Grupos y Anillos. Grado en Matemáticas. 2012-13. Examen de febrero. Teoría

Todas las preguntas tienen un valor de 1.5 puntos.

- 1. Sea D un dominio de ideales principales. Demostrar que si I es un ideal no nulo de D entonces I es ideal maximal si y sólo si es primo si y sólo si está generado por un elemento irreducible. Utilizar esto para demostrar que D es un dominio de factorización única.
- 2. Demostrar que toda permutación es producto de trasposiciones de la forma (1,i).

Grupos y Anillos. Grado en Matemáticas. 2012-13. Examen de febrero. **Problemas**

Todas las preguntas tienen un valor de 1.5 puntos menos la última que vale 1 punto.

- 1. Sean A_1 y A_2 dos anillos. Demostrar que los ideales de $A_1 \times A_2$ son los subconjuntos de
- la forma $I_1 \times I_2$ donde I_1 es un ideal de A_1 e I_2 es un ideal de A_2 . 2. Sea $\omega = \frac{-1+\sqrt{-3}}{2}$ una raíz cúbica de 1 y sea $D = \mathbb{Z}[\omega] = \{a + b\omega : a, b \in \mathbb{Z}\}$. Demostrar que D es un subanillo del anillo de números complejos y que $\delta(a+b\omega)=a^2-ab+b^2$ es una función euclídea en D. Calcular las unidades de D.
- 3. Sea H un subgrupo de un grupo G. Demostrar que $\bigcap_{g \in G} g^{-1}Hg$ es el mayor subgrupo normal de G contenido en H y el subgrupo generado por $\bigcup_{g \in G} g^{-1}Hg$ es el menor subgrupo normal de G que contiene a H.
- 4. Sea A_4 el grupo alternado en 4 símbolos y sean $a, b \in A_4 \setminus \{1\}$. Supongamos que a es 3-ciclo y b no es un 3-ciclo.
 - a) Describir el tipo de b.
 - b) Demostrar que $A_4 = \langle a, b \rangle$.
 - c) Para cada divisor d de 12, calcular el número de subgrupos de A_4 de orden d.
- 5. Sean G_1 y G_2 dos grupos, $N_1 \subseteq G_1$ y $N_2 \subseteq G_2$. Demostrar que $(G_1 \times G_2)/(N_1 \times N_2) \cong$ $G_1/N_1 \times G_2/N_2$.