [1, Sec.4]) between G?(n) and GL(n,R) ® S%(n) given by the appli-
cation that maps j3(¢) into (D¢, , Do|," D?¢|,). We will identify both
groups.

Examples of second order G-structures are the following:
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e A symmetric linear connection of M can be identified ([6, Ch.4,

Prop.7.1]) as a G-structure of second order on M, with
G = GL(n,R) ® {0}. It is composed of the 2-jets at 0 of the inverse
of all normal charts for the symmetric linear connection ([8]).

e A projective structure on M ([6, Ch.4, Prop.7.1]) can be identified

with a G—structure of second order on M, with G = GL(n,R) ® p,
where
p:={t € S*(n): tjk = 5§pk + 6;.p;j, for some (py,...,p,) € R™}.

It is composed of the union of the G-structures of second order
corresponding to the projectively equivalent symmetric connections
which belong to the projective structure.

e We say that a G—structure of first order P is 1-integrable if it ad-

mits a symmetric linear connection. Semiriemannian, conformal
and volume structures are examples of 1-integrable G—structures.
The first prolongation P; of an 1-integrable G-structure P is ([8,
Ch.4, Sec.3.3]) unique and it can be identified with an H-structure
of second order with H = G ® gy, where g; denote the first pro-
longation of the Lie algebra g of G. We can see P, as the set of
2-jets at 0 of the inverse of all normal charts for all symmetric linear
connections that can be defined in P.

With the identifications introduced above, it can be shown the fol-

lowing result.

Theorem 4.1 The intersection of a projective structure on M and the
first prolongation of a volume structure on M gives a symmetric linear
connection of M.

Proof. Since the first prolongation of the Lie algebra sl(n) of SL*(n) is

sl(n

)1 ={t € S*(n): t}, = 0}, then

0= tZk = 6Zpk+5,?ph =(n+1)py, Vk€{1,...,n},

thus ¢ = 0. This implies that

(GL(n,R) ® p) N (SL*(n) ® sl(n);) = SL*¥(n) » {0}.

Moreover, it is readily verified that

GL(n,R) ® S*(n) = (GL(n,R) ® p) - (SL¥(n) ® sl(n),)
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since (a,t) = (a,r) - (I,s), V(a,t) € GL(n,R)® S*(n), where

= (0%thy, + Opth) -

n+1
Then, by Theorem 1, the intersection of a projective structure on M and
the first prolongation of a volume structure on M is a SL*(n) ® {0}~
structure of second order. This extends trivially to a GL(n,R) 2 {0}~
structure of second order naturally included in the projective
structure.

O

In other words, this result says that a volume structure on M select
a connection of a projective class of linear symmetric connections.

5 Remarks on Lorentzian geometry and General
Relativity

Several geometrical structures can be derived from a (semi)Riemannian
metric: a conformal structure, a symmetric linear connection and a pro-
jective structure. The fact that a metric is the intersection of a conformal
structure and a volume structure allows the metric to be considered de-
rived from the conformal and volume structures. From my point of view,
the understanding of a metric structure as being composed by these two
pieces can be used to gain an insight into the meaning of the General
Relativity theory.

The phenomenon of light propagation is described geometrically by
a field of light cones which determines a Lorentzian conformal structure.
It would be very interesting to identify some substantial physical phe-
nomenon as being represented by a volume structure. In this way, two
physical principles will lead up to the Lorentzian metric proposed by the
Relativity theory.

Some authors ([3], [4]) have tried to give an axiomatic approach to
General Relativity by deriving the metric structure from the conformal
and projective structures. The projective structure would explain the
mouvement of free particles. But this approach is mathematically more
complicated because some extra conditions are needed to determine a
Lorentzian metric, except for a constant factor.



246

ON THE INTERSECTION OF GEOMETRICAL STRUCTURES

Acknowledgments

This work has been partially supported by Junta de Andalucia P.A.I.:
FQMO0203.

References

1]

[9]

E. AGUIRRE DABAN AND I. SANCHEZ RODRIGUEZ, Explicit for-
mulas for the 3—jet lift of a matriz group. Aplications to conformal
geometry, in: A. Pereira do Vale and M.R. Pinto, eds., Proceedings
of the 1st International Meeting on Geometry and Topology (Uni-
versidade do Minho, Braga, Portugal, 1998) 191-205.

D. BERNARD, Sur la géométrie différentielle des G-structures, Ann.
Inst. Fourier, Grenoble, 10, 151-270, (1960).

J. EHLERS, F.A.E. PIRANI AND A. ScCHILD, The geometry of
free fall and light propagation, in: L. O’Raifeartaigh, ed., General
Relativity (Oxford, 1972) 63-84.

J. EHLERS, Survey of General Relativity Theory, in: W. Israel, ed.,
Relativity, Astrophysics and Cosmology (Dordrecht—Holland, 1973)
1-124.

S. HELGASON, Differential Geometry, Lie Groups and Symmetric
Spaces (Academic Press, New York, 1978).

S. KoBAYASsHI, Transformation Groups in Differential Geometry
(Springer, Heidelberg, 1972).

S. KoBAvasHl AND K. Nowmizu, Foundations of Differential Ge-
ometry, Vol.I (John Wiley, New York, 1963).

I. SANCHEZ RODRIGUEZ, Conexiones en el fibrado de referencias
de sequndo orden. Conexiones conformes (Thesis, Department of
Geometry and Topology, Complutense University, Madrid, 1994).

F.W. WARNER, Foundations of Differentiable Manifolds and Lie
Groups (Scott, Foresman and Co., Glenview, Illinois, 1971).



Proceedings of the meeting

Lorentzian Geometry-Benalmadena 2001
Benalmadena, Mélaga, Spain

Pub. de la RSME, Vol. 5 (2003), 247-260

The Hyperbolic-AntiDeSitter-DeSitter triality

MARIANO SANTANDER!

! Departamento de Fisica Tedrica, Facultad de Ciencias
Unwersidad de Valladolid, E47011-Valladolid, Spain

email: santander@fta.uva.es

Abstract

A triality 7 relating the four two-dimensional spaces of real type with
constant non-zero curvature and non-degenerate metric is described. The
sphere S? is invariant under 7, yet the remaining three spaces, the hy-
perbolic plane H2, the AntiDeSitter sphere AdS**! and the DeSitter
sphere dS'™! are related cyclically by triality: any geometric property
in either of these spaces might be ultimately reformulated in terms of
any other. Our approach is based on Lie algebras, but possible alter-
native approaches through Hopf projections and likely relations to the
octonionic triality when the base field is extended from R to C,H, O are
also suggested.

1 Introduction

The aim of the present work is to introduce and discuss a triality between
three well known two-dimensional spaces: the Hiperbolic plane H? and
the two AntiDeSitter AdS'™ and DeSitter dS*™! spheres in 141 dimen-
sions (We conform to the ‘physical’ notation; the ‘mathematical’ notation
for these AntiDeSitter and DeSitter spheres —which for 1+ 1 only differ
by the interchange between time-like and space like lines— is H} and S?).
This triality follows from rather elementary properties of the Lie group
SO(2,1) and Lie algebra s0(2,1) behind these geometries, but it seems
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to have passed unnoticed. It is related to a triality recently discussed
by Arnol’d [1] in relation with the geometry of spherical curves on S2.
We focus here on the algebraic description, at the Lie algebra level, and
include only a descriptive account of results for the geometry of the three
spaces.

2 Homogeneous spaces of Cayley-Klein type

We first briefly recall the algebraic structure of the nine 2D Cayley-
Klein (CK) spaces (for more details see [2]). These nine spaces are
2-dimensional homogeneous spaces of rank one and real type, and are
distinguished by two geometric properties: the sign of their constant
curvature —either positive, zero or negative—, and the character of their
metric —either definite positive (riemannian), degenerate or indefinite
(hence lorentzian in this case)—. According to these two threefold al-
ternatives, the nine spaces could be arranged in a diagram as in Table
1.

For the reasons explained below it is adviseable to describe all these
possibilities through two real coefficients, 1, ko and to denote SOy, «,(3)
the corresponding groups of motion. The commutation relations of the
CK algebra so,, «,(3) in the basis { Pi, P», J} (where the notation intends
to convey the idea of Py, P, generating translations along two orthogonal
lines Iy, 5 through O and J generating rotations around O) read:

[Pl,PQ] :lilej [J,Pl] :P2 [J,PQ] = —I€2P1 (21)

The constants k1, ko can be reduced to +1,0, —1 by rescaling the gener-
ators. The CK algebras in the quasi-orthogonal family so,, ,,(3) can be
endowed with a 6y ® 65 group of commuting automorphisms generated
by:

Iy : (Pr, Py, J) — (=P, =Py, J),

H(Q) : (Pl,PQ,J) —>(P1,—P2,—J). (22)

The two remaining involutions are the composition II(g) = Il(1)-II(s) and
the identity. Each involution IT determines a subalgebra of so,, ,,(3), de-
noted b, whose elements are invariant under II; the subgroups generated
by these subalgebras will be denoted by H with the same subindices as
the involution.
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The following 3D real matrix representation of the CK algebra
504, 15 (3):

0 —K1 0 0 0 —K1K2 00 0
=1 0 o, mn=(00 o0 J=| 0 0 —ky
0 0 0 10 0 01 0

(2.3)

gives rise through exponentiation to a natural realization of the CK group
SO, x,(3) as a group of linear transformations in an ambient linear space
R? = (2% 2!, 2?). A generic element R € SO, ,(3) satisfies

R' Ay ey R =Ny ey,  detR=1, (2.4)

and therefore SO, ,,(3) acts in R? as linear isometries of a bilinear form
with a diagonal A,, ., matrix whose entries are {+1, k1, K1K2}.

The exponential of the matrices (2.3) leads to a representation of the
one-parametric subgroups H (), Hy2) and H(;) generated by P, P and
J as:

Cfﬂ(a) —/{15’51(04) 0
eXp(OzPl) = Sfﬂ (CY) Cfﬂ (Oé) 0
0 0 1
CHlIiQ(/B) 0 _51525’/{1&2(5)
exp(BP,) = 0 1 0
Sera(B) 0 Gy ()
1 0 0
exp(yJ) = | 0 Cu(v) —r2Sk(7) (2.5)

0 Sk(7)  Cu(v)

where the ‘cosine’ Cy(x) and ‘sine’ S, (x) functions with ‘label” k are [2]:

cos /KT \/Lgsin KT k>0
Cu(z) =< 1 Se(r) =% =z k=0
cosh/—kKx \/L:{sinh\/—_/fx k<0
(2.6)
These ‘labelled’” trigonometric functions coincide with the usual elliptic
and hyperbolic ones for K = 1 and k = —1 respectively; the case kK = 0

provides the parabolic or galilean functions: Cy(x) =1, Sp(z) = = [2].
The CK plane (as the space of points) corresponds to the 2D sym-
metric homogeneous space

8[2/41},/42 = SOHM@ (3)/50,{2(2) SORQ<2) = <J>7 (27>
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hence the generator J leaves a point O (the origin) invariant, thus gener-
ating rotations around O, while P;, P, generate translations that move
O along two basic orthogonal directions, as implied by the notation. As
any symmetric homogeneous space it has a canonical connection and an
invariant metric (see below).
Alternatively, one may consider the space of (actual) lines, defined
as the 2D symmetric homogeneous space
5«2

K1,[k2)

= SOM,HQ (3)/SOH1(2) SOm (2) = <P1> (28)

One may also introduce a third related space of ideal lines, by taking the
quotient by the subgroup generated by the subalgebra invariant under
the third involution IIys). Both spaces of lines come also equipped with
a canonical connection (as any symmetric homogeneous space) and an
invariant metric; indeed the lines (as points in the line spaces) can be
identified to geodesics of the invariant metric in the space of points, and
conversely so everything may be ultimately formulated in terms of the
single space of points 5[2,{1],,{2.

Table 1: The nine two-dimensional CK spaces 5[2“1] ro = SO0k 15(3) /50, (2).
Spherical: 8? Euclidean: E? Hyperbolic: H?
52,4 = S0(3)/50(2) S+ = 180(2)/S0(2) St4 =S50(2,1)/50(2)
Oscillating NH: NH!™ Galilean: G!*1 Expanding NH: NH!''!
(Co-Euclidean) (Co-Minkowskian)
5210 =150(2)/1SO(1) Siy.0 = 1150(1)/150(1) 570 =150(1,1)/150(1)
Anti-de Sitter: AdS'*! Minkowskian: M?!*1 De Sitter: dS**!
(Co-Hyperbolic) (Doubly Hyperbolic)

5%, =80(2,1)/S0(1,1)  Sfy _ =150(1,1)/S0(1,1) St =S0(2,1)/S0(1,1)

A linear model of the CK space is obtained through the natural linear
action of SO, ,,(3) on R? which is not transitive, since it conserves the
quadratic form (2°)® + k1(2')? + k1k2(2?)?. The subgroup H(j), whose
matrix representation is exp(v.J) (2.5), is the isotropy subgroup of the
point O = (1,0,0), that is, the origin in the space S[Qm]m. The action
becomes transitive on the orbit in R3 of the point O, which is contained
in the ‘sphere’ X::

by

(292 + k1 (2D + Kra(2?)? = 1, (2.9)
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this orbit can be identified with the CK space S[QH dre =
SOk, .12(3)/50,,(2). The invariant metric in this space comes as the
quotient by & of the restriction of the flat ambient metric di? = (dz°)*+
k1(dx')? + kiko(dz?)? to B, and the canonical connection is, for kg # 0
the associated Levi-Civita connection (for explicit expressions and fur-
ther details, see [3]). This scheme unifies all the familiar embeddings of
the sphere, hyperbolic plane, anti-de Sitter and de Sitter spaces in a lin-
ear 3D ambient space, with a flat metric of either euclidean or lorentzian
type (compare the usual models for the sphere in R? and for hyperbolic
space, deSitter and AntiDeSitter in R*™1).

The curvature and metric signature of these CK spaces are deter-
mined directly by ki, ko: the curvature of the canonical metric in the
space S[Qm]’,€2 is constant and equals k1 (written inside square brackets in
the space notation) and at the origin O and in the basis P;, P, of the tan-
gent space at O, the metric matrix is diag(1, ko); therefore ko determines
the metric signature.

For the purposes of the present work we shall consider only the four
generic spaces (at the corners in Table 1) where the two CK constants are
different from zero; these correspond to simple groups, either isomorphic
to SO(3) when K1,k > 0 or to a SO(2,1) when any constant ki, kg or
both are negative.

3 Duality from a group theoretical point of view

A fundamental property of the scheme of CK geometries is the existence
of an ‘automorphism’ of the whole family, called ordinary duality D. This
is well defined for any dimension, and in the 2D case is given by:

D: (Pl,PQ,J)—> (:Pl,tpg,a): (—J,—PQ,—Pl) (3].)
D : (K1, k) — (ki, ko) = (o, k1. (3.2)

The map D leaves the general commutation rules (2.1) invariant while it
interchanges the space of points with the space of actual lines, 5[2141],1-@2
Sﬁh[m], as well as the corresponding constants ki < k.

From a purely formal viewpoint, this Lie algebra duality can be con-
sidered as a family automorphism in the whole CK family of Lie algebras:
the image of the Lie algebra so,, ,,(3) is another Lie algebra in the fam-
ily, corresponding to a different choice of parameters ki, ko; for a fixed
algebra s0,, ., (3) in the family, the duality D establishes an isomorphism

50,1 5y (3) A 504, 4, (3).



252 THE HYPERBOLIC-ANTIDESITTER-DESITTER TRIALITY

When carried to the CK spaces through the exponential map and
the realization (2.5), the duality D relates in general two different CK
geometries. Taking into account the interpretation of k1 and ks in terms
of the differential geometry of the space S[Qm]ﬁ2 we obtain a result sug-
gesting a kind of duality between curvature and signature which seems
worth studying:

Theorem 3.1 The dual of a CK space with curvature k1 and metric of
signature type (+, k) is the CK space with curvature ks and metric of
signature type (+,K1).

Let us now ask how this duality relates the four generic CK spaces.
Starting from either S2, H2, dS'™, AdS'™!, whose associated CK con-
stants reduced to their fiducial values +1 are (1,1),(—1,1),(1,—1),
(—1,—1), it suffices to recall the action (3.2) of the duality D and the
involutivity of D to conclude:

SQ SQ H2 Adsl+1 dsl+1 dsl+1

—>

D:(1,1)<—)(1,1) ’ D:(—l,l)(—> 1,-1) ’ D:(—l,—l) (-1,-1) °

Hence the sphere S? and the DeSitter space dS'™' are autodual;
hyperbolic plane H? and the AntiDeSitter space AdS™™! are mutually
dual. In general, duality relates two geometries placed in symmetrical
positions relative to the main diagonal in table 1.

This difference between dS'*! and AdS'*! may seem surprising as
the two 1+ 1 de Sitter spaces only differ by a change of sign in the metric
but this difference turns out important when duality is considered. To
carry the description of duality (and triality to be introduced later) from
the Lie algebra to the space level requires a detailed exposition, not to be
done here, whose main idea is that in any CK geometry, points and lines
may be either of a single type (to be considered simultaneously as actual
or ideal), of a generic actual type and a limiting (final) type or of two
different generic types (actual and ideal) separated by a common limiting
type (final). Which alternative applies depend on whether the associated
label —«; for points, ks for lines— is >, = 0, < 0. For instance, if k5 < 0
(AntiDeSitter, Minkowski and DeSitter), the existence of three types of
lines, either actual (time-like), final (light-like) and ideal (space-like) is
well known. A similar situation applies for points according to x;; in S?
all points are of a single type (actual or ideal), in E? there are actual
points and also points at infinity (final), and in H? further to actual
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and final points there are points at ‘ultrainfinity’ or ideal points, where
ultraparallel lines ‘meet’, and which are different from the actual ones.

Points/lines have associated measures of separation (distances/angles),
which have also an associated label. For instance, the fiducial point O is
invariant under the subgroup generated by J, and the measure of separa-
tion (angle) between two actual or ideal lines through O may be defined
as the value of the canonical parameter 6 of the unique element in the
one-parameter subgroup e’/ which carries a line onto the other (this def-
inition is alternative but consistent to the usual one through the metric);
thus @ is related to J; ko. The measures of separation (distances) between
points can be similarly defined as the canonical parameters of suitable
one-parameter subgroups carrying the first point to the second. They
are either associated to Pp; k1 (actual distances) or to Ps; k1o (ideal dis-
tances). Non-intersecting actual lines have a (generically unique) com-
mon ideal perpendicular, and non-intersecting ideal lines have a common
actual perpendicular; for these the natural measure of separation is a
distance, associated to either P»; k1Ko or P K.

The Table contains the relationships between the geometric elements
in the given space S and its dual D(S) in a schematic form. For clarity
the Table makes reference only to the fiducial choices for O,ly,ls, but
duality applies to all points, actual lines and ideal lines in the given CK
geometry and relate them to objects in the dual space.

Dual CK space D(S) versus Original CK space S
Points (invariant under J=—P;) e Actual lines (invariant under P;)

Distance between points (along P1=—J) e Angle between actual lines (along J)

Actual lines (invariant under Py =—.J) e Points (invariant under J)

Angle between actual lines (along J=—P;) e Distance between points (along Pi)

Ideal lines (invariant under P2 =—P») e Ideal lines (invariant under P»)

Angle between ideal lines (along J=—P;) e Actual distance between ideal lines (along P )

Theorem 3.2 The set of points of the dual D(S) of a CK space S is the
set of actual lines in the original space S, with the former angle between
lines as measure of separation between points. The set of actual lines in
the dual D(S) of a CK space S is the set of points in the original space S,
with the former distance between points as measure of separation between
lines.
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4 Self-dual Trigonometry of Cayley-Klein spaces

In order to provide a working example within this scheme [2], [4], let us
display how the trigonometry of the nine CK spaces can be encapsulated
n a single self-dual equation, which formally applies for for the nine CK
spaces.

Let us consider a generic triangle with vertices A, B, C' and whose
sides are three actual lines (this is no restriction when ko > 0 but for
Ko < 0 this would restrict to ‘time-like’ sides). Let a,b,c denote the
side lengths, and let A, B,C denote the angles at the three vertices,
with the labelling chosen so that a is the largest side and the opposite
angle at A is the external angle (see figure). The three generators of
translations along the three sides, denoted P,, P,, P., are all conjugate
to the fiducial generator P, of translations along the line [;. The three
generators of rotations J4, Jpg, Jo around the three vertices are conjugates
of the fiducial rotation generator J around O. Now, we have:

Theorem 4.1 [}]. The sides a,b,c and angles A, B, C of any triangle in
the CK space S? = S04, 5,(3)/S0,,(2) are related by the following

[k1] k2
exponential identities in the group SOy, .,(3) which further are equiva-

lent:
0—PaoBJB ocPeo—AJa obPyoClc — |

_CLPaeCPCebe — 6—(—A+B+C)JC7 BJBe_AJAeCJC — e—(—a+b+C)Pa

[§ e

1= eaPae—BJce—cPa eAJCe—bPae—CJC

There are no explicit k1, ko constants in these equations, which there-
fore hold exactly in the same form for all CK spaces at once. And they are
explicitly invariant under the interchange P, < J and a,b,c — A, B, C,
hence they are self-dual. All these four equations have a similar structure:
on the left hand side there are ‘triangular’ translations along the three
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sides and/or rotations around the three vertices. These are either all six
translations and rotations (1st row), only three translations or rotations
(2nd row), or none at all (3rd row). On each equation, all transforma-
tions ‘missing’ in the left hand side appear at the right hand side under
a ‘fiducial’ form, as translations along a single side a and/or rotations
around a single vertexr C'.

If in the last equation one replaces the exponentials by means of (2.5)
one gets directly nine real equations (coming from the nine elements of a
3 x 3 matrix identity). From these one obtains directly the trigonometric
equations of the CK space (the limiting cases where either k1, ko vanish
are easily dealt with, see [2]):

e Three cosine theorems for sides:
Cﬂl (a) = Clﬂ (b)Cﬂl <C> - '%15%1 (b> Slil (C)Ciw <A>

Cﬂl (b) = Clﬂ (a’)cm <C> + K1 Sm (CL) Slﬂ (C)CF»Q (
Ofﬂ (C) = Cm (CL)CM (b) + K1 Sﬁl (CL) Sﬁl (b)o

e Three cosine dual theorems for angles:

O@ (A) = Cm (B)Om (O) RQS@ (B)Sm (O) (a)
Ciy(B) = Cpy (A) Oy (C) + K25, (A) Sy (C)Cr, (b)
Cry (C) = HQ(A) 2(B) + K255, (A) S, (B)C, (¢)
. . Sm( ) Sm(b) Sm(c)
e A sine theorem: S (A)  Su(B) S,Q(C’)

Spherical S[2+]7+
cosa = cosbcosc — sinbsinccos A
sina _ sinb _ sinc
sinA ~ sinB  sinC

cos A = cos BcosC — sin Bsin C cosa

Euclidean 5[20]7+
a®> = b2+ ¢® +2bccos A

a b ¢
sinA ~ sinB  sinC
A=B+C

Hyperbolic S[Q_H_
cosh a = cosh b cosh ¢ + sinh bsinh ¢ cos A
sinha sinhb  sinhc
sinA = sinB = sinC

cos A = cos B cos C' — sin B sin C cosh a

Anti Newton-Hooke S[QH’O
a=b+c
sina _ sinb _ sinc
A B C
A% =B%?4+ (C?+2BCcosa

Galilean S[20] 0

a=b+c
a b c
A B C
A=B+C

Newton-Hooke S[Q,] 0

a=b+c
sinha  sinhb  sinhc
A B  C

A% = B? 4+ C? +2BC cosha

AntiDeSitter S7,; _

cosa = cos bcos ¢ — sin bsin ccosh A
sina _ sinb _ sinc
sinhA ~ sinhB = sinhC
cosh A = cosh B cosh C' + sinh B sinh C cos a

Minkowskian 5%,
a? = b2 + ¢ + 2bccosh A

a b . c
sinhA =~ sinhB ~ sinhC
A=B+C

DeSitter S[Q_]

cosh a = cosh b cosh ¢ + sinh bsinh ¢ cosh A
__sinhb _ sinhc
sinhA ~ sinhB = sinhC
cosh A = cosh B cosh C + sinh Bsinh C cosh a

sinh a
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Table 2. Cosine, dual cosine and sine theorem for the nine CK spaces

We remark the appearance of the label k; in all trigonometric func-
tions of the actual sides, where all functions of angles carry the label kg,
in accordance to the previous discussion. As an example, we collect in
Table 2 the cosine and dual cosine theorems relative to the side a or angle
A for the nine spaces with the CK constants reduced to +1; the choice for
the external angle at A makes some sign differences when compared with
the usual approach in the three riemannian spaces ko > 0. The complete
table can be found in [2] and its extension to the complex spaces in [4].

5 Triality from a group theoretical point of view

Now one may ask for another possibilities of family automorphisms in
the whole CK family of Lie algebras, groups and spaces. The duality
esssentially amounted to an interchange P, < J, with P, unchanged, and
the three minus signs in (3.1) serve to fulfil the automorphism property;
the involutivity of duality is clearly related to the interchange P; <« J, as
iterating it one gets again the identity automorphism. This suggest the
search of further automorphisms which may cyclically permute the three
generators. Do they exist? Let us try as an ansatz a transformation
wich, up to factors, carries (P, P, J) into (J, P, P;) and then try to fix
the factors so that this mapping is an automorphism of the family of Lie
algebras (2.1). This leads to the transformation:

T <P17P27J>_> (?17T2,3):(J,_/€2P1,—P2> (51)

which for the CK Lie algebras or spaces with ko # 0 has the required
properties. Indeed, by direct checking 7 can be shown to be a fam-
ily automorphism of the CK algebras and the image of the Lie algebra
§0,, 1, (3) is another Lie algebra in the family, corresponding to a new
choice of parameters kq, ko given by:

T: (/{1, /432) — (kl,kg) e (/{2, 1{1%2). (52)

For a fixed algebra so,, ,,(3) in the family (with ko # 0), 7 establishes
an isomorphism between s0,, .,(3) and 0y, x,x,(3). As the mapping
permutes cyclically three generators, it is not involutive, but instead of
order 3; iterating 7 three times one gets the identity automorphism (up
to rescaling of generators); hence a suitable name for this transformation
would be triality. The standard usage of this term in mathematics is
related to octonions [5], see the comments in the conclusions section.
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Theorem 5.1 The trial of a CK space of curvature k1 and metric of
signature type (+, ka) is the CK space with curvature ko and metric of
type (+, Kik2).

Let us now ask how this triality relates the four generic CK spaces,
where we can again assume the constants ki, ko have been reduced to
their fiducial values 1. Starting from S? we get:

Sz 7 S?

T = a (5:3)
hence the sphere is invariant under triality. If howewer we start from ei-
ther space H2, dS'™, AdS'™, whose associated CK constants are (—=1,1),
(1,-1), (—1,—1), it suffices to recall the action (5.2) of the triality 7 on
the constant k1, ko to conclude:

H2 1 AdS'*' 7 ds'! r H2
— —

T (—1,1) (1,-1) (—1,-1)  (=1L,1)

(5.4)
Hence the three spaces H?, AdS'™, dS'! are cyclically permuted
by the triality 7. This means that any property in either of these spaces
has a ‘trial” property in the others and any of them codifies completely,
albeit in a ‘holographic’ form, any geometric property from each other.
In this sense, all geometry in deSitter spaces in 1 4 1 dimensions can be
completely obtained through a suitable trial hyperbolic reformulation.
To explore what this triality means, one should uncover with some
detail the geometrical meaning hidden under the automorphism (5.1).

This is summed up in the following table, which mimicks the pattern
found for D:

Trial CK space 7 (S) versus Original CK space S

Points (invariant under J = —P») e Ideal lines (invariant under P»)
Distance between points (along P1 = J) e Angle between ideal lines (along J)

Actual lines (invariant under P; = J) e Points (invariant under J)
Angle between actual lines (along J = —P) e Ideal distance between points (along P»)
Ideal lines (invariant under P = —k2P1) e Actual lines (invariant under P;)

Angle between ideal lines (along § = —P>) e Ideal distance between actual lines (along P»)

For the sake of clarity the table makes reference to the fiducial choice
for a point O, an actual line [; and an ideal line l5, but it applies to all
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points, actual lines and ideal lines in the given CK geometry and in its
trial.

Theorem 5.2 The set of points of the trial T (S) of a CK space S is the
set of ideal lines in the original space S, with the former angle between
1deal lines as measure of separation. The set of actual lines of the trial
T(S) is the set of points in the original space, with the former ideal
distance between points as measure of separation. The set of ideal lines
in the trial space T (S) is the set of actual lines in the original space, with
the ideal distance between them as a measure of separation.

Rather surprisingly, this interpretation can be applied in the same
literal form to either the hyperbolic space, the AntiDeSitter sphere or to
the deSitter sphere, and in each case it leads to the next geometry in the
cycle (5.4).

A more explicit description would require the introduction of suitable
models which can be used ‘simultaneously’ for all the three spaces. The
‘stereocentral’ projection from the CK vector models afford such a tool
but for lack of space this cannot be done here (stereographic projection
is not really adequate to discuss this issue; for the hyperbolic plane H?
this projection afford the Poincaré conformal disk model, where the ideal
points cannot be represented; the exterior of the disk is simply another
copy of H? and together they represent the conformal completion of the
hyperbolic plane [3]).

6 Closing Comments

As an application of this triality, one could translate all the geometric
properties of hyperbolic geometry centered around the parallelism angle
into properties related to the existence of horizons holding in the 1 + 1
kinematics of relativistic DeSitter spaces. This reinforces the analogy
pointed out in the present paper between final points in hyperbolic geom-
etry and light-like lines in lorentzian geometries. Generally speaking, the
CK scheme, with its threefold alternatives related to each CK constant,
should shed light on any classification problem for specific properties in
different spaces in a given CK family.

Duality can be directly seen in the trigonometric equations displayed.
This is not the case for triality simply because we have not considered
any ideal line as a possible side; should these had been considered, the
triality invariance of these trigonometric equations would be also clear.
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A few years ago V. I. Arnol’d [1] has considered a curious triality
between any curve I' on S?, its ‘dual’ I'* and its ‘derivative’ I'; these
three curves can be considered as three projections of a single Legendrian
curve in S? (the set of pure imaginary unit quaternions) by means of the
three Hopf projections S* — S? associated to three unit quaternions. The
triality described here coincides in S? with the one proposed by Arnol’d
and this suggest an alternative approach to the triality for the triple
H? AdS'™, dS'""! through three (‘pseudo’Hopf) projections associated
to the three unit pseudoquaternions from the set of pure imaginary unit
pseudoquaternions S? into, respectively H* H%, S2.

Lie algebra family automorphisms in the CK families other than ordi-
nary duality also exist for higher dimensions and relate geometries with
the same group, but the two spaces of DeSitter in n + 1 dimensions,
n > 1 have different groups. Thus, as far as ‘hyperbolic-AntiDeSitter-
DeSitter’ are concerned, the triality described here is a ‘two-dimensional’
phenomenon, whose high dimensional analogues relate other spaces.

A last question concerns the relation of 7 with the usual octonionic
triality; it seems there is indeed a relation. The CK family of spaces
of rank one, real dimension 2 and real type has complex, quaternionic
and octonionic relatives [6], [7]; the compact spaces, analogous in these
cases to S2 = SO(3)/SO(2) (or O(3)/(0O(1) ® O(2)) = RP?) are respec-
tively U(3)/(U(1) @ U(2)) = CP?, Sp(3)/(Sp(1) ® Sp(2)) = HP? and
F,/Spin(9) = OP?; the last space is the Cayley plane (the three R, C, H
families also exist for higher dimensions, but octonionic do not). The
triality introduced here for the real case can likely be extended to all
these CK families. A reasonable expectation is that in the last case, the
octonionic version of 7 would permute the 52 generators of Fj in a way
compatible with the standard octonionic triality. We recall that group
theoretically, this exceptional triality property comes from the unique
position of s0(8) among the orthogonal (even) Lie algebras; the vector
representation and the two disequivalent spinor representations have the
same dimension only in this case; triality also can be guessed from the
threefold symmetry of the corresponding Dynkin diagram for the Cartan
series D,.
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Abstract

In Lorentzian manifolds of any dimension the concept of causal ten-
sors is introduced. Causal tensors have positivity properties analogous
to the so-called “dominant energy condition”. Further, it is shown how
to build, from any given tensor A, a new tensor quadratic in A and
“positive”, in the sense that it is causal. These tensors are called su-
perenerqgy tensors due to historical reasons because they generalize the
classical energy-momentum and Bel-Robinson constructions. Superen-
ergy tensors are basically unique and with multiple and diverse physical
and mathematical applications, such as: a) definition of new divergence-
free currents, b) conservation laws in propagation of discontinuities of
fields, c) the causal propagation of fields, d) null-cone preserving maps,
e) generalized Rainich-like conditions, f) causal relations and transfor-
mations, and g) generalized symmetries. Among many others.

1 Causal tensors

In this contribution' V will denote a differentiable N-dimensional man-
ifold V' endowed with a metric g of Lorentzian signature N — 2. The

solid Lorentzian cone at z will be denoted by ©, = 0F U ©,, where
©f C T, (V) are the future (+) and past (-) half-cones. The null cone

Tt is worthwhile to check also my joint contribution with Garcia-Parrado, as well as that
of Bergqvist’s, in this volume, with related results. Notice that signature convention here is
opposite to those contributions and to [1].
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00, is the boundary of ©, and its elements are the null vectors at x.
An arbitrary point x € V is usually taken, but all definitions and re-
sults translate immediately to tensor fields if a time orientation has been
chosen. The z-subscript is then dropped.

Definition 1.1 [1] A rank-r tensor T' has the dominant property at x €
Vv if

T(iy,.... @) >0  Yi,..., i €O

The set of rank-r tensor (fields) with the dominant property will be de-
noted by DP). We also put DP, = {T : -T € DP'}, DP, =
DP}UDP,, DP*=\J,DP:, DP=DP'uUDP .

By a natural extension Rt = DPJ C DP'. Rank-1 tensors in DP™
are simply the past-pointing causal 1-forms (while those in DP7 are the
future-directed ones). For rank-2 tensors, the dominant property was
introduced by Plebaniski [2] in General Relativity and is usually called the
dominant energy condition [3] because it is a requirement for physically
acceptable energy-momentum tensors. The elements of DP will be called
“causal tensors”. As in the case of past- and future-pointing vectors, any
statement concerning DPT has its counterpart concerning DP~, and
they will be generally omitted. Trivially one has

Property 1.2 IfT® € DP} and o; € RY (i =1,...,n) then > a,TV €
=1

DP}. Moreover, if T |, T? € DP* then T @ T? ¢ DP+.

This tells us that DP™ is a graded algebra of cones. For later use, let us
introduce the following notation

TW,x; T® =ClCr, (7' @ TW @ T®)

T

that is to say, the contraction (via the metric) of the i'" entry of the first

tensor (which has rank r) with the j of the second. There are of course

many different products ;x; depending on where the contraction is made.
Several characterizations of DP* can be found. For instance [1, 4]

Proposition 1.3 The following conditions are equivalent:

1. T € DP/.

2. T(ky,.... k) >0 Vki,... k €007
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3. T(d,....4) >0 Yi,... 4 €int®r, (T #0).

4. T(€y,...,€0) > |T(€nyy-evs €a)| Vi, ..., € {0,1,...;, N — 1}, in all
orthonormal bases {€y, ...,Ex_1} with a future-pointing timelike €.

5. Tix; TEDP} ., ,, YT E€DP;, Vi=1,...,r,Vj=1,...,s

Proposition 1.4 Similarly, some characterizations of DP are [1]

1. 0 # T, x;,T € DP~ for some i = T;x;T € DP~ forall i,j =
T € DP.

2.T;x;T =0 forall i <= T = k1 ® --- ® k. where k; are null
— T € DP.

2 Superenergy tensors

In this section the questions of how general is the class DP and how one
can build causal tensors are faced. The main result is that:

Given an arbitrary tensor A, there is a canonical procedure (unique
up to permutations) to construct a causal tensor quadratic in A.

This procedure was introduced in [5] and extensively considered in
[4], and the causal tensors thus built are called “super-energy tensors”.
The whole thing is based in the following

Remark 2.1 Given any rank-m tensor A, there is a minimum value
r € N, r < m and a unique set of r numbers ny,...,n, € N, with
S ni =m, such that A is a linear map on A™ x -+ x A",

Here AP stands for the vector space of “contravariant p-forms” at any
x € V. In other words, 3 a minimum r such that A € A,, ® --- ® A,,,
where A is the appropriate permutted version of A which selects the
natural order for the ny,...,n, entries. Tensors seen in this way are
called r-fold (ny,...,n,)-forms. Some simple examples are: any p-form
(2 is trivially a single (that is, 1-fold) p-form, while V{2 is a double (1, p)-
form; the Riemann tensor R is a double (2,2)-form which is symmetric
(the pairs can be interchanged), while VR is a triple (1,2,2)-form; the
Ricci tensor Ric is a double symmetric (1,1)-form and, in general, any
completely symmetric r-tensor is an r-fold (1,1,...,1)-form. A 3-tensor
A with the property A(Z,y,2) = —A(Z,y, ) is a double (2,1)-form and
the corresponding A is clearly given by A(Z, v, 2) = A(%, Z,v), V¥, ¥, Z.
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For r-fold forms, the interior contraction can be generalized in the
obvious way iz, .z 1 Ap, @@ N, — Ay 1 ® - ® A, 1 by means
of

. _ 1,2 T — — =
Zflv---yfrA - Cl Cn1+1 oMt ne o141 (1'1 & L2 Q- ® Lr ® A)

which is simply the interior contraction of each vector with each antysym-
metric block. Similarly, by using the canonical volume element of (V) g)
one can define the multiple Hodge duals as follows:

*p ol An1 Q- ® Anr E— An1+51(N—2n1) K- ® Anr—{—er(N—Qnr)

where ¢; € {0,1}Vi =1,...,r and the convention is taken that ¢; = 1 if
the it antysymmetric block is dualized and &; = 0 otherwise, and where
P =1,...,2" is defined by P = 1+ Y., 2" 'e;. Thus, there are 2"
different Hodge duals for any r-fold form A and they can be adequately
written as Ap = *pA. One also needs a product ® of A by itself resulting
in a 2r-covariant tensor, given by

L L 4 1 . .
(A @ A) (.’,Ul, Y1y ooty Ty yT) = (H —)|> g (251,...,1‘—}145 251 ..... :ljrA)

iy (=1

where for any tensor B we write g (B, B) € R for the complete contrac-
tion in all indices in order.

Definition 2.2 [4, 5| The basic superenergy tensor of A is defined to be

27‘
1
T{A} =35> Ap© Ap.
P=1

Here the word basic is used because linear combinations of T{A} with its
permutted versions maintain most of its properties; however, the com-
pletely symmetric part is unique (up to a factor of proportionality) [4].
It is remarkable that one can provide an explicit expression for T{A}
which is independent of the dimension N, see [4]. In the case of a general
p-form €2, its rank-2 superenergy tensor becomes

T(Q} (E.4) = =y |9 (2550) — 0 (@) 9 @) (21

(p 2p
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In Definition 2.2 we implicitly assumed that the r-fold form A has no
antysymmetric blocks of maximum degree N. Nevertheless, the above
expression (2.1) is perfectly well defined for N-forms: if = fn where
n is the canonical volume form and f a scalar, then (2.1) gives T{Q} =
—% f?g. Using this the Definition 2.2 is naturally extended to include
N-blocks, see [1] for details.

In N = 4, the superenergy tensor of a 2-form F'is its Maxwell energy-
momentum tensor, and the superenergy tensor of an exact 1-form d¢ has
the form of the energy-momentum tensor for a massless scalar field ¢. If
we compute the superenergy tensor of R we get the so-called Bel tensor
[6]. The superenergy tensor of the Weyl curvature tensor is the well-
known Bel-Robinson tensor [7, 8, 9]. The main properties of T{A} are
[4]:

Property 2.3 If A is an r-fold form, then T{A} is a 2r-covariant ten-
sor.

Property 2.4 T{A} is symmetric on each pair of entries, that is, for
alli=1,...,r one has

T{AY (1, ..., Tost, sy oy For) = TL{AY (Z1, .. Foiy Toi 1y -+, Tor)
Property 2.5 T{A} =T{Ap} VP =1,...,2".
Property 2.6 T{A} =T{—-A}; T{A}=0<= A=0.
Property 2.7 T{A® B} = T{A} ® T{B}.

Property 2.8 T{A} € DP*.

Observe that property 2.8 is what we were seeking, so that T{A} is the
“positive square” of A in the causal sense.

N-1
1
Property 2.9 T{A}(&,....é) = 5 > (A(Eaysens Eay))? in ortho-

normal bases {€y, ..., En—1}.

The set of superenergy tensors somehow build up the class DP; in
fact, in many occasions the rank-2 superenergy tensors (that is, those for
single p-forms) are the basic building blocks of the whole DP [1]. This
can be seen as follows.
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Definition 2.10 An r-fold form A is said to be decomposable if there
are r forms Q; (1=1,...,1) such that A= ® -+ ® Q.

From this and Property 2.7 one derives

Corollary 2.11 If A is decomposable, then T{A} = T{} ® --- ®
T{Q.}.

Notice that each of the T{2;} on the righthand side is a rank-2 tensor.
We now have

Theorem 2.12 Any symmetric T € DP3 can be decomposed as

T= i T{Q,}

where €, are simple p-forms such that for p > 1 they have the structure
Q, = ki A--- ANk, where ky,...,k, are appropriate null I-forms and
€ DP,.

See [1] for the detailed structure of the above decomposition and for the
relation between T' and the null 1-forms. From this one obtains?

Theorem 2.13 A symmetric rank-2 tensor T satisfies T* = g if and
only if T = £T{Q,}, i.e., if T is up to sign the superenergy tensor of
a simple p-form Q,. Moreover, the rank p of the p-form is given by
+trT = 2p — N.

This important theorem allows to classify all Lorentz transformations
and, in more generality, all maps which preserve the null cone 00, at
z eV, see [1].

3 Applications

In this section several applications of superenergy and causal tensors are
presented. They include both mathematical and physical ones.

2From this point on I shall use the standard notation T? instead of Ty x1T = T x2T =
Tox1T =T1x2T for the case of rank-2 symmetric tensors T'. T2 is symmetric.
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3.1 Rainich’s conditions

The classical Rainich conditions [10, 11] are necessary and sufficient con-
ditions for a spacetime to originate via Einstein’s equations in a Maxwell
electromagnetic field. They are of two kinds: algebraic and differential.
Here I am only concerned with the algebraic part which nowadays are
presented as follows (see, e.g., [12]):

(Classical Rainich’s conditions) The Einstein tensor G = Ric —3Sg
of a 4-dimensional spacetime is proportional to the energy-momentum
tensor of a Maxwell field (a 2-form) if and only if G* < g, trG = 0 and
G € DP;.

In fact, from theorem 2.13 one can immediately improve a little this
classical result

Corollary 3.1 In 4 dimensions, G is algebraically up to sign propor-
tional to the energy-momentum tensor of a Maxwell field if and only
if G* « g, trG = 0. Furthermore, G is proportional to the energy-
momentum tensor of (possibly another) Mazwell 2-form which is simple.

The last part of this corollary is related to the so-called duality rotations
of the electromagnetic field [12]. Observe that this is clearly a way of
determining physics from geometry because, given a particular spacetime,
one only has to compute its Einstein tensor and check the above simple
conditions. If they hold, then the energy-momentum tensor is that of a
2-form (and for a complete result the Rainich differential conditions will
then be needed).

The classical Rainich conditions are based on a dimensionally-
dependent identity, see [13], valid only for N = 4. However, theorem
2.13 has universal validity and can be applied to obtain the generaliza-
tion of Rainich’s conditions in many cases. For instance, we were able to
derive the following results [1].

Corollary 3.2 In N dimensions, a rank-2 symmetric tensor T is al-
gebraically the energy-momentum tensor of a minimally coupled mass-
less scalar field ¢ if and only if T? < g and trT = B+/trT?/N where
B = £(N — 2). Moreover, d¢ is spacelike if 3 = 2 — N and trT # 0,
timelike if 3 = N — 2 and trT # 0, and null if trT = 0 =trT>.

Corollary 3.3 In N dimensions, a rank-2 symmetric tensor 1" is the
energy-momentum tensor of a perfect fluid satisfying the dominant energy
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condition if and only if there exist two positive functions X\, u such that
T? =20T + (¥ — N\?) g, trT = (N —2)u — AN.

This is an improvement and a generalization to arbitrary N of the con-
ditions in [14] for N = 4. In particular, the case of dust can be deduced
from the previous one by setting the pressure of the perfect fluid equal
to zero.

Corollary 3.4 In N dimensions, a symmetric tensor T is algebraically
the energy-momentum tensor of a dust satisfying the dominant energy
condition if and only if

T = () T, trT < 0.

3.2 Causal propagation of fields

Following a classical reasoning appearing in [3], the causal propagation
of arbitrary fields can be studied by simply using its superenergy tensor,
see [15]. Let ¢ be any closed achronal set in V' and D(() its total Cauchy
development (an overbar over a set denotes its closure, see [3, 16] for
definitions and notation).

Theorem 3.5 If the tensor T{A} satisfies the following divergence in-
equality
divl'{A} (Z,...,7) < fT{A}(Z,..., %)

where f is a continuous function and ¥ = g~'( ,—dr) is any timelike
vector foliating D(C) with hypersurfaces T =const., then

This theorem proves the causal propagation of the field A because if
A # 0 at apoint z ¢ D(() arbitrarily close to D((), then A will propagate
in time from z according to its field equations, but it will never be able
to enter into D((), showing that A cannot travel faster than light.

The divergence condition in the theorem, being an inequality, is very
mild and it is very easy to check whether or not is valid for a given
field satysfying field equations. In general, of course, it will work for
linear field equations, and for many other cases too. It has been used to
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prove the causal propagation of gravity in vacuum [17] or in general N-
dimensional Lorentzian manifolds conformally related to Einstein spaces
[15], and also for the massless spin-n /2 fields in General Relativity [15]. Tt
must be stressed that in many occasions the standard energy-momentum
tensor of the field does not allow to prove the same result, so that the
universality of the superenergy construction reveals itself as essential in
this application.

3.3 Propagation of discontinuities: conserved quantities

Several ways to derive conserved quantities and exchange of superen-
ergy properties have been pursued. One of them is the construction of
divergence-free vector fields, called currents. This has been succesfully
achieved in the case of a minimally coupled scalar field if the Einstein-
Klein-Gordon field equations hold, see [4, 18]. In this subsection the
propagation of discontinuities of the electromagnetic and gravitational
fields will be analyzed from the superenergy point of view. This will be
enough to prove the interchange of superenergy quantities between these
two physical fields and some conservation laws arising naturally when
the field has a ‘wave-front’, see [4, 18].

To that end, we need to recall some well-known basic properties
of the wave-fronts, which are null hypersurfaces. Let ¢ be such a null
hypersurface and n a 1-form normal to o. Obviously, n is null g~ (n,n) =
0 and therefore 77 = g~ '( ,n) is in fact a vector tangent to o, see e.g. [19],
and n cannot be normalized so that it is defined up to a transformation
of the form

n — pn, p > 0. (3.1)

The null curves tangent to 7 are null geodesics Vi = W 1, called ‘bichar-
acteristics’, contained in o. Let g denote the first fundamental form of o,
which is a degenerate metric because g(7, ) =0 [3, 19, 16]. The second
fundamental form of o relative to n can be defined as

1
=3 £77
where £; denotes the Lie derivative with respect to 7 within o. K is
intrinsic to the null hypersurface o and shares the degeneracy with g:
K(7, ) =0 [19]. Because of this, and even though g has no inverse, one
can define the “trace” of K by contracting with the inverse of the metric
induced on the quotient spaces T'(c)/ < 7 >. This trace will be denoted
by ¥ and has the following interpretation: if s C o denotes any spacelike
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cut of o, that is, a spacelike (N — 2)-surface orthogonal to n and within
o, then ¢ measures the volume expansion of s along the null generators
of . In fact, ¥ can be easily related to the derivative along 7 of the
(N — 2)-volume element of s [16].

Let us consider the case when there is an electromagnetic field (a
2-form F') propagating in a background spacetime so that there is a null
hypersurface of discontinuity o [20, 21], called a ‘characteristic’. Let [E],
denote the discontinuity of any object E across o. Using the classical
Hadamard results [22, 20, 21], one can prove the existence of a 1-form ¢
on o such that

[Fl,=nAc, g '(nc)=0.

Observe that ¢ transforms under the freedom (3.1) as ¢ — ¢/p. (From
Maxwell’s equations for I’ considered in a distributional sense one derives
a propagation law [21, 18], or ‘transport equation’ [20],

i (Jof?) + |19+ 2) =0, |e2 = g (e,¢) > 0.

This propagation equation implies that if ¢|, = 0 at any point = € o, then
¢ = 0 along the null geodesic originated at x and tangent to . Moreover,
for arbitrary conformal Killing vectors 51, 52, the above propagation law
allows to prove that [20, 18]

/ ePn(C)n(&) wl. (3.2)

are conserved quantities along o, where w|, is the canonical volume ele-
ment (N — 2)-form of s, in the sense that the integral is independent
of the cut s chosen. Notice also that (3.2) are invariant under the
transformation (3.1). These conserved quantities can be easily related
to the energy-momentum properties of the electromagnetic field because
T{[F),} = |c|*n®mn, so that the Maxwell tensor of the discontinuity [F],
contracted with the conformal Killing vectors 51, 52 gives the function in-
tegrated in (3.2).

However, the integral (3.2) vanishes when [F], =0 <= ¢ = 0. Using
again Hadamard’s theory, now there exist a 2-covariant symmetric tensor
B and a 1-form f defined only on ¢ such that [8, 23, 21, 19]

[R],=nABAn, B(i, )+trBn=0,
[VF],=n®(nAf), ¢ '(nf)=0.



J M M SENOVILLA 271

These objects transform under (3.1) according to f, B — f/p?, B/p*.
Assuming that the Einstein-Maxwell equations hold Lichnerowicz de-
duced the propagation laws for f, B in [21], and in particular he found
the following transport equation [21, 4]

i (IB* +[f1?) + (1B + |f*) (0 + 4¥) = 0,

where |f|? = g7 '(f, f) > 0,|B|> =trB* > 0. Once again, with the help
of any conformal Killing vectors (i, ..., (4, the following quantities

[ B2 112 n(@n(Gn(Gn(E) wl. 33)
are conserved along o in the sense that the integral is independent of
the spacelike cut s. Two important points can be derived from this
relation: first, both the electromagnetic and gravitational contributions
are necessary, so that neither the integrals involving only | B|? or only | f|?*
are equal for different cuts s in general. Second, the integrand in (3.3)
is related to superenergy tensors because T {[R],} = 2|B’n®@n®@n&@n
and T {[VF],} = 2|f|?’n®n®n ®n, and thus the function integrated in
(3.3) is simply

]_ — — — —

§ (T {[R]U} + T {[VF]U}) (Cl? (27 C?)a <4)

which demonstrates the interplay between superenergy quantities of dif-
ferent fields, in this case the electromagentic and gravitational ones. Ob-
serve that the above tensors are completely symmetric in this case, and
that they together with the conserved quantity (3.3) are invariant under

the transformation (3.1).

3.4 Causal relations

The fact that the tensors in DP5 can be seen as linear mappings preserv-
ing the Lorentz cone leads in a natural way to consider the possibility
of relating different Lorentzian manifolds at their corresponding causal
levels, even before the metric properties are taking into consideration. To
that end, using the standard notation ¢ and ¢* for the push-forward and
pull-back mappings, respectively, we give the next definition, see [24].

Definition 3.6 Let ¢ : V. — W be a global diffeomorphism between two
Lorentzian manifolds. W s said to be properly causally related with V' by
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¢, denoted V <, W, if Vi € ©F(V), '@ € ©F(W). W is simply said
to be properly causally related with V', denoted by V. < W, if Jp such
that V- <, W.

In simpler terms, what one demands here is that the solid Lorentz cones
at all z € V are mapped by ¢ to sets contained in the solid Lorentz cones
at p(x) € W keeping the time orientation: 'O} C @;(x), Ve e V.
Observe that two Lorentzian manifolds can be properly causally re-
lated by some diffeomorphisms but not by others. As a simple example,
consider IL with typical Cartesisan coordinates z°,..., ¥~ (the O-index
indicating the time coordinate) and let ¢, be the diffeomorphisms

pg: L — L

0 N—l)

(x°,...,x N=1

— (qa°,.. .,z
for any constant ¢ # 0. It is easily checked that ¢, is a proper causal
relation for all ¢ > 1, but is not for all ¢ < 1. Thus . < L but, say,
L A,,,, L. Notice also that for ¢ < —1 the diffeomorphisms ¢, change
the time orientation of the causal vectors, but still 'O, C O, (with
SDIGI C @;(z)‘)

Proper causal relations can be easily characterized by some equivalent
simple conditions [24].

Theorem 3.7 The following statements are equivalent:
1.V <, W.
2. ¢* (DP,}(W)) CDPH(V) for allr € N.
3. ¢ (DP} (W) S DP{(V).

4. ¢*h € DP5 (V) where h is the metric of W up to time orientation.

Proof. (See also [24])

1= 2: let T € DPS (W), then (¢*T)(dy,...,u,) =T (PUy,...,oU0) >
0 for all 4y, ..., 4, € OF(V) given that @'y, ...,¢'u, € OF(W) by as-
sumption. Thus ¢*T" € DP} (V).

2 = 3: Trivial.

3 = 4: For any 4 € ©7(V) we have that 0 < (¢*w)(@) = w(¢'@) holds
for all w € DP{ (W), so that necessarily ¢'i € O (W) (which already
implies 7). Then, 0 < h(¢'d, ¢'0) = p*h(d,v) for all 4, v € OF(V'), which
proves that p*h € DP5 (V).
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4 = 1: For every @i € ©F(V) we have that (¢*h) (i, @) = h(¢' @i, ' @) <0
and hence ¢'i € ©(W). Besides, for any other 7 € % (V), (¢*h)(i, 7) =
h(p'i, ' ¥) < 0 so that every two vectors with the same time orientation
are mapped to vectors with the same time orientation. However, it could
happen that ©1 (V) is actually mapped to ©~ (W), and ©~ (V') to ©F(W).
By changing the time orientation of W, if necessary, the result follows.

O

Condition 4 in this theorem can be replaced by

4. o*h € DP; (V) and ¢'@i € ©F(W) for at least one @ € O (V).
Leaving this time-orientation problem aside (in the end, condition 4 just
means that W with one of its time orientations is properly causally re-
lated with V'), let us stress that the condition 4 (or 4’) is very easy to
check and thereby extremely valuable in practical problems: first, one
only has to work with one tensor field h, and also as we saw in proposi-
tion 1.3 there are several simple ways to check whether ¢*h € DP5 (V)
or not.

The combination of theorem 2.12 and condition / in theorem 3.7
provides a classification of the proper causal relations according to the
number of independent null vectors which are mapped by ¢ to null vectors
at each point. The key result here is that

Proposition 3.8 Let V <, W and i € ©f, v € V. Then i is null at
o(x) € W if and only if @ is a null eigenvector of ¢*h|,.

Proof. See [25, 24]. Recall that @ is called an “eigenvector” of a 2-
covariant tensor 7" if T'( ,4) = Ag( ,4) and A is then the corresponding
eigenvalue.

O

The vectors which remain null under the causal relation ¢ are called
its canonical null directions, and there are at most N of them linearly
independent. Hence, using theorem 2.12 one can see that there essentially
are N different types of proper causal relations, and that the conformal
relations are included as the particular case in which all null directions
are canonical [25].

Clearly V' < V for all V' (by just taking the identity mapping). More-
over

Proposition 3.9 V <W and W < U =V < U.



274 SUPERENERGY TENSORS

Proof. Consider any @ € ©7 (V). Since there are ¢, such that V <,
W and W <, U, then ¢'@ € ©F(W) and ¢'[¢'i@] € ©F(U) so that
(¢ o) € ©F(U) from where V < U.

0

It follows that the relation < is a preorder for the class of all Lorentzian
manifolds. This is not a partial order as V' < W and W < V does not
imply that V' = W and, actually, it does not even imply that V is con-
formally related to W. The point here is that V' <, W and W <, V' can
perfectly happen with ¢ # =1, In the case that V' <, W and W <, V
then necessarily ¢ is a conformal relation and ¢*h = e?/g, but we are
dealing with more general and basic causal equivalences.

Definition 3.10 Two Lorentzian manifolds V and W are called causally
isomorphic, denoted by V ~W, if V. <W and W <V.

If V ~ W then the causal structures in both manifolds are somehow the
same. Clearly, ~ is an equivalence relation, and now one can obtain a
partial order < for the corresponding classes of equivalence coset(V) =
{U : V ~ U}, by setting

coset(V) <X coset(W) <=V < W .

This partial order provides chains of (classes of equivalence of) Lorentzian
manifolds which keep “improving” the causal properties of the space-
times. To see this, we need the following (see [3, 16] for definitions)

Proposition 3.11 Let V < W. Then, if V wviolates any of the following
1. the chronology condition,
2. the causality condition,
3. the future-distinguishing condition (or the past one),
4. the strong causality condition,
5. the stable causality condition,
6. the global hyperbolicity condition,
so does W'.
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Proof. (see [24] for the details). For I to 4, let v be a causal curve
responsible for the given violation of causality (that is, a closed time-
like curve for 1, or a curve cutting any neighbourhood of a point in
a disconnected set for 4, and so on). Then, () has the correspond-
ing property in W. To prove 5, if there were a function f in W such
that —df € DP{ (W), from theorem 3.7 point & it would follow that
d(e*f) = o*df € DP{ (V) so that ¢*f would also be a time function.
Finally, 6 follows from corollary 3.1 in [25].

O

With this result at hand, we can build the afore-mentioned chains of
spacetimes, such as

coset(V) < -+ < coset(W) < -+ < coset(U) < --- < coset(Z)

where the spacetimes satisfying stronger causality properties are to the
left, while those violating causality properties appear more and more to
the right. This is natural because the light cones “open up” under a
causal mapping. The actual properties depend on the particular chain
and its length, but an optimal one would start with a V' which is globally
hyperbolic, and then it could pass through a W which is just causally
stable, then U could be causal, say, and the last step Z could be a totally
vicious spacetime [16].

Perhaps the above results can be used to give a first fundamental
characterization of asymptotically equivalent spacetimes, at a level prior
to the existence of the metric, which might then be included in a sub-
sequent step. This could be accomplished by means of the following
tentative definitions, which may need some refinement.

Definition 3.12 An open set ( C V is called a neighbourhood of

1. the causal boundary of V if (N~ # O for all endless causal curves
v

2. a singularity set S if (N~ # O for all endless causal curves v which
are incomplete towards S;

3. the causal infinity if ( Ny # O for all complete causal curves 7.

(See [16] for definition of boundaries, singularity sets, etcetera).
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Definition 3.13 W s said to be causally asymptotically V if any two
netghbourhoods of the causal infinity ¢ C V and ( C W contain corre-
sponding neighbourhoods ' C ¢ and (' C ( of the causal infinity such
that ' ~ (.

Similar definitions can be given for W having causally the singularity
structure of V', or the causal boundary of V', replacing in the given def-
inition the neighbourhoods of the causal infinity by those of the singu-
larity and of the causal boundary, respectively. The usefulness of these
investigations is still unclear.

3.5 Causal transformations and generalized symmetries

Here the natural question of whether the causal relations can be used to
define a generalization of the group of conformal motions is analyzed. To
start with, we need a basic concept.

Definition 3.14 A transformation ¢ : V. — V s called causal if V <,
V. The set of causal transformations of V' is written as C(V').

C(V) is a subset of the group of transformations of V. In fact, from the
proof of proposition 3.9 follows that C(V') is closed under the composi-
tion of diffeomorphisms. As the identity map is also clearly in C(V) its
algebraic strucuture is that of a submonoid, see e.g. [26], of the group of
diffeomorphisms of V. However, C(V') generically fails to be a subgroup,
because (see [25] for the proof):

Proposition 3.15 Fvery subgroup of causal transformations is a group
of conformal motions.

From standard results, see [26], one identifies C(V)NC(V)~! as the group
of conformal motions of V' and there is no other subgroup of C(V') con-
taining C(V) NC(V)~!. The transformations in C(V)\ (C(V)NC(V)™!)
are called proper causal transformations.

Take now a one-parameter group of causal transformations {¢; }er-
From proposition 3.15 it follows that {¢;} must be in fact a group of
conformal motions, and its infinitesimal generator is a conformal Killing
vector, so that nothing new is found here. Nevertheless, one can gener-
alize naturally the conformal Killings by building one-parameter groups
of transformations {¢,} such that only part of them are causal transfor-
mations. Given that the problem arises because both ¢, and p_, = ¢; "
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belong to the family and thus they would both be conformal if they
are both causal, one readily realizes that the natural generalization is
to assume that {¢;}er is such that either {p;}ier+ or {pi}er- is a
subset of C(V'), but only one of the two. Any group {¢;}er with this
property is called a maximal one-parameter submonoid of proper causal
transformations. Of course, the one-parameter submonoid can just be a
local one so that the transformations are defined only for some interval
I = (—¢,e) € R and only those with t € (0,¢) (or ¢t € (—¢,0)) are proper
causal transformations.

Let then {4 }1er be a local one-parameter submonoid of proper causal
transformations, and assume that ¢ > 0 provides the subset of proper
causal transformations (otherwise, just change the sign of ¢). The in-
finitesimal generator of {(;}ic; is defined as the vector field

STy

t=0
so that for every covariant tensor field T one has

d(¢;T)

=L
dt

t=0

T

£

where £z denotes the Lie derivative with respect to £ As {@1}i>0 are
proper causal transformations, and using point 2 in theorem 3.7, one gets
T € DP/ for t > 0 and for all tensor fields T' € DP; . In particular,

o (y, ... 10,) >0, Yiy,...,u, € ©F, VI €e DPF, t >0, (3.4)
from where we can derive the next result.

Lemma 3.16 Let T € DP; and k € ©F be such that T(k,... k) = 0.
If o, € C(V) fort € 0,¢), then

—

(LeT)(k,....k)>0.

Proof. Under the conditions of the lemma, and due to points 2 and 3
of proposition 1.3, it is necessary that k is null, that is, k¥ € 90*. From

- -

formula (3.4) one obtains ¢;T (k,..., k) > 0 for all t € [0,e). But ¢ is

—

the identity transformation, so 3T (k,..., k) = T (k,..., E) = 0, from
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— -

where necessarily follows that ;7T (k, ..., k) is a non-decreasing function

—

of t at t = 0, that is to say, (d/dt)(oiT (K, ..., k))|=o > 0.
U

Corollary 3.17 Let 5 be the infinitesimal generator of a local one-
parameter submonoid of proper causal transformations {¢ }er and choose
the sign of t such that {pi}i>0 C C(V). Then

(Lzg)(k. k) <0, vk € 90

Proof. Obviously g(k, k) = 0 for all null k£, and also g € DP;, so lemma
3.16 can be applied to —g and the result follows.

g

This result is a generalization of the condition for conformal Killing
vectors (£ £y g) and can be analyzed in a similar manner. As a
matter of fact, the application of the decomposition theorem 2.12 to
vig € DP, leads to a much stronger result which allows for a complete

characterization of the vector fields 5 and their properties.

Theorem 3.18 Let gbe the infinitesimal generator of a local one-parameter
submonoid of proper causal transformations {;}ier and choose the sign
of t such that {¢:}i>0 C C(V'). Then there is a function ¢ such that

[fgg — ng] e DP,.

Proof. From theorem 2.12 and given that ¢;g € DP; for ¢t € [0,¢) one
has

N N-1
Prg=—> TAQ}=-> T{Q}+ Vg
p=1 p=1

where T;{€2,} are superenergy tensors of simple p-forms for all values
of t € [0,¢) and U, are functions on V with WUy = 1. Then we have
oig(u,v) < U2 g(u,v) <0 for all @,7 € OF, or equivalently,

U %prg(,7) < g(u, 0) = Uy pig(, 7) <0
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from where a reasoning similar to that in lemma 3.16, by taking the
derivative with repsect to ¢t at ¢ = 0, gives

[££~g _ 2¢g] (@,7) <0,  Vi,7cot

where ¢ = dW¥, /dt|;—o.

O

This set of vector fields generalize the traditional (conformal) sym-
metries and the previous theorem together with theorem 2.12 provides
first a definition of generalized symmetries, and second its full classifica-
tion because £ £9 — 21pg itself can be written as a sum of superenergy
tensors of simple p-forms. The number of independent null eigenvec-
tors of £ £9— 20y (ranging from 0 to N) gives the desired classification,
where N corresponds to the conformal Killing vectors. This is under
current investigation. It must be remarked that the above theorem does
not provide a sufficient condition for a vector field to generate locally a
one-parameter submonoid of causal transformations.

Several examples of generalized Killing vectors in this sense can be
presented. One of them is a particular case of a previous partial gen-
eralization of isometries considered in [27] and called Kerr-Schild vector
fields. They are vector fields which satisfy £ £9 X {® 0 and £ Eé x l
where £ is a null 1-form. Obviously, as £ £9 € DP; this can give rise to a
one-parameter submonoid of causal transformations. See Example 4 in
[25] for an explicit case of this.

Another interesting example arises by considering the typical
Robertson-Walker spacetimes RW, the manifold being I x My _; (k) where
I C Ris an open interval of the real line with coordinate 2° and My_, (k)
is the (N — 1)-dimensional Riemannian space of constant curvature x,
its canonical positive-definite metric being denoted here by g.. The
Lorentzian metric in RW is the warped product

g = —dz’ ® da° + a2(m0) I

where a(2z®) > 0 is a C? function on I. Take the diffeomorphisms
or - RW — RW which leave My_;(k) invariant (they are the iden-
tity on My_1(k)) and act on I as 2° — z° + ¢. It is immediate that

¢ig=—dz’ @ dz’ + a*(z° + 1) g

so that ¢;g € DP, (RW) if and only if a(2® +t) < a(2°), and therefore
vrg € DP5 (RW) for ¢t € [0,¢) if and only if a is a non-increasing func-
tion. Physically this means that {y;}c; is a one-parameter submonoid
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of proper causal transformations in RW if and only if the Robertson-
Walker spacetime is non-expanding. Naturally, the non-contracting case,
perhaps of more physical importance, can be studied analogously by sim-
ply changing the sign of t.

The infinitesimal generator of this one-parameter group is

dou 0

g=da) _ 0
dt |,_, 029

and the deformation of the metric tensor reads

. 2
Leg=2ad go=— (g +E®E)

—

where @ is the derivative of @ and £ = g( ,£) = da®. Observe that,

2a a
£rg=—T{}+ -
g9="T{H+ g
where T{{} is the superenergy tensor of £&. Obviosuly, the sign of a is
determinant here for £zg—(a/a) g to be in DP3, in accordance with the
previous reasoning and the theorem 3.18. In fact, in this explicit case, as

gk is a positive-definite metric, one can prove
(£¢9)(F, 7) = 20 9,(7,7), VT € T(RW)

which has the sign of a for all vector fields #. This same property is
shared by the Example 4 of [25].

All in all, the deformation £ £y produced by one-parameter local
submonoids of causal transformations has been shown to be controllable
and the generalized symmetries thereby defined can be attacked using
traditional techniques.
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