
II International Meeting on

Lorentzian Geometry

Murcia, Spain

November 12–14, 2003

Edited by: Luis J. Aĺıas Linares
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Preface

This volume contains the proceedings of the meeting �Geometŕıa de Lorentz,
Murcia 2003� on Lorentzian Geometry and its Applications. It was held on
November 12th, 13th and 14th, at the University of Murcia.

This is the second meeting of a series to which we wish a long life. We take
this opportunity to recognize the success of the idea which yielded to organize
the meeting of Benalmádena (Málaga). There it was born a very nice atmo-
sphere of friendship and good purposes which we have intended to continue
and, as far as we could, to increase. We have done our best to encourage young
researchers that year after year joint to the Lorentz adventure. We trust on
them as depositaries of a splendid future of the Spanish Lorentzian Geometry.

The local organizing committee of this second meeting accepted the chal-
lenge with the aim of pulling up the bar. To do that we have received a
generous collaboration from all participants, who helped us to simplify the
daily difficulties.

The next meeting will be organized by the Department of Geometry and
Topology of the University of Valencia, to whom we yield up the baton wishing
them the best.

The organizers would like to thank all participants, specially the invited
speakers, for their great efforts in teaching us. We also would like to thank to
the referees which have contributed to increase the quality of this volume.

We would like to thank Department of Mathematics of the University of
Murcia for all facilities and help given to the organizers. We also would like
to thank the financial support of the University of Murcia, Fundación Séneca-
Agencia Regional de Ciencia y Tecnoloǵıa, Ministerio de Ciencia y Tecnoloǵıa,
Fundación Cajamurcia and Caja de Ahorros del Mediterráneo-Obra Social.

We really appreciate the financial support of the Royal Spanish Mathe-
matical Society, which was employed for grants to young researchers attending
the meeting as well as for the publication of these proceedings in the series
Publicaciones de la Real Sociedad Matemática Española.

Luis J. Aĺıas Linares
Angel Ferrández Izquierdo
Maŕıa Angeles Hernández Cifre
Pascual Lucas Saoŕın
José Antonio Pastor González

Organizers of the meeting
and editors of the proceedings
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Romero Fuster, Maŕıa del Carmen carmen.romero@uv.es
Romero Sarabia, Alfonso aromero@ugr.es
Salvatore, Addolorata salvator@dm.uniba.it
Sanabria Codesal, Esther esanabri@mat.upv.es
Sánchez Caja, Miguel sanchezm@ugr.es
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rć

ıa
.

3
5
:

S
e
rg

iu

V
a
c
a
ru

.
3
6
:

E
d
u
a
rd

o
J
e
sú
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On some volume comparison results in Lorentzian geometry . . . . . . . 15
Marc Mars
Uniqueness of static Einstein-Maxwell-Dilaton black holes . . . . . . . . 28
Marisa Fernández and Vicente Muñoz
Examples of symplectic s–formal manifolds . . . . . . . . . . . . . . . . 41

Communications
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Smooth globally hyperbolic splittings and

temporal functions

Antonio N. Bernal and Miguel Sánchez

Depto. Geometŕıa y Topoloǵıa, Universidad de Granada,
Facultad de Ciencias, Avda. Fuentenueva s/n, E-18071 Granada, Spain

Abstract

Geroch’s theorem about the splitting of globally hyperbolic spacetimes is a central
result in global Lorentzian Geometry. Nevertheless, this result was obtained at
a topological level, and the possibility to obtain a metric (or, at least, smooth)
version has been controversial since its publication in 1970. In fact, this prob-
lem has remained open until a definitive proof, recently provided by the authors.
Our purpose is to summarize the history of the problem, explain the smooth and
metric splitting results (including smoothability of time functions in stably causal
spacetimes), and sketch the ideas of the solution.

Keywords: Lorentzian manifold, globally hyperbolic, Cauchy hypersur-
face, smooth splitting, Geroch’s theorem, stably causal spacetime, time func-
tion

2000 Mathematics Subject Classification: 53C50, 83C05

1. Introduction

Geroch’s theorem [13] is a cut result in Lorentzian Geometry which, essen-
tially, establishes the equivalence for a spacetime (M, g) between: (A) global
hyperbolicity, i.e., strong causality plus the compactness of J+(p)∩ J−(q) for
all p, q ∈ M , and (B) the existence of a Cauchy hypersurface S, i.e. S is
an achronal subset which is crossed exactly once by any inextendible timelike
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curve1. Even more, the proof is carried out by finding two elements with in-
terest in its own right: (1) an onto (global) time function t : M → R (i.e.
the onto function t is continuous and increases strictly on any causal curve)
such that each level t−1(t0), t0 ∈ R, is a Cauchy hypersurface and, then, (2) a
global topological splitting M ≡ R×S such that each slice {t0}×S is a Cauchy
hypersurface. Recall also that the existence of a time function t characterizes
stably causal spacetimes (those causal spacetimes which remain causal under
C0 perturbations of the metric).

The possibility to smooth these topological results or continuous elements,
have remained as an open folk question since its publication. In fact, Sachs
and Wu claimed in their survey on General Relativity in 1977 [20, p. 1155]:

This is one of the folk theorems of the subject. It is not difficult
to prove that every Cauchy surface is in fact a Lipschitzian hyper-
surface in M [19]. However, to our knowledge, an elegant proof
that his Lipschitzian submanifold can be smoothed out [to such an
smooth Cauchy hypersurface] is still missing.

Recall that here only the necessity to prove the smoothness of some Cauchy
hypersurface S is claimed but, obviously, this would be regarded as a first
step towards a fully satisfactory solution of the problem, among the following
three:

(i) To ensure the existence of a (smooth) spacelike S (necessarily, such an
S will be crossed exactly once by any inextendible causal curve).

(ii) To find not only a time function but also a “temporal” one, i.e., smooth
with timelike gradient (even for any stably causal spacetime).

(iii) To prove that any globally hyperbolic spacetime admits a smooth split-
ting M = R × S with Cauchy hypersurfaces slices {t0} × S orthogonal
to ∇t (and, thus, with a metric without cross terms between R and S).

Among the concrete applications of (i), recall, for example: (a) Cauchy hy-
persurfaces are the natural regions to pose (smooth!) initial conditions for
hyperbolic equations, as Einstein’s ones, or (b) differentiable achronal hyper-
surfaces (as those with prescribed mean curvature [9]) can be regarded as
differentiable graphs on any smooth Cauchy hypersurface. The smoothness of
a time function t claimed in (ii), would yield the possibility to use its gradient,
which can be used to split any stably causal spacetime, as in [12]. The ap-
plications of the full smooth splitting result (iii) include topics such as Morse

1In particular, S is a topological hypersurface (without boundary), and it is also crossed
at some point -perhaps even along a segment- by any lightlike curve.
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Theory for lightlike geodesics [22], quantization [10] or the possibility to use
variational methods [15, Chapter 8]; it also opens the possibility to strengthen
other topological splitting results [16] into smooth ones.

Recently, we have given a full solution to these three questions (i)—(iii)
[3, 4]. Our purpose in this talk is, first, to summarize the history of the
problem and previous attemps (Section 2) as well as the background results
(Section 3). In the two following sections, our main results are stated and
the ideas of the proofs sketched2. Concretely, Section 4 is devoted to the
construction of a smooth and spacelike S, following [3], and Section 5 to the
full splitting of globally hyperbolic spacetimes, plus the existence of temporal
functions in stably causal ones, following [4]. The reader is referred to the
original references [3, 4] for detailed proofs and further discussions.

2. A brief history of time functions

As far as we know, the history of the smoothing splitting theorem can be
summarized as follows.

1. Geroch published his result in 1970 [13], stating clearly all the results
at a topological level. Penrose cites directly Geroch’s paper in his book
(1972), and regards explicitly the result as topological [19, Theorems
5.25, 5.26]. A subtle detail about his statement of the splitting result
[19, Theorem 5.26] is the following. It is said there that, fixed x ∈
S, the curve t → γ(t) = (t, x) ∈ R × S is timelike. Recall that this
curve does satisfy t < t′ ⇒ γ(t) << γ(t′), but it is not necessarily
smooth (its parameter is only continuous). In Penrose’s definition [19,
pp. 2, 3] timelike curves are assumed smooth, but later on [19, p. 17]
the definition of causal curves is extended; in general, they will be just
Lipschitzian, as previous curve γ.

2. Seifert’s thesis (1968) develops a smoothing regularization procedure for
time functions, which would yield the global splitting (Theorem 5.1 be-
low). His smoothing results were published in 1977, [21], but the paper
contains major gaps which could not be filled later.

3. In Hawking, Ellis’ book (1973), the equivalence between stable causality
and the existence of a (continuous) time function is achieved, by follow-
ing a modification of Geroch’s technique. Nevertheless, they assert [14,

2The results of Section 5 has been obtained just some weeks ago, and they were not
known at the time of the meeting in November 2003, but they are sketched here because of
their obvious interest for our problem.



6 Smooth Globally Hyperbolic Splitting

Proposition 6.4.9] that stable causality holds if and only if a (smooth)
function with timelike gradient exists. Unfortunately, they refer for the
details of the smoothing result to Seifert’s thesis. Even more, in [14,
Proposition 6.6.8], Geroch’s result is stated at a topological level, but
they refer to the possibility to smooth the result at the end of the proof.
Nevertheless, again, the cited technique is the same for time functions.

4. In 1976, Budic and Sachs carried out a smoothing for deterministic space-
times. One year later Sachs and Wu [20] posed the smoothing problem
as a folk topic in General Relativity, in the above quoted paragraph.

5. The prestige and fast propagation of some of the previous references,
made even the strongest splitting result be cited as proved in many
references, including new influential references or books (for example,
[10, 15, 22, 23]). But this is not the case for most references in pure
Lorentzian Geometry, as O’Neill’s book [18] (or, for example, [5, 9, 11,
16]). Even more, in Beem, Ehrlich’s book (1981) Sachs and Wu’s claim
is referred explicitly [1, p. 31].

6. In 1988, Dieckmann claimed to prove the “folk question”; nevertheless,
he cited Seifert’s at the crucial step [7, Proof of Theorem 1]. More pre-
cisely, his study (see [8]) clarified other point in Geroch’s proof, concern-
ing the existence of an appropiate finite measure on the manifold. Even
though the straightforward way to construct this measure in Hawking-
Ellis’ book [14, proof of Proposition 6.4.9] is correct, neither these au-
thors nor Geroch considered the necessary abstract properties that such a
measure must fulfill (in particular, the measure of the boundaries ∂I+(p)
must be 0). Under this approach, on one hand, the admissible measures
for the proof of Geroch’s theorem are characterized and, on the other, a
striking relationship between continuity of volume functions and reflec-
tivity is obtained.

In the 2nd edition of Beem-Ehrlich’s book, in collaboration with Easley
(1996), these improvements by Dieckmann are stressed, but Geroch’s
result is regarded as topological, and the reference to Sachs and Wu’s
claim is maintained [2, p. 65].

In general, continuous functions can be approximated by smooth functions.
Thus, a natural way to proceed would be to approximate the continuous time
function provided in Geroch’s result, by a smooth one. Nevertheless, this
intuitive idea has difficulties to be formalized. Thus, our approach has been
different. First, we managed to smooth a Cauchy hypersurface [3] and, then,
we constructed the full time function with the required properties [4].
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3. Setup and previous results

Detailed proofs of the fact that the existence of a Cauchy hypersurface implies
global hyperbolicity can be found, for example, in [13, 14, 18]. We will be
interested in the converse, and then Geroch’s results can be summarized in
Theorem 3.2, plus Lemma 3.1 and Corollary 3.3.

Lemma 3.1 Let M be a (Ck-)spacetime which admits a Cr-Cauchy hyper-
surface S, r ∈ {0, 1, . . . k}. Then M is Cr-diffeomorphic to R× S and all the
Cr-Cauchy hypersurfaces are Cr diffeomorphic. This lemma is proven by
moving S with the flow Φt of any complete timelike vector field. Thus, the
(differentiable) hypersurfaces at constant t ∈ R are not necessarily Cauchy nor
even spacelike, except for t = 0.

Theorem 3.2 Assume that the spacetime M is globally hyperbolic. Then
there exists a continuous and onto map t : M → R satisfying:

(1) Sa := t−1(a) is a Cauchy hypersurface, for all a ∈ R.
(2) t is strictly increasing on any causal curve. Function t is constructed

as
t(z) = ln

(
vol(J−(z))/vol(J+(z))

)
for a (suitable) finite measure on M and, thus, global hyperbolicity implies
just its continuity. Finally, combining both previous results,

Corollary 3.3 Let M be a globally hyperbolic spacetime. Then there exists a
homeomorphism

Ψ : M → R× S0, z → (t(z), ρ(z)), (1)

which satisfies:
(a) Each level hypersurface St = {z ∈ M : t(z) = t} is a Cauchy hyper-

surface.
(b) Let γx : R→M be the curve in M characterized by:

Ψ(γx(t)) = (t, x), ∀t ∈ R.

Then the continuous curve γx is timelike in the following sense:

t < t′ ⇒ γx(t) << γx(t′).

Remark 3.4 If function t in Corollary 3.3 were smooth with timelike gradi-
ent, then the spacetime (M, g) would be isometric to R×S, 〈·, ·〉 = −β dt2 + ḡ,
where ḡ is a (positive definite) Riemannian metric on each slice t = constant.
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The splitting is then obtained projecting M to a fixed level hypersurface by
means of the flow of ∇t. In what follows, a smooth function T with past-
pointing timelike gradient ∇T will be called temporal (and it is necessarily
a time function). For the smoothing procedure, some properties of Cauchy
hypersurfaces will be needed. Concretely, by using a result on intersection
theory, the following one can be proven [3, Section 3], [11, Corollary 2]:

Proposition 3.5 Let S1, S2 be two Cauchy hypersurfaces of a globally hyper-
bolic spacetime with S1 << S2 (i.e., S2 ⊂ I+(S1)), and S be a connected closed
spacelike hypersurface (without boundary):

(A) If S1 << S then S is achronal, and a graph on all S1 for the descom-
positions in Corollaries 3.1, 3.3.

(B) If S1 << S << S2 then S is a Cauchy hypersurface.

4. Smooth spacelike Cauchy hypersurfaces

In this section, we sketch the proof of:

Theorem 4.1 Any globally hyperbolic spacetime admits a smooth spacelike
Cauchy hypersurface S. (In what follows, “smooth” will mean with the same
order of differentiability of the spacetime).

From Proposition 3.5, given two Cauchy hypersurfaces S1 << S2 as in
Theorem 3.2 (with Sti ≡ Si; t1 < t2), it is enough to contruct a connected
closed spacelike hypersurface S with S1 << S << S2. And, in order to prove
this, it suffices:

Proposition 4.2 Let M be a globally hyperbolic spacetime with topological
splitting R × S as in Corollary 3.3, and fix S1 << S2. Then there exists a
smooth function

h : M → [0,∞)

which satisfies:

1. h(t, x) = 0 if t ≤ t1.

2. h(t, x) > 1/2 if t = t2.

3. The gradient of h is timelike and past-pointing on the open subset V =
h−1((0, 1/2)) ∩ I−(S2).

In fact, recall that, given such a function h, each s ∈ (0, 1/2) is a regular
value of the restriction of h to J−(S2). Thus, Shs := h−1(s) ∩ J−(S2) is a
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closed smooth spacelike hypersurface with S1 << Shs << S2 and, then, a
Cauchy hypersurface (in principle, Proposition 3.5(B) can be applied to any
connected component of Shs , but one can check that, indeed, Shs is connected).

The construction of function h is carried out in two closely related steps.
The first one is a local step: to construct, around each p (∈ S2), a function
hp with the suitable properties, stated in Lemma 4.3. The second step is to
construct (global) function h from the hp’s. This function will be constructed
directly as a sum3 h =

∑
hi for suitable hi ≡ hpi . This fact must be taken

into account for the properties of the hp’s in the first step:

Lemma 4.3 Fix p ∈ S2, and a convex neighborhood of p, Cp ⊂ I+(S1) (that
is, Cp is a normal starshaped neighborhood of any of its points).

Then there exists a smooth function

hp : M → [0,∞)

which satisfies:
(i) hp(p) = 1.
(ii) The support of hp (i.e., the closure of h−1

p (0,∞)) is compact and
included in Cp ∩ I+(S1).

(iii) If q ∈ J−(S2) and hp(q) 6= 0 then ∇hp(q) is timelike and past-
pointing. Sketch of proof. Function hp is taken in a neighbourhood of
Cp ∩ J−(S2) as:

hp(q) = ed(p
′,p)−2 · e−d(p′,q)−2

,

where d is the time-separation (Lorentzian distance) on Cp, and p′ is a fixed
suitably chosen point in the past of p.

Now, the second step is carried out by taking advantage directly of the
paracompactness of the manifold. Concretely, function h =

∑
i hi is ob-

tained by choosing the hi’s from the following lemma, with the Wα’s equal
to h−1

p (1/2,∞), and p ∈ S2 (see [3] for details):

Lemma 4.4 Let dR be the distance on M associated to any auxiliary complete
Riemannian metric gR. Let S2 be a closed subset of M and W = {Wα, α ∈ I}
a collection of open subsets of M which cover S2. Assume that each Wα is
included in an open subset Cα and the dR-diameter of each Cα is smaller than
1. Then there exist a subcollection W ′ = {Wj : j ∈ N} ⊂ W which covers

3In Riemannian Geometry, global objects are constructed frequently from local ones by
using partitions of the unity. Nevertheless, the causal character of the gradient of functions
in the partition are, in principle, uncontrolled. Then, the underlying idea to construct h
is to use the paracompactness of M (which is implied by the existence of a Lorentzian –or
semi-Riemannian– metric) avoiding to use a partition of the unity.
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S2 and is locally finite (i.e., for each p ∈ ∪jWj there exists a neighborhood
V such that V ∩Wj = ∅ for all j but a finite set of indexes). Moreover, the
collection {Cj : j ∈ N} (where each Wj ∈ W ′ is included in the corresponding
Cj) is locally finite too.

5. Temporal functions and the full splitting

Now, our aim is to sketch the proof of the following theorem.

Theorem 5.1 Let (M, g) be a globally hyperbolic spacetime. Then, it is iso-
metric to the smooth product manifold

R× S, 〈·, ·〉 = −β dT 2 + ḡ

where S is a smooth spacelike Cauchy hypersurface, T : R × S → R is the
natural projection, β : R×S → (0,∞) a smooth function, and ḡ a 2-covariant
symmetric tensor field on R× S, satisfying:

1. ∇T is timelike and past-pointing on all M , that is, function T is tem-
poral.

2. Each hypersurface ST at constant T is a Cauchy hypersurface, and the
restriction ḡT of ḡ to such a ST is a Riemannian metric (i.e. ST is
spacelike).

3. The radical of ḡ at each w ∈ R× S is Span∇T (=Span ∂T ) at w.

Essentially, it is enough for the proof to obtain a temporal function T : M → R
such that each level hypersurface is Cauchy, see Remark 3.4. The existence of
such a T is carried out in three steps.

Step 1: temporal step functions would solve the problem. Let t ≡ t(z) be a
continuous time function as in Geroch’s Theorem 3.2. Fixed t− < t ∈ R, we
have proven in Section 4 the existence of a smooth Cauchy hypersurface S
contained in t−1(t−, t); this hypersurface is obtained as the regular value of
certain function h ≡ ht with timelike gradient on t−1(t−, t]. As t− approaches
t, S can be seen as a smoothing of St; nevertheless S always lies in I−(St).
Now, we claim that the required splitting of the spacetime would be obtained
if we could strengthen the requirements on this function ht, ensuring the exis-
tence of a temporal step function τt around each St. Essentially such a τt is a
function with timelike gradient on a neighborhood of St (and 0 outside) with
level Cauchy hypersurfaces which cover a rectangular neighbourhood of St:
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Lemma 5.2 All the conclusions of Theorem 5.1 will hold if the globally hy-
perbolic spacetime M admits, around each Cauchy hypersurface St, t ∈ R, a
(temporal step) function τt : M → R which satisfies:

1. ∇τt is timelike and past-pointing where it does not vanish, that is, in the
interior of its support Vt := Int(Supp(∇τt)).

2. −1 ≤ τt ≤ 1.

3. τt(J+(St+2)) ≡ 1, τt(J−(St−2)) ≡ −1.

4. St′ ⊂ Vt, for all t′ ∈ (t−1, t+1); that is, the gradient of τt does not vanish
in the rectangular neighborhood of S, t−1(t−1, t+1) ≡ (t−1, t+1)×S.

Sketch of proof. Consider such a function τk for k ∈ Z, and define the
(locally finite) sum T = τ0 +

∑∞
k=1(τ−k + τk). One can check that T fulfills

the required properties in Remark 3.4, in fact: (a) T is temporal because
subsets Vt=k, k ∈ Z cover all M (and the timelike cones are convex), and (b)
the level hypersurfaces of T are Cauchy because, for each inextendible timelike
curve γ : R→M parameterized with T , lims→±∞(T (γ(s))) = ±∞.

Step 2: constructing a weakening of a temporal step function. Lemma 5.2
reduces the problem to the construction of a temporal step function τt for
each t. We will start by constructing a function τ̂t which satisfies all the
conditions in that lemma but the last one, which is replaced by:

4̂. St ⊂ Vt.

The idea for the construction of such a τ̂t is the following. Consider function
h in Lemma 4.2 for t1 = t − 1, t2 = t. From its explicit construction, it is
straightforward to check that h can be also assumed to satisfy: ∇h is timelike
and past-pointing on a neighborhood U ′ ⊂ I−(St+1) of St. Thus, putting
U = U ′ ∪ I−(St) (U satisfies J−(St−1) ⊂ U ⊂ I−(St+1)), we find a function
h+ : M → R which satisfies:

(i+) h+ ≥ 0 on U , with h+ ≡ 0 on I−(St−1).
(ii+) If p ∈ U with h+(p) > 0 then ∇h+(p) is timelike and past-pointing.
(iii+) h+ > 1/2 (and, thus, its gradient is timelike past-pointing) on

J+(St) ∩ U .

Even more, a similar reasoning yields a function h− : M → R for this same U
which satisfies:

(i−) h− ≤ 0, with h− ≡ 0 on M\U .
(ii−) If ∇h−(p) 6= 0 at p (∈ U) then ∇h−(p) is timelike past-pointing.
(iii−) h− ≡ −1 on J−(St).
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Now, as h+ − h− > 0 on all U , we can define:

τ̂t = 2
h+

h+ − h−
− 1

on U , and constantly equal to 1 on M\U . A simple computation shows that
∇τ̂t does not vanish wherever either h−∇h+ or h+∇h− does not vanish (in
particular, on St) and, then, it fulfills all the required conditions.
Step 3: construction of a true temporal step function. Now, our aim is to
obtain a function τ(≡ τt) which satisfies not only the requirements of previous
τ̂ ≡ τ̂t but also the stronger condition 4 in Lemma 5.2. Fix any compact
subset K ⊂ t−1([t− 1, t+ 1]). From the construction of τ̂ , it is easy to check
that τ̂ can be chosen with ∇τ̂ non-vanishing on K. Now, choose a sequence
{Gj : j ∈ N} of open subsets such that:

Gj is compact, Gj ⊂ Gj+1 M = ∪∞j=1Gj ,

and let τ̂ [j] be the corresponding sequence of functions type τ̂ with gradients
non-vanishing on:

Kj = Gj ∩ t−1([t− 1, t+ 1]).

Essentially, the required temporal step function is:

τ =
∞∑
j=1

1
2jAj

τ̂ [j],

where each Aj is chosen to make τ smooth (fixed a locally finite atlas on M ,
each Aj bounds on Gj each function τ̂ [j] and its partial derivatives up to order
j in the charts of the atlas which intersect Gj). Then, the gradient of τ is
timelike wherever one of the gradients ∇τ̂ [j] does not vanish (in particular, on
t−1([t − 1, t + 1])). Moreover, τ is equal to constants (which can be rescaled
to ±1) on t−1((−∞, t− 2]), t−1([t+ 2,∞)), as required.
Finally, it is worth pointing out that similar arguments work to find a smooth
time function on any spacetime (even non-globally hyperbolic) which admits
a continuous time function t.

Theorem 5.3 Any spacetime M which admits a (continuous) time function
(i.e., is stably causal) also admits a temporal function T .

Sketch of proof. Notice that each level continuous hypersurface St is a
Cauchy hypersurface in its Cauchy development D(St). Moreover, any tem-
poral step function τt around St in D(St) can be extended to all M (making τt
equal to 1 on I+(St) ∩ (M\D(S)), and to −1 on I+(St) ∩ (M\D(S))). Then,
sum suitable temporal step functions as in Step 3 above.
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Abstract

Volume comparison results in Lorentzian geometry are reviewed, with special at-
tention to the behavior of geodesic celestial spheres.

Keywords: Volume comparison, truncated light cones, distance wedges,
SCLV-sets, geodesic celestial spheres

2000 Mathematics Subject Classification: 53C50

1. Introduction

In the study of geometric properties of a semi-Riemannian manifold (M, g)
it is often useful to consider geometric objects naturally associated to (M, g).
These can be special hypersurfaces like small geodesic spheres and tubes in
Riemannian geometry, bundles with (M, g) as base manifold, families of trans-
formations reflecting symmetry properties of (M, g), or natural operators de-
fined by the curvature tensor of (M, g). The existence of a relation between
the curvature of the manifold and the properties of those objects led to the
following question.

0Work partially supported by project BFM2003-02949, Spain.
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To what extent is the curvature (or the geometry) of a given semi-
Riemannian manifold (M, g) influenced, or even determined, by
the properties of certain naturally defined families of geometric
objects in M?

This problem seems very difficult to handle in such a generality. However,
when one looks at manifolds with a high degree of symmetry (e.g., two-point
homogeneous spaces), these geometric objects have nice properties and one
may expect to obtain characterizations of those spaces by means of such
properties. For instance, the Riemannian two-point homogeneous spaces may
be characterized by using the spectrum of their geodesic spheres [6] or in
most cases by the L2-norm of the curvature tensor of geodesic spheres [7].
Lorentzian manifolds of constant sectional curvature are characterized by the
Osserman property on their Jacobi operators [13], [14].

The purpose of this paper is twofold. Firstly to review some contributions
to the study of the general problem above in the framework of Riemannian and
Lorentzian geometry by focusing on volume comparison properties of geodesic
spheres and some special subsets of a Lorentzian manifold. Secondly we con-
sider a new family of objects in Lorentzian geometry, namely geodesic celestial
spheres associated to an observer field and state some comparison results for
the volume of such objects.

2. Some remarks on the Riemannian framework

Any Riemannian manifold (Mn+1, g) carries a Riemannian distance function
which has a very nice behavior with respect to the underlying structure of the
manifold. Therefore, a natural family of subregions of a Riemannian manifold
to be considered is that defined by the level sets of the Riemannian distance
function with respect to a basepoint (i.e., geodesic spheres centered at the
basepoint) or with respect to some topologically embedded submanifolds (i.e.,
tubes around the submanifold).

For sufficiently small radii r > 0, geodesic spheres Sm(r) are obtained by
projecting the Euclidean spheres Sn0 (r) centered at 0 ∈ TmM in the tangent
space TmM of the manifold via the exponential map. Therefore, they are a
nice family of hypersurfaces and moreover their volume can be calculated as

vol(Sm(r)) = rn
∫
Sn

0 (1)
θm(expm(ru))du, (1)

where u varies along Sn0 (1) ⊂ TmM and θm denotes the volume density func-
tion of expm with respect to normal coordinates; θm = (det(g))1/2. A funda-
mental observation for the purposes of volume comparison is that the volume
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density function satisfies

θ′m(r)
θm(r)

= −
(n
r

+ trS(r)
)

(2)

where S(r) represents the shape operator of the hypersurface Sm(r) and fur-
thermore, the operators S(r) and S′(r) are symmetric and satisfy a matrix
Riccati differential equation

S′(r) = S(r)2 +R(r) (3)

where R(r) is the Jacobi operator associated to the vector field defined by
the gradient of the distance function with respect to the center m. Now,
the basic idea behind the Bishop-Günter and Gromov comparison theorems
(see for example [15]) is that under suitable curvature conditions the Riccati
differential equation (3) becomes an inequality and its solutions give upper or
lower bounds for the volume density function θm in terms of the corresponding
function in the model space via (2). Finally, an integration process from (1)
leads to

Theorem 2.1 [3], [17] Let (Mn+1, g) be a complete Riemannian manifold and
assume that r is not greater than the distance between m and its cut locus. Let
KM denote the sectional curvature of (M, g).

(i) If KM ≥ λ, then volM (Sm(r)) ≤ volM(λ)(Sm(r))

(ii) If KM ≤ λ, then volM (Sm(r)) ≥ volM(λ)(Sm(r))

where M(λ) is a model space of constant sectional curvature λ.
Moreover, equalities hold for (i) or (ii) and some radii if and only if Sm(r)

is isometric to the corresponding geodesic sphere in the model space.

A sharper result involving the Ricci curvature instead of the sectional
curvature was proved by Bishop as:

Theorem 2.2 [3] Let (Mn+1, g) be a complete Riemannian manifold. Assume
that r is not greater than the distance between m and its cut locus and the Ricci
curvature ρM of (M, g) satisfies ρM (v, v) ≥ nλ for all vectors v.

Then volM (Sm(r)) ≤ volM(λ)(Sm(r)), where M(λ) is a model space of
constant sectional curvature λ, and equality holds if and only if Sm(r) is iso-
metric to the corresponding geodesic sphere in the model space.

A further generalization of Theorem 2.2 was obtained by Gromov as fol-
lows.
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Theorem 2.3 [16] Let (Mn+1, g) be a complete Riemannian manifold. As-
sume that r is not greater than the distance between m and its cut locus and
the Ricci curvature ρM of (M, g) satisfies ρM (v, v) ≥ nλ for all vectors v.
Then

r 7→ volM (Sm(r))
volM(λ)(Sm(r))

is nonincreasing, where M(λ) is a space of constant sectional curvature λ.

3. Moving to the Lorentzian framework

When the attention is turned from Riemannian manifolds to spacetimes, var-
ious difficulties emerge. For example, conditions on bounds for the sectional
curvature (resp., the Ricci tensor) easily produce manifolds of constant sec-
tional curvature (resp., Einstein) [2], [19]. This demands a revision of such
conditions [1] (see §4). However, a more difficult task is related to the con-
sideration of the regions under investigation. This is mainly due to the fact
that when dealing with general semi-Riemannian manifolds there is no “semi-
Riemannian distance function”. In fact, a distance-like function is only defined
for spacetimes, but even in this case its properties are completely different
from those in the Riemannian setting (cf. [2]). For instance, level sets of
the Lorentzian distance function with respect to a given point are not com-
pact and they do not seem to be adequate for the investigation of volume
properties. Therefore, different families of objects have been considered in
Lorentzian geometry for the purpose of investigating their volume properties.
Among those, truncated light cones, compact distance wedges in the chrono-
logical future of some point, and more generally some neighborhoods covered
by timelike geodesics emanating from a given point have been investigated.
Next we will review some known results on the geometry of those families.

3.1. Truncated light cones

Truncated light cones were defined in [11], [12] were the authors studied the
link between the volume of the light cones and the curvature of a Lorentzian
manifold.

Definition 3.1 [11], [12] Let ξ be an instantaneous observer. The truncated
light cone of (sufficiently small) height T and axis ξ is the set

Lξ(T ) =
{
expm(u) / 〈u, u〉 < 0, 0 ≤ −〈u, ξ〉 ≤ T

}
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It is easy to see that the volume of a truncated light cone in the four-
dimensional Minkowski spacetime is given by vol(Lξ(T )) = 1

3πT
4. The inves-

tigation of whether this volume property is characteristic of the Minkowskian
space motivated further work by R. Schimming [20], [21], who proved the
following

Theorem 3.2 [12], [20] Let (M, g) be a Lorentzian manifold such that every
truncated light cone has the same volume as in the Minkowskian spacetime.
Then (M, g) is locally flat.

Truncated light cones in R2
1 of height T = 3 and axis ξ1 = (0, 1) and ξ2 = (1,

√
2).

3.2. Compact distance wedges

Let E denote the set of future pointing timelike unit vectors in TmM such
that the exponential map is well defined. Let K be a compact subset of E
and put K = expm(t0K), which is a compact subset of the level set d−1

m (t0) of
the Lorentzian distance function with respect to m ∈ M , and is well defined
for sufficiently small t0.

Definition 3.3 [9] The K-distance wedge
BK
m(t0) is defined by

BK
m(t0) = {expm(tv) / v ∈ K, 0 ≤ t ≤ t0}

In order to study volume comparison results with model spaces, one needs
a method to relate distance wedges on M and the model space. One proceeds
as follows. Choose a pointm in the model space of constant sectional curvature
M(−λ) and define a differentiable map Ψ by Ψ = exp

M(−λ)
m ◦ ψ ◦ (expMm )−1,

where ψ : TmM → TmM(−λ) is a linear isometry. Then given a distance
wedge BK

m(t0) and using the timelike vectors ψ(K) in TmM(−λ) to construct
the corresponding wedge BΨ(K)

m (t0) inM(−λ), we have BΨ(K)
m (t0) = Ψ(BK

m(t0))
for sufficiently small t0.
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By making use of the Riccati equation and comparison of the Jacobi equa-
tions, the following volume comparison results for compact distance wedges
have been obtained by P. Ehrlich, Y.-T. Jung and S.-B. Kim as an analogous
of Günter-Bishop and Gromov in §2.

Theorem 3.4 [9] Let (Mn+1, g) be a globally hyperbolic spacetime satisfying

ρM (v, v) ≥ nλ > 0 (4)

for all timelike unit vectors v. Then for all 0 ≤ r0 ≤ injK(m),

volM (BK
m(r0)) ≤ volM(−λ)(BΨ(K)

ψ(m)(r0))

and equality holds at some 0 < r0 if and only if BK
m(r) and B

Ψ(K)
ψ(m)(r) are

isometric for all 0 < r ≤ r0.

Theorem 3.5 [9] Let (Mn+1, g) be a globally hyperbolic spacetime satisfying

ρM (v, v) ≥ nλ > 0 (5)

for all timelike unit vectors v. Then for all 0 ≤ r0 < r1 ≤ injK(m),

volM (BK
m(r0))

volM(−λ)(BΨ(K)
ψ(m)(r0))

≥ volM (BK
m(r1))

volM(−λ)(BΨ(K)
ψ(m)(r1))

.

Moreover, equality holds for some 0 ≤ r0 < r1 ≤ injK(m) if and only if BK
m(r)

and BΨ(K)
ψ(m)(r)) are isometric for all 0 < r ≤ r1.

Note that, when comparing with the corresponding results in §2, inequal-
ities in the previous theorems are with respect to a space of constant sectional
curvature −λ. This is due to the fact that the assumption on the Ricci ten-
sor in theorems 3.4 and 3.5 gives reversed inequalities when considering the
equations (2) and (3).

3.3. SCLV sets

A further generalization of the distance wedges is obtained in [10], where the
authors considered a more general family of subsets of a Lorentzian manifold
as follows. Let m ∈ M and take U ⊂ TmM an open subset in the causal
future of the origin, U ⊂ J+(0) such that U is starshaped from the origin and
the exponential map expm |U is a diffeomorphism onto its image U = expmU .
Further assume that the closure of U is compact. Then one has
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Definition 3.6 [10] A subset U as above
is called standard for comparison of
Lorentzian volumes (SCLV-set) at the
basepoint m ∈M .

In order to state some comparison results with spaces of constant sec-
tional curvature M(λ) as model spaces, a transplantation process is needed
as previously pointed out in §3.2. Let ψ : TmM → TmM(λ) be a linear isom-
etry, and define the transplantation map Ψ on a sufficiently small open set
as Ψ = expM(λ)

m ◦ ψ◦ (expMm )−1. Further, for any U ⊂ TmM put Uλ = ψ(U)
and Uλ = expM(λ)

m (Uλ) = Ψ(U) which makes possible a volume comparison
between SCLV-sets in M and M(λ).

Theorem 3.7 [10] Let (M, g) be a (n + 1)-dimensional Lorentzian manifold
and assume that

ρM (v, v) ≥ nλg(v, v) (6)

for all timelike vector fields v = d
dtexpm(tvm) |t=t0 tangent to U at m ∈M . If

U is a SCLV-set at m, then

volM (U) ≤ volM(λ)(Uλ)

and the equality holds if and only if Ψ : U→ Uλ is an isometry.

A comparison result in the spirit of Bishop-Gromov Theorem can also
be stated for SCLV-sets, but it requires some previous conventions. For each
r > 0 put U(r) = r · U = {ru/u ∈ U}, Uλ(r) = r · Uλ, U(r) = expMm (U(r)),
Uλ(r) = exp

M(λ)
m (Uλ(r)). Note that the starshaped form of SCLV-sets ensures

the possibility of constructing the above sets for r > 0 sufficiently small.

Theorem 3.8 [10] Let (Mn+1, g) be a Lorentz manifold such that

Ric(v, v) ≥ nλg(v, v) (7)

for all timelike vector fields v = d
dtexpm(tvm) |t=t0 tangent to a SCLV-set U

based at m ∈M . If one of the following two conditions hold:

(i) c = 0;

(ii) The cut function cU of U is constant;
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then the function r 7→ volM (U(r))/volM(λ)(Uλ(r)) is non-increasing. Moreover
if there exists r1 < r2 such that

volM (U(r1))/volM(λ)(Uλ(r1)) = volM (U(r2))/volM(λ)(Uλ(r2))

then U(r) and Uλ(r) are isometric.

4. Boundedness conditions on the curvature tensor

It is well known that the sectional curvature of a semi-Riemannian manifold
is bounded from above or from below if and only if it is constant [2], [19].
Therefore it seemed natural to impose such curvature bounds on the curvature
tensor itself rather than on the sectional curvature. Following [1], we will say
that R ≥ λ or R ≤ λ if and only if for all X, Y ,

R(X,Y,X, Y ) ≥ λ
(
〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2

)
, (8)

or
R(X,Y,X, Y ) ≤ λ

(
〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2

)
, (9)

respectively. Note that condition (8) (resp., (9)) is equivalent to the sectional
curvature be bounded from below (resp., from above) on planes of signature
(++) and from above (resp., from below) on planes of signature (+−).

Examples of semi-Riemannian manifolds whose curvature tensor is boun-
ded as in (8), (9) can easily be produced as follows:

• Let (M1, g1), (M2, g2) be two Riemannian manifolds with nonnegative
KM1 ≥ 0 and nonpositive KM2 ≤ 0 sectional curvature respectively.
Then the product manifold (M1 × M2, g1 − g2) is a semi-Riemannian
manifold whose curvature tensor satisfies (8) for λ = 0. (See [1] for
related examples).

• A more general construction of Lorentzian manifolds with bounded cur-
vature is as follows. Let (M, g) be a conformally flat Lorentz mani-
fold whose Ricci tensor is diagonalizable, ρ = diag[µ0, µ1, . . . , µn], where
the distinguished eigenvalue µ0 corresponds to a timelike eigenspace. If
µ0 ≥ max{µ1, . . . , µn} (resp., µ0 ≤ min{µ1, . . . , µn}) then R ≤ λ (resp.,
R ≥ λ) for some constant λ.

Note that the previous construction applies to Robertson-Walker space-
times as well as to locally conformally flat static spacetimes whose rest-
spaces are of constant sectional curvature [4].
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Finally note that, although it is not possible to obtain direct information
of the Ricci tensor from conditions (8) and (9), an important observation for
the purpose of studying volume properties of celestial geodesic spheres in §5 is
the following. Let ξ be an instantaneous observer at m ∈M and complete it to
an orthonormal basis {ξ, e1, . . . , en} of TmM . Then τM + 2ρMξξ =

∑n
i,j=1Rijij

where τM is the scalar curvature of (M, g) at m. Hence by assuming (8) (resp.,
(9)) holds, we have τM + 2ρMξξ ≥ n(n− 1)λ (resp., τM + 2ρMξξ ≤ n(n− 1)λ).

5. Geodesic celestial spheres

Next we consider a family of geometric objects different than those in §3,
namely the geodesic celestial spheres. Roughly speaking, they are the set of
points reached after a fixed time travelling along radial geodesics emanating
from a point m which are orthogonal to a given timelike direction. In Relativ-
ity, a unit timelike vector ξ ∈ TmM is called an instantaneous observer, and ξ⊥

is called the infinitesimal restspace of ξ, that is, the infinitesimal Newtonian
universe where the observer perceives particles as Newtonian particles relative
to his rest position.

The celestial sphere of radius r of ξ is defined by Sξ(r) = {x ∈ ξ⊥; ‖x‖ = r}
(c.f. [22]). If U is a sufficiently small neighborhood of the origin in TmM ,
M̃ = expm(U∩ ξ⊥) is an embedded Riemannian submanifold of M . We define
the geodesic celestial sphere of radius r associated to ξ as [8]:

Sξm(r) = expm

({
x ∈ ξ⊥; ‖x‖ = r

})
= expm(Sξ(r)). (10)

Geodesic celestial spheres in R3
1 centered at

the origin and associated to different instan-

taneous observers

For r sufficiently small, Sξm(r) is a compact submanifold of M̃ . Therefore,
by studying the volumes of geodesic celestial spheres in comparison to the
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volumes of the corresponding celestial spheres one obtains a measure of how
the exponential map distorts volumes on spacelike directions.

Geodesic celestial spheres in the warped product (R1
1 \ {0})× 1

t
R2 centered at (1, 1, 1) and

associated to the instantaneous observers ξ1 = (1, 0, 0) and ξ2 = ( 2√
3
, 1√

3
, 0).

As an immediate observation, note that for a given radius, the volume of
geodesic celestial spheres depends both on the observer field ξ ∈ TmM and the
center point m ∈M . However, if (M, g) is assumed to be of constant sectional
curvature, then the volumes depend only on the radii, since Lorentzian space
forms are locally isotropic. Conversely

Theorem 5.1 [8] Let
(
Mn+1, g

)
be a Lorentzian manifold. If the volume of

the geodesic celestial spheres Sξm(r) is independent of the observer field ξ ∈
TM , then M has constant sectional curvature.

Comparison results in the spirit of Bishop-Günther-Gromov theorems can
be obtained for the volumes of geodesic celestial spheres as follows.

Theorem 5.2 [8] Let (Mn+1, g) be a n+ 1-dimensional Lorentzian manifold
and Mn+1(λ) a Lorentzian manifold of constant sectional curvature λ. If
S(r) denotes a geodesic celestial sphere of radius r centered at any point m ∈
Mn+1(λ) and associated to any instantaneous observer ξλ ∈ TmMn+1(λ) then
the following statements hold:

(i) If RM ≥ λ then

volMn−1

(
Sξm(r)

)
≤ volM(λ)

n−1 (S(r))

for all sufficiently small r and all instantaneous observer ξ ∈ TmM .

(ii) If RM ≤ λ then

volMn−1

(
Sξm(r)

)
≥ volM(λ)

n−1 (S(r))

for all sufficiently small r and all instantaneous observer ξ ∈ TmM .
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Moreover, the equality holds at (i) or (ii) for all ξ ∈ TmM if and only if M
has constant sectional curvature λ at m.

Sketch of the proof.
Note that geodesic celestial spheres are level sets of the Riemannian distance
function on M̃ = expm(U∩ ξ⊥). Since the submanifold M̃ may fail to be Rie-
mannian when moving far from the basepoint m, geodesic celestial spheres are
locally defined objects in M . This fact, together with the difficulties in under-
standing the geometry of M̃ motivated an approach to theorems 5.2 and 5.3
different from the one discussed in Section 2 based on the use of Riccati equa-
tion. Therefore, one studies the deviation of the volume of geodesic celestial
spheres from the Euclidean spheres by looking at the power series expansion of
the function r 7→ voln−1

(
Sξm(r)

)
. Then, after some calculations, one obtains

the first terms in such expansion as

voln−1

(
Sξm(r)

)
=cn−1r

n−1

(
1−

(τM+2ρMξξ )
6n

r2+O(r4)

)

where cn−1 denotes the volume of the (n − 1)-dimensional Euclidean sphere
of radius one. Now, considering the coefficient of degree two in the previ-
ous expansion the result is obtained just comparing with the corresponding
expansion in the model space. �

Proceeding in an analogous way, one has the following Gromov type com-
parison result.

Theorem 5.3 [8] Let (Mn+1, g) be a n+ 1-dimensional Lorentzian manifold,
Mn+1(λ) a Lorentzian manifold of constant sectional curvature λ and S(r) a
geodesic celestial sphere of radius r centered at any point m ∈ Mn+1(λ) and
associated to any instantaneous observer ξλ ∈ TmMn+1(λ).

If RM ≥ λ (resp., RM ≤ λ) then

r 7→
volMn−1

(
Sξm(r)

)
volM(λ)

n−1 (S(r))

is nonincreasing (resp., nondecreasing) for sufficiently small r and all instan-
taneous observer ξ ∈ TmM .
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[13] E. Garćıa-Ŕıo, D.N. Kupeli, R. Vázquez-Lorenzo; Osserman
manifolds in semi-Riemannian geometry, Lecture Notes in Math., 1777,
Springer-Verlag, Berlin, 2002.

[14] P. B. Gilkey; Geometric properties of natural operators defined by the
Riemann curvature tensor, World Scientific Publ. Co., Inc., River Edge,
NJ, 2001.

[15] A. Gray; Tubes, Addison–Wesley, Redwood City, 1990.



J. C. D́ıaz-Ramos, E. Garćıa-Ŕıo and L. Hervella 27
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Abstract

We describe the method of Bunting and Masood-ul-Alam to prove uniqueness
of static black holes. The method is applied to restrict the possible conformal
factors when the field equations correspond to a coupled harmonic map. Finally
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1. Introduction

In General Relativity the gravitational field is described as a four dimensional
manifold M endowed with a Lorentzian metric g. Among the most relevant
spacetimes are the so-called black holes, which roughly speaking are spacetimes
containing regions (the so-called black hole regions) from which no observer
or light ray can escape to infinity. Obviously this needs a concept of infinity,
which is taken in most cases to mean a region where the gravitational field
becomes asymptotically weak and the metric approaches Minkowski in a pre-
cise way, (the so-called asymptotically flat spacetimes). Black hole physics is
a vast discipline within gravitational physics which cannot be summarized in
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a few lines. The reader is advised to look at [1] for a comprehensive introduc-
tion to this topic. Stationary black holes (i.e. those which are in equilibrium
and therefore do not evolve in time) play a specially relevant role. This is be-
cause they are believed to be the end-states of any configuration with enough
concentration of matter-energy so that gravitational collapse, and therefore
singularity formation [2], is unavoidable. Although there is no proof of this
fact, there are good physical reasons to believe that a collapsing configuration
will reach an equilibrium state. The so-called cosmic censorship conjecture
[3] states that all singularities formed in a collapse will be hidden behind an
event horizon (i.e. a black hole will form). We are not yet even close to proving
the cosmic censorship conjecture, which is probably the most important open
issue in classical gravitational theory. Nevertheless, it seems likely that many
end-states of gravitational collapse will be described by black holes in equi-
librium. It is, therefore, important to classify those spacetimes. In General
Relativity the theory dealing with these issues has been generically called black
hole uniqueness theorems. Again, this is a large area of research, see [4] for an
account. Equilibrium situations may be divided into stationary and static, the
latter being not only time invariant but also time symmetric, so that future
and past are indistinguishable. In geometrical terms, (M, g) admits a Killing
vector ~ξ which is timelike sufficiently close to infinity. Moreover, in the static
case ~ξ is integrable, i.e. ξ ∧ dξ = 0 (ξ stands for g(~ξ, ·)). So far, the methods
for proving uniqueness are very different for static or merely stationary black
holes (the static case being much more developed than the stationary one).

Black holes in equilibrium are also organized depending on the geometry
of its Killing horizon. Let us recall that a Killing horizon is a null hyper-
surface H where a Killing vector ~η is null, nowhere zero and tangent to H.
In stationary black holes, the boundary of the black hole region is always a
Killing horizon [5] and, in the static case, the horizon Killing vector ~η coincides
with the static Killing ~ξ. A connected component Hα of the Killing horizon
is called degenerate or non-degenerate depending on whether the acceleration
of ~η, ∇~η ~η, is zero or non-zero on Hα (it may be proven that this property is
independent of the point x ∈ Hα so that it becomes a property of Hα itself).
Degenerate horizons turn out to be much more difficult to analyze and few
results are known so far (see, however, [6] for the vacuum, static case).

Besides the stationary/static and degenerate/non-degenerate distinction,
black holes also depend, obviously, on the energy-momentum tensor T of the
gravitating fields present outside the black hole. In General Relativity this
imposes conditions on the Ricci tensor of g via the field equations Ric(g) =
T− 1

2gTr(T ), where physical units have been chosen appropriately. Uniqueness
theorems for static non-degenerate black holes have been obtained for vacuum
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(T = 0), for electrovacuum (T is generated by an electromagnetic field without
sources) and for the so-called Einstein-Maxwell-dilaton case. The latter was
first analyzed by Masood-ul-Alam [7] for a particular value α = 1 of the so-
called coupling constant, and for vanishing magnetic field. Walter Simon and
myself [8] generalized this result to the case of arbitrary coupling constant
(still for vanishing electric or magnetic field) and for general electromagnetic
field in the case α = 1.

In this contribution I shall review some of these results. The emphasis
will be rather on explaining the method than showing the most general results
(which are discussed in [8]). I will also present a different argument to find
the appropriate conformal factor, which complements the one used in [8].

2. Assumptions on the spacetime.

In this contribution, spacetimes (M, g) are assumed to be smooth. We are in-
terested in studying static non-degenerate black holes. The precise conditions
we shall impose are

A.1 (M, g) admits an integrable Killing vector ~ξ with a non-degenerate
Killing horizon H.

A.2 The horizon H is of bifurcate type, i.e. the closure H of H contains
points where the Killing vector ~ξ vanishes.

A.3 (M, g) admits a spacelike asymptotically flat hypersurface Σ which is
orthogonal to the Killing vector ~ξ and such that ∂Σ ⊂ H.

Condition A.2 can be shown to follow from A.1 under rather mild global
requirements [9]. However, we prefer to include it and relax our global require-
ments as much as possible. In fact, our only global condition is contained in
A.3, and more concretely, on the definition of asymptotic flatness.

Definition 2.1 A spacelike hypersurface (Σ, ĝ) of (M, g), ĝ being the induced
metric, is called asymptotically flat iff

(1) The “end” Σ∞ = Σ \ {a compact set} is diffeomorphic to R3 \B, where
B is a ball.

(2) On Σ∞ the metric satisfies (in the flat coordinates defined by the diffeo-
morphism above and with r =

√∑
(xi)2)

ĝij − δij = O2(r−δ) for some δ > 0.
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(A function f(xi) is said to be Ok(rα), k ∈ N, if f(xi) = O(rα), ∂jf(xi) =
O(rα−1) and so on for all derivatives up to and including the kth ones).

Remark In this definition Σ is the topological closure of Σ. Notice that our
definition implies, in particular, that (Σ, ĝ) is complete in the metric sense.

Let q be a fixed point of ~ξ on H (i.e. q ∈ H and ~ξ(q) = 0), which exists
by assumption A.2. Then, the connected component of the set {p; ~ξ(p) = 0}
containing q is a smooth, embedded, spacelike, two-dimensional submanifold
of M (see Boyer [10]). Each one of these connected components is called
a bifurcation surface. Let us consider any connected component (∂Σ)α of
the topological boundary of Σ. By assumption A.3 (∂Σ)α is contained in
the closure of the Killing horizon. Thus, (section 5 in [9]), (∂Σ)α must be
completely contained in one of the bifurcation surfaces of ~ξ. Furthermore the
induced metric ĝ on the hypersurface Σ can be smoothly extended to Σ∪(∂Σ)α
(see Proposition 3.3 in [6]). Hence (Σ, ĝ) is a smooth Riemannian manifold
with boundary. We finish the section with the following definition

Definition 2.2 A smooth spacetime (M, g) is called a static non-degenerate
black hole iff conditions A.1, A.2 and A.3 are satisfied.

3. Method of Bunting and Masood-ul-Alam.

The key idea introduced by Bunting and Masood-ul-Alam [11] to prove unique-
ness of static black holes is as follows. The aim is to show that the only possible
static black holes are spherically symmetric. These spacetimes have the prop-
erty that the hypersurface (Σ, ĝ) orthogonal to the static Killing vector ~ξ is
conformally flat. So, there exists a suitable, spherically symmetric, conformal
factor which brings this 3-metric into the flat metric. Furthermore, all matter
fields and the norm of the static Killing vector are also spherically symmetric.
Thus, the conformal factor can be considered as a function of these fields.
Conversely, if a static black hole is such that the hypersurface orthogonal to
the static Killing vector is conformally flat with a conformal factor depending
only on the matter fields and the norm of the Killing, then spherical symmetry
is usually easy to imply. The problem is then how to prove that some metric
is conformally flat. A powerful method to show that an asymptotically flat
Riemannian space is in fact flat is the rigidity part of the positive mass theo-
rem [12]. This requires dealing with asymptotically flat Riemannian manifolds
which are (i) complete and without boundary, (ii) with a non-negative Ricci
scalar and (iii) with vanishing total mass. The strategy is to choose carefully
a conformal factor Ξ, so that Ξ2ĝ has zero mass and non-negative Ricci scalar,
R(Ξ2ĝ) ≥ 0. However, in general this still gives a manifold with boundary
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and the positive mass theorem cannot be applied yet. This is solved with a
remarkably elegant idea: choose two different conformal factors Ξ± so that (i)
(Σ,Ξ2

+ĝ) has vanishing mass, (ii) (Σ,Ξ2
−ĝ) admits a one-point compactification

of infinity (thus giving a complete Riemannian manifold with boundary) and
(iii) such that both spaces can be glued together to produce a manifold with
continuous metric across the common boundary ∂Σ. The resulting manifold
is complete and the positive mass theorem can be applied. Thus, the key idea
is to glue together two copies of the same space with two conformally related
metrics and then apply the rigidity part of the positive mass theorem to the
total space.

It is clear that finding the appropriate conformal factors is the crucial
technical part of the proof. Indeed, Ξ± must be not only positive definite,
but also transform the mass of (Σ, ĝ) as required, provide Riemannian metrics
with non-negative Ricci scalar, and have a suitable behaviour on ∂Σ in order
to allow for a C1 matching. By far, the most difficult conditions to fulfill are
positivity of the conformal factors and non-negativity of the Ricci scalars.

On the hypersurface Σ we can define the scalar field V ≥ 0 as the norm
of the static Killing vector V 2 = −(~ξ, ~ξ ). Moreover, the energy-momentum
contents of the spacetime defines further fields on Σ. In order to have some
control on the conformal factors, it is natural to assume that Ξ±(x) depends on
the space point x ∈ Σ through the values of V and the rest of matter fields on
x. In vacuum or for Einstein-Maxwell black holes, the number of fields is small
and finding a suitable conformal factor is not-too-hard. For Einstein-Maxwell-
dilaton, there are already four fields present and the problem becomes more
involved. It is clear that the higher the number of fields, the more difficult
is to find a suitable conformal factor. In the following section we will find
necessary restrictions on the conformal factors whenever the matter model is
a so-called coupled harmonic map.

4. Restrictions on the conformal factor in the cou-
pled harmonic map case.

In many cases of interest (including vacuum, Einstein-Maxwell, Einstein-Max-
well-dilaton, and many others [13]) the Einstein field equations in the static
case can be rewritten on Σ as follows: First of all, the matter fields together
with V organize themselves into a (pseudo)-Riemannian manifold (V, γ) called
the target space. Moreover, after defining a conformal metric h ≡ V 2ĝ on Σ,
the map defining these fields, Ψ : (Σ, h) → (V, γ) must be a harmonic map,
i.e. a C2 map satisfying the field equations

DiD
iΨa(x) + Γabc (Ψ(x))DiΨb(x)DiΨc(x) = 0, (1)
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where D is the covariant derivative of (Σ, h), Ψa is the expression of Ψ in
local coordinates of V and Γabc are the Christoffel symbols of (V, γ). The space
(Σ, h) is called domain space. Finally, the metric h itself satisfies Einstein-like
equations with sources involving Ψ. Explicitly,

Ric(h)ij(x) = γab(Ψ(x))DiΨa(x)DjΨb(x). (2)

A pair (h,Ψ), with h positive definite, satisfying the field equations (1) and
(2) is called a coupled harmonic map.

For static black holes such that the Einstein field equations become a
coupled harmonic map on Σ, the set of conditions on the conformal factor
required for the method of Bunting and Masood-ul-Alam to work are strong
enough so that the possible conformal factor are fixed uniquely and explicitly
on a certain subset VBH ⊂ V (which sometimes coincides with the whole
target space). In other words, there are unique candidates on VBH for which
the method has a chance to work. This does not mean, of course, that those
explicit conformal factor will in fact work (extra conditions like positivity and
others still need to be satisfied), but it does restrict strongly the set of functions
for which the conditions need to be analyzed. This is a great advantage because
the most difficult part of the Bunting and Masood-ul-Alam method is, in fact,
to guess the appropriate conformal factors.

Let us now define the subset VBH and describe briefly why the possible
conformal factors are restricted on this set. The uniqueness results for static
black holes assert, in general, that spherically symmetric static black holes
are the only possible static non-degenerate black holes. So, coupled harmonic
maps where both (Σ, h) and Ψ are spherically symmetric play a privileged
role in the black hole case. Any coupled harmonic map with these properties
must be (see e.g. [13]) of the form Ψ = ζ ◦ λ, where ζ : I ⊂ R → V is
an affinely parametrized geodesic of (V, γ) and λ : Σ → R is a spherically
symmetric harmonic function on Σ. Thus, spherically symmetric solutions
are described by geodesics in the target space. However, not all geodesics of
the target space correspond to a spherically symmetric, non-degenerate black
hole solution. Let us define VBH ⊂ V as follows: a point x belongs to VBH
if and only if there exists a spherically symmetric, non-degenerate black hole
spacetime such that the affinely parametrized geodesic ζx in V defining this
solution passes through x. This geodesic will be assumed, without loss of
generality, to satisfy ζx(0) = p, ζx(1) = x, where p is the value of Ψ at infinity
in Σ∞. Notice that this condition restricts the harmonic function λ appearing
in Ψ = ζx ◦ λ to satisfy λ = 0 at infinity in Σ∞. It is clear that any conformal
factor Ω for which the Bunting and Masood-ul-Alam method has a chance to
work, must have the following property: For any spherically symmetric black
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static black hole, the conformal rescaling with Ω of the domain space metric
h must be locally flat. This allows us to prove the following result [8].

Lemma 4.1 Let Ψ : Σ∞ → V be a coupled harmonic map between (Σ∞, h)
and (V, γ). Assume that (Σ∞, h) has vanishing mass. Let Ω± be positive, C2

functions Ω± : V → R with the following properties

(1) For any spherically symmetric static black hole (Σsph, hsph) the metric
(Ω±)2hsph is locally flat.

(2) (Σ∞sph, (Ω
+)2hsph) is asymptotically flat and (Σ∞sph, (Ω

−)2hsph) admits a
one-point compactification of infinity.

Then, Ω± must take the following form on x ∈ VBH .

Ω+(x) = cosh2

√ ζ̇a(x)ζ̇a(x)
8

 , Ω−(x) = sinh2

√ ζ̇a(x)ζ̇a(x)
8

 ,

where ~̇ζ(x) is the tangent vector at x of the geodesic ζx(s) in (V, γ) defining
the spherically symmetric black hole (Σsph, hsph).

Remark. In order to simplify notation we shall use the same symbol for
a scalar function on the target space and for its pull-back on Σ via Ψ. The
meaning should become clear from the context.

5. Uniqueness theorem for static Einstein-Maxwell-
Dilaton black holes.

Einstein-Maxwell-Dilaton (EMD) spacetimes are spacetimes (M, g) with a
scalar function τ (the dilaton), a closed two-form Fαβ (the electromagnetic
field) and a coupling constant α between these two fields, which we take to
be non-zero. We shall describe the field equations only in the static case and,
for simplicity we shall assume that the magnetic field vanishes (the arbitrary
case is discussed in [8] although it must be remarked that the uniqueness
result has not been obtained in full generality yet). Assuming further that
the spacetime (M, g) is simply connected, the EMD field equations take the
form of a coupled harmonic map between (Σ, h) and the target space V =
{(V, κ, φ) ∈ R+ × R+ × R} endowed with the metric

ds2 = γABdx
AdxB =

2dV 2

V 2
+

2dκ2

α2κ2
− 2dφ2

V 2κ2
, (3)
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where κ = eατ and the electric field is ~E = ~∇φ. Asymptotic flatness of (Σ, ĝ)
implies the following behaviour of the fields near infinity [8]

V = 1− M

r
+ O(

1
r2

), κ = 1 +
αD

r
+ O(

1
r2

), φ =
Q

r
+ O(

1
r2

), (4)

hij = δij + O(
1
r2

), (5)

where M,D,Q are constants (called charges) satisfying the inequalities√
1 + α2 |Q| ≤M − αD, αM +D ≥ 0 (6)

In order to show uniqueness for EMD static black holes, we shall need to im-
pose additionally that these inequalities are strict. In the spherically symmet-
ric case, the black holes with charges satisfying equality correspond precisely
to the degenerate horizon case. It seems therefore plausible that the condition
of being non-degenerate should imply, in general, that the inequalities above
are necessarily strict. We have been able to prove this fact whenever Σ∞ ad-
mits an analytic compactification near spatial infinity, but not in the general
case. It would be of interest to settle this issue.

Having discussed the behaviour at infinity we turn to the conditions on the
horizon ∂Σ. In order to do that the induced metric ĝ (and its corresponding
covariant derivative ∇̂) must be used because ĝ admits a smooth extension to
∂Σ, while h degenerates there.

Lemma 5.1 [8] For static Einstein-Maxwell-dilaton non-degenerate black ho-
les, the following relations on the boundary ∂Σ hold,

ĝij∇̂iV ∇̂jV
∣∣∣
∂Σ

= W 2 > 0, ĝij∇̂iV ∇̂jκ
∣∣∣
∂Σ

= 0, ĝij∇̂iV ∇̂jφ
∣∣∣
∂Σ

= 0. (7)

In order to apply Lemma 4.1 we must find the explicit form of the geodesics
starting at the point p = {V = 1, φ = 0, κ = 1}, corresponding to the values
of the fields at infinity. In general this is not a trivial task even for spaces
admitting Killing vectors. In our case, however, the target space turns out to
be a symmetric space, as it may be easily proven. This fact, and, in particular
the existence of an isotropy group at p, simplifies greatly the calculations,
as we describe next. The isotropy algebra of (V, γ) is easily seen to be one-
dimensional and generated by the Killing vector

~η = −φV ∂

∂V
+

1
2
(
1− κ2V 2 −

(
α2 + 1

)
φ2
) ∂

∂φ
− α2φκ

∂

∂κ
.
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Isotropies are useful because geodesics passing through p project into geodesics
in the quotient space defined by the isotropy orbits (whenever this is a man-
ifold), the latter being lower dimensional and hence simpler to deal with. In
order to determine the structure of the set of orbits of ~η, we solve ~η(f) = 0.
Only two functionally independent solutions are needed. One of them is ob-
vious and reads F1 = V −1κ1/α2

. The other one follows from the fact that the
norm of a Killing vector is constant along the Killing vector. Thus,

−ηAηA =
1

2κ2V 2

[
(1− κV )2 − (α2 + 1)φ2

] [
(1 + κV )2 − (α2 + 1)φ2

]
(8)

solves ~η(f) = 0, as desired. This expression shows that ~η changes causal
character in different regions of V. It follows that the canonical metric of
the orbit space cannot be well-defined everywhere (because it changes signa-
ture). However, for any static EMD non-degenerate black hole, ~η turns out
to be timelike everywhere on the relevant subset Ψ(Σ). This is proven in the
following lemma.

Lemma 5.2 Ψ(Σ) is contained in the open subset U ≡ {(1 − κV )2 − (α2 +
1)φ2 > 0} ⊂ V.

Proof. We only need to show that |1− V κ| >
√
α2 + 1 |φ| on Ψ(Σ). Let us

define K± = 1 − V κ ±
√
α2 + 1φ. A simple calculation yields ∇A∇BK± =

V −1κ−1∇AK±∇BK±. Then, the coupled harmonic map equations and the
conformal rescaling ĝ = V −2h imply

∇̂i∇̂iK± + ∇̂iK±

(
∇̂iκ
κ
±
√
α2 + 1

∇̂iφ
V

)
= 0.

The maximum principle applied to this elliptic equation tells us that the min-
imum is attained at infinity provided ni∇̂iK±|∂Σ ≥ 0, where ni is an outer
normal to ∂Σ. Lemma (5.1) shows that ni = −∇̂iV is such an outer normal
and that ni∇̂iK±|∂Σ = W 2κ > 0. Since K± vanish at infinity, the lemma
follows 2.

Let us define the two scalar functions on V,

X =
κ1/α2

V
, Y =

(1− κV )2 − (α2 + 1)φ2

4κV
, (9)

which satisfy X > 0 and Y > 0 on U . Since −ηAηA = 8Y (Y + 1) we see that
Y is constant along ~η. Furthermore, a simple calculation shows that ∂V Y < 0
wherever Y > 0. This implies that dY 6= 0 in this region. Similarly dX 6= 0 on
the whole of V. Furthermore, a direct calculation implies that dX ∧ dY 6= 0
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on U . Hence, {X,Y } is a global coordinate system on U/~η, i.e. the set of
orbits of ~η in U . In particular, this space is a differentiable manifold. Thus,
we can consider the induced metric on this quotient, which turns out to be

ds2
∣∣
(U/~η)

=
2

1 + α2

(
α2dX

2

X2
+

dY 2

Y (Y + 1)

)
. (10)

This is a flat metric and its geodesics are trivial to solve. We are interested in
the geodesics passing through p, i.e. geodesics in the quotient space starting at
the boundary point X(p) = 1, Y (p) = 0. They are easily found to be X(s) =
exp(β1s) and Y (s) = sinh2(β2s), s ∈ R+, β1, β2 ∈ R and β2 ≥ 0 without loss
of generality. Each one of these geodesics gives rise to a spherically symmetric
solution of the harmonic map equations. However, not all of them correspond
to black holes. Only those reaching V = 0 with the rest of fields remaining
finite have this property. This implies that Y/X must also remain finite at
∂Σ and this is only achieved whenever β1 = 2β2. Hence the subset VBH of
V corresponding to the black holes solutions is defined by 4XY − (X − 1)2 =
0. We can now apply Lemma 4.1 easily. The function N(x) = ζ̇a(x)ζ̇a(x)
appearing there is the squared geodesic distance from (X,Y = (X−1)2/(4X))
to X = 1, Y = 0. Its explicit expression is N(X) = 2(lnX)2 and hence Lemma
4.1 forces the conformal factors to satisfy

Ω±(X,Y )
∣∣
Y=(X−1)2/4X

=
(1±X)2

4X
, (11)

Since VBH does not cover the whole target space we still need to extend these
expressions off VBH . This involves some guesswork. Perhaps the simplest
try is to impose that the conformal factor depends only on X or only on
Y . This would give us two pairs of conformal factors instead of one pair,
as we would need. Let us nevertheless analyze the outcome (we shall see
that an appropriate combination of both pairs gives us the desired pair of
conformal factors). According to (11) we define Ω±1 = Y + 1/2 ± 1/2 and
Ω±2 = (1±X)2/(4X), or in terms of the coordinates of V,

Ω±1 =
1

4κV
[
(1± V κ)2 −

(
α2 + 1

)
φ2
]
, Ω±2 =

(
κ1/α2 ± V

)2

4V κ1/α2 . (12)

Let us next check whether the conditions required to prove uniqueness are
satisfied by either of the conformal factors Ω±A (A = 1, 2). First of all, we
check positivity on Σ. From the definition, Ω+

A ≥ Ω−A. Furthermore Ω−1 |Σ > 0
directly from Lemma 5.2 and Ω+

2 is manifestly positive. So, only Ω−A|Σ > 0, or
equivalently F ≡ κ1/α2

V −1 > 1, remains to be proven. The Killing equations
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of (V, γ) show that ξ = F−1dF is, after rising its indices, a Killing vector of the
target space. This implies, from general properties of coupled harmonic maps,
that Di(F−1DiF ) = 0 on Σ. Applying the maximum principle to this elliptic
equation and noticing that F diverges to +∞ on ∂Σ, we find that F takes up
its minimum at infinity where F = 1, this proves the desired inequality.

Next we need to check that (Σ, (Ω+
A)2h) has vanishing mass and that

(Σ, (Ω−A)2h) admits a one-point compactification of infinity. The first claim
follows from the fact that (Σ, h) has vanishing mass (see Lemma 5.1) and that
Ω+
A = 1 + O(r−2), which follows directly from (5). The second claim follows

because the asymptotic behaviour of Ω−A is, after using (5)

Ω−1 =
(M − αD)2 −

(
1 + α2

)
Q2

4r2
+ O(r−3), Ω−2 =

(αM +D)2

4α2r2
+ O(r−3).

from which the existence of a one-point compactification of (Σ, (Ω−2 )2h) follows
from a standard argument, provided the strict inequalities in (6) hold (here
is where this condition is used). The third step is to glue together the two
copies of Σ with conformal factors Ω±A. First of all, the explicit expressions
for these functions show that V Ω±A are C2 up to and including ∂Σ, and the
same is true for ĝ = V −2h, as discussed in Section 2. It only remains to check
that the usual matching conditions (see e.g. [14]) are satisfied. This follows
easily from the fact that ∂Σ is defined by V = 0 and that ∂Σ is a totally
geodesic submanifold of (Σ, ĝ). Thus, after the gluing, we have two pairs of
Riemannian manifolds (N , hA) which are C1,1, complete and with vanishing
mass. Before using the rigidity part of the positive mass theorem we need
to check whether the Ricci scalar of any of these metrics is non-negative. A
straightforward, if somewhat long, calculation shows that none has a sign.
Nevertheless, a suitable combination of them is non-negative everywhere on
N , namely Ω2

1R(h1) + α2Ω2
2R(h2) > 0. From the transformation law of Ricci

scalars under conformal rescalings (see [8]) for details) it follows that the

metric ĥ = Ω
2

1+α2

1 Ω
2α2

1+α2

2 h) has non-negative Ricci scalar, while still keeping
the property of being complete, C1,1 and with vanishing mass. Hence, the
positive mass theorem can be applied to conclude that ĥ is flat. Consequently,
the induced metric ĝ on Σ is conformally flat. Showing spherical symmetry
from conformal flatness is then straightforward. This argument shows, after
filling in all the details, the following uniqueness theorem

Theorem 5.3 (Mars & Simon, 02) Let (M, g) be a simply connected, sta-
tic, non-degenerate Einstein-Maxwell-dilaton black hole with non-zero coupling
constant α and vanishing magnetic field. Assume that the charges M , D, Q



Marc Mars 39

satisfy the strict inequalities in (6). Then (M, g) must be spherically symmet-
ric.
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[6] P.T.Chruściel, The classification of static vacuum spacetimes con-
taining an asymptotically flat spacelike hypersurface with compact in-
terior, Class. Quant. Grav. 16 661-687 (1999).

[7] A.K.M.Masood-ul-Alam, “Uniqueness of a static charged dilaton
black hole”Class. Quant. Grav. 10 2649-2656 (1993).

[8] M.Mars, W.Simon, “On Uniqueness of static Einstein-Maxwell-
Dilaton black holes”, Advances in Theor. and Math. Physics, 6 279-306
(2002).
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Abstract
In [3] the authors have introduced the concept of s–formality as a weaker version
of formality. In this note, we use a double iteration of symplectic blow-ups of
the complex projective space CP m along symplectic submanifolds M ⊂ CP m to
construct examples of compact symplectic manifolds which are s–formal but not
(s + 1)–formal for some values of s.
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1. Introduction

A symplectic manifold is a pair (M,ω) where M is an even-dimensional differ-
entiable manifold and ω is a closed non-degenerate 2–form on M . The form
ω is called a symplectic form. The simplest examples of such manifolds are
Kähler manifolds. Topological properties of Kähler manifolds allow to con-
struct examples of symplectic manifolds not admitting Kähler metrics. One
of the most interesting topological properties of Kähler manifolds is the for-
mality. If M is simply connected (or if M is nilpotent, i.e., π1(M) is nilpotent
and acts nilpotently on πi(M) for i ≥ 2) then formality is equivalent to saying
that its real homotopy type is completely determined by its real cohomology
algebra. Kähler manifolds are always formal [2], whereas there are symplectic
manifolds which are not [12].
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In [3] the authors have weakened the condition of formality to that of s–
formality (see Definition 2.2). As an obvious fact, whenever M is a non-formal
manifold, there is some s ≥ 0 such that M is s–formal but not (s+1)–formal.

Also in [3] examples of (non-symplectic) manifolds which are s–formal but
not (s + 1)–formal for any s ≥ 0 are shown. However the question of the
existence of symplectic examples was left open.

In [4] the authors have studied how the s–formality property behaves un-
der symplectic blow-ups of the complex projective space along a symplectic
submanifold. Doing iterated blow-ups, there were produced symplectic mani-
folds which are s–formal but not (s+ 1)–formal, for arbitrarily large values of
s. However, the examples of [4] do not cover all the values of s.

The purpose of this note is to study in detail two examples of a double
iteration of the symplectic blow-up construction treated in [4]. This allows to
find symplectic manifolds which are s–formal but not (s + 1)–formal, for the
cases s = 7, 8. We must note that examples for the cases s = 0, 1, 3, 4 are given
in [3, 4]. The ideas behind the examples studied here may be useful to cover
the general case with s ≥ 5. However the problem of finding a symplectic
manifold which is 2–formal but not 3–formal is much harder and it is likely
that there are no such examples.

2. s–formal manifolds and Massey products

We recall some definitions and results about minimal models and s–formal
manifolds [2, 3, 6, 9]. Let (A, d) be a differential algebra, that is, A is a graded
commutative algebra over the real numbers, with a differential d which is a
derivation, i.e. d(a·b) = (da)·b+(−1)deg(a)a·(db), where deg(a) is the degree of
a. Given a differential algebra (A, d), we denote byH∗(A) its cohomology. A is
connected if H0(A) = R. Morphisms between differential algebras are required
to be degree preserving algebra maps which commute with the differentials.
A morphism of differential algebras inducing an isomorphism on cohomology
is called a quasi-isomorphism.

A differential algebra (A, d) is said to be minimal if:

1. A is a free algebra
∧
V over a graded vector space V = ⊕V i, and

2. there exists a collection of generators {aτ , τ ∈ I}, for some well ordered
index set I, such that deg(aµ) ≤ deg(aτ ) if µ < τ and each daτ is
expressed in terms of preceding aµ, µ < τ . This implies that daτ does
not have a linear part, i.e., it lives in

∧
V >0 ·

∧
V >0 ⊂

∧
V .

A minimal model for the differential algebra (A, d) is a minimal differential
algebra (M, d) and a quasi-isomorphism ρ : (M, d) −→ (A, d). Halperin [6]
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proved that any connected differential algebra (A, d) has a minimal model
unique up to isomorphism.

A minimal model (M, d) is said to be formal if there is a morphism of
differential algebras ψ : (M, d) → (H∗(M), d = 0) that induces the identity
on cohomology. The formality of a minimal model can be detected as follows.

Theorem 2.1 [2]. A minimal model (M, d) is formal if and only if we can
writeM =

∧
V and the space V decomposes as a direct sum V = C ⊕N with

d(C) = 0, d is injective on N and such that every closed element in the ideal
I(N) generated by N in

∧
V is exact.

A minimal model of a connected differentiable manifold M is a minimal
model (

∧
V, d) for the de Rham complex (ΩM,d) of differential forms on M .

If M is a simply connected manifold, then the dual of the real homotopy
vector space πi(M) ⊗ R is isomorphic to V i for any i. (This relation also
happens when i > 1 and M is nilpotent.) We shall say that M is formal if
its minimal model is formal or, equivalently, the differential algebras (ΩM,d)
and (H∗(M), d = 0) have the same minimal model. (For details see [2] for
example.)

To detect non-formality, we have Massey products. Let us recall its def-
inition. Let M be a (not necessarily simply connected) manifold and let
ai ∈ Hpi(M), 1 ≤ i ≤ 3, be three cohomology classes such that a1 ∪ a2 = 0
and a2 ∪ a3 = 0. Take forms αi in M with ai = [αi] and write α1 ∧ α2 = dξ,
α2 ∧ α3 = dη. The Massey product of the classes ai is defined as

〈a1, a2, a3〉 = [α1 ∧ η + (−1)p1+1ξ ∧ α3]

∈ Hp1+p2+p3−1(M)
a1 ∪Hp2+p3−1(M) +Hp1+p2−1(M) ∪ a3

.

If M has a non-trivial Massey product then M is non-formal [2, 12].
In [3] we weaken the condition of formal manifold to s–formal manifold

as follows.

Definition 2.2 Let (M, d) be a minimal model of a differentiable manifold
M . We say that (M, d) is s–formal, or M is an s–formal manifold (s ≥ 0) if
we can write M =

∧
V such that for each i ≤ s the space V i of generators of

degree i decomposes as a direct sum V i = Ci ⊕ N i, where the spaces Ci and
N i satisfy the three following conditions:

1. d(Ci) = 0,

2. the differential map d : N i −→
∧
V is injective,



44 Examples of symplectic s–formal manifolds

3. any closed element in the ideal I(
⊕
i≤s

N i), generated by
⊕
i≤s

N i in
∧

(
⊕
i≤s

V i),

is exact in
∧
V .

Lemma 2.3 [3]. Let M be a manifold with minimal model (
∧
V, d). Then

M is s–formal if and only if there is a map of differential algebras

ϕ : (
∧
V ≤s, d) −→ (H∗(M), d = 0),

such that the map ϕ∗ : H i(
∧
V ) −→ H i(M) induced on cohomology is an s–

quasi-isomorphism, that is, ϕ∗ is an isomorphism for i ≤ s, and a monomor-
phism for i = s + 1. Equivalently, if (

∧
W,d) is the minimal model of

(H∗(M), d = 0), then V i = W i for i ≤ s.

The relationship between s–formality and Massey products is given by

Lemma 2.4 [3]. Let M be an s–formal manifold. Suppose that there are
cohomology classes ai ∈ Hpi(M), 1 ≤ i ≤ 3, such that the Massey product
〈a1, a2, a3〉 is defined. If p1 + p2 ≤ s+ 1 and p2 + p3 ≤ s+ 1, then 〈a1, a2, a3〉
vanishes.

To study in Section 4 the s–formality of our examples, we shall need the
following result.

Proposition 2.5 Let M be a differentiable manifold. Suppose that, for i ≤
s + 1, there exists a map φ : H i(M) → Ωi(M) satisfying the two following
conditions:

1. for any cohomology class a ∈ H i(M), φ(a) is closed and represents the
class a in cohomology;

2. φ is multiplicative, in the sense that φ(a ∪ b) = φ(a) ∧ φ(b) whenever
deg(a) + deg(b) ≤ s+ 1.

Then M is s–formal.

Proof : Let ψ : (
∧
W,d) −→ (H∗(M), d = 0) be the minimal model of

(H∗(M), 0). By definition, ψ is a quasi-isomorphism of differential graded al-
gebras. Composing with φ, we have mapsW i → H i(M)→ Ωi(M) for i ≤ s+1.
These maps, together with the zero maps W i → Ωi(M) for i > s + 1, define
uniquely a differential graded algebra morphism ψ̃ : (

∧
W,d) −→ (Ω∗(M), d).

Restricting to the elements of degree ≤ (s+ 1), ψ̃ : (
∧
W )≤(s+1) → Ωs+1(M)

coincides with φ ◦ ψ : (
∧
W )≤(s+1) → Ωs+1(M), by the multiplicativity prop-

erty for φ. Hence ψ̃ is an s–quasi-isomorphism.
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So the minimal model (
∧
V, d) of (Ω∗(M), d) coincides with (

∧
W,d) up

to degree s, i.e., (
∧
V ≤s, d) ∼= (

∧
W≤s, d). In particular, this implies the

existence of an s–quasi-isomorphism (
∧
V ≤s, d) −→ (H∗(M), d = 0). By

Lemma 2.3, M is s–formal. QED

3. Symplectic blow-ups

In this section we recollect some results on Massey products for the symplectic
blow-up of the complex projective space along a symplectic submanifold.

Let (M,ω) be a compact symplectic manifold of dimension 2n. Without
loss of generality we can assume that the symplectic form ω is integral (by
perturbing it to make it rational and then rescaling). A theorem of Gromov
and Tischler [5, 11] states that there is a symplectic embedding i : (M,ω) −→
(CPm, ω0), with m ≥ 2n+ 1, where ω0 is the standard Kähler form on CPm

defined by its natural complex structure and the Fubini–Study metric. We
take the symplectic blow-up C̃Pm of CPm along the embedding i (see [7]).
Then C̃Pm is a simply connected compact symplectic manifold.

In [4] the authors studied the s–formality and the formality of C̃Pm for
an arbitrary compact symplectic manifold (M,ω) and m ≥ 2n + 1, proving
that if (M,ω) is s–formal then C̃Pm is at least (s + 2)–formal. Moreover, if
M is formal then C̃Pm is formal.

Recall that i∗ω0 = ω. We will denote also by ω0 the pull back of ω0 to C̃Pm

under the natural projection C̃Pm → CPm. Let M̃ be the projectivization
of the normal bundle of the embedding M ↪→ CPm. Then π : M̃ −→ M is
a locally trivial bundle with fiber CPm−n−1. We will denote by ν the Thom
form of the submanifold M̃ ⊂ C̃Pm. The class [ν] is called the Thom class of
the blow-up. Then C̃Pm has a symplectic form Ω whose cohomology class is
[Ω] = [ω0] + ε [ν] for ε > 0 small enough.

Let us consider a closed tubular neighborhood W̃ of M̃ in C̃Pm. By the
tubular neighborhood theorem we know that the normal bundle of M̃ ↪→ C̃Pm

contains a disk subbundle which is diffeomorphic to W̃ . Denote by p : W̃ −→
M̃ the natural map. There is a map q : Ω∗(M)→ Ω∗+2(C̃Pm) given by pull-
back by π : M̃ → M , followed by extending to a neighborhood of M̃ using
p : W̃ → M̃ and then wedging by ν, i.e., q(α) = p∗π∗(α) ∧ ν. We shall denote
q(α) = α ∧ ν for short. Note that

(α ∧ ν) ∧ (β ∧ ν) = (α ∧ β ∧ ν) ∧ ν , (1)

for α, β ∈ Ω∗(M). This makes notations of the type α ∧ β ∧ ν2 unambiguous.
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Also remark that [ω0 ∧ ν] = [ω ∧ ν] although ω0 ∧ ν 6= ω ∧ ν as forms.
To circumvent this problem, we work as follows. Extend the projection map
p : W̃ → M̃ to a map

p̄ : C̃Pm → C̃Pm (2)

by pasting p with the identity. The map p̄ induces the identity on cohomology.
The form ω̄0 = p̄∗(ω0) is no longer a symplectic form, but [ω̄0] = [ω0] and
ω̄0 ∧ ν = q(ω) = ω ∧ ν.

The cohomology of C̃Pm was studied by McDuff [7]. There she proved
that there is a short exact sequence

0 −→ H∗(CPm) −→ H∗(C̃Pm) −→ A∗ −→ 0, (3)

where A∗ is a free module over H∗(M) generated by {[ν], [ν2], · · · , [νm−n−1]}.
Regarding to the s–formality of C̃Pm, we have the following results.

Lemma 3.1 [4]. Let M be a compact symplectic manifold of dimension
2n ≥ 2. Then the symplectic blow-up C̃Pm of CPm along M ⊂ CPm is
3–formal for any m ≥ 2n+ 1.

Lemma 3.2 [4]. Let M be a compact symplectic manifold of dimension
2n. Suppose that m − n ≥ 4 and that M has a non-trivial Massey product
〈a1, a2, a3〉, aj = [αj ] ∈ Hpj (M), with p1 + p2 = s + 1 and p2 + p3 ≤ s + 1.
Then 〈[α1∧ν], [α2∧ν], [α3∧ν]〉 is a non-trivial Massey product in C̃Pm. Hence
C̃Pm is not (s+ 4)–formal.

Lemma 3.3 [8]. Let (M,ω) be a compact symplectic manifold of dimension
2n. Suppose that m − n ≥ 3 and that M has a non-trivial Massey product
〈a1, ω, a3〉, aj = [αj ] ∈ Hpj (M), with p1 + 2 = s+ 1 and 2 + p3 ≤ s+ 1. Then
〈[α1 ∧ ν], [ω0], [α3 ∧ ν]〉 is a non-trivial Massey product in C̃Pm. Hence C̃Pm

is not (s+ 2)–formal.

4. Double iteration of symplectic blow-ups

To show examples of compact symplectic manifolds which are s–formal but
not (s + 1)–formal for s = 7 and 8, we do a double iteration of symplectic
blow-ups.

We begin with the Heisenberg group H, that is, the connected nilpotent
Lie group of dimension 3 consisting of matrices of the form

a =

 1 x z

0 1 y

0 0 1

 ,
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where x, y, z ∈ R. A global system of coordinates {x, y, z} for H is given by
x(a) = x, y(a) = y, z(a) = z, and a standard calculation shows that a basis
for the left invariant 1–forms on H consists of {dx, dy, dz − xdy}. Let Γ be
the discrete subgroup of H consisting of matrices whose entries are integer
numbers. Then the quotient space N = Γ\H is compact. Hence the forms dx,
dy, dz − xdy descend to 1–forms α, β, γ on N such that

dα = dβ = 0, dγ = −α ∧ β.

The manifold KT = N ×S1 is called Kodaira–Thurston manifold (cf. [10]). It
is symplectic with the symplectic form ω = α∧γ+β∧δ, where δ is the standard
invariant 1–form on S1. Then KT is 0–formal (all connected manifolds are 0–
formal) but it is not 1–formal. For instance 〈[α], [α], [β]〉 = [γ ∧ α] is non-zero
in H2(KT )/(H1(KT ) ∪ [β] + [α] ∪H1(KT )).

By Gromov–Tischler theorem [5, 11] there exists a symplectic embedding
of (KT,ω) in the complex projective space (CP 5, ω0), where ω0 is the standard
symplectic form. Now perform the symplectic blow up C̃P 5 of CP 5 along
KT . This is a symplectic manifold with symplectic form Ω = ω0 + ε ν, where
ν denotes the Thom form of the blow-up C̃P 5.

By Lemma 3.1, C̃P 5 is 3–formal . On the other hand, there is a non-zero
Massey product given as 〈[α], [ω], [α]〉 = 2[γ ∧α∧ δ] in KT . Hence by Lemma
3.3, there is a Massey product of the form 〈[α∧ν], [ω0], [α∧ν]〉 6= 0 in C̃P 5, so
it is not 4–formal . (This example already appears in [3, 4] as a non 4–formal
manifold, and in [1, 8] as a non-formal simply connected symplectic manifold.)

Consider the compact symplectic manifold (Y,Ω) where Y = C̃P 5 and Ω is
the symplectic form Ω = ω0 +ε ν for ε > 0 small. Embed symplectically (Y,Ω)
in (CP 11,Ω0), where Ω0 is the standard symplectic form. Let C̃P 11 be the
symplectic blow-up of CP 11 along Y . It has symplectic form Ω1 = Ω0 + ε′ ν1,
where ν1 is the Thom form of the blow-up C̃P 11.

In order to show that C̃P 11 is 7–formal and not 8–formal, we describe the
cohomology groups H i(Y ) with i ≤ 6. Using (3) and the notation fixed in
Section 3, we have

H0(Y ) = 〈1〉,
H1(Y ) = 0,
H2(Y ) = 〈[ω0], [ν]〉,
H3(Y ) = H1(KT ) · [ν] = 〈[α ∧ ν], [β ∧ ν], [δ ∧ ν]〉,
H4(Y ) = 〈[ω2

0]〉 ⊕H2(KT ) · [ν]⊕ 〈[ν2]〉 =
= 〈[ω2

0], [ω0 ∧ ν], [ν2], [α ∧ γ ∧ ν], [α ∧ δ ∧ ν], [β ∧ γ ∧ ν]〉,
H5(Y ) = H1(KT ) · [ν2]⊕H3(KT ) · [ν] =
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= 〈[α ∧ ν2], [β ∧ ν2], [δ ∧ ν2], [α ∧ β ∧ γ ∧ ν], [α ∧ γ ∧ δ ∧ ν],
[β ∧ γ ∧ δ ∧ ν]〉,

H6(Y ) = 〈[ω3
0]〉 ⊕H2(KT ) · [ν2]⊕H4(KT ) · [ν] =

= 〈[ω3
0], [ω

2
0 ∧ ν], [ω0 ∧ ν2], [α ∧ γ ∧ ν2], [α ∧ δ ∧ ν2], [β ∧ γ ∧ ν2]〉.

Proposition 4.1 The symplectic blow-up C̃P 11 of CP 11 along Y is 7–formal
but not 8–formal.

Proof : By Lemma 3.2, C̃P 11 is not 8–formal, since the non-trivial Massey
product 〈[α ∧ ν], [ω0], [α ∧ ν]〉 6= 0 in Y = C̃P 5 defines a non-trivial Massey
product 〈[α ∧ ν ∧ ν1], [ω0 ∧ ν1], [α ∧ ν ∧ ν1]〉 in C̃P 11. Let us see that C̃P 11

is 7–formal. For this, we compute its cohomology. Taking into account the
cohomology groups of Y , from (3) we get

H0(C̃P 11) = 〈1〉,
H1(C̃P 11) = 0,

H2(C̃P 11) = 〈[Ω0], [ν1]〉,
H3(C̃P 11) = 0,

H4(C̃P 11) = 〈[Ω2
0], [ω0 ∧ ν1], [ν ∧ ν1], [ν2

1 ]〉,
H5(C̃P 11) = 〈[α ∧ ν ∧ ν1], [β ∧ ν ∧ ν1], [δ ∧ ν ∧ ν1]〉,
H6(C̃P 11) = 〈[Ω3

0], [ω
2
0 ∧ ν1], [ω0 ∧ ν ∧ ν1], [α ∧ γ ∧ ν ∧ ν1], [α ∧ δ ∧ ν ∧ ν1],

[β ∧ γ ∧ ν ∧ ν1], [ν2 ∧ ν1], [ω0 ∧ ν2
1 ], [ν ∧ ν2

1 ], [ν3
1 ]〉,

H7(C̃P 11) = 〈[α ∧ β ∧ γ ∧ ν ∧ ν1], [α ∧ γ ∧ δ ∧ ν ∧ ν1], [β ∧ γ ∧ δ ∧ ν ∧ ν1],
[α ∧ ν2 ∧ ν1], [β ∧ ν2 ∧ ν1], [δ ∧ ν2 ∧ ν1], [α ∧ ν ∧ ν2

1 ],
[β ∧ ν ∧ ν2

1 ], [δ ∧ ν ∧ ν2
1 ]〉,

H8(C̃P 11) = 〈[Ω4
0], [ω

3
0 ∧ ν1], [ω2

0 ∧ ν ∧ ν1], [ω0 ∧ ν2 ∧ ν1], [α ∧ γ ∧ ν2 ∧ ν1],
[α ∧ δ ∧ ν2 ∧ ν1], [β ∧ γ ∧ ν2 ∧ ν1], [ω2

0 ∧ ν2
1 ], [ω0 ∧ ν ∧ ν2

1 ],
[ν2 ∧ ν2

1 ], [α ∧ γ ∧ ν ∧ ν2
1 ], [α ∧ δ ∧ ν ∧ ν2

1 ], [β ∧ γ ∧ ν ∧ ν2
1 ],

[ω0 ∧ ν3
1 ], [ν ∧ ν3

1 ], [ν4
1 ]〉.

Now since Ω = ω0+ε ν we have that [Ω0∧ν1] = [Ω∧ν1] = [ω0∧ν1]+ε [ν∧ν1].
This implies that 〈[ωi0 ∧ ν1], [ωi−1

0 ∧ ν ∧ ν1], . . . , [νi ∧ ν1]〉 = 〈[Ωi
0 ∧ ν1], [Ωi−1

0 ∧
ν ∧ ν1], . . . , [νi ∧ ν1]〉, for any i > 0. Also we have that

[α ∧ ν2 ∧ ν1] =
1
ε

([Ω0 ∧ α ∧ ν ∧ ν1]− [(ω0 ∧ α) ∧ ν ∧ ν1]) .
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Using these two facts, we can rewrite

H2(C̃P 11) = 〈[Ω0], [ν1]〉,
H4(C̃P 11) = 〈[Ω2

0], [Ω0 ∧ ν1], [ν2
1 ], [ν ∧ ν1]〉,

H5(C̃P 11) = 〈[α ∧ ν ∧ ν1], [β ∧ ν ∧ ν1], [δ ∧ ν ∧ ν1]〉,
H6(C̃P 11) = 〈[Ω3

0], [Ω
2
0 ∧ ν1], [Ω0 ∧ ν2

1 ], [ν3
1 ], [Ω0 ∧ ν ∧ ν1], [ν ∧ ν2

1 ], [ν2 ∧ ν1],
[α ∧ γ ∧ ν ∧ ν1], [α ∧ δ ∧ ν ∧ ν1], [β ∧ γ ∧ ν ∧ ν1]〉,

H7(C̃P 11) = [Ω0 ∧ α ∧ ν ∧ ν1], [Ω0 ∧ β ∧ ν ∧ ν1], [Ω0 ∧ δ ∧ ν ∧ ν1],
[α ∧ β ∧ γ ∧ ν ∧ ν1], [α ∧ γ ∧ δ ∧ ν ∧ ν1], [β ∧ γ ∧ δ ∧ ν ∧ ν1],
[α ∧ ν ∧ ν2

1 ], [β ∧ ν ∧ ν2
1 ], [δ ∧ ν ∧ ν2

1 ]〉,
H8(C̃P 11) = 〈[Ω4

0], [Ω
3
0 ∧ ν1], [Ω2

0 ∧ ν2
1 ], [Ω0 ∧ ν3

1 ], [ν4
1 ], [Ω2

0 ∧ ν ∧ ν1],
[Ω0 ∧ ν2 ∧ ν1], [Ω0 ∧ ν ∧ ν2

1 ], [ν2 ∧ ν2
1 ], [ν ∧ ν3

1 ], [α ∧ γ ∧ ν ∧ ν2
1 ],

[α ∧ δ ∧ ν ∧ ν2
1 ], [β ∧ γ ∧ ν ∧ ν2

1 ], [Ω0 ∧ α ∧ γ ∧ ν ∧ ν1],
[Ω0 ∧ α ∧ δ ∧ ν ∧ ν1], [Ω0 ∧ β ∧ γ ∧ ν ∧ ν1]〉.

Once that we have written the cohomology in this way, we define a map
φ : H i(C̃P 11)→ Ωi(C̃P 11), i ≤ 8, by sending each cohomology class [z] to its
representative inside the brackets z. More specifically,

φ([Ωk
0 ∧ x ∧ νa ∧ νb1]) = Ωk

0 ∧ ((x ∧ νa) ∧ νb1),

where x is an invariant form on KT .
It is easy to prove that φ satisfies φ(z1 ∪ z2) = φ(z1) ∧ φ(z2) whenever

deg(z1) + deg(z2) ≤ 8. For this one uses (1) and note that the possibilities for
(deg(z1),deg(z2)) are (2, 2), (2, 4), (2, 5), (2, 6) and (4, 4). Therefore by Propo-
sition 2.5, C̃P 11 is 7–formal.

QED

Remark 4.2 It is possible to prove that C̃P 11 is 7–formal by computing the 7–
stage of its minimal model. This is the differential graded algebra (M, d) given
byM =

∧
(a1, a2)⊗

∧
(b1)⊗

∧
(c1, c2, c3)⊗

∧
(e1, e2, e3, e4)⊗

∧
(f1, f2, f3, f4)⊗∧

V ≥8 where the degree of the generators is deg(ai) = 2, deg(b1) = 4, deg(cj) =
5, deg(ek) = 6, deg(fk) = 7, and all the generators are closed except for df4 =
b21−e4·a2. The morphism ρ :M→ Ω∗(C̃P 11), inducing a 7–quasi-isomorphism
is defined by ρ(a1) = ω0, ρ(a2) = ν1, ρ(b1) = ν ∧ ν1, ρ(c1) = α ∧ ν ∧ ν1,
ρ(c2) = β∧ν∧ν1, ρ(c3) = δ∧ν∧ν1, ρ(e1) = α∧δ∧ν∧ν1, ρ(e2) = α∧γ∧ν∧ν1,
ρ(e3) = β ∧ γ ∧ ν ∧ ν1, ρ(e4) = ν2 ∧ ν1, ρ(f1) = α ∧ β ∧ γ ∧ ν ∧ ν1,
ρ(f2) = α ∧ γ ∧ δ ∧ ν ∧ ν1, ρ(f3) = β ∧ γ ∧ δ ∧ ν ∧ ν1 and ρ(f4) = 0.



50 Examples of symplectic s–formal manifolds

According to Definition 2.2, the minimal model of C̃P 11 satisfies V i = Ci

and N i = 0 for i ≤ 6, thus C̃P 11 is 6–formal. Moreover N7 = 〈f4〉. The
only closed element in the ideal N≤7 · (

∧
V ≤7) is zero. Indeed, suppose that

z = f4 · y ∈ N≤7 · (
∧
V ≤7) is closed, then f4 · dy − df4 · y = 0. This implies

that dy = 0 and so df4 · y = 0. Hence y = 0. Therefore C̃P 11 is 7–formal.

To produce an example of a symplectic manifold which is 8–formal but not
9–formal, let us consider the 6–dimensional manifold M = KT × T 2, where
T 2 is a 2–torus. Then {α, β, γ, δ, η1, η2} is a basis for the 1–forms on M , where
{η1, η2} is a basis of the 1–forms on T 2. The 2–form ω = α∧γ+β∧δ+η1∧η2

is a symplectic form on M .
Take a symplectic embedding of (M,ω) in the complex projective space

(CP 7, ω0). By Proposition 4.3 in [4], the symplectic blow-up C̃P 7 of CP 7

along M is 4–formal but not 5–formal. In fact, the non-zero Massey product
〈[α], [α], [β]〉 of KT defines a non-zero Massey product 〈[α], [α], [β]〉 for M =
KT × T 2. This gives a non-zero Massey product for C̃P 7 by using Lemma
3.2. Hence C̃P 7 is not 5–formal.

Now consider the manifold Z = C̃P 7 with the symplectic form Ω = ω0+ε ν
for ε > 0 small, where ω0 denotes the pull back to C̃P 7 of the Kähler form
of CP 7, and ν is the Thom form of the blow-up C̃P 7. Using (3), we get the
cohomology groups H i(Z), i ≤ 7,

H0(Z) = 〈1〉,
H1(Z) = 0,
H2(Z) = 〈[ω0], [ν]〉,
H3(Z) = H1(M) · [ν],

H4(Z) = 〈[ω0
2], [ω0 ∧ ν], [ν2]〉 ⊕ H2(M)

[ω]
· [ν],

H5(Z) = H1(M) · [ν2]⊕H3(M) · [ν],

H6(Z) = 〈[ω0
3], [ω2

0 ∧ ν], [ω0 ∧ ν2], [ν3]〉 ⊕ H2(M)
[ω]

· [ν2]⊕ H4(M)
[ω2]

· [ν],

H7(Z) = H1(M) · [ν3]⊕H3(M) · [ν2]⊕H5(M) · [ν].

Embed symplectically (Z,Ω) in (CP 15,Ω0), where Ω0 is the standard sym-
plectic form. Let C̃P 15 be the symplectic blow-up of CP 15 along Z. It has
symplectic form Ω0 + ε′ ν1, where ν1 is the Thom form of the blow-up C̃P 15

and ε′ > 0 is small enough.
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Proposition 4.3 The symplectic blow-up C̃P 15 of CP 15 along Z is 8–formal
but not 9–formal.

Proof : By Lemma 3.3, C̃P 15 is not 9–formal, using the non-zero Massey
product 〈[α ∧ ν], [α ∧ ν], [β ∧ ν]〉 of C̃P 7. Let us see that it is 8–formal. For
this, we compute the cohomology groups H i(C̃P 15) for i ≤ 9,

H0(C̃P 15) = 〈1〉,
H1(C̃P 15) = 0,

H2(C̃P 15) = 〈[Ω0], [ν1]〉,
H3(C̃P 15) = 0,

H4(C̃P 15) = 〈[Ω2
0], [Ω0 ∧ ν1], [ν2

1 ], [ν ∧ ν1]〉,
H5(C̃P 15) = H1(M) · [ν ∧ ν1],

H6(C̃P 15) = 〈[Ω3
0], [Ω

2
0 ∧ ν1], [Ω0 ∧ ν2

1 ], [ν3
1 ], [ν2 ∧ ν1], [ν ∧ ν2

1 ], [Ω0 ∧ ν ∧ ν1]〉

⊕H
2(M)
[ω]

· [ν ∧ ν1],

H7(C̃P 15) = H3(M) · [ν ∧ ν1]⊕H1(M) · 〈[Ω0 ∧ ν ∧ ν1], [ν ∧ ν2
1 ]〉,

H8(C̃P 15) = 〈[Ω4
0], [Ω

3
0 ∧ ν1], [Ω2

0 ∧ ν2
1 ], [Ω0 ∧ ν3

1 ], [ν4
1 ], [Ω0 ∧ ν2 ∧ ν1],

[Ω0 ∧ ν ∧ ν2
1 ], [Ω2

0 ∧ ν ∧ ν1], [ν3 ∧ ν1], [ν2 ∧ ν2
1 ], [ν ∧ ν3

1 ]〉

⊕H
4(M)
[ω2]

· [ν ∧ ν1]⊕
H2(M)

[ω]
· 〈[Ω0 ∧ ν ∧ ν1], [ν ∧ ν2

1 ]〉,

H9(C̃P 15) = H5(M) · [ν ∧ ν1]⊕H3(M) · 〈[Ω0 ∧ ν ∧ ν1], [ν ∧ ν2
1 ]〉

⊕H1(M) · 〈[Ω2
0 ∧ ν ∧ ν1], [Ω0 ∧ ν ∧ ν2

1 ], [ν ∧ ν3
1 ]〉.

Consider the maps p̄1 : C̃P 7 → C̃P 7 and p̄2 : C̃P 15 → C̃P 15 defined in
(2). Define the 2–form ω̄0 on Y by ω̄0 = p̄∗1(ω0). As [ω0] = [ω̄0], there is a
1–form ξ on Y such that ω̄0 − ω0 = dξ. Extend ξ to C̃Pm by pulling it back
to Ỹ , then to a tubular neighborhood W̃ and finally multiplying by a cut-off
function with value 1 in the support of ν1. Call ξ̃ to this extension. Define

Ω̄0 = p∗2(Ω0 + dξ̃).

Then we have the following equality of forms: Ω̄0∧ν∧ν1 = (Ω+dξ)∧ν∧ν1 =
(ω0 + ε ν + ω̄0 − ω0) ∧ ν ∧ ν1 = ω ∧ ν ∧ ν1 + ε ν2 ∧ ν1.

Define φ : H i(C̃P 15) → Ωi(C̃P 15), i ≤ 9 in the following way. We start
by defining a map φ0 : H i(M) → Ωi(M), i ≤ 5 which sends each class [z] to
an invariant closed representative z, φ0([z]) = z, in such a way that it satisfies
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the condition that φ0([z]∪ [ω]) = z∧ω, for [z] ∈ H1(M). This is possible since
[ω] : H1(M)→ H3(M) is injective. Now set

φ([Ωk
0 ∧ z ∧ νa ∧ νb1]) = Ω̄k

0 ∧ φ0([z]) ∧ νa ∧ νb1 .

Then φ is a multiplicative map. The only non-obvious product is

φ([x ∧ ν ∧ ν1] ∪ [ν ∧ ν1]) = φ([x ∧ ν2 ∧ ν2
1 ]) =

1
ε
φ([x ∧ (Ω0 − ω0) ∧ ν ∧ ν2

1 ]) =

=
1
ε

(
Ω̄0 ∧ φ0([x]) ∧ ν ∧ ν2

1 − φ0([x ∧ ω]) ∧ ν ∧ ν2
1

)
=

1
ε

(
ω ∧ x ∧ ν ∧ ν2

1+

+ ε x ∧ ν2 ∧ ν2
1 − (x ∧ ω) ∧ ν ∧ ν2

1

)
= x ∧ ν2 ∧ ν2

1 =
= φ([x ∧ ν ∧ ν1]) ∧ φ([ν ∧ ν1]),

for [x] ∈ H1(M). Finally, Proposition 2.5 implies that C̃P 15 is 8–formal.
QED
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Abstract
In this work we study the Björling problem for linear Weingarten spacelike surfaces
of maximal type in the 3-dimensional Lorentz-Minkowski space, i.e. spacelike
surfaces whose mean and Gaussian curvature are related by H = cK for some
c ∈ R.
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1. Introduction

A linear Weingarten spacelike surface of maximal type (in short, an LWM-
spacelike surface) in the 3-dimensional Lorentz-Minkowski space L3 is a space-
like surface whose mean curvature is proportional to its Gaussian curvature.

In the previous paper [1], the first two authors described a conformal
representation for LWM-spacelike surfaces, and used it in order to prove the
existence of complete examples and to study its geometric behaviour. The
representation actually extends the one for maximal surfaces in L3, i.e. for the
spacelike surfaces with H = 0 in L3 , obtained by McNertney and Kobayashi.

In this work we consider an initial value problem for LWM-spacelike sur-
faces, which consists on the following: given a regular analytic spacelike curve
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β in L3 together with a unit timelike analytic vector field V parallel along β,
can one find all LWM-spacelike surfaces in L3 that span this configuration?

This problem has been motivated by the Björling problem for maximal
surfaces in L3 studied in [2]. Some other research regarding the Björling
problem for maximal surfaces can be found in [3, 4]

The goal of the present paper is to characterize when the initial data β, V
of the above problem can actually span an LWM-spacelike surface, and to
construct in such case the only solution to the Björling problem in terms of
the initial data.

2. Preliminaries

Let L3 be the 3-dimensional Lorentz-Minkowski space, that is, the real vec-
tor space R3 endowed with the Lorentzian metric tensor 〈, 〉 = dx2

1 + dx2
2 −

dx2
3, where (x1, x2, x3) are the canonical coordinates of R3. An immersion

ψ : M2 −→ L3 of a 2-dimensional connected manifold M is said to be a space-
like surface if the induced metric via ψ is a Riemannian metric on M , which,
as usual, is also denoted by 〈, 〉.

It is well-known that such a surface is orientable. Thus, we can choose a
unit timelike normal vector field N globally defined on M . Observe that, up
to a symmetry of L3, we can suppose that the image of N lies on H2

+ = {x ∈
H2 : x3 > 0}. We shall call N the unit normal of ψ. Let us introduce complex
coordinates in H2

+ using the usual stereographic projection π : H2
+−→D from

the hyperbolic plane H2
+ onto the unit disk D given by

π(x1, x2, x3) =
x1 − ix2

1 + x3
,

with inverse map

π−1(z) =
(

z + z̄

1− |z|2
, i

z − z̄
1− |z|2

,
1 + |z|2

1− |z|2

)
.

We will refer to g = π ◦N as the Gauss map of the surface.
Let H = −trace(A)/2 and K = −det(A) denote the mean and Gaussian

curvatures of M respectively, where A : X(M)−→X(M) stands for the shape
operator of M in L3 associated to N , given by A = −dN . Then, we will say
that ψ : M2 −→ L3 is a linear Weingarten spacelike surface of maximal type,
in short, an LWM-spacelike surface, if there exist c ∈ R such that H = cK.
This condition is equivalent to the existence of a, b ∈ R, a 6= 0, satisfying
−2aH + bK = 0. We will adopt this last notation to follow the one in [1].
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As it can be seen in [1], on such a surface the Gaussian curvature is either
always negative or always non negative. Moreover, the symmetric tensor σ on
M for the immersion ψ

σ(X,Y ) = a〈X,Y 〉 − b〈AX,Y 〉, X, Y ∈ X(M),

is positive definite (reversing orientation if necessary). Hence, we will choose
N so that σ is a Riemannian metric.

If we consider M as a Riemann surface with the conformal structure in-
duced by σ, then g = π ◦N is a conformal map from M into D, and

4σ (2aψ + bN) = 0.

These two facts are the basis of a conformal representation for LWM-spacelike
surfaces, obtained in [1]:

Theorem 2.1 ([1]) Let ψ : M2 −→ L3 be an LWM-spacelike surface such that
−2aH + bK = 0, a 6= 0, and let us consider on M the conformal structure in-
duced by σ. Then there exists a function φ : M−→C3 such that the immersion
can be recovered as

ψ = − b

2a
π−1(g) +

1
a

Re
∫
φ(ζ)dζ. (1)

Here g : M−→D is its Gauss map and:

- If K ≥ 0 then
φ = (2aψ + bN)z (2)

and both g and φ are holomorphic;

- If K < 0 then
φ = (2aψ + bN)z

and both g and φ are anti-holomorphic,

being z a conformal parameter on M and N the unit normal of ψ. We refer
the readers to [1] for the details.

3. Björling Representation

Let ψ : Ω ⊂ R2−→L3 be an LWM-spacelike surface and z = s+ it be a local
conformal parameter on Ω with respect to σ. First, we will study the case
K ≥ 0.
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Since 〈aψt + bNt, ψs〉 = σ(ψt, ψs) = 0, it can be easily obtained that
aψt + bNt = −aN × ψs. Using this equality and (2), we get that φ + bNz =
aψs + bNs + iaN × ψs and so

φ =
1
2

(a (2ψs + i(N × ψs − ψt)) + bNs) . (3)

On the other hand, as 〈aψs + bNs, ψt〉 = σ(ψs, ψt) = 0 it follows from a
straightforward computation that ψt = ψs ×N + (b/a)Ns ×N , which jointly
with (3) allow us to obtain

φ =
1
2

(
a

(
2ψs + i(2N × ψs −

b

a
Ns ×N)

)
+ bNs

)
. (4)

Let us define β(s) = ψ(s, 0), V (s) = N(s, 0) on a real interval I ⊂ Ω. Observe
that β(s) and V (s) are real analytic functions, because so is ψ. Let us choose
any simply connected open set ∆ containing I over which we can define holo-
morphic extensions β(z), V (z) of β, V . Then, formula (4) can be written on
the curve β(s) as

φ(s, 0) =
1
2

(
a

(
2β′(s) + i(2V (s)× β′(s)− b

a
V ′(s)× V (s))

)
+ bV ′(s)

)
,

and by analytic extension one has

φ(z) = a
(
β′(z) + iV (z)× β′(z)

)
+
b

2
(
V ′(z) + iV (z)× V ′(z)

)
.

Finally, since

N(z) = π−1

(
V1(z)− iV2(z)

1 + V3(z)

)
we get from (1) that

ψ(z) = Reβ(z) +
b

2a

(
ReV (z)− π−1

(
V1(z)− iV2(z)

1 + V3(z)

))
−Im

∫ z

so

(
V (ω)× β′(ω) +

b

2a
V (ω)× V ′(ω)

)
dω. (5)

As it can be checked, this formula agrees with the one for maximal surfaces
in [2] when we take a = 1, b = 0.

The case K < 0 is analogous, resulting

ψ(z) = Reβ(z) +
b

2a

(
ReV (z)− π−1

(
V1(z)− iV2(z)

1 + V3(z)

))

−Im
∫ z

so

(
V (ω)× β′(ω) +

b

2a
V (ω)× V ′(ω)

)
dω. (6)
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The following lemma, whose proof is a simple exercise, shows that the
geometry of the surface along the curve β(s) can be expressed in terms of
β(s), V (s).

Lemma 3.1 Let ψ : Ω ⊂ R2−→L3 be an LWM-spacelike surface and let us
consider on Ω the conformal structure induced by σ. Let us define β(s) =
ψ(s, 0), V (s) = N(s, 0) on a real interval I ⊂ Ω. Then

i) aD(s) + b〈β′, V ′〉 6= 0 for all s ∈ I.

ii) K|β(s) =
a

D(s)

(
det(β′, V, V ′)2 + 〈β′, V ′〉2

aD(s) + b〈β′, V ′〉

)

iii) H|β(s) =
b

2D(s)

(
det(β′, V, V ′)2 + 〈β′, V ′〉2

aD(s) + b〈β′, V ′〉

)

where

D(s)2 = det 〈, 〉|β(s)

= 〈β′, β′〉2 +
b2

a2
〈β′ × V ′, β′ × V ′〉+ 2b

a
〈β′, β′〉〈β′, V ′〉.

A pair made up of a regular analytic spacelike curve β(s) : I−→L3 and an
analytic unit vector field V (s) : I−→H2

+ such that 〈β′, V 〉 = 0 will be called a
pair of Björling data. The previous Lemma shows that one cannot expect in
general for prescribed Björling data the existence of an LWM-spacelike surface
spanning such configuration.

Taking this into account, we can now formulate the Björling problem for
LWM-spacelike surfaces in L3.

Let β : I−→L3 and V : I−→L3 be a pair of Björling data such
that for some a 6= 0, b ∈ R the condition aD(s) + b〈β′, V ′〉 6= 0
holds for all s ∈ I. Determine all LWM-spacelike surfaces with
−2aH + bK = 0 that contain β(s), and whose unit normal along
β(s) is given by V (s).

Any pair of Björling data in the above conditions will be called admissible.
Our main result is the following, where we assure the existence and unique-

ness of the solution to Björling problem. Observe that the sign of the Gaussian
curvature of the solution is given by the pair of curves β, V and the sign of a,
as follows from Lemma 3.1.
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Theorem 3.2 Let β(s), V (s) be admissible Björling data. There exists a
unique solution to Björling problem for LWM-spacelike surfaces in L3 with
the initial data β(s), V (s). This unique solution can be constructed in a neigh-
bourhood of the curve as follows:

- if a(aD(s) + b〈β′, V ′〉) > 0, the map ψ : Ω−→L3 given by (5) is the only
solution to Björling problem, and has non-negative Gaussian curvature;

- if a(aD(s) + b〈β′, V ′〉) < 0, the map ψ : Ω−→L3 given by (6) is the only
solution to Björling problem, and has negative Gaussian curvature.

Here Ω ⊆ C is a sufficiently small simply connected open set containing I over
which β, V admit holomorphic extensions β(z), V (z). Proof: The uniqueness
result follows from the computations used to derive the formulas (5) and (6).
The existence is a straightforward computation.
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3/00854/FS/01, and Junta de Comunidades de Castilla-La Mancha, Grant No
PAI-02-027. The second author is partially supported by DGICYT Grant No
BFM2001-3318. The third author is partially supported by Dirección General
de Investigación (MCYT), Grant No. BFM2001-2871 and Fundación Séneca
(CARM), Grant No. PI-3/00854/FS/01.

References

[1] J.A. Aledo and J.A. Gálvez, A Weierstrass Representation for Lin-
ear Weingarten Spacelike Surfaces of Maximal Type in the Lorentz-
Minkowski Space, J. Math. Anal. Appl. 283 (2003), 25-45.
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Abstract
Since the beginning of Calculus of Variations the classical Bolza problem has been
widely studied not only in an Euclidean space but also in a Riemannian manifold.
Recently, it has been completely solved if the Lagrangian is L(s, x, v) = 〈v, v〉/2−
V (x, s), with potential V which grows at most quadratically at infinity with respect
to x, and its solutions have been related to geodesics in gravitational waves.
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1. Old Bolza problem

Since the beginning of Calculus of Variations it has been studied the existence
of a curve in RN with fixed endpoints x0, x1 ∈ RN which minimizes a given
integral ∫ T

0
L(s, x, ẋ)ds

over all suitable paths x = x(s) joining x0 to x1 in a time T > 0.
Such a problem was studied since the end of the 17th century (for example,

in 1686 Newton found the shape of a shell which would minimize the air
resistance, while in 1696 Jakob Bernoulli found the curve which would bring a
heavy body from a higher point A to a lower one B ‘sliding’ with zero initial
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velocity in the least time) but it is named Bolza problem as, at the beginning
of the last century, Bolza wrote a book on the fixed endpoints problem which
became very popular (see [3]). Since then, many people studied Bolza problem
and countless references can be cited, but here we just remark that it was
solved in full generality by Tonelli, who invented lower semi–continuity for
that purpose (see, e.g., [11]), and was reformulated in a Riemannian manifold
only in 1962 by Hermann (cf. [8]).

In this paper we want to point out some results on Bolza problem when
the Lagrangian L : [0, T ]×M0 × TM0 → R is

L(s, x, v) =
1
2
〈v, v〉 − V (x, s), (s, x, v) ∈ [0, T ]×M0 × TxM0,

where (M0, 〈·, ·〉) is a Riemannian manifold with tangent bundle TM0 and
V :M0 × [0, T ]→ R is a given C1 function. Thus, fixed x0, x1 ∈ M0, in this
case Bolza problem is minimizing the functional

JT (x) =
1
2

∫ T

0
〈ẋ, ẋ〉ds−

∫ T

0
V (x, s)ds (1.1)

on a suitable space of curves joining x0 to x1 in time T , more precisely

ΩT (x0, x1) = {x ∈ H1([0, T ],M0) : x(0) = x0, x(T ) = x1}.

Standard arguments allow one to prove that JT is a C1 functional and its
critical points are solutions of the corresponding Euler equation{

Dsẋ+∇xV (x, s) = 0
x(0) = x0, x(T ) = x1

(1.2)

(here, Dsẋ is the covariant derivative of the tangent field ẋ along x induced by
the Levi–Civita connection of 〈·, ·〉, while ∇xV (x, s) is the partial derivative
of V with respect to x).

In order to prove the existence of a minimum point for functional JT in
ΩT (x0, x1), we recall the following abstract minimization theorem.

Theorem 1.1 Let Ω be a complete Riemannian manifold and J : Ω → R
a C1 functional which satisfies Palais–Smale condition, i.e., if (xn)n ⊂ Ω is
such that (J(xn))n is bounded and J ′(xn) → 0 then it converges in Ω up to
subsequences. So, if J is bounded from below, it attains its infimum.

With no special assumption on the growth of potential V , some useful
propositions can be stated.
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Proposition 1.2 If (M0, 〈·, ·〉) is a C3 complete Riemannian manifold then

• M0 is a submanifold of an Euclidean space RN and 〈·, ·〉 is the restriction
to M0 of the Euclidean metric of RN ;

• ΩT (x0, x1) is a complete Riemannian submanifold of H1([0, T ],RN ).

(For the proof, see [9, 10]).

Proposition 1.3 Let (M0, 〈·, ·〉) be a C3 complete Riemannian manifold and
let potential V = V (x, s) be C1 onM0× [0, T ]. If (xn)n is a bounded sequence
in ΩT (x0, x1) such that J ′T (xn) → 0 then it converges in ΩT (x0, x1) up to
subsequences.

(The proof follows from [2, Lemma 2.1] reasoning as in [4, Lemma 3.5]).

Remark 1.4 Obviously, if functional JT is coercive in ΩT (x0, x1), i.e., two
constants a1, a2 > 0 exist such that

JT (x) ≥ a1

∫ T

0
〈ẋ, ẋ〉ds − a2 for all x ∈ ΩT (x0, x1),

then it is bounded from below and a sequence (xn)n has to be bounded if
(JT (xn))n is bounded.

Thus, by Propositions 1.2, 1.3 and Remark 1.4, previous abstract Theorem
1.1 can apply to functional JT once its coerciveness on ΩT (x0, x1) has been
proved.

Clearly, it is quite simple to prove it if potential V = V (x, s) grows sub-
quadratically at infinity with respect to x, while it cannot hold if it grows
more than quadratically.

Hence, the “critical” growth is the quadratic one, i.e.,

V (x, s) ≤ λd2(x, x̄) + k for all (x, s) ∈M× [0, T ], (1.3)

for some x̄ ∈M and λ > 0, k ≥ 0.
In assumption (1.3) the existence of at least a solution of Euler equation

(1.2) has been proved by Clarke and Ekeland in [7] if M0 = RN and, up to
further hypotheses, the “arrival time” T is smaller than 1/

√
λ.

On the other hand, if T = π/
√

2λ the simple example of harmonic oscil-
lator may not have a solution (see [4, Example 3.6]).

So, there is a gap which needs to be overcome if 1/
√
λ ≤ T < π/

√
2λ and

it has been done in [4, Theorem 1.1]. In fact, the following lemma holds (it is
essentially proved in [4, Lemma 3.4] but in this form it has been stated in [1]).
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Lemma 1.5 Let (M, 〈·, ·〉) be a C3 complete Riemannian manifold and V a
C1 potential such that (1.3) holds. Then, if T < π/

√
2λ, functional JT is

coercive on ΩT (x0, x1).

Whence, Theorem 1.1 implies:

Theorem 1.6 Let (M, 〈·, ·〉) be a C3 complete Riemannian manifold. Let
V ∈ C1(M×[0, T ],R) be such that (1.3) holds. Then if T < π/

√
2λ, functional

JT is bounded from below and attains its infimum in ΩT (x0, x1).

2. New links to General Relativity

In General Relativity widely studied spacetimes are exact gravitational waves,
i.e., Lorentzian manifolds (R4, ds2) endowed with the metric

ds2 = dx2 + 2 du dv +A(u)x · x du2, with A(u) =

(
f(u) g(u)
g(u) −f(u)

)
,

where x = (x1, x2) ∈ R2, dx2 is the Euclidean metric in R2 and f , g ∈ C2(R,R)
such that f2 + g2 6≡ 0 (for more details, see [5] and references therein).

A generalization of such models can be introduced as follows.

Definition 2.1 A semi–Riemannian manifold (M, 〈·, ·〉z) is a general plane
wave, briefly GPW, if there exists a connected finite dimensional Riemannian
manifold (M0, 〈·, ·〉) such that M =M0 × R2 and

〈·, ·〉z = 〈·, ·〉+ 2 du dv +H(x, u) du2,

where x ∈ M0, the variables (v, u) are the natural coordinates of R2 and the
smooth scalar field H :M0 × R→ R is such that H 6≡ 0.

In order to investigate the geodesic connectedness on a GPW we are able
to introduce a suitable variational principle which links geodesics joining two
given points in a GPW to the critical points of a functional which looks like JT
defined in (1.1) (see [5, Proposition 3.1] or [6, Proposition 2.2] for a variational
proof).

Proposition 2.2 Let z∗ : [0, 1]→M, z∗ = (x∗, v∗, u∗), be a curve on a GPW
M = M0 × R2 with constant energy 〈ż∗, ż∗〉z ≡ Ez∗. Fixed z0 = (x0, v0, u0)
and z1 = (x1, v1, u1) ∈ M then z∗ is a geodesic on M joining z0 to z1 if and



Anna Maria Candela 67

only if u∗ = u∗(s) is affine, i.e., u∗(s) = u0 + s(u1 − u0) for all s ∈ [0, 1],
x∗ = x∗(s) is a critical point of

J∗(x) =
1
2

∫ 1

0
〈ẋ, ẋ〉ds−

∫ 1

0
V∗(x, s)ds on Ω1(x0, x1),

where

V∗(x, s) = − (u1 − u0)2

2
H(x, u0 + s(u1 − u0)), (2.1)

while if u0 = u1 it is v∗(s) = v0 + s(v1− v0) for all s ∈ [0, 1], otherwise for all
s ∈ [0, 1] it is

v∗(s) = v0 +
1

2(u1 − u0)

∫ s

0
(Ez∗ − 〈ẋ∗(σ), ẋ∗(σ)〉+ 2V∗(x∗(σ), σ)) dσ.

Thus, Proposition 2.2 and arguments in Section 1 allow one to prove the
following result.

Theorem 2.3 Let (M, 〈·, ·〉z),M =M0×R2, be a GPW and fix u0, u1 ∈ R2,
with u0 ≤ u1. Suppose that (M0, 〈·, ·〉) is a C3 complete Riemannian manifold
and there exist x̄ ∈M0 and R0, R1 ≥ 0 such that for all (x, u) ∈M0× [u0, u1]
it is

H(x, u) ≥ −(R0 d
2(x, x̄) +R1).

If R0(u1 − u0)2 < π2, then for all x0, x1 ∈ M0 and v0, v1 ∈ R there exists at
least a geodesic joining z0 = (x0, v0, u0) to z1 = (x1, v1, u1) in M.

Let us point out that in the physical model of an exact gravitational wave,
potential V∗ in (2.1) becomes

Ṽ∗(x, s) = −(u1 − u0)2

2
A(u0 + s(u1 − u0))x · x

which has quadratic growth with respect to x, of course.
Hence, Theorem 2.3 in this special setting gives the following result (for

more details, see [5, Subsection 4.3]).

Proposition 2.4 Let (R4, ds2) be an exact gravitational plane wave, fix u0,
u1 ∈ R and assume

R0[u0, u1] := max{(f2 + g2)1/2(u) : u ∈ [u0, u1] ∪ [u1, u0]}.

If it is
R0[u0, u1] (u1 − u0)2 < π2,

then for all x0, x1 ∈ M0 and v0, v1 ∈ R the corresponding two points z0 =
(x0, v0, u0) and z1 = (x1, v1, u1) are geodesically connected in M.
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Abstract
World-lines of classical particles, moving in an electromagnetic field can be ob-
tained as projections, on the space-time M , of null geodesics in the one higher
dimensional manifold M × IR, endowed with a Kaluza-Klein metric. We use this
fact to prove the existence of a world-line, connecting two chronologically related
events on a globally hyperbolic space-time, for any particle whose charge-to-mass
ratio is in a suitable neighborhood of 0 in IR.

Keywords: Lorentz force equation, charge-to-mass ratio, Kaluza-Klein metric, null
geodesics.

2000 Mathematics Subject Classification: 53C50; 83C10; 83C50; 83E15.

1. Introduction

Let (M, g) be a space-time and p0, p1 two causally related points on M. Let
C(p0, p1) be the set of continuous one-parameterized causal curves from p0 to
p1 and C ′(p0, p1) ⊂ C(p0, p1) be the subset of piecewise C1 timelike curves. It
is well known that the Lorentzian length functional

L : z ∈ C ′(p0, p1) 7−→
∫
z

√
−g[ż, ż]ds

it is upper semicontinuous on C ′(p0, p1) endowed with the C0 topology (cf.
[2]). L can be extended to C(p0, p1) remaining upper semicontinuous and,
whenever M is globally hyperbolic, the following result holds:
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Theorem (Avez and Seifert) Let (M, g) be a globally hyperbolic Lorentzian
manifold, p0 ∈ M and J+(p0) ⊂ M the subset of points which can be reached
from p0 by future-pointing causal curves. If p1 ∈ J+(p0), there is a causal
future-pointing geodesic connecting p0 to p1 and maximizing L.

Proof. If there is no timelike future pointing curve on C(p0, p1) then there is a
future pointing null geodesic connecting p0 and p1. In either case, there exists
a timelike curve z ∈ C(p0, p1) and L(z) > 0. Now in a globally hyperbolic
space-time C(p0, p1) is compact, so being L upper semicontinuous on C(p0, p1),
L has a maximum point γ such that L(γ) > 0. γ is a timelike geodesic because
timelike geodesics locally maximize length. 2

We would like to extend the above result to the action functional of a
classical charged particle moving in the gravitational field g and in an electro-
magnetic field F :

I : z ∈ C ′(p0, p1) 7−→
∫
z

√
−g[ż, ż]ds+ q

m

∫
z
ω,

where q is the electric charge of the particle, m its rest mass and ω a 1-form
on M such that dω = F (we have set the speed of light c = 1).

If z is a C1 timelike curve and a critical point of I then, after reparame-
terizing with respect to proper time τ , (i.e., g(z(τ))[ż(τ), ż(τ)] = −1), we get
a timelike solution of the Lorentz force equation

D
dτ

(
dz
dτ

)
=

q

m
F̂ (z)

[
dz
dτ

]
, (1)

i.e., a world-line for a charged particle moving in the field F and connecting
the points p0 and p1. In Eq. (1), D

dτ is the covariant derivative along z induced
by the Levi-Civita connection and the map F̂ : TM → TM is defined as

g(p)[v, F̂ (p)[w]] = F (p)[v, w],
∀(p, v), (p, w) ∈ TM.

Eq. (1) is the relativistic version, on a curved space-time, of the classical
equation of motion of a charged particle in an electric field ~E and a magnetic
field ~B

d~v
dt

=
q

m
( ~E + ~v ∧ ~B).

For q = 0 or F = 0, Eq. (1) reduces to the geodesic equation.
It can be proved that timelike solutions of (1) locally maximize I (cf.

also [4]). On the other hand, it is not clear for us if the functional I is upper
semicontinuous. Moreover we are not able to avoid the case that the maximum
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of I is achieved by a null curve in C(p0, p1), actually a future-pointing lightlike
geodesic, without conjugate points, which is not in the closure of C ′(p0, p1)
in C(p0, p1). For these reasons, we are not able to prove directly a result a
la Avez and Seifert for Eq. (1). In the next section we will show how such a
result can be obtained by using Kaluza-Klein theory.

2. The Kaluza-Klein metric and the main result

Consider the trivial bundle W = M×R, π : W →M endowed with the metric

gKK = π∗g + ρ2(π∗IRdy + π∗ω)⊗ (π∗IRdy + π∗ω),

where ρ is a positive constant, y the coordinate in IR and πIR is the canonical
projection on IR.

The metric gKK on W is Lorentzian. Moreover if V is a timelike vector
field on M , then Y = (V,−ω[V ]) gives a time orientation to (W, gKK).

It is well known that the projection on M of any timelike future-pointing
geodesic with respect to gKK corresponds to a trajectory of a charged particle
moving in the field F = dω (see for instance [3]). Namely, assume that w(s) =
(z(s), y(s)) is a geodesic on (W, gKK), then w satisfies the system:{

D
ds ż = ρ2(ẏ + ω(z)[ż])F̂ (z)[ż]
d
ds

(
ρ2(ẏ + ω(z)[ż])

)
= 0

(1)

From the second equation in (1), we see that the constant of motion qw : =
ρ2(ẏ + ω(ż)) plays the role of the electric charge of the particle moving along
the trajectory z = z(s).

Clearly if w = (z, y) is a timelike future-pointing curve on W then

0 > gKK(w)[ẇ, ẇ] = g(z)[ż, ż]+ ρ2(ẏ + ω(z)[ż])2 ≥ g(z)[ż, ż],
0 > gKK(w)[ẇ, Y (w)] = g(z)[ż, V (z)],

that is also z is timelike and future-pointing. Contracting both hand-sides of
the first equation in (1) by g(z)[·, ż] and using anti-symmetry of F , we see that
g(z)[ż, ż] is constant along z. We can parameterize z with respect to proper
time: the reparameterized curve z = z(τ) satisfies the equation

D
dτ

(
dz
dτ

)
=
qw
mz

F̂ (z)
[
dz
dτ

]
, (2)

where mz =
√
−g[ż, ż]. Assume that z is causal (with respect to g). If

w = (z, y) is a geodesic for gKK, then also gKK(w)[ẇ, ẇ] is conserved and

gKK(w)[ẇ, ẇ] = −m2
z +

q2w
ρ2
.
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q >0w
q <0w

y

Figure 1: Future-pointing null geodesics with non vanishing charges

Thus the geodesic w on W is null iff

m2
z =

q2w
ρ2
.

In such a case z is timelike iff qw 6= 0. Therefore we can state that a future-
pointing null geodesic w for the Kaluza-Klein metric, starting from a point
w0 = (p0, y0), arriving to a point w1 = (p1, y1) and having constant qw 6= 0,
provides a future-pointing timelike solution to (1), connecting p0 and p1 and
having charge-to-mass ratio

q

m
=
qw
mz

= ±ρ,

with the plus sign if qw > 0 and the minus sign if qw < 0.
In other words, we can fix the charge-to-mass ratio according to the value

of the parameter ρ. Our goal then becomes to prove the existence of a future
pointing null geodesic w on (W, gKK) having “charge” qw 6= 0. Actually, we
will prove that, if

∣∣ q
m

∣∣ is in a suitable neighborhood of 0 ∈ IR, there exist at
least two future-pointing null geodesics w1 and w2 having charges qw1 > 0 and
qw2 < 0 (see Fig. 1)

Theorem 2.1 Let (M, g) be a time-oriented Lorentzian manifold. Let F be
an electromagnetic field on M and ω be a one-form on M such that F = dω.
Assume that (M, g) is a globally hyperbolic manifold and let p0 and p1 be
two points on M with p1 in the chronological future of p0. Then there exists
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a positive constant R = R(g, F, p0, p1), such that (1) has a future-pointing
timelike solution connecting p0 and p1, for any charge-to-mass ratio such that∣∣ q
m

∣∣ < R.

Our proof is based on some properties of globally hyperbolic space-times.
Namely we can state that:

Proposition 2.2 If (M, g) is globally hyperbolic, then the manifold W = M×
R endowed with the metric gKK is globally hyperbolic as well.

Proof. Show that the projection on M of any inextendible future-pointing
causal curve in W is inextendible. Then, if S is a Cauchy surface for M ,
S̃ = S × IR is a Cauchy surface for W . Indeed w(s) meets S̃ as many times
as z(s) meets S, and in correspondence of the same value of the parameter.
As S is a Cauchy surface for M , z(s) meets S exactly once and w(s) meets S̃
exactly once. 2

We can express R in terms of g, F , p0 and p1: let Tp0,p1 and Np0,p1 be the
sets, respectively, of all the C1, future-pointing timelike curves and of all the
C1, future-pointing causal curves connecting p0 and p1; then (cf. [1])

R = sup
z∈Tp0,p1

( ∫
z

√
−g[ż, ż]ds

supx∈Np0,p1

∣∣∫
x ω −

∫
z ω
∣∣).

Notice that R is gauge invariant, that is, it is invariant under the replacement
ω 7→ ω + df , where f is any C2 function on M .

From a physical point of view, the above formula shows that, for suf-
ficiently weak fields F , there exists at least one connecting future-pointing
timelike solution to (1) for any charge-to-mass ratio. In fact, under the re-
placement ω → kω, R scales as R → R

k . Moreover the electron is the free
particle with the maximum value of the charge-to-mass ratio, and for suffi-
ciently small k, e

me
< R

We have to prove that R > 0. To this end, let γ be a future-pointing
timelike geodesic connecting p0 and p1 whose length is

L = sup
z∈Np0,p1

∫
z

√
−g[ż, ż]ds.

For the Avez-Seifert theorem, such a geodesic exists. Choose a gauge such
that

∫
γ ω = 0, and define

N = sup
z∈Np0,p1

∣∣∣∣∫
z
ω

∣∣∣∣ .
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It can be proved, by using strong causality and compactness of C(p0, p1) that
N is finite. Therefore, recalling the definition of R, we get R ≥ L

N > 0.
Finally we give a sketch of the proof of Theorem 1.

Proof of Theorem 1. Choose ρ < R. By definition of R, there exists a timelike
curve σ connecting p0 and p1 such that

sup
x∈Np0,p1

∣∣∣∣∫
x
ω −

∫
σ
ω

∣∣∣∣ <
∫
σ

√
−g[σ̇, σ̇]
ρ

. (3)

Consider its horizontal lift σ∗, with initial point w0 = (p0, y0). As σ∗ is time-
like, its final point w̃1 = (p1, ỹ1) = (p1, y0 −

∫
σ ω) belongs to the chronological

future of w0. Let U be the open subset of IR containing all the values y1 such
that w1 = (p1, y1) is in the chronological future of w0. Moreover let V be the
connected component of U containing ỹ1. Assume that V is given by ]y1, ŷ1[.

It can be proved that y1 > −∞ and ŷ1 < +∞. Then consider the points
w = (p1, y1) and ŵ = (p1, ŷ1). They belong to the boundary of the chrono-
logical future of w0. It is well known that in a globally hyperbolic space-time
M , for any p ∈ M , the boundary of the chronological future of p is made up
of points which can be connected to p by null geodesics. Thus there exist two
null geodesics η = (z, y) and η̂ = (ẑ, ŷ) connecting w0 to w and ŵ, respectively.
Now, it is easy to see that

∣∣∣∣y1 − y0 +
∫
z
ω

∣∣∣∣ ≥
∫
z

√
−g[ż, ż]
ρ

and analogously for ẑ e ŷ1 (otherwise w and ŵ would belong to the chrono-
logical future of w0). Then, from (3), we get

sup
x∈Np0,p1

∣∣∣∣∫
x
ω −

∫
σ
ω

∣∣∣∣ < ∣∣∣∣y1 − y0 +
∫
σ
ω

∣∣∣∣ ,
and analogously for ŷ1. In particular∣∣∣∣∫

z
ω −

∫
σ
ω

∣∣∣∣ < ∣∣∣∣y1 − y0 +
∫
σ
ω

∣∣∣∣ (4)

and analogously for ẑ and ŷ1. Recalling that ỹ1 = y0 −
∫
σ ω and ŷ1 > ỹ1 and

y1 < ỹ1, from (4) we get

qη = ρ2(y1 − y0 +
∫
z
ω) < 0
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and analogously for qη̂

qη̂ = ρ2(ŷ1 − y0 +
∫
ẑ
ω) > 0.

Therefore we have obtained two timelike future pointing connecting solutions
of (1) having charge-to-mass ratios q

m = −ρ and q
m = +ρ. Since ρ < R is

arbitrary, we get the thesis. 2
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[3] A. Lichnerowicz, Thèorie Relativistes de la Gravitation et de
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Abstract
We study maximal surfaces in L3 with isolated (conelike type) singularities, and
endow the space of complete maximal surfaces with a fixed number of singularities
with a natural structure of real analytical manifold in terms of the position of the
singularities and the asymptotic behaviour. The underlying topology is the one of
the uniform convergence on compact subsets.
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1. Introduction

By definition, the Lorentz-Minkowski space L3 is the space R3 endowed with
the indefinite metric ds2 = dx2 + dy2 − dz2.

Let M be a differentiable surface. An immersion X : M → L3 is said
to be spacelike provided the induced metric on M is a Riemannian metric.
Such an immersion is said to be maximal provided X is spacelike and its mean
curvature vanishes.

Maximal surfaces represent local maxima for the area functional associ-
ated to variations of the surface by spacelike surfaces. Furthermore, maximal
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surfaces can be written locally as the graph of a function u defined on a domain
of R2 and verifing the following elliptic differential equation:

(1− u2
x)uyy + 2uxuyuxy + (1− u2

y)uxx = 0 provided u2
x + u2

y < 1

As in the case of minimal surfaces in R3, maximal surfaces admit a Weier-
strass type representation in terms of meromorphic data on a Riemann surface,
which represents a powerful tool to describe the geometry of the surface (see
[3]). Indeed, let M be a differentiable surface and X : M → L3 a maximal
immersion. Consider the conformal structure on M associated to the Rie-
mannian metric induced by the immersion. Then, there exist a meromorphic
function g and a holomorphic 1-form φ3 such that, if we define

φ1 =
i

2

(
1
g
− g
)
φ3 and φ2 =

−1
2

(
1
g

+ g

)
φ3,

we obtain three holomorphic 1-forms φ1, φ2 and φ3 on M having no common
zeroes. Moreover, up to a translation, the immersion X can be recovered as
the real part of the integral of these three 1-forms, X = Re

∫
(Φ1,Φ2,Φ3).

Either (g, φ3) or (φ1, φ2, φ3) are called the Weierstrass data for the im-
mersion X.

In fact, the map g coincides with the hyperbolic stereographic projection
of the Gauss map of the immersion to C− {|w| = 1}. The induced metric on
M is given by the expression

ds2 = |φ1|2 + |φ2|2 − |φ3|2 =
1
4

(
1
|g|
− |g|

)2

|φ3|2

The first global result in the theory of maximal surfaces was stated by Cal-
abi in [1], who showed that spacelike planes are the unique complete embedded
maximal surfaces.

However, if we allow the existence of a certain kind of singularities, there
exist non-trivial examples, as it is shown in the following pictures.

Figure 2: Classical maximal surfaces with isolated singularities: the Lorentzian
catenoid and a Riemann type example.
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2. Embedded singularities in a maximal surface: lo-
cal and global behaviour

Throughout this paper, we study (complete) embedded maximal surfaces with
isolated singularities in the following sense:

Definition 2.1 Let M be a differentiable surface and X : M → L3 a topolog-
ical embedding. We say that X is a maximal embedding with an isolated set
of singularities F0 ⊂M if

• X : M − F0 → L3 is a maximal embedding,

• X cannot be extended to a maximal immersion at any point in F0.

We also say that S = X(M) is a maximal embedded surface with singu-
larities at F = X(F0).

The local behaviour of the surface around a singularity is described in this
proposition.

Proposition 2.2 Let X : D → L3 be a maximal embedding from an open disk
D with singularity at a point q ∈ D. Then,

1. D − {q}, endowed with the conformal structure associated to the metric
induced by X, is biholomorphic to an annulus A = {z ∈ C ; r < |z| < 1}
and X : A→ L3 extends analytically to γ = {|z| = 1} with X(γ) = X(q),

2. the Weierstrass data of X : A → L3, (g, φ3), extend analitically to the
mirror of A, A∗ = {z ∈ C ; 1 < |z| < 1

r}, satisfying the symmetries g◦J =
1/g and J∗(φ3) = −φ3, where J(z) := 1/z is the mirror involution,

3. φ3 never vanishes on γ, |g| = 1 on γ and g : γ → S1 is injective,

4. X(D) is asymptotic to the light cone of X(q). In particular, locally
around the singularity the surface is a graph over any spacelike plane.

Remark 2.3 The previous proposition is actually a necessary and sufficient
condition to construct maximal disks with one singularity. Indeed, take a con-
formal annulus A = {z ∈ C ; r < |z| < 1}, a meromorphic map g and a holo-
morphic 1-form φ3 on A satisfying the conditions 2. and 3. in the proposition
and such that φ1, φ2 and φ3 are holomorphic 1-forms having no common zeroes.
Then, the map X = Re

∫
(φ1, φ2, φ3) : A ∪ {|z| = 1} → L3 gives a maximal

surface with an embedded singularity at the point p = X({z ∈ C : |z| = 1})
(observe that the symmetry of (g, φ3) guarantees that the period problem is
solved).
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Figure 3: A conelike singularity.

Let X : M → L3 be a maximal embedding with (isolated) singularities,
then M is a metric space. We say that a maximal surface X(M) is complete
if M is a complete metric space.

Proposition 2.4 Let S be a complete embedded maximal surface in L3 with
isolated singularities. Then S is an entire graph over any spacelike plane.
That is to say, the Lorentzian orthogonal projection over any spacelike plane
in L3 is a homeomorphism.

3. Structure of the space of complete maximal sur-
faces with a fixed number of singularities

In what follows we will consider complete embedded maximal surfaces with
finitely many (isolated) singularities, that is to say, complete maximal graphs
with a finite number of singularities. Our aim is to show that the space of
these surfaces having a fixed number of singularities has a natural structure
of real analytical manifold and the underlying topology coincides with the one
of the uniform convergence of graphs on compact subsets of {x3 = 0}.

Theorem 3.1 Let S be a complete maximal graph with a finite set of singu-
larities F ⊂ S. Then,

• S − F is biholomorphic to Ω = C −
⋃n+1
j=1 Dj , where Dj ⊂ C are closed

pairwise disjoint disks, j = 1, . . . , n + 1. The point ∞ ∈ Ω is called the
end of the surface,

• the Weierstrass data for the maximal immersion X : Ω→ L3 extend to
the end with |g(∞)| 6= 1,

• S is asymptotic to either half catenoid or a plane. Moreover, if we
apply a Lorentzian isometry of L3 so that the tangent plane at the end
is horizontal (that is to say, g(∞) = 0, ∞) then the function u such that
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S = {(x1, x2, u(x1, x2)) : (x1, x2) ∈ R2} has the following asymptotic
expansion

u(x1, x2) = c logR+ b+
a1x1 + a2x2

R2
+O(R−2), R = |(x1, x2)|

for suitable constant a1, a2, b, c ∈ R

The real number c that appears in the above theorem is called the log-
arithmic growth of S at infinity. It plays an important role in the definition
of the coordinates of the space of complete maximal graphs having the same
number of singularities.

In what follows, we denote by Sn the space of all the complete maximal
graphs with n+1 singularities and with vertical limit normal vector at the end.

The following theorem is a consequence of the maximum principle for
elliptic differential equations and provides a natural way to define coordinates
in the space Sn.

Theorem 3.2 (Uniqueness, [4]) Two complete maximal graphs with the sa-
me set of singularities, the same limit normal vector at the end and the same
logarithmic growth at infinity must coincide.

In order to give a real analytic structure to Sn the following notation is
required.

Definition 3.3 A marked maximal graph is a pair (S,m) such that S ∈ Sn

and m is an ordering of the set F of singular points of the surface S, m =
(q1, . . . , qn+1). We denote by Mn = {(S,m) : S ∈ Sn} the space of all the
marked graphs with n+ 1 singularities and having vertical limit normal vector
at the end.

The space Sn can be regarded as the quotient of Mn under the action of
the group of permutations of order n+ 1, Pn, given by

λ : Pn ×Mn −→Mn

λ(τ, (S,m)) = (S, τ(m))

In [2] it is shown that Sn is non empty for any n ∈ N and new examples
of maximal surfaces with singularities are given.

Theorem 3.4 (Analytic structure for the space of marked maximal
graphs Mn) Mn is a differentiable manifold of dimension 3n+4 with under-
lying topology of the uniform convergence on compact subsets of {x3 = 0}.
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Figure 4: New examples of maximal surfaces with singularities.

Moreover, the map

ψ : Mn −→ R3n+3 × R
ψ(S,m) = (m, c)

where c =logarithmic growth of S at the infinity, is a homeomorphism from
Mn onto an open subset of R3n+3 × R and provides analytic coordinates for
the space Mn.

Sketch of the proof:
Uniqueness Theorem (3.2) gives that ψ is injective. Endow Mn with the

topology of the uniform convergence on compact subsets. The continuity of
ψ follows from the maximum principle and classical Schauder estimates for
elliptic differential equations.

To prove the remainder of the theorem we endow Mn with a structure of
differentiable manifold of dimension 3n+4 (with the topology of uniform con-
vergence of marked graphs on compact subsets as associated topology). This
structure is given in terms of an appropiate bundle of the divisors associated
to the Weierstrass data. We prove that ψ is a diffeomorphism when we con-
sider this structure on Mn (see [2] for more details). The domain invariance
theorem gives that ψ(Mn) ⊂ R3n+3 × R is open and finishes the proof.

Theorem 3.5 (Analytic structure for the space of maximal graphs
Sn) The action λ : Pn ×Mn −→ Mn es discontinuous and therefore the
projection map π : Mn −→ Sn is a covering of (n + 1)! sheets which induces
in Sn a structure of real analytic manifold of dimension 3n+ 4.

Moreover, the underlying topology coincides with the one of the uniform
convergence of graphs on compact subsets of {x3 = 0}.
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[2] I. Fernández, F. J. López and Rabah Souam, The space of
complete embedded maximal surfaces with isolated singularities in the
3-dimensional Lorentz-Minkowski space L3, preprint, ArXiV e-print
archive math.DG/0311330 v1.

[3] O. Kobayashi, Maximal surfaces with conelike singularities, J. Math.
Soc. Japan 36 (1984), no. 4, 609–617

[4] A. A. Klyachin, Description of the set of singular entire solutions of the
maximal surface equation, Math. Sb. 194 (2003), no. 7, 83–104



Proceedings of the II International
Meeting on Lorentzian Geometry
Murcia, November 12–14, 2003
Publ. de la RSME, Vol. 8 (2004), 83–88

Isometric decomposition of a manifold

Manuel Gutiérrez1 and Benjaḿın Olea2
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Abstract
Given a semi-Riemannian manifold, we give some decomposition results using an
irrotational and conformal vector field. We have not assumed that the vector field
is globally a gradient, in particular we do not use simply connectedness hypothesis.

Keywords: Irrotational vector field, warped product.
2000 Mathematics Subject Classification: 53C50, 53C12 and 53C20.

1. Introduction

As a corollary of the well known decomposition Theorem of De Rham we can
conclude that a simply connected semi-Riemannian manifold with a parallel
and complete vector field with non null norm is isometric to a direct product
R×L. This result does not hold if the manifold is not simply connected (Ex-
ample 2.3 and 3.1) because the integral curves of the vector field can intersect
the orthogonal leaves at different points. There are decomposition on a non
necessarily simply connected manifold using a gradient of a function without
critical point [2, 3, 9], because it assures that the integral curves intersect the
orthogonal leaves at only one value of its parameter. This results are easily
obtained from Proposition 2.2. In this work we obtain a decomposition of a
manifold as a warped product using an irrotational and conformal vector field
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with some additional hypothesis on the orthogonal leaves or on the vector field
itself.

2. Irrotational vector fields

Let (M, g) be an n-dimensional semi-Riemannian manifold (we suppose it
connected without explicit mention) and E an unit, complete and irrotational
vector field. We call Φ : R ×M → M the flow of E, ε = g(E,E) and Lp the
leaf of E⊥ through p ∈ M . It is easy to check that E is a foliate vector field
for the orthogonal foliation [6], and therefore Φt(Lp) = LΦt(p) for all p ∈ M
and t ∈ R. Now, we can construct the local diffeomorphism

Ψ : R× Lp −→M

(t, x)→ Φt(x)

which identifies the canonical foliations of R × Lp with the integral curves of
E and the foliation E⊥.

Lemma 2.1 Let M be a semi-Riemannian manifold and E an unit, complete
and irrotational vector field. Then the above local diffeomorphism Ψ is onto.
Proof. Since ImΨ is open, it is enough to see that it is closed. Take x /∈
ImΨ = ∪t∈RΦt(Lp), then x ∈ ∪t∈RΦt(Lx) ⊂ (∪t∈RΦt(Lp))c, but ∪t∈RΦt(Lx)
is also an open set, so ImΨ is closed. 2

If we take the pull-back metric h = Ψ∗(g) on R × Lp, then h = εdt2 + gt
where gt is a metric tensor on Lp for each t ∈ R, and Ψ becomes a local isome-
try. The following proposition gives a global decomposition of the manifold as
a direct, warped or twisted product depending on the properties of the vector
field E. We say that E is orthogonally conformal if there is ρ ∈ C∞(M) such
that g(∇XE, Y ) + g(X,∇YE) = ρg(X,Y ) for all vector fields X,Y ∈ E⊥.

Proposition 2.2 Let M be a semi-Riemannian manifold and E an unit, com-
plete and irrotational vector field. Take p ∈ M such that the integral curves
with initial values on Lp intersect Lp at only one value of its parameter. Then
M is isometric to a product (R× Lp, εdt2 + gt). Moreover,

1. If E is parallel then M is isometric to a direct product (R×Lp, εdt2+g0).

2. If E is orthogonally conformal and grad divE is proportional to E then
M is isometric to a warped product (R × Lp, εdt2 + f2g0) where f(t) =
exp(

∫ t
0
divE(Φp(s))

n−1 ds).
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3. If E is orthogonally conformal then M is isometric to a twisted product
(R× Lp, εdt2 + f2g0) where f(t, x) = exp(

∫ t
0
divE(Φx(s))

n−1 ds).

In any case, g0 = g |Lp.
Proof. If the integral curves of E with initial values on Lp intersect Lp at

only one value of its parameter then Ψ : R×Lp →M is injective, and therefore
a diffeomorphism. Then M is isometric to (R × Lp, h = εdt2 + gt). Suppose
now that E is orthogonally conformal. Then the foliation E⊥ is umbilic and
therefore h = εdt2 + f2g0 where f : R × Lp → (0,∞) is certain C∞ function
with f(0, Lp) ≡ 1 [8]. Since E is irrotational and orthogonally conformal,
for all v ∈ TxLp, calling w = Ψ∗(t,x)

(0, v) ∈ TΦt(x)M , we get ∇wE = divE
n−1 w.

On the other hand, using the connection formula of a twisted product [8], we
obtain ∇v ∂∂t = h( ∂∂t , grad ln f)v. Applying Ψ∗(t,x)

to both members we get
∂
∂t ln f = divE

n−1 and then f(t, x) = exp(
∫ t
0
divE(Φx(s))

n−1 ds).
If moreover grad divE is proportional to E then div E is constant through

the orthogonal leaves and therefore divE(Φx(s)) = divE(Φp(s)) for all x ∈ Lp
and all s ∈ R. So, in this case, f(t) = exp(

∫ t
0
divE(Φp(s))

n−1 ds).
If E is parallel then div E = 0 and we get a direct product. 2

If a gradient has never null norm, it is immediate that the integral curves
meet the orthogonal leaves at only one value of its parameter. We can assume
directly that the vector field is a gradient and state the following: let M be
a semi-Riemannian manifold and f : M → R a function which gradient has
never null norm and E = grad f

|grad f | complete. If

• Hf = 0, then M is isometric to a direct product R× L [2].

• Hf = a · g then E verifies case two of proposition 2.2 and therefore M
is isometric to a warped product R× L [3, 9].

• Hf = a · g + bE∗ ⊗ E∗, where a, b ∈ C∞(M), then E verifies case three
of the proposition 2.2 and therefore M is isometric to a twisted product
R× L.

This is the easiest way to ensure that the integral curves intersect the
leaves at only one point. Nevertheless, although the vector field were parallel
we can not ensure the decomposition of the manifold, as is shown in the
following example.

Example 2.3 Take (R × S2,−dt2 + gcan) and Γ the group generated by the
isometry Φ(t, p) = (t + 1,−p). If M = R × S2/Γ and p : R × S2 → M is the
projection, then p∗( ∂∂t) is the unique unit and parallel vector field on M . If
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M were isometric to a direct product R × L then ∂
∂t would be identified with

p∗( ∂∂t), but the integral curves of this vector field are all periodic and intersect
its orthogonal leaves in two different points. Therefore M can not be a direct
product.

3. Irrotational and conformal vector fields

Let U be an irrotational and conformal vector field with never null norm
on a semi-Riemannian manifold M . If we call λ = |U | and E = U

λ then
∇XU = E(λ)X for all vector field X and we can check that both function λ
and E(λ) are constant through the orthogonal leaves of U .

If M is a complete Riemannian manifold and U a non trivial irrotational
and conformal vector field, then U has at most two zeros. If it has a zero
then M is conformal to the Euclidean space. If it has two zeros then M is
conformal to an Euclidean sphere [7].

If U has not zeros, then M̃ , the universal covering of M , is isometric to
a warped product R× L as we have seen above. This is true in the indefinite
case too.

For semi-Riemannian manifolds an analogous classification does not seem
to be known, indeed U could have infinitely many zeros [5].

In the case where U has not zeros, we can not assure the decomposition
of M , as is shown in Examples 2.3 or 3.1.

Example 3.1 Let M̃ = R2 the Minkowski space and X =
√

3
2
∂
∂x +

√
1
2
∂
∂y .

Take Γ the isometry group generated by Φ(x, y) = (x, y + 1), M = M̃/Γ and
the canonical projection p : M̃ → M . Since Φ preserves the vector field X,
there is a vector field U on M such that p∗(X) = U . Since X is parallel, U
is parallel, in particular irrotational and conformal. Moreover U is a timelike
vector field and M is chronological, but it can not be decomposed as a warped
product R × L with ∂

∂t identified with U
|U | , since the integral curves of U in-

tersect each orthogonal leaf at infinitely many points. This also provides us a
counterexample to Proposition 2 of [1].

With an additional hypothesis on the orthogonal leaves we can assure the
decomposition of the manifold.

Theorem 3.2 Let M be a chronological Lorentzian manifold and U a time-
like, irrotational and conformal vector field with complete unitary. If L is an
orthogonal leaf with finite volume then M is isometric to a warped product
(R×L, εdt2 +f2g0) where g0 = g |L and f(t) = λ(Φp(t))

λ(p) , being p ∈ L arbitrary.
Proof. Let E be the unitary of U , λ = |U | and Φ : R×M →M the flow of E.
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Take p ∈ L and suppose that there is t0 > 0 such that Φt0(p) ∈ L. Since M is
chronological and locally a warped product where E is identified to ∂

∂t , there
is δ > 0 such that the integral curves of E intersect Bp(δ) ⊂ L only one time.
Since U is an irrotational and conformal vector field then Φt0 : L → LΦp(t0)

is a conformal diffeomorphism with constant factor (λ(Φt0 (p))

λ(p) )2. But λ is con-
stant through the orthogonal leaf L, so Φt0 : L→ LΦp(t0) is an isometry. Then
Bn = Φnt0(Bp(δ)) ⊂ L and vol(Bn) = vol(Bp(δ)). If Bm ∩ Bn = ∅ for all
n 6= m then vol(L) ≥

∑∞
n=0 vol(Bn) =

∑∞
n=0 vol(Bp(δ)) = ∞. Therefore

there are m < n such that Bm ∩Bn 6= ∅, and then there are a, b ∈ Bp(δ) with
Φ(n−m)t0(a) = b. But this is a contradiction since the integral curves of E
intersect Bp(δ) only one time. Now we apply Proposition 2.2. 2

With an additional hypothesis on the vector field we can also achieve the
decomposition.

Proposition 3.3 Let M be a semi-Riemannian manifold and U an irrota-
tional and conformal vector field with never null norm and complete uni-
tary. If div U 6= 0 or Ric(U) ≤ 0 then M is isometric to a warped product
(R×L, εdt2+f2g0) where L is an orthogonal leaf, g0 = g |L and f(t) = λ(Φp(t))

λ(p) ,
with p ∈ L arbitrary. Proof. Since ∇U = E(λ) · id it follows that
divU = nE(λ) and Ric(U) = −(n − 1)U(E(λ)). Take L an orthogonal leaf
and γ an integral curve of E with γ(0) ∈ L. If there is t0 6= 0 with γ(t0) ∈ L
then f(0) = f(t0), where f(t) = λ(γ(t)). But this is a contradiction because
f(t) > 0 and we are supposing f ′(t) 6= 0 or f ′′(t) ≥ 0 for all t ∈ R. Using
proposition 2.2 we obtain the desired result. 2

4. The S1 × L type decomposition

The S1×L type decomposition is more difficult to obtain than the R×L type.
This is because in the second case we only have to ensure that the integral
curves with initial values on a leaf do not return to it, but in the first case
we have to ensure that the integral curves with initial values on a leaf return
and intersect the leaf at only one point. Even if we have an irrotational vector
field with periodic integral curves with the same period we can not ensure the
decomposition of the manifold as S1 × L.

Take (N, g) = (R × S3(1
2), dt2 + f2g0), where f(t) =

√
2 + sin(2t) and g0

the canonical metric on S3. The scalar curvature S = 1
n(n−1)C(Ric), of N is

S = −2
f ′′

nf
+
n− 2
nf2

SS3( 1
2
) −

(n− 2)f ′2

nf2
= 1.
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We consider Γ the group generated by the isometry

Ψ : R× S3 → R× S3

(t, p)→ (t+ π,−p).

Take M = N/Γ and P : N → M the canonical projection. The vector
field V = f ∂

∂t is irrotational and conformal. Since V is preserved by Ψ there
exists an irrotational and conformal vector field U on M such that P∗(V ) = U .
Now, M is a complete Riemann manifold furnished with an irrotational and
conformal vector field, but it does not split as a warped product (R×L, dt2 +
λ2h) or (S1 × L, dt2 + λ2h) where ∂

∂t is identified with U
|U | since the integral

curves of U intersect each orthogonal leaf in two different points. Compare
with Theorem 4.3 (ii) of [4].
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1. Introduction

A smooth vector field V on a semi-Riemannian manifold (M, g) can be seen
as a map into its tangent bundle endowed with the Sasaki metric gS , defined
by g.

When g is positive definite the energy and the volume can be defined in
the space of smooth vector fields in a natural way. The energy of the map V
is given, up to constant factors, by

∫
M ‖∇V ‖

2dv and the volume is defined as
the volume of the submanifold V (M) of (TM, gS).

Many authors have studied the condition for a vector field to be a critical
point of these functionals and the existence of minimizers among unit vector
fields. Some of these results can be seen in the references of [3] and [4].

If we consider a Lorentzian manifold, the situation is not similar even
if we restrict our attention to unit timelike vector fields. The energy is not
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bounded bellow, so the study of minimizers has no sense and the volume is not
always defined. As a consequence, a new functional called spacelike energy, is
introduced in [2] on the space of unit timelike vector fields. It is given by the
integral of the square norm of the projection of the covariant derivative of the
vector field onto its orthonormal complement.

The aim of this paper is to study to what extent the results obtained in
[2] are still valid for the volume and for the energy.

The paper is organized as follows. In section 2 we give the definitions,
the characterization of critical point and the expression of the second varia-
tion of the functionals. In section 3 we exhibit several examples of critical
points. Moreover, we analyze the critical character of distinguished observers
in spacetimes such as GRW and the classical Gödel universe.

2. Volume, energy and spacelike energy of vector
fields

Given a semi-Riemannian manifold (M, g), the Sasaki metric gS on the tangent
bundle TM is defined, using g and its Levi-Civita connection ∇, as follows :

gS(ζ1, ζ2) = g(π∗ ◦ ζ1, π∗ ◦ ζ2) + g(κ ◦ ζ1, κ ◦ ζ2),

where π : TM →M is the projection and κ is the connection map of ∇.

Definition 2.1 The energy of a vector field V , is given by

E(V ) =
n+ 1

2
+

1
2

∫
M
‖∇V ‖2dv.

The relevant part of the energy, B(V ) =
∫
M b(V )dv where b(V ) = 1

2‖∇V ‖
2,

when considered as a functional on the manifold of unit vector fields, is some-
times called the total bending of the vector field. The first and second variation
of B have been widely studied by Wiegmink [6]. The covariant version of these
results, as it appears in [4], involves the 1−form ωV (X) = g(X,∇∗∇V ) where
∇∗∇V is the rough Laplacian.

It is easy to see that the similar results also holds for a reference frame
(unit timelike vector field) on a Lorentzian manifold. More precisely,

Proposition 2.2 Given a reference frame Z on a compact Lorentzian mani-
fold (M, g) then

1. Z is a critical point of the total bending if and only if ωZ(X) = 0 for all
vector field X orthogonal to Z, where ωZ(X) = g(X,

∑
i εi(∇Ei(∇Z))(Ei)).
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2. If Z is a critical point and X is orthogonal to Z then

(HessB)Z(X) =
∫
M

(−‖X‖2ωZ(Z) + ‖∇X‖2)dv.

Definition 2.3 The volume of a unit vector field V on a Riemannian man-
ifold is defined as the volume of the submanifold V (M) of (T 1M, gS). Since
(V ∗gS)(X,Y ) = g(X,Y ) + g(∇XV,∇Y V )

F (V ) =
∫
M
f(V )dv =

∫
M

√
detLV dv,

where LV = Id + (∇V )t ◦ ∇V .
In contrast with the energy, the volume of a reference frame Z, is not

always defined on a Lorentzian manifold, since the 2−covariant field Z∗gS can
be degenerated. Due to this, we study the volume restricted to unit timelike
vector fields for which Z∗gS is a Lorentzian metric on M . We will denote this
set of vector fields by Γ

−
(T−1M) and it is an open subset of the set of smooth

reference frames.
With the same method used in [4] and [5] we have obtained

Proposition 2.4 Let M be a compact Lorentzian manifold and let Z be a
reference frame such that Z ∈ Γ

−
(T−1M), then

a) Z is a critical point of the volume if and only if ω̂Z(X) = 0 for all X ∈ Z⊥,
where ω̂Z =

∑
i(∇EiK̂Z)i and K̂Z = f(Z)L−1

Z ◦ (∇Z)t.

b) If Z is a critical point and X ∈ Z⊥

(HessF )Z(X) =
∫
M

(
− ‖X‖2ω̂Z(Z)− tr(L−1

Z ◦ (∇X)t ◦ ∇Z ◦ K̂Z ◦ ∇X)

+
1

f(Z)
(σ2(K̂Z ◦ ∇X)) + f(Z)tr(L−1

Z ◦ (∇X)t ◦ ∇X)
)
dv,

where σ2(C) = tr2(C)− tr(C2).

Remark. Let us point out that if we compare these results with those ob-
tained in [5] and [4] for Riemannian metrics, the only difference is the minus
sign of the first term of the expression of the Hessian.

The spacelike energy density of Z is defined as

b̃(Z) =
1
2
‖AZ ◦ PZ‖2 =

1
2

n∑
i=1

g(∇EiZ,∇EiZ),

where AZ = −∇Z, PZ(X) = X + g(X,Z)Z and {Ei, Z}ni=1 is an adapted
orthonormal local frame.
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Definition 2.5 The spacelike energy is given by

B̃(Z) =
∫
M
b̃(Z)dv.

The condition for a reference frame to be spatially harmonic (critical point
of the spacelike energy) and the second variation at critical points have been
computed in [2]. We summarize here these results.

Proposition 2.6 Let Z be a reference frame on a compact Lorentzian mani-
fold.

a) Z is spatially harmonic if and only if the 1−form ω̃Z annihilates Z⊥,
where ω̃Z = −

∑
i(∇EiK̃Z)i + g(K̃Z(∇ZZ)) and K̃Z = (∇Z ◦ PZ)t.

b) If Z is spatially harmonic and X ∈ Z⊥, we have

(HessB̃)Z(X) =
∫
M

(‖∇X‖2 + 2g(∇XX,∇ZZ) + ‖∇XZ +∇ZX‖2)dv

+
∫
M
‖X‖2(‖∇ZZ‖2 + ω̃Z(Z))dv.

As for the energy and the volume, the condition of critical point obtained
is tensorial, so we can define critical points even if the manifold is not compact
and the functional is not defined.

3. Examples

The easiest examples of spatially harmonic reference frames are those of null
spacelike energy. If we write the spacelike energy in terms of the kinematical
quantities of the reference frame, then

B̃(Z) =
1
2

∫
M

(‖Ω‖2 + ‖σ‖2 +
1
n

Θ2)dv,

where Ω, σ and Θ are the rotation, the shear and the expansion respectively.
So, the spacelike energy vanishes when the reference frame is rigid and

irrotational. As a consequence, we have the following proposition.

Proposition 3.1 ([2]) In a static spacetime, the infimum of the spacelike
energy is zero and it is attained by the static observer.

In what concerns energy and volume, computing the Euler-Lagrange equa-
tions for this type of vector fields we have shown that
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Proposition 3.2 Let Z be a rigid and irrotational reference frame.

a) Z is a critical point of the energy if and only if, ∇Z∇ZZ = ‖∇ZZ‖2Z.

b) Z ∈ Γ−(T−1M) is minimal if and only if

Z(
1

f(Z)
)g(X,∇ZZ) +

1
f(Z)

g(X,∇Z∇ZZ) = 0 for all X ∈ Z⊥.

One of the most important cosmological models are the Robertson-Walker
spacetimes and the so-called generalized Robertson-Walker spacetimes (see [1]
for more details). In [2], using the results obtained for Lorentzian manifolds
admitting a closed and conformal timelike vector field, it has been shown that

Proposition 3.3 The comoving observer ∂t is spatially harmonic. Further-
more, if M is assumed to be compact and satisfying the null convergence con-
dition, ∂t is an absolute minimizer of the spacelike energy.

Following similar arguments, we have shown the following proposition.

Proposition 3.4 In a GRW spacetime the comoving observer is a minimal
immersion.

Another example concerns the classical Gödel universe that is R4 endowed
with the metric ds2 = dx2

1 + dx2
2 − 1

2e
2αx1dy2 − 2eαx1dydt− dt2, where α is a

positive constant. In this coordinate system we have two distinguished timelike
vector fields ∂t and ∂y.

Proposition 3.5 ([2]) In the Gödel universe we have

1. The reference frame ∂t is a critical point of the energy and it is also
spatially harmonic.

2. The reference frame Z =
√

2e−αx1∂y is not spatially harmonic.

In contrast with part 2 of the above proposition, we have shown that

Proposition 3.6 The reference frame Z =
√

2e−αx1∂y is a critical point of
the energy.

In what concerns the volume functional, it is easy to see that ∂t belongs
to Γ

−
(T−1M) and if Z =

√
2e−αx1∂y, then detLZ = (1 − α2

2 )(1 + α2

2 ), so
Z ∈ Γ

−
(T−1M) if and only if α2 < 2.

Proposition 3.7 In the Gödel Universe

a) ∂t ∈ Γ
−
(T−1M) and it is a minimal immersion.
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b) Z =
√

2e−αx1∂y ∈ Γ
−
(T−1M) if and only if α2 < 2 and it is not a

critical point of the volume.

To finish the paper, we would like to remark that another interesting ex-
amples are the Hopf vector fields in Lorentzian Berger spheres, that are a
particular case of generalized Taub-NUT spacetimes. The study of the space-
like energy in these spaces can be seen in [2], while the study of the energy
and the volume has been widely developed in [3].
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E-mail: keller@servidor.unam.mx and keller@cms.tuwien.ac.at

Abstract

The quadratic form of the Minkowski space s2 = (ct)2 − (x2 + y2 + z2) describes
kinematics (motion) in Space–Time. To faithfully include matter and interaction
(dynamics) we propose a generalization S2 = s2−w2 of this quadratic form, where
w = κ(0)a is an equivalent distance expressing the physical Action corresponding

to a time interval t during which a distance l =
p

(x2 + y2 + z2) has been cov-
ered. The definitions being such that energy–momentum corresponds to (Planck
constant times) the space–time derivatives of w. We show that the resulting space
s2 → S2 = guvxuxv can also be pictured as a curved space–time. The corre-
sponding vector (in Clifford algebra a 5-dimensional vector) is S = euxu, where
the first four components correspond to the (Lorentz-)Minkowski vector s = eµxµ.
The usefulness, and in fact the motivation, of this geometry is illustrated through
the analysis of light propagation in a medium and in a gravitational field. In our
formulation, including Relativity Theory postulates (START), the base space
for the description is flat. A new approach is presented here pointing out other
structures of physics that have also being studied with our formalism.
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1. Physics and Lorentz Geometry

Physics is understood as the science describing nature as a whole in a useful
way. For the Scientific Method (SM) the usefulness requires that two ob-
servers will find in their experiments similar phenomena and describe them
with similar logical structures. Theoretical Physics provides a Mathematical,
SM acceptable, framework for this purpose. In this paper we show that a flat
5-D Lorentz Geometry is the most useful formulation.

• The central purpose of the here formulated START Theory is twofold:
first to have a description of nature, the way we perceive it with our
senses and experiments, which could be useful in accordance with the
Scientific Method, that is which could be a sound basis for physics.
Second START is aimed to be a valid general mathematical theory for
all the fundamental physical objects and the frame of reference we use for
their description. The physical objects are in general aspects of matter.
S stands for space, T for time, A for the theoretical description of matter
as an energy content for a period of time (action), and finally RT for
the mathematical relativity theory constructed from a quadratic space:
a Lorentz Geometry.

• By construction Planck’s constant is used in the definition of the equiv-
alent distance corresponding to action.

• In our presentation in the present paper optics was taken as an example
to guide the reader in the step going from Special Relativity Theory
to START which is not only more general but also general enough to
be the starting point of a deductive approach to the whole of the basic
structures of physics, at least in the chapters mentioned in this paper.

• The 5-D START geometry is presented as a flat Lorentzian manifold
time-like oriented in which all light rays correspond to null lines. Massive
objects are described as bundles of null trajectories in START. Observers
to 4-D time-like trajectories. When interactions are included the trajec-
tories of all physical objects remain to be null trajectories which can
also be represented as null geodesics in a curved 4-D subspace embed-
ded in the START manifold. The curvature will obey a set of equations
of which Einstein’s equations of general relativity are a particular case.
The development presented here is new and different from our previ-
ous papers in several senses, nevertheless the mathematical structures of
previous papers are re-encountered.
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• Two examples are used to illustrate how the description of physical phe-
nomena connects the START geometry with the 3-D or 4-D standard
language of optics in a refractive medium or in a gravitational field.

• START provides a unified presentation and a common mathematical
language. Descriptions with START are simpler. The unity of approach
and the easiness of the procedures also provides a badly needed didactical
procedure to understand theoretical physics.

• The generality of the mathematical structures, presented here as partic-
ular examples, can be seen in the last section.

1.1. The Quadratic Form in Physics

Principia Geometrica Physicae: Quadratic spaces are the fundamental
clue to understand the structure of theoretical physics. Classical Physics is
embedded within a 5-D flat quadratic space, 3 Space-, one Time- and one
Action- like basis manifolds (Lorentz signature 1,4) faithfully providing a Rel-
ativistic Theory (START) describing Newtonian, Maxwell, geometrical optics
and General Relativity as particular linear and quadratic forms of this (flat)
START space.

Our formulation (see [1][2][3][4][5]) claims that there is a useful general-
ization of the quadratic form which historically started with the Pythagorean
formulation:

Quadratic form Dim/diff. Op Group
l2 = x2 + y2 + z2 (4t) 3-D ∇,∇2 Galileo
s2 = (ct)2 − (x2 + y2 + z2) 4-D D,�2 Poincaré

S2 = (ct)2 −
(
x2 + y2 + z2

)
− w2

w = κ(0)a, κ(0) = d(0)
h = c

E(0)

5-D K,D2

(a)2 =
∑

µ a
2
µ

Dynamics
START

where l, (x, y, z), c, h, w, a, E(0) are distance, distance components, vac-
uum speed of light, Planck’s constant, distance equivalent to action, action of
a system and characteristic energy of the system respectively. In the START
space we introduce physics through the START Relativity Principle

“All trajectories are null for all observers”
“The vacuum Speed of Light is c for all observers”

Our geometrical structure allows the development of a new formalism,
following a deductive scheme from a set of FUNDAMENTAL PRINCIPLES
and POSTULATES, in such a form to obtain a comprehensive theory for
Physics.

The set of principles we have introduced are [2]: START Relativity
(5-D Poincaré group and 5-D Lorentz transformations); Existence (physical
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objects are represented by energy densities); Least Action (null, optimal
possible, trajectories in START); Quantized Exchange of Action (defines
systems or subsystems as those among a quanta of action can be exchanged)
and, Choice of Descriptions (allows all useful physical models to be em-
ployed).

2. 5-D Formulation of OPTICS

Geometric optics in a medium is used as a guiding concept to enlarge the
representation space of physical phenomena to 5-dimensions. Optics was used
in the XX century to create a logical 4-dimensional geometric representation of
the frame of reference to describe events in nature, the basic consideration was
that of “free space” light rays. We show that considering the concept of light
propagation in the medium, where the speed of light is lower, a geometry in
5-dimensions appears as a natural frame of reference. The Lorentz Geometry
fundamental quadratic form of this space is dS2 = ds2 − (κ0da)2, here ds2 is
the Poincaré–Einstein-Minkowski 4-D space–time quadratic form. Below we
show that General Relativity is also faithfully represented in this quadratic
space.

2.1. From Space–Time Geometric Optics to START

The trajectory of a light ray in a medium can be represented in two equivalent
forms. Consider dl = vedt = (c/η)dt, for light propagation in a medium
(refraction index η) and use the quadratic form dl2 = dx2 + dy2 + dz2 for
the elementary trajectory in space dl2 = (c/η)2dt2, or (cdt)2 = η2dl2 = (1 +
4πχ)dl2, to define

dS2
light−η = (cdt)2 − dl2 − 4πχdl2 = (cdt)2 − dl2 − 4πχ

1 + 4πχ
c2dt2 = 0,

dS2
light−η =

(
1− η2−1

η2

)
c2dt2 −

(
dx2 + dy2 + dz2

)
The relations above allow a new interpretation of the light propagation in

a medium as a propagation with the vacuum speed of light but in a
5-dimensional quadratic manifold.

In the 5-D form the fifth term
[(
η2 − 1

)
/η2
]
c2dt2 represents a distance

equivalent to the interaction of the medium, with refraction index η, upon the
light ray. We now propose the following 5-dimensional construction, including
the action variable, in the space–time-action quadratic form (see last section)

dS2 = ds2 − (κ0da)2 = (cdt)2 − (dx2 + dy2 + dz2)− (κ0da)2 (1)
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where in the case of light the constant κ0 = c/hν the inverse of the momentum
associated (in vacuum) with the light (one carrier’s, one photon) energy hν.
If we associate then the last term above with the last term in the description
of the light ray propagation

(κ0da)2 =
η2 − 1
η2

c2dt2 =
c2

(hν)2
∆
(
E2
)
dt2,

we can define the equivalent interaction potential as (here E represents light
→ media interaction energy)

η2 − 1
η2

=
∆
(
E2
)

(hν)2
,

therefore the action Edt equivalent to the interaction between light and the
medium. In vacuum the action corresponding to light is

(da)2 =
(
E2dt2 − p2

l dl
2
)

=

(
(hν)2 −

(
h

λ
c

)2
)
dt2 = 0

whereas in the medium there is a change

(da′)2 =
(
E ′2dt2 − p′2l′ dl′2

)
=

((
hν −∆V

c

)2

−
(
h

λ′η

)2
)
dt2

=

(
(hν)2 + ∆

(
E2
)
−
(
h

λ
c

)2
)
dt2 =

η2 − 1
η2

(hν)2dt2

where the change in the energy term is not compensated by the change in
the momentum term. In fact when light of frequency ν travels through a
medium of refraction index η where the equivalent speed of light is c′ = c/η
there is a change in the wave length λ → λ′ = λ/η in agreement with our
formulation above and simultaneously a change in the length of the trajectory
dl → dl′ = dl/η which exactly compensates for the change in momentum.
Geometrical optics can be compactly formulated with the additional inclusion
of the change in wave length through the 5-dimensional formulation presented
here.

In this discussion it is fundamental that these processes take place when
the carrier of light is in interaction with a medium, the medium being
described by an index of refraction η.
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3. The photon as a general relativity test particle

General Relativity is considered a comprehensive theory, the best known so-
lutions are developed for the so called matter-free space and a test particle.
We show that (1) corresponds to a description of the action distribution which
agrees with the conceptual development of General Relativity (GR), this last
theory itself being based on the physical postulate that all observers have the
right to consider their measurements equally valid..

3.1. Beyond the Schwarzschild solution

There are two fundamental (energy-)carrier structures: the massless (as the
photon) and the massive fields with basic relation

E2 = (E0 + ∆E)2 , E2 − E2
0 = (pc)2, (1)

where ∆E is any gauge-free energy contribution and E0 = m0c
2 =⇒ hν (for a

photon).
The concept of test particle (at position{r, θ, φ}) in general relativity in

the Schwarzschild solution is compatible with the Newtonian limit for the
interaction gravitational energy

∆E (r) = −m0
GM

r
, (2)

where M is the total mass of ‘the external system’ (confined within a radius rs)
which we are exploring with the test particle. START uses the action square
difference, writing E = E0 + ∆E for large (classical limit) values of r > rs

E2 − E2
0 = E2

0 + 2E0∆E + (∆E)2 − E2
0 = (pc)2 (3)

= 2E0∆E + (∆E)2 → −2m0c
2m0

GM

r
+
(
m0

GM

r

)2

,

this corresponds both to the energy (difference square) and radial momentum
terms in (dA)2 − (dA′)2 if (dA′)2 = (m0c

2dt)2 , and according to the GR
basic description principles, substituting (the negative of (3)) in (1) using
κ0 = 1/m0c and space–time spherically symmetric coordinates t, r, θ, φ we
obtain

(dS)2 =

(
1− 2

GM

c2r
+
(
GM

c2r

)2
)
c2 (dt)2 (4)

−

(
1− 2

GM

c2r
+
(
GM

c2r

)2
){

(dr)2 − r2
[
(dθ)2 + sin2 θ (dφ)2

]}
,
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with the same physical consequences for the so called “tests of GR” as those
of the Schwarzschild [1916] metric in the limit of r � GM/c2 . The speed
of light in this metric remains to be c, this is a boundary condition different
from the no-curvature condition of that approach.

3.2. Action and the Quadratic Form in START

L =
(
m0c

dS
dτ

)2
, corresponds to the invariant quadratic form of the 4-D rela-

tivistic action function in START, the right hand side term corresponding to
the proper mass action rate. The variational condition δ

∫
t Ldτ = 0 replaces

the least action principle. The actual (bundles of) physical trajectories are
those corresponding to

1. Locally null trajectories, that is dS2 = 0. This condition being universal
(in START), for massless or massive carriers.

2. Global least action trajectories, that is δ
∫ t2
t1
dS = 0. This condition

defines the full trajectory. (An example would be a light ray in two refractive
media, each one homogeneous, separated by a surface crossed by the ray. In
both and each of the two media the condition dS2 = 0 is fulfilled).

3.3. Multivector Representation

The base space R5 corresponds to the real variables set {ct, x, y, z, κ0α} ↔
{xu;u = 0, 1, 2, 3, 4} that is: time, 3-D space and action (in units of distance
introducing the universal speed of light in vacuum c and the system under ob-
servation dependent κ0 = λsystemwith energymc2

Compton /h = 1/m0c). For physics time
is usually an independent evolution coordinate and action (matter and inter-
action) is distributed in space, then we consider the functions x(t), y(t), z(t)
and w(t, x, y, z) = κ0α(t, x, y, z). The nested vectors

dS =
∑

µ dx
ueu ; u = 0, 1, 2, 3, 4 5−D

ds =
∑

µ dx
µeµ ; µ = 0, 1, 2, 3 4−D

dx =
∑

i dx
iei ; i = 1, 2, 3 ; ei = e0ei 3−D

are members of a Clifford algebra generated by the definition of a quadratic
form

dS2 ≡ (dS)2 =
(∑

µ
dxueu

)2
=
∑

µν
gSTARTuv dxudxv ,

gSTARTuv = diag (1,−1,−1,−1,−1) , euev = −eveu
e = e0e1e2e3e4 = −e† eue = eeu

The quadratic form which is more relevant for Physics considers that observ-
able objects are extended in space and then an action density α in space-time
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is required. Then, defining m(x, t)c2 = εtotal(x, t), and the (Clifford alge-
bra valued) inverse of the space-time volume e0e1e2e3/4x4y4z4t, and the
space-time Laplacian operator � =

∑
µ e

µ∂µ such that along b =
∑

µ b
µeµ

the directional change operator is db ·� =
∑

µ db
µ∂µ (we apply four times for

b = cte0, xe1, ye2, ze3), we can obtain the sum of the directed changes of the
density of w:

a(x, t)e4 = κ0α(x, t)e4 = κ0
m(x,t)c24t
4x4y4z4te = 1

m0c
m(x,t)c24t
4x4y4z4te = (m(x,t)/m0)c4t

4x4y4z4t e

a(x, t)e4 = (m(x,t)/m0)c4t
4x4y4z4t e = w(x,t)

4x4y4z4te = w(x, t)e

edw =
∑

µ [(∂µw(x, t)) dxµ] eµe

(dS)2 = (dS) (dS)† =
(
1− (κ0p0)

2
)

(cdt)2+

−
((

1− (κ0p1)
2
)

(dx)2 +
(
1− (κ0p2)

2
)

(dy)2 +
(
1− (κ0p3)

2
)

(dz)2
)

here pµ = ∂µα(x, t) is a momentum density. Notice that w(x, t) is the distance
equivalent to a reduced action density, this makes the approach universal
for all systems.
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Abstract

We outline a new geometric method of constructing exact solutions of gravitational
field equations parametrized by generic off–diagonal metrics, anholonomic frames
and possessing, in general, nontrivial torsion and nonmetricity. The formalism of
nonlinear connections is elaborated for (pseudo) Riemannian and Einstein–Cartan–
Weyl spaces.

1. Introduction: Nonlinear Connections

We consider a (n + m)–dimensional manifold V n+m, provided with general
metric and linear connection structure and of necessary smooth class. It is
supposed that in any point u ∈ V n+m there is a local splitting into n− and
m–dimensional subspaces, V n+m

u = V n
u ⊕V mn

u . The local/abstract coordinates
are denoted u = (x, y), or uα =

(
xi, ya

)
, where i, j, k, ... = 1, 2, ..., n and

a, b, c, ... = n+ 1, n+ 2, ..., n+m. The metric is parametrized in the form

g = gij(u)ei ⊗ ej + hab(u)ea ⊗ eb (1)

where
ϑµ = [ϑi = dxi, ϑa = dya +Na

i (u)dxi] (2)
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is the dual frame to

eν = [ei =
∂

∂xi
−Na

i (u)
∂

∂ya
, ea =

∂

∂ya
]. (3)

Let us denote by π> : TV n+m → TV n the differential of a map π :
V n+m → V n defined by fiber preserving morphisms of the tangent bundles
TV n+m and TV n. The kernel of π>is just the vertical subspace vV n+m with
a related inclusion mapping i : vV n+m → TV n+m.

Definition 1.1 A nonlinear connection (N–connection) N on space V n+m is
defined by the splitting on the left of an exact sequence

0→ vV n+m → TV n+m → TV n+m/vV n+m → 0,

i. e. by a morphism of submanifolds N : TV n+m → vV n+m such that N ◦ i
is the unity in vV n+m.

Equivalently, a N–connection is defined by a Whitney sum of horizontal
(h) subspace (hV n+m) and vertical (v) subspaces,

TV n+m = hV n+m ⊕ vV n+m. (4)

A space provided with N–connection structure will be denoted V n+m
N . We shall

use boldfaced indices for the geometric objects adapted to N–connections. The
well known class of linear connections consists a particular subclass with the
coefficients being linear on ya, i. e. Na

i (u) = Γabj(x)y
b.

To any sets Na
i (u), we can associate certain anholonomic frames (2) and

(3), with associated N–connection structure, satisfying the anholonomy rela-
tions

[ϑα, ϑβ] = ϑαϑβ − ϑβϑα = W γ
αβϑγ

with (antisymmetric) nontrivial anholonomy coefficients W b
ia = ∂aN

b
i and

W a
ji = Ωa

ij , where Ωa
ij = e[iN

a
j] are the coefficients of the N–connection curva-

ture.
Essentially, the method to be presented in this work is based on the notion

of nonlinear connection (N–connection) and considers a Whitney-like splitting
of the tangent bundle to a manifold into a horizontal (see discussion and bib-
liography in Refs. [1, 2, 3]). Here we emphasize that the geometrical aspects
of the N–connection formalism has been studied since the first papers of E.
Cartan [4] and A. Kawaguchi [5, 6] (who used it in component form for in
Finsler geometry), then it should be mentioned the so called Ehressman con-
nection [7]) and the work of W. Barthel [8] where the global definition of



106 Nonlinear connections and exact solutions. . .

N–connection was given. The monograph [9] consider the N–connection for-
malism elaborated and applied to geometry of generalized Finsler–Lagrange
and Cartan–Hamilton spaces. There is a set of contributions by Spanish au-
thors, see, for instance, [10, 11, 12].

We considered N–connections for Clifford and spinor structures [13, 14],
on superbundles and (super) string theory [15] as well in noncommutative
geometry and gravity [16]. The idea to apply the N–connections formalism as
a new geometric method of constructins exact solutions in gravity theories was
suggested in Refs. [17, 18] and developed and applied in a number of works,
see for instance, Ref. [19, 20, 21]). This contribution outlines the author’s and
co–authors’ results.

2. N–distinguished Torsions and Curvatures

The geometric constructions can be adapted to the N–connection structure:

Definition 2.1 A distinguished connection (d–connection) D = {Γαβγ} on
V n+m
N is a linear connection conserving under parallelism the Whitney sum

(4).

Any d–connection D is represented by irreducible h- v–components Γαβγ =(
Lijk, L̃

a
bk, C

i
jc, C̃

a
bc

)
stated with respect to N–elongated frames (2) and (3).

This defines a N–adapted splitting into h– and v–covariant derivatives, D =
D[h] +D[v], where D[h] = (L, L̃) and D[v] = (C, C̃). A d–tensor (distinguished
tensor, for instance, a d–metric like (1)) formalism and d–covariant differential
and integral calculus can be elaborated [1] for spaces provided with general N–
connection, d–connection and d–metric structure and nontrivial nonmetricity

Qαβ $ −Dgαβ .

The simplest way is to use N–adapted differential forms like Γαβ = Γαβγϑ
γ with

the coefficients defined with respect to (2) and (3).

Theorem 2.2 The torsion T α + Dϑα = dϑα+Γαβ ∧ϑβ of a d–connection has
the irreducible h- v– components (d–torsions),

T ijk = Li [jk], T
i
ja = −T iaj = Cija, T

a
ji = Ωa

ji,

T abi = T aib =
∂Na

i

∂yb
− Labi, T abc = Ca[bc]. (1)

Proof. By a straightforward calculation we can verify the formulas.
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The Levi–Civita linear connection ∇ = {∇Γαβγ}, with vanishing torsion
and nonmetricity, is not adapted to the global splitting (4). One holds:

Proposition 2.3 There is a preferred, canonical d–connection structure, Γ̂,
on V n+m

N , constructed only from the metric coefficients [gij , hab, Na
i ] and sat-

isfying the conditions Q̂αβ = 0 and T̂ ijk = 0 and T̂ abc = 0.
Proof. By straightforward calculations with respect to the N–adapted

bases (2) and (3), we can verify that the connection

Γ̂αβγ = ∇Γαβγ + P̂α
βγ (2)

with the deformation d–tensor

P̂α
βγ = (P ijk = 0, P abk =

∂Na
k

∂yb
, P ijc = −1

2
gikΩa

kjhca, P
a
bc = 0)

satisfies the conditions of this Proposition. It should be noted that, in general,
the components T̂ ija, T̂

a
ji and T̂ abi are not zero. This is an anholonomic frame

(or, equivalently, off–diagonal metric) frame effect.

The torsion of the connection (2) is denoted T̂α
βγ . In a similar form we can

prove:

Theorem 2.4 The curvature Rαβ + DΓαβ = dΓαβ−Γγβ ∧Γαγ of a d–connection
Γαγ has the irreducible h- v– components (d–curvatures),

Rihjk = ekL
i
hj − ejLihk + LmhjL

i
mk − LmhkLimj − CihaΩa

kj ,

Rabjk = ekL
a
bj − ejLabk + LcbjL

a
ck − LcbkLacj − CabcΩc

kj ,

Rijka = eaL
i
jk −DkC

i
ja + CijbT

b
ka, (3)

Rcbka = eaL
c
bk −DkC

c
ba + CcbdT

c
ka,

Rijbc = ecC
i
jb − ebCijc + ChjbC

i
hc − ChjcCihb,

Rabcd = edC
a
bc − ecCabd + CebcC

a
ed − CebdCaec.

Contracting the components of (3) we prove:

Corollary 2.5 a) The Ricci d–tensor Rαβ + Rτ
αβτ has the irreducible h-

v–components

Rij + R
k
ijk, Ria + −Rkika, Rai + Rbaib, Rab + Rcabc. (4)

b) The scalar curvature of a d–connection is
←−
R + gαβRαβ = gijRij + habRab.

c) The Einstein d–densor is computed Gαβ = Rαβ − 1
2gαβ

←−
R.
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In modern gravity theories one considers more general linear connections
generated by deformations of type Γαβγ = Γ̂αβγ+Pα

βγ .We can split all geometric
objects into canonical and post-canonical pieces which results in N–adapted
geometric constructions. For instance,

Rαβ = R̂αβ + DPαβ + Pαγ ∧ P
γ
β (5)

for Pαβ = Pα
βγϑ

γ .

3. Anholonomic Frames and Nonmetricity
in String Gravity

For simplicity, we investigate here a class of spacetimes when the nonmetricity
and torsion have nontrivial components of type

T + eαcT α = κ0φ, Q +
1
4
gαβQαβ = κ1φ, Λ + ϑαeβc(Qαβ −Qgαβ) = κ2φ

(1)
where κ0, κ1, κ2 = const and φ = φαϑ

α. The abstract indices in (1) are
”upped” and ”lowed” by using ηάβ́ and its inverse defined from the vielbein
decompositions of d–metric, gαβ = eα

′
α eβ

′

β ηα′β′ .

Let us consider the strengths Hνµ + D̂νφµ − D̂µφν + W γ
µνφγ (intensity

of φγ) and Ĥνλρ + eνBλρ + eρBνλ + eλBρν (antysimmetric torsion of the
Bρν = −Bνρ from the bosonic model of string theory with dilaton field Φ)
and introduce

Hνλρ + Ẑνλρ + Ĥνλρ,

Ẑνλ + Ẑνλρϑρ = eλcT̂ν − eνcT̂λ +
1
2
(eνceλcT̂λ)ϑγ .

We denote the energy–momentums of fields:

Σ[φ]
αβ + H µ

α Hβµ −
1
4
gαβHνµHνµ + µ2(φαφβ −

1
2
gαβφνφν),

µ2 = const, Σ[mat]
αβ is the source from any possible matter fields and Σ[T ]

αβ(T̂ν ,Φ)
contains contributions of torsion and dilatonic fields.

Theorem 3.1 The dynamics of sigma model of bosonic string gravity with
generic off–diagonal metrics, effective matter and torsion and nonmetricity
(1) is defined by the system of field equations

R̂αβ −
1
2
gαβ
←−
R̂ = k(Σ[φ]

αβ + Σ[mat]
αβ + Σ[T ]

αβ), (2)

D̂νHνµ = µ2φµ, D̂ν(Hνλρ) = 0,
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where k = const, and the Euler–Lagrange equations for the matter fields are
considered on background V n+m

N ).
Proof. See details in Ref. [2].

In terms of differential forms the eqs. (2) are written

ηαβγ ∧ R̂βγ = Υ̂α, (3)

where, for the volume 4–form η + ∗1 with the Hodje operator ”∗”, ηα + eαcη,
ηαβ + eβcηα, ηαβγ + eγcηαβ , ..., R̂βγ is the curvature 2–form and Υα denote all
possible sources defined by using the canonical d–connection. The deformation
of connection (2) defines a deformation of the curvature tensor of type (5)
but with respect to the curvature of the Levi–Civita connection, ∇Rβγ . The
gravitational field equations (3) transforms into

ηαβγ ∧ ∇Rβγ + ηαβγ ∧ ∇Zβγ = Υ̂α, (4)

where ∇Zβ γ = ∇Pβ γ + Pβ α ∧ Pαγ .

Corollary 3.2 A subclass of solutions of the gravitational field equations for
the canonical d–connection defines also solutions of the Einstein equations for
the Levi–Civita connection if and only if ηαβγ ∧ ∇Zβγ = 0 and Υ̂α = ∇Υα,
(i. e. the effective source is the same for both type of connections).

Proof. It follows from the Theorem 3.1.
This property is very important for constructing exact solutions in Ein-

stein and string gravity, parametrized by generic off–diagonal metrics and ah-
nolonomic frames with associated N–connection structure (see Refs. in [1, 2]
and [3]) and equations (4)).

Let us consider a five dimensional ansatz for the metric (1) and frame (2)
when uα = (xi, y4 = v, y5); i = 1, 2, 3 and the coefficients

gij = diag[g1 = ±1, g2(x2, x3), g3(x2, x3)], hab = diag[h4(xk, v), h5(xk, v)],
N4
i = wi(xk, v), N5

i = ni(xk, v) (5)

are some functions of necessary smooth class. The partial derivative are briefly
denoted a• = ∂a/∂x2, a

′
= ∂a/∂x3, a∗ = ∂a/∂v.
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4. Main results:

Theorem 4.1 The nontrivial components of the Ricci d–tensors (4) for the
canonical d–connection (2) are

R2
2 = R3

3 = − 1
2g2g3

[g••3 −
g•2g

•
3

2g2
− (g•3)

2

2g3
+ g

′′
2 −

g′2g
′
3

2g3
− (g

′
2)

2

2g2
],

R4
4 = R5

5 = − 1
2h4h5

[h∗∗5 − h∗5(ln
∣∣∣√|h4h5|

∣∣∣)∗], (1)

R4i = −wi
β

2h5
− αi

2h5
, R5i = − h5

2h4
[n∗∗i + γn∗i ],

αi = ∂ih
∗
5−h∗5∂i ln

∣∣∣√|h4h5|
∣∣∣ , β = h∗∗5 −h∗5[ln

∣∣∣√|h4h5|
∣∣∣]∗, γ = 3h∗5/2h5−h∗4/h4

h∗4 6= 0 and h∗5 6= 0.

Proof. It is provided in Ref. [2].

Corollary 4.2 The Einstein equations (3) for the ansatz (5) are compatible
for vanishing sources and if and only if the nontricial components of the source,
with respect to the frames (3) and (2), are any functions of type

Υ̂2
2 = Υ̂3

3 = Υ2(x2, x3, v), Υ̂4
4 = Υ̂5

5 = Υ4(x2, x3) and Υ̂1
1 = Υ2 + Υ4.

Proof. The proof, see details in [2], follows from the Theorem 4.1 with the

nontrivial components of the Einstein d-tensor, Ĝα
β = R̂α

β−
1
2δ
α
β

←−
R̂, computed

to satisfy the conditions

G1
1 = −(R2

2 +R4
4), G

2
2 = G3

3 = −R4
4(x

2, x3, v), G4
4 = G5

5 = −R2
2(x

2, x3).

Having the values (1), we can proove [2] the

Theorem 4.3 The system of gravitational field equations (2) (equivalently,
of (3)) for the ansatz (5) can be solved in general form if there are given
certain values of functions g2(x2, x3) (or, inversely, g3(x2, x3)), h4(xi, v) (or,
inversely, h5(xi, v)) and of sources Υ2(x2, x3, v) and Υ4(x2, x3).

Finally, we note that we have elaborated a new geometric method of
constructing exact solutions in extra dimension gravity and general relativ-
ity theories. The classes of solutions define very general integral varieties
of the vacuum and nonvacuum Einstein equations, in general, with torsion
and nonmetricity and corrections from string theory, and/or noncommuta-
tive/quantum variables. For instance, in five dimensions, the metrics are
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generic off–diagonal and depend on four coordinates. So, we have proved
in explicit form how it is possible to solve the Einstein equations on nonholo-
nomic manifolds (see mathematical problems analized in Refs. [22, 23]), in
our case, provided with nonlinear connection structure.
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Abstract
Einstein-Rosen waves provide a non trivial, but tractable, symmetry reduction of
general relativity with local degrees of freedom. It is described by an axially sym-
metric scalar field evolving in an auxiliary Minkowskian background. We discuss
the use of commutators of this scalar field to study the quantum causal structure
of space-time, taking into account the fact that the physical Hamiltonian of the
system is a bounded function of a free field Hamiltonian. We will show that these
commutators have the features corresponding to interacting theories and study,
in a quantitative way, the smearing of light cones at the Planck scale and the
semiclassical limit of the model.

Keywords: Einstein-Rosen waves, microcausality, asymptotic analysis.
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1. Introduction

The main obstacles behind the unfruitful attempts to quantize general relativ-
ity are usually attributed to two properties of the classical theory. First, the
absence of background structures makes it a formidable task to construct the
quantum algebra of observables. Second, general relativity is a field theory so
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its quantum counterpart must belong to the class of quantum field theories,
with all the subtle functional problems inherent to it.

In order to deal with these issues, several families of solutions to the Ein-
stein equations have been discussed in the literature. In particular, Bianchi
models have been used to explore the problems related to the algebra of observ-
ables [1]. However, the phase space of Bianchi models is finite dimensional, so
the field-theoretical character of general relativity is absent in this approach.
To avoid this, we are forced to consider genuine field theories which do not
require a background space-time metric. In this sense, the Einstein-Rosen
waves [2, 3, 4] provide a valuable toy model to explore quantum gravity effects
because the degrees of freedom are described by an axially symmetric scalar
field. In this paper, we will show how to compute, in a quantitative way, the
smearing, at the Planck scale, of light cones of the Einstein-Rosen space-times.
Throughout the paper, we set c = ~ = 1 and denote G = ~G3, with G3 the
gravitational constant per unit length in the axis direction.

2. Classical Einstein-Rosen vaves

Einstein-Rosen waves, also known as linearly polarized cylindrical gravita-
tional waves, are space-times whose metric g satisfies the vacuum Einstein
equations and admit a two-parametric, Abelian, and orthogonally transitive
group of isometries [3]. These space-times have two linearly independent,
spacelike Killing fields, one of them axial, ξ(θ), and the other translational, ξ(Z).
The Killing fields are assumed to be mutually orthogonal, g(ξ(Z), ξ(θ)) = 0,
commuting, [ξ(θ), ξ(Z)] = 0, and generate a space-time foliation orthogonal to
the isometry orbits. Under these hypotheses it is possible to choose a system
of symmetry-adapted coordinates (t, R, θ, Z) ∈ R×R+× [0, 2π)×R such that
the line element takes the form

ds2 = e−ψ
[
−N2dt2 + eγ(dR+NRdt)2 + r2dθ2

]
+ eψdZ2 .

The smooth fields ψ, γ, r, N (lapse), and NR (radial shift) depend only on the
(t, R) coordinates and satisfy suitable boundary conditions at the symmetry
axis R = 0 and at spatial infinity R→∞ [2, 3].

After the gauge fixing [5] given by r(t, R) = R , πγ(t, R) = 0 (πγ is the
canonical momentum of the γ field), and introducing the new time coordinate
T = e−γ∞/2t, where γ∞ = limR→∞ γ, the line element takes the form

ds2gf = eγ−ψ(−dT 2 + dR2) + e−ψR2dθ2 + eψdZ2 .

Then, it is straightforward to show that the Einstein equations are equivalent
to the equation of a free, massless, cylindrically symmetric scalar field evolving
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in a Minkowski space-time

∂2ψ

∂T 2
− ∂2ψ

∂R2
− 1
R

∂ψ

∂R
= 0 . (1)

Thus, using the T -time and imposing regularity at the origin R = 0 [2], the
classical solutions for the field ψ can be expanded in the form (J0 is the zero
order Bessel function)

ψ(R, T ) =
√

4G
∫ ∞

0
J0(Rk)[A(k)e−ikT +A†(k)eikT ] dk ,

with an associated free Hamiltonian

γ∞ = H0 =
∫ ∞

0
kA†(k)A(k) dk .

Nevertheless, to reach a unit asymptotic timelike Killing vector field in
the actual four-dimensional spacetime, with respect to which one can truly
introduce a physical notion of energy per unit length [6], one must make use
of the original system of coordinates, namely (t, R, θ, Z). In these coordinates
the solutions take the form

ψE(R, t) =
√

4G
∫ ∞

0
J0(Rk)[A(k)e−ikte

−γ∞/2
+A†(k)eikte

−γ∞/2
] dk

and the true physical Hamiltonian is given by

H = E(H0) =
1

4G
(
1− e−4GH0

)
.

Notice that the physical Hamiltonian is bounded both from above and below.
This fact leaves a strong footprint on microcausality.

3. Quantum Einstein-Rosen waves: microcausality

Owing to the linear character of the field equation (1), the quantization of
the field ψ can be carried out in a standard way (technical details can be
found in [2, 4]). If we use the Schrödinger picture, operators do not evolve,
and we can introduce a Fock space in which the quantum counterpart of
ψ(R, 0) = ψE(R, 0) is an operator-valued distribution ψ̂(R, 0) = ψ̂E(R, 0).
Its action is determined by those of Â(k) and Â†(k), the usual annihilation
and creation operators, whose only non-vanishing commutators are

[Â(k1), Â†(k2)] = δ(k1 − k2).
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In terms of these operators

ψ̂(R, 0) = ψ̂E(R, 0) =
√

4G
∫ ∞

0
J0(Rk)

[
Â(k)+Â†(k)

]
dk.

In constrast, in the Heisenberg picture, operators change in time. In this
case we can consider the evolution of the quantum field ψ̂ from its value at
T = t = 0 given by the two Hamiltonians that appear in the problem

Ĥ0 =
∫ ∞

0
kÂ†(k)Â(k) dk , Ĥ = E(Ĥ0) =

1
4G

(
1− e−4GĤ0

)
.

The physical Hamiltonian Ĥ is related to the physical time t, and the auxil-
iary massless scalar field Hamiltonian Ĥ0 is associated with the time T of the
auxiliary three-dimensional Minkowski spacetime. The time evolution is pro-
vided by the unitary operators Û0(T ) = exp(−iT Ĥ0) and Û(t) = exp(−itĤ)
according to

ψ̂(R, T )= Û †0(T )ψ̂(R, 0)Û0(T )=
√

4G
∫ ∞

0
J0(Rk)[Â(k)e−ikT+Â†(k)eikT ]dk,

ψ̂E(R, t) = Û †(t)ψ̂E(R, 0)Û(t) =
√

4G
∫ ∞

0
J0(Rk)[ÂE(k, t)+ Â†E(k, t)]dk,

where

ÂE(k,t) :=exp
[
−itE(k)e−4GĤ0

]
Â(k), Â†E(k,t) :=Â†(k) exp

[
itE(k)e−4GĤ0

]
.

We will show now how the field commutators of the scalar field ψ, that
encodes the physical information in linearly polarized cylindrical waves, can be
used as an alternative to the metric operator to extract physical information
about quantum spacetime. In particular we will see how the light cones get
smeared by quantum corrections in a precise and quantitative way.

Let us start by computing the field commutator for the free Hamiltonian:

[ψ̂(R1, T1), ψ̂(R2, T2)] = 8iG
∫ ∞

0
J0(R1k)J0(R2k) sin[(T2 − T1)k] dk . (1)

This commutator is a c-number (proportional to the identity operator in the
Fock space) and shows the typical light cone structure found in standard per-
turbative quantum field theories. It is easy to prove that [ψ̂(R1, T1), ψ̂(R2, T2)]
vanishes outside the light cone, i.e. when 0 < |T2 − T1| < |R2 − R1| (Region
I). Inside the light cone [ψ̂(R1, T1), ψ̂(R2, T2)] can be written in terms of the
complete elliptic integrals

E(k) :=
∫ π

2

0

√
1− k2 sin2 θ dθ , K(k) :=

∫ π
2

0

dθ√
1− k2 sin2 θ

.
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Explicitly, in the region |R2 −R1| < |T2 − T1| < R2 +R1 (Region II) we get

[ψ̂(R1, T1), ψ̂(R2, T2)] =
i

π

8G√
R1R2

K

√(T2−T1)2−(R2−R1)2

4R1R2

 .

Finally, its value in the region R1 +R2 < |T2 − T1| (Region III) is

[ψ̂(R1, T1), ψ̂(R2, T2)]=
16Gi√

π2[(T2−T1)2−(R2−R1)2]
K

(√
4R1R2

(T2−T1)2−(R2−R1)2

)
.

On the other hand, the commutator for the physical Hamiltonian, as it
usually happens for interacting theories, is no longer a c-number, so one has
to consider its matrix elements. We will focus here on the vacuum expectation
value (v.e.v.)

〈0|[ψ̂E(R1, t1), ψ̂E(R2, t2)]|0〉

= 8iG
∫ ∞

0
J0(R1k)J0(R2k) sin

[
t2 − t1

4G

(
1− e−4Gk

)]
dk . (2)

In order to relate this v.e.v. to the free commutator (1), we will consider
the semiclassical limit corresponding to radial distances (and time intervals)
much larger than the Planck scale. To do this, it is convenient to introduce
the dimensionless parameters τ , ρ, and λ

R2 = ρR1 , t2 − t1 = τR1 , λ =
R1

4G
.

Then, it is possible to show [7] that the asymptotic behavior of (2) when
λ→∞ (semiclassical limit) in the different regions of the (ρ, τ) plane is given
by:
• If ρ = 0

2i
λ
=

[
i√

τ2 − 1
+
eiλ[τ−log τ−1]

√
log τ

]
+O

(
1
λ2

)
, if τ > 1 ,

i

λ2

τ(1 + 2τ2)
(1− τ2)5/2

+O

(
1
λ3

)
, if 0 ≤ τ < 1 .

• If ρ 6= 0
◦ Region I

−2iτ
πλ2

√
(1+ρ)2−τ2

{
τ2

[ρ4 + (τ2 − 1)2 − 2(1 + τ2)ρ2]
K

(√
4ρ

(1+ρ)2−τ2

)

− [1 + ρ4 + 2τ2 − 3τ4 + 2ρ2(τ2 − 1)]
[(1+ρ)2−τ2](1− ρ+ τ)2(ρ− 1 + τ)2

E

(√
4ρ

(1+ρ)2−τ2

)}
+O

(
1
λ3

)
.
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◦ Region II

2i
πλ
√
ρ

K

(√
τ2−(ρ−1)2

4ρ

)
+

2i
λ
=

[
e−

πi
4 e

iλ[τ+|ρ−1|(1+log τ
|1−ρ| )]√

2πλρ|1− ρ| log τ
|1−ρ|

]
+O

(
1
λ5/2

)
.

◦ Region III
4i

πλ
√
τ2 − (1− ρ)2

K

(√
4ρ

τ2 − (1− ρ)2

)

+
2i
λ
=

[
e−

πi
4 e

iλ[τ−|ρ−1|(1+log τ
|1−ρ| )]√

2πλρ|1− ρ| log τ
|1−ρ|

+
e

πi
4 eiλ[τ+(1+ρ)(log 1+ρ

τ
−1)]√

2πλρ(1 + ρ) log τ
1+ρ

]
+O

(
1
λ5/2

)
.

The terms proportional to 1/λ in the above asymptotic expansions cor-
respond to the commutator obtained from the free Hamiltonian Ĥ0, both in
the axis ρ = 0 and outside the axis. The remaining terms are corrections to
this free commutator that fall off to zero faster than 1/λ (except when ρ = 0
and τ > 1), and have an additional, non-perturbative dependence in λ (dif-
ferent from an inverse power dependence). Inasmuch as the free commutator
defines a characteristic light cone structure, these terms are responsible for
the smearing of the light cones of the model.
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Four-dimensional pointwise Osserman manifolds with a local structure of twisted
product are analyzed, showing that they must be necessarily of constant sectional
curvature.
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1. Introduction

The classification of pointwise Osserman (semi)-Riemannian manifolds in di-
mension four is still an open problem. In this work we deal with such man-
ifolds assuming they have a local structure of twisted product. Under this
assumption we show that the pointwise Osserman condition is equivalent to
the constancy of the sectional curvature. Since in any pointwise Osserman
manifold there is a local choice of orientation such that the manifold is Ein-
stein self-dual (or Einstein anti-self-dual), the result (cf. Theorem 4.2) is
obtained as a consequence of two facts. On the one hand, if the dimension of

0Work partially supported by project BFM2003-02949 Spain.
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the fibre of the twisted product is greater than one then the Einstein condi-
tion lets us reduce the twisted product structure to a warped product one [4].
On the other hand, self-duality and anti-self-duality are equivalent for four-
dimensional semi-Riemannian manifolds which are locally a twisted product
with fibre of dimension different from two (cf. Theorem 3.1), and also for
those which are locally a warped product, even if the fibre is two-dimensional
(cf. Theorem 4.1).

2. Preliminaries

First we fix some notation and criteria to be used in what follows. Let (M, g) be
an n-dimensional semi-Riemannian manifold with Levi-Civita connection ∇.
The Riemannian curvature tensor R is the (1, 3)-tensor field on M defined by
R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z, for all vector fields X,Y, Z ∈ X(M). The
Ricci curvature is the contraction of the curvature tensor given by Ric(X,Y )
= Tr{U  R(X,U)Y }, for all X,Y ∈ X(M). Finally, the scalar curvature is
obtained by contracting the Ricci tensor, Sc = Tr(Ric).

2.1. Warped and twisted product metrics

Let (B, gB) and (F, gF ) be semi-Riemannian manifolds and P = B × F the
product manifold. The product metric tensor on P is given by π∗(gB)+σ∗(gF ),
where π and σ denote the projections of B × F onto B and F , respectively.
Considering a smooth real-valued function f > 0 on B, the warped product
P = B ×f F is the product manifold B × F endowed with the metric tensor

g = π∗(gB) + (f ◦ π)2 σ∗(gF ).
It is interesting to emphasize that warped products appear quite naturally
as open dense submanifolds of certain complete manifolds (see [2] for more
details).

Now, if the function f > 0 is defined on the product manifold B × F , the
resulting metric g = π∗(gB)+f2σ∗(gF ) is called the twisted product P = B×fF
[9]. In any of the cases above, the factors (B, gB) and (FgF ) are referred as the
base and the fibre of the product structure. The differences among the product
structures above can be expressed in terms of the geometry of the leaves and
the fibres of the product as in [9]. For our purpose here, the following criteria
for a twisted product to be warped is of interest

Lemma 2.1 [4] Let P = B ×f F be a twisted product of semi-Riemannian
manifolds (B, gB) and (F, gF ), with dimF > 1, such that P is Einstein. Then
it is possible to write P as a warped product of (B, gB) and (F, g̃F ), where g̃F
is a metric tensor conformally equivalent to gF .
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2.2. The Weyl tensor and curvature decomposition

The curvature tensor R of any semi-Riemannian manifold can be decomposed
as R = U ⊕ Z ⊕W , [7], where

U = Sc
n(n−1)R

0

Z = 1
n−2

(
Ric− Sc

n g
)
• g

W = R− U − Z = R− 1
n−2

(
Ric− Sc

2(n−1) g
)
• g.

Here W denotes the Weyl tensor of the semi-Riemannian manifold and •
expresses the Kulkarni-Nomizu product of symmetric (0, 2)-tensors, defined
by:

(A •B)(X,Y, Z,W ) = A(X,Z)B(Y,W ) +A(Y,W )B(X,Z)
−A(X,W )B(Y, Z)−A(Y, Z)B(X,W ).

The manifold is said to be Einstein if Z = 0 and locally conformally flat if
W = 0. In what follows we will use the following

Lemma 2.2 [7] Let (M, g) be a semi-Riemannian manifold. (M, g) has con-
stant sectional curvature if and only if Z = W = 0, i.e., (M, g) is Einstein
and locally conformally flat.

2.3. Pointwise Osserman and self-duality/anti-self-duality

Let (M, g) be a semi-Riemannian manifold and denote by S±(M) the bundle
of unit tangent vectors. The Jacobi operator associated to X ∈ S±(M) is
defined by

J (X) : Y ∈ 〈X〉⊥ 7→ R(X,Y )X ∈ 〈X〉⊥.

(M, g) is said to be Osserman if the eigenvalues of the Jacobi operator J are
constant on S±(M) and it is said to be pointwise Osserman if the eigenvalues
of J are constant on S±(TpM) for all p ∈ M , but possibly changing from
point to point (cf. [5]).

In what follows (M, g) is assumed to be 4-dimensional and let {e1, e2, e3,
e4} be an orthonormal local frame. Denoting by Λ the space of 2-forms, i.e.,
Λ = 〈{ei ∧ ej : i, j ∈ {1, 2, 3, 4}, i < j}〉, the Hodge operator ? : Λ −→ Λ is
defined by:

ei ∧ ej ∧ ?(ek ∧ el) = (δikδ
j
l − δ

i
lδ
j
k) εiεj e

1 ∧ e2 ∧ e3 ∧ e4,
where εi = 〈ei, ei〉. Now, note that the Hodge operator satisfies ?2 = id if the
metric signature is (+ + ++) or (+ +−−) and it is a complex structure on Λ
for Lorentzian signature. Let Λ+ and Λ− be the eigenspaces corresponding to
the eigenvalues 1 and −1, respectively, that is,

Λ = Λ+ ⊕ Λ−, Λ+ = {α ∈ Λ : ?α = α}, Λ− = {α ∈ Λ : ?α = −α},
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and denote by W± the restriction of W to the spaces Λ±. Viewing the curva-
ture tensor R as R : Λ −→ Λ, we say that R is self-dual (resp., anti-self-dual)
if W− = 0 (resp., W+ = 0).

Theorem 2.3 [5] Let (M, g) be a 4-dimensional semi-Riemannian manifold.
Then the following statements are equivalent:

– (M, g) is pointwise Osserman.

– Locally there is a choice of orientation for M such that it is Einstein
self-dual (or Einstein anti-self-dual).

It is worth to emphasize at this point that a pointwise Osserman manifold
is necessarily of constant curvature in Lorentzian signature [5]. Furthermore
note that self-duality and anti-self-duality are also equivalent for Lorentzian
manifolds.

3. Four-dimensional twisted product manifolds

Let P = B ×f F be a 4-dimensional twisted product and {e1, e2, e3, e4} be
an orthonormal local frame. Now local basis of the spaces of self-dual and
anti-self-dual 2-forms can be constructed as

Λ± = 〈
{
E±1 , E

±
2 , E

±
3

}
〉

where
E±1 =

e1 ∧ e2 ± ε3ε4e
3 ∧ e4

√
2

, E±2 =
e1 ∧ e3 ∓ ε2ε4e

2 ∧ e4

√
2

, E±3 =
e1 ∧ e4 ± ε2ε3e

2 ∧ e3

√
2

and εk = g(ek, ek). Further, one can write the matrices corresponding to the
self-dual and anti-self-dual components of the Weyl tensor in the basis above
to obtain:

(∗) If P = B ×f F is a twisted product with 3-dimensional fibre, then

W+ =

0
BBBB@

ε1ε2W
+
11 ε1ε2W

+
12 ε1ε2W

+
13

ε1ε3W
+
12 ε1ε3W

+
22 ε1ε3W

+
23

ε1ε4W
+
13 ε1ε4W

+
23 ε1ε4W

+
33

1
CCCCA

=

0
BBBB@

ε1ε2W
−
11 ε1ε2W

−
12 ε1ε2W

−
13

ε1ε3W
−
12 ε1ε3W

−
22 ε1ε3W

−
23

ε1ε4W
−
13 ε1ε4W

−
23 ε1ε4W

−
33

1
CCCCA

= W−

(∗∗) If P = B ×f F is a twisted product with 1-dimensional fibre, then

W+ =

0
BBBB@

ε1ε2W
+
11 ε1ε2W

+
12 ε1ε2W

+
13

ε1ε3W
+
12 ε1ε3W

+
22 ε1ε3W

+
23

ε1ε4W
+
13 ε1ε4W

+
23 ε1ε4W

+
33

1
CCCCA

=

0
BBBB@

ε1ε2W
−
11 ε1ε2W

−
12 −ε1ε2W

−
13

ε1ε3W
−
12 ε1ε3W

−
22 −ε1ε3W

−
23

−ε1ε4W
−
13 −ε1ε4W

−
23 ε1ε4W

−
33

1
CCCCA

As a consequence of the above relations (∗) and (∗∗) we get the following:
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Theorem 3.1 A four-dimensional semi-Riemannian manifold which is locally
a twisted product with fibre of dimension one or three is self-dual if and only
if it is anti-self-dual, i.e.,

W− = 0⇔W+ = 0.

Note in the theorem above that W+ = W− if the fibre is of dimension 3,
but not necessarily in the case of 1-dimensional fibre.

Remark 3.2 If P = B×f F is a twisted product with two-dimensional fibre,
then self-duality and anti-self-duality are not equivalent properties. Indeed,
one has the following relations between W+ and W−:

W+ =

0
BBBB@

ε1ε2W
+
11 ε1ε2W

+
12 ε1ε2W

+
13

ε1ε3W
+
12 ε1ε3W

+
22 0

ε1ε4W
+
13 0 ε1ε4W

+
33

1
CCCCA

; W− =

0
BBBB@

ε1ε2W
−
11 ε1ε2W

−
12 ε1ε2W

−
13

ε1ε3W
−
12 ε1ε3W

−
22 0

ε1ε4W
−
13 0 ε1ε4W

−
33

1
CCCCA

,

where W+
11 = W−

11, W
+
22 = W−

22 and W+
33 = W−

33, but W+
12 and W+

13 are not
necessarily equal to W−

12 and W−
13, respectively. This can be easily checked

in P = R2 ×f R2, where one takes f(x1, x2, x3, x4) = ex1x3−x2x4 as twisting
function.

4. Four-dimensional pointwise Osserman twisted
products

In this section we prove the main results of this paper.

Theorem 4.1 Let (P, g) be a 4-dimensional semi-Riemannian manifold which
is locally a warped product. Then (P, g) is pointwise Osserman if and only if
it has constant sectional curvature.

Proof. First note that for a 4-dimensional warped product with 2-dimensional
fibre the self-dual and the anti-self-dual conditions are equivalent, since

W+ =

0
BBBB@

ε1ε2W
+
11 0 0

0 ε1ε3W
+
22 0

0 0 ε1ε4W
+
33

1
CCCCA

=

0
BBBB@

ε1ε2W
−
11 0 0

0 ε1ε3W
−
22 0

0 0 ε1ε4W
−
33

1
CCCCA

= W−.

Next suppose the warped product is pointwise Osserman. From Theorem
2.3 we can choose an orientation such that the manifold is Einstein and self-
dual. Therefore, the above equivalence together with Theorem 3.1 imply that
W = 0. Thus the warped product is Einstein and locally conformally flat, and
then it must have constant sectional curvature. The converse is clearly true.
�
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Theorem 4.2 Let (P, g) be a 4-dimensional semi-Riemannian manifold which
is locally a twisted product. Then (P, g) is pointwise Osserman if and only if
it has constant sectional curvature.

Proof. Suppose the twisted product is pointwise Osserman. First note that
if the fibre is 1 or 3-dimensional, then the proof is analogous to the proof of
the previous result just using Theorem 3.1. Now, if the fibre is 2-dimensional,
since any pointwise Osserman manifold is Einstein, then Lemma 2.1 lets us
reduce the twisted product to a warped product, and thus the constancy of
the sectional curvature follows from Theorem 4.1. �
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The Reflection Principle for flat surfaces

in S3
1

José M. Espinar
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Abstract

In this paper we derive a reflection principle for spacelike flat surfaces in the three-
dimensional De-Sitter space.

Keywords: Reflection principle, flat surfaces.

1. Introduction

In the past two decades there has been a special interest in the study of surfaces
admitting a conformal representation, mainly due to the fact that the global
results from Complex Analysis can be applied to their study.

The most representative example is the theory of minimal surfaces in R3,
but there are many others, like maximal surfaces in L3, surfaces with H = 1
in H3 and S3

1, flat surfaces in H3 and S3
1, etc.

In this paper we extend the classical Schwarz reflection principle for min-
imal surfaces of R3 to the case of spacelike flat surfaces in S3

1. Essentially, we
prove that a spacelike flat surface in S3

1 meeting orthogonally a totally geodesic
de Sitter plane P can be analytically reflected across P so that the extended
surface is flat and symmetric with respect to P. For this, we use the complex
representation of flat surfaces in S3

1 derived in [2] (and [1]). The Schwarz re-
flection principle has been extended to other classes of surfaces, like Bryant
surfaces and flat surfaces in H3 and maximal surfaces in Ln (see [3, 4, 6]).
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2. Reflection Principle

Let us denote by L4 the 4-dimensional Lorentz-Minkowski space given as the
vector space R4 with the Lorentzian metric 〈, 〉 induced by the quadratic form
−x2

0+x
2
1+x

2
2+x

2
3, and consider the de Sitter 3-space, realized as the Lorentzian

submanifold

S3
1 =

{
(x0, x1, x2, x3) ∈ L4 : −x2

0 + x2
1 + x2

2 + x2
3 = 1

}
.

Let ∧ be the cross product of S3
1 associated to the induced metric,

u ∧ v = p× u× v ∀u, v ∈ TpS3
1, (1)

where p×u×v is the unique vector in L4 such that 〈p×u×v, w〉 = det(p, u, v, w)
for all w ∈ L4. We will also consider the positive null cone, given by

N3
+ =

{
(x0, x1, x2, x3) ∈ L4 : −x2

0 + x2
1 + x2

2 + x2
3 = 0, x0 > 0

}
.

The quotient N3
+/R+, which can be considered as the upper connected com-

ponent of the ideal boundary of S3
1 at infinity, inherits a natural conformal

structure. Observe that, by means of the map

(x0, x1, x2, x3) 7−→
x1 + ix2

x0 + x3
,

we can identify N3
+/R+ with a sphere S2

+∞ ≡ C ∪ {∞}.
In addition, L4 will be considered as the space of 2×2 Hermitian matrices,

Herm(2), in the following way

(x0, x1, x2, x3) 7−→

(
x0 − x3 x1 + ix2

x1 − ix2 x0 + x3

)
,

where 〈m,m〉 = −det(m) for all m ∈ Herm(2). Thus, S3
1 corresponds to the

set of matrices with determinant −1. Moreover, the action of SL(2,C) on
Herm(2)

g ·m = gmg∗ , g ∈ Herm(2) and g∗ = tg,

preserves the inner product, orientations and, therefore, S3
1 remains unchanged.

In this model the positive null cone can be regarded as the set of positive
semi-definite Hermitian matrices with vanishing determinant and its elements
can be written as w tw, where tw = (w1, w2) is a non zero vector in C2 uniquely
determined, up to multiplication, by an unimodular complex number. More-
over, the map w tw → [(w1, w2)] ∈ CP1 induces one from N3/R+ which iden-
tifies S2

+∞ with CP1. Thereby, the natural action of SL(2,C) on S2
+∞ is the

action of SL(2,C) on CP1 by Möbius transformations.
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Next, let us consider ψ : S −→ S3
1 a flat spacelike immersion from a

simply-connected surface S in the de Sitter space, and let η be its Gauss map.
We will denote by G+ := [ψ+η] and G− := [ψ−η] the hyperbolic Gauss maps
of ψ.

Observe that the geodesic curve in S3
1 passing through a point ψ(p) with

speed η(p), is given by

γψ(p),η(p)(t) = cosh(t)ψ(p) + sinh(t)η(p) , t ∈ R

and therefore has two ends, one in each component of the boundary of S3
1 at

infinity. Then, up to an isometry of S3
1, we have that (ψ + η)(S) ⊂ N3

+ and
(ψ − η)(S) ⊂ N3

−, and we can take

G = (G+, G−) : S −→ S2
+∞ × S2

−∞.

Now, see [1] or [2], flat surfaces in S3
1 have a Weierstrass representation in

terms of a meromorphic map, h, and an holomorphic 1-form, ω = f dz, called
Weierstrass data of the immersion. Specifically,

ψ = g

(
1 0
0 −1

)
g∗ and η = gg∗, (2)

where g : S −→ SL(2,C) is a meromorphic curve such that

g−1dg =

(
0 ω

dh 0

)
. (3)

Let (h(z), f(z)dz) be the Weierstrass data associated to ψ, being z an
arbitrary parameter and f a holomorphic function. Then, if we put

g =

(
C H

D J

)
,

it follows from (3) that

d

dz

(
C H

D J

)
=

(
C H

D J

)(
0 f

hz 0

)

and consequently

H =
1
hz
Cz, J =

1
hz
Dz.
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Therefore, C and D are linearly independent solutions of the differential equa-
tion

Xzz −
hzz
hz

Xz − fhzX = 0. (4)

Conversely, if C, D are linearly independent solutions of (4), then 1
hz

(CDz −
DCz) is constant. Thus, we can choose C, D such that

g =

(
C 1

hz
Cz

D 1
hz
Dz

)
∈ SL(2,C). (5)

Hence, the hyperbolic Gauss maps become

G+ := [ψ + η] =
C

D
, G− := [ψ − η] =

Cz
Dz

from where
G+ −G− =

hz
DDz

, G+
z = − hz

D2

So,

ξ(z) := D(z)−1 = c0 exp
∫ z

z0

dG+

G+ −G−

being z0 ∈ S a fixed point and c0 = D(z0)−1.
In this way we obtain an expression for g in terms of its hyperbolic Gauss

maps:

g =

(
G+/ξ ξG−/(G+ −G−)
1/ξ ξ/(G+ −G−)

)
∈ SL(2,C). (6)

Let S2
1 denote the set

{
(x0, x1, x2, x3) ∈ S3

1 : x2 = 0
}
. Let O denote a

domain in the complex plane which is symmetric with respect to the real axis,
and set

O+ := O ∩ {z ∈ C : Imz > 0} ,
O− := O ∩ {z ∈ C : Imz < 0} ,
I := O ∩ {z ∈ C : Imz = 0} .

Assume also that I is an open set of R.

Theorem 2.1 Let ψ ∈ C1(O+ ∪ I,S3
1) be a flat spacelike surface such that

ψ|I ⊂ S2
1 . Assume that the unit normal vector field, η, to ψ verifies η|I ⊂ S2

1.
Then ψ can be extended across I on all of O by reflection about S2

1, and the
extension is defined by

(ψ0(z̄), ψ1(z̄), ψ2(z̄), ψ3(z̄)) = (ψ0(z), ψ1(z),−ψ2(z), ψ3(z)), z ∈ O−
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Proof: Using the hypothesis

Im G+
∣∣
I = 0, Im G−

∣∣
I = 0

and by applying Schwarz Reflection Principle for holomorphic functions to G+

and G− we get

1. G+ and G− can be extended across I on all of O, and the extension is
defined by

G+(z) = G+(z̄), G−(z) = G−(z̄),

and from here ∣∣G+(z)
∣∣ = ∣∣G+(z̄)

∣∣ , ∣∣G−(z)
∣∣ = ∣∣G−(z̄)

∣∣ .
2. ξ can be extended across I on all of O, and the extension is defined by

ξ(z) =
c0
c0
ξ(z̄),

and
|ξ(z)| = |ξ(z̄)| .

From (2)

ψ =
1

|ξ|2 |G+ −G−|2

(
|G+|2 |G+ −G−|2 − |ξ|4 |G−|2 |G+ −G−|2G+ − |ξ|4G−

|G+ −G−|2 Ḡ+ − |ξ|4 Ḡ− |G+ −G−|2 − |ξ|4 .

)
Then we have

ψ0 =
|G+ −G−|2 (|G+|2 + 1)− |ξ|4 (|G−|2 + 1)

2 |ξ|2 |G+ −G−|2

ψ1 =
|G+ −G−|2 ReG+ − |ξ|4 ReG−

|ξ|2 |G+ −G−|2

ψ2 =
|G+ −G−|2 ImG+ − |ξ|4 ImG−

|ξ|2 |G+ −G−|2

ψ3 =
|G+ −G−|2 (|G+|2 − 1)− |ξ|4 (|G−|2 − 1)

2 |ξ|2 |G+ −G−|2
.

(7)

The formula we wanted to proof follows from a straightforward computation
in (7) using 1. and 2.
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