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Abstract
The title “Wedderga” stands for “WEDDERburn decomposition of Group Algebras. This is a GAP package
to compute the simple components of the Wedderburn decomposition of semisimple group algebras of finite
groups over finite fields and over subfields of finite cyclotomic extensions of the rationals. It also contains
functions that produce the primitive central idempotents of semisimple group algebras. Other functions of
Wedderga allow to construct crossed products over a group with coefficients in an associative ring with identity
and the multiplication determined by a given action and twisting.

Copyright
c© 2006-2008 by Osnel Broche Cristo, Alexander Konovalov, Aurora Olivieri, Gabriela Olteanu and Ángel del

Rı́o.
Wedderga is free software; you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version. For details, see the FSF’s own site http://www.gnu.org/licenses/gpl.html.

If you obtained Wedderga, we would be grateful for a short notification sent to one of the authors.
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following form:
O. Broche Cristo, A. Konovalov, A. Olivieri, G. Olteanu and Á. del Rı́o. Wedderga — Wedderburn

Decomposition of Group Algebras, Version 4.3.3; 2009 (http://www.um.es/adelrio/wedderga.htm).
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Chapter 1

Introduction

1.1 General aims of Wedderga package

The title “Wedderga” stands for “WEDDERburn decomposition of Group Algebras”. This is a GAP
package to compute the simple components of the Wedderburn decomposition of semisimple group
algebras. So the main functions of the package returns a list of simple algebras whose direct sum is
isomorphic to the group algebra given as input.

The method implemented by the package produces the Wedderburn decomposition of a group
algebra FG provided G is a finite group and F is either a finite field of characteristic coprime to the
order of G, or an abelian number field (i.e. a subfield of a finite cyclotomic extension of the rationals).

Other functions of Wedderga compute the primitive central idempotents of semisimple group
algebras.

The package also provides functions to construct crossed products over a group with coefficients
in an associative ring with identity and the multiplication determined by a given action and twisting.

1.2 Main functions of Wedderga package

The main functions of Wedderga are WedderburnDecomposition (2.1.1) and
WedderburnDecompositionInfo (2.1.2).

WedderburnDecomposition (2.1.1) computes a list of simple algebras such that their direct prod-
uct is isomorphic to the group algebra FG, given as input. Thus, the direct product of the entries of
the output is the Wedderburn decomposition (7.3) of FG.

If F is an abelian number field then the entries of the output are given as matrix algebras over
cyclotomic algebras (see 7.11), thus, the entries of the output of WedderburnDecomposition (2.1.1)
are realizations of the Wedderburn components (7.3) of FG as algebras which are Brauer equivalent
(7.5) to cyclotomic algebras (7.11). Recall that the Brauer-Witt Theorem ensures that every simple
factor of a semisimple group ring FG is Brauer equivalent (that is represents the same class in the
Brauer group of its centre) to a cyclotomic algebra ([Yam74]. In this case the algorithm is based in a
computational oriented proof of the Brauer-Witt Theorem due to Olteanu [Olt07] which uses previous
work by Olivieri, del Rı́o and Simón [OdRS04] for rational group algebras of strongly monomial
groups (7.16).

The Wedderburn components of FG are also matrix algebras over division rings which are finite
extensions of the field F . If F is finite then by the Wedderburn theorem these division rings are finite

5
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fields. In this case the output of WedderburnDecomposition (2.1.1) represents the factors of FG as
matrix algebras over finite extensions of the field F .

In theory Wedderga could handle the calculation of the Wedderburn decomposition of group al-
gebras of groups of arbitrary size but in practice if the order of the group is greater than 5000 then the
program may crash. The way the group is given is relevant for the performance. Usually the program
works better for groups given as permutation groups or pc groups.

Example

gap> LoadPackage("wedderga");
-----------------------------------------------------------------------------
Loading Wedderga 4.3.3 (Wedderga)
by Osnel Broche Cristo (osnel@ufla.br),

Alexander Konovalov (http://www.cs.st-andrews.ac.uk/˜alexk/),
Gabriela Olteanu (golteanu@um.es, olteanu@math.ubbcluj.ro),
Aurora Olivieri (olivieri@usb.ve), and
Angel del Rio (http://www.um.es/adelrio).

-----------------------------------------------------------------------------
true
gap> QG := GroupRing( Rationals, SymmetricGroup(4) );
<algebra-with-one over Rationals, with 2 generators>
gap> WedderburnDecomposition(QG);
[ Rationals, Rationals, ( Rationalsˆ[ 3, 3 ] ), ( Rationalsˆ[ 3, 3 ] ),
<crossed product with center Rationals over CF(3) of a group of size 2> ]

gap> FG := GroupRing( CF(5), SymmetricGroup(4) );
<algebra-with-one over CF(5), with 2 generators>
gap> WedderburnDecomposition( FG );
[ CF(5), CF(5), ( CF(5)ˆ[ 3, 3 ] ), ( CF(5)ˆ[ 3, 3 ] ),
<crossed product with center CF(5) over AsField( CF(5), CF(
15) ) of a group of size 2> ]

gap> FG := GroupRing( GF(5), SymmetricGroup(4) );
<algebra-with-one over GF(5), with 2 generators>
gap> WedderburnDecomposition( FG );
[ ( GF(5)ˆ[ 1, 1 ] ), ( GF(5)ˆ[ 1, 1 ] ), ( GF(5)ˆ[ 2, 2 ] ),
( GF(5)ˆ[ 3, 3 ] ), ( GF(5)ˆ[ 3, 3 ] ) ]

gap> FG := GroupRing( GF(5), SmallGroup(24,3) );
<algebra-with-one over GF(5), with 4 generators>
gap> WedderburnDecomposition( FG );
[ ( GF(5)ˆ[ 1, 1 ] ), ( GF(5ˆ2)ˆ[ 1, 1 ] ), ( GF(5)ˆ[ 2, 2 ] ),
( GF(5ˆ2)ˆ[ 2, 2 ] ), ( GF(5)ˆ[ 3, 3 ] ) ]

Instead of WedderburnDecomposition (2.1.1), that returns a list of GAP objects,
WedderburnDecompositionInfo (2.1.2) returns the numerical description of these objects.
See Section 7.12 for theoretical background.

1.3 Installation and system requirements

Wedderga does not use external binaries and, therefore, works without restrictions on the type of the
operating system. It is designed for GAP4.4 and no compatibility with previous releases of GAP4 is
guaranteed.
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To use the Wedderga online help it is necessary to install the GAP4 package GAP-
Doc by Frank Lübeck and Max Neunhöffer, which is available from the GAP site or from
http://www.math.rwth-aachen.de/˜Frank.Luebeck/GAPDoc/.

Wedderga is distributed in standard formats (tar.gz, tar.bz2, -win.zip)
and can be obtained from http://www.um.es/adelrio/wedderga.htm, its mir-
ror http://www.cs.st-andrews.ac.uk/˜alexk/wedderga.htm or the page
http://www.gap-system.org/Packages/wedderga.html at the GAP web site. The latter
also offers zoo-archive. To unpack the archive wedderga-X.X.X.zoo you need the program unzoo,
which can be obtained from the GAP homepage http://www.gap-system.org/ (see section
‘Distribution’). To install Wedderga, copy this archive into the pkg subdirectory of your GAP4.4
installation. The subdirectory wedderga will be created in the pkg directory after the following
command:

unzoo -x wedderga-X.X.X.zoo
When you don’t have access to the directory of your main GAP installation, you can also install

the package outside the GAP main directory by unpacking it inside a directory MYGAPDIR/pkg. Then
to be able to load Wedderga you need to call GAP with the -l ";MYGAPDIR" option.

Installation using other archive formats is performed in a similar way.

http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/
http://www.um.es/adelrio/wedderga.htm
http://www.cs.st-andrews.ac.uk/~alexk/wedderga.htm
http://www.gap-system.org/Packages/wedderga.html
http://www.gap-system.org/


Chapter 2

Wedderburn decomposition

2.1 Wedderburn decomposition

2.1.1 WedderburnDecomposition

♦ WedderburnDecomposition(FG) (attribute)

Returns: A list of simple algebras.
The input FG should be a group algebra of a finite group G over the field F , where F is either an

abelian number field (i.e. a subfield of a finite cyclotomic extension of the rationals) or a finite field
of characteristic coprime with the order of G.

The function returns the list of all Wedderburn components (7.3) of the group algebra FG. If F is
an abelian number field then each Wedderburn component is given as a matrix algebra of a cyclotomic
algebra (7.11). If F is a finite field then the Wedderburn components are given as matrix algebras
over finite fields.

Example

gap> WedderburnDecomposition( GroupRing( GF(5), DihedralGroup(16) ) );
[ ( GF(5)ˆ[ 1, 1 ] ), ( GF(5)ˆ[ 1, 1 ] ), ( GF(5)ˆ[ 1, 1 ] ),
( GF(5)ˆ[ 1, 1 ] ), ( GF(5)ˆ[ 2, 2 ] ), ( GF(5ˆ2)ˆ[ 2, 2 ] ) ]

gap> WedderburnDecomposition( GroupRing( Rationals, DihedralGroup(16) ) );
[ Rationals, Rationals, Rationals, Rationals, ( Rationalsˆ[ 2, 2 ] ),
<crossed product with center NF(8,[ 1, 7 ]) over AsField( NF(8,
[ 1, 7 ]), CF(8) ) of a group of size 2> ]

gap> WedderburnDecomposition( GroupRing( CF(5), DihedralGroup(16) ) );
[ CF(5), CF(5), CF(5), CF(5), ( CF(5)ˆ[ 2, 2 ] ),
<crossed product with center NF(40,[ 1, 31 ]) over AsField( NF(40,
[ 1, 31 ]), CF(40) ) of a group of size 2> ]

The previous examples show that if D16 denotes the dihedral group of order 16 then the Wedder-
burn decomposition (7.3) of F5D16, QD16 and Q(ξ5)D16 are respectively

F5D16 = 4F5⊕M2(F5)⊕M2(F25),

QD16 = 4Q⊕M2(Q)⊕ (K(ξ8)/K, t),

8
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and
Q(ξ5)D16 = 4Q(ξ5)⊕M2(Q(ξ5))⊕ (F(ξ40)/F, t),

where (K(ξ8)/K, t) is a cyclotomic algebra (7.11) with the centre K = NF(8, [1,7]) = Q(
√

2),
(F(ξ40)/F, t) = Q(

√
2,ξ5) is a cyclotomic algebra with centre F = NF(40, [1,31]) and ξn denotes

a n-th root of unity.
Two more examples:

Example

gap> WedderburnDecomposition( GroupRing( Rationals, SmallGroup(48,15) ) );
[ Rationals, Rationals, Rationals, Rationals, ( Rationalsˆ[ 2, 2 ] ),
<crossed product with center Rationals over CF(3) of a group of size 2>,
( CF(3)ˆ[ 2, 2 ] ), <crossed product with center Rationals over CF(
3) of a group of size 2>, <crossed product with center NF(8,
[ 1, 7 ]) over AsField( NF(8,[ 1, 7 ]), CF(8) ) of a group of size 2>,

<crossed product with center Rationals over CF(12) of a group of size 4> ]
gap> WedderburnDecomposition( GroupRing( CF(3), SmallGroup(48,15) ) );
[ CF(3), CF(3), CF(3), CF(3), ( CF(3)ˆ[ 2, 2 ] ), ( CF(3)ˆ[ 2, 2 ] ),
( CF(3)ˆ[ 2, 2 ] ), ( CF(3)ˆ[ 2, 2 ] ), ( CF(3)ˆ[ 2, 2 ] ),
<crossed product with center NF(24,[ 1, 7 ]) over AsField( NF(24,
[ 1, 7 ]), CF(24) ) of a group of size 2>,

( <crossed product with center CF(3) over AsField( CF(3), CF(
12) ) of a group of size 2>ˆ[ 2, 2 ] ) ]

In some cases, in characteristic zero, some entries of the output of WedderburnDecomposition
(2.1.1) do not provide full matrix algebras over a cyclotomic algebra (7.11), but ”fractional matrix
algebras”. That entry is not an algebra that can be used as a GAP object. Instead it is a pair formed by
a rational giving the ”size” of the matrices and a crossed product. See 7.3 for a theoretical explanation
of this phenomenon. In this case a warning message is displayed.

Example

gap> QG:=GroupRing(Rationals,SmallGroup(240,89));
<algebra-with-one over Rationals, with 2 generators>
gap> WedderburnDecomposition(QG);
Wedderga: Warning!!!
Some of the Wedderburn components displayed are FRACTIONAL MATRIX ALGEBRAS!!!

[ Rationals, Rationals, <crossed product with center Rationals over CF(
5) of a group of size 4>, ( Rationalsˆ[ 4, 4 ] ), ( Rationalsˆ[ 4, 4 ] ),

( Rationalsˆ[ 5, 5 ] ), ( Rationalsˆ[ 5, 5 ] ), ( Rationalsˆ[ 6, 6 ] ),
<crossed product with center NF(12,[ 1, 11 ]) over AsField( NF(12,
[ 1, 11 ]), NF(60,[ 1, 11 ]) ) of a group of size 4>,

[ 3/2, <crossed product with center NF(8,[ 1, 7 ]) over AsField( NF(8,
[ 1, 7 ]), NF(40,[ 1, 31 ]) ) of a group of size 4> ] ]

2.1.2 WedderburnDecompositionInfo

♦ WedderburnDecompositionInfo(FG) (attribute)

Returns: A list with each entry a numerical description of a cyclotomic algebra (7.11).
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The input FG should be a group algebra of a finite group G over the field F , where F is either an
abelian number field (i.e. a subfield of a finite cyclotomic extension of the rationals) or a finite field
of characteristic coprime to the order of G.

This function is a numerical counterpart of WedderburnDecomposition (2.1.1).
It returns a list formed by lists of lengths 2, 4 or 5.
The lists of length 2 are of the form

[n,F ],

where n is a positive integer and F is a field. It represents the n× n matrix algebra Mn(F) over the
field F .

The lists of length 4 are of the form

[n,F,k, [d,α,β]],

where F is a field and n,k,d,α,β are non-negative integers, satisfying the conditions mentioned in
Section 7.12. It represents the n×n matrix algebra Mn(A) over the cyclic algebra

A = F(ξk)[u|ξu
k = ξ

α

k ,ud = ξ
β

k ],

where ξk is a primitive k-th root of unity.
The lists of length 5 are of the form

[n,F,k, [di,αi,βi]mi=1, [γi, j]1≤i< j≤m],

where F is a field and n,k,di,αi,βi,γi, j are non-negative integers. It represents the n×n matrix algebra
Mn(A) over the cyclotomic algebra (7.11)

A = F(ξk)[g1, . . . ,gm | ξ
gi
k = ξ

αi
k ,gdi

i = ξ
βi
k ,g jgi = ξ

γi j
k gig j],

where ξk is a primitive k-th root of unity (see 7.12).
Example

gap> WedderburnDecompositionInfo( GroupRing( Rationals, DihedralGroup(16) ) );
[ [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ],
[ 2, Rationals ], [ 1, NF(8,[ 1, 7 ]), 8, [ 2, 7, 0 ] ] ]

gap> WedderburnDecompositionInfo( GroupRing( CF(5), DihedralGroup(16) ) );
[ [ 1, CF(5) ], [ 1, CF(5) ], [ 1, CF(5) ], [ 1, CF(5) ], [ 2, CF(5) ],
[ 1, NF(40,[ 1, 31 ]), 8, [ 2, 7, 0 ] ] ]

The interpretation of the previous example gives rise to the following Wedderburn decompositions
(7.3), where D16 is the dihedral group of order 16 and ξ5 is a primitive 5-th root of unity.

QD16 = 4Q⊕M2(Q)⊕M2(Q(
√

2)).

Q(ξ5)D16 = 4Q(ξ5)⊕M2(Q(ξ5))⊕M2(Q(ξ5,
√

2)).
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Example

gap> F:=FreeGroup("a","b");;a:=F.1;;b:=F.2;;rel:=[aˆ8,aˆ4*bˆ2,bˆ-1*a*b*a];;
gap> Q16:=F/rel;; QQ16:=GroupRing( Rationals, Q16 );;
gap> QS4:=GroupRing( Rationals, SymmetricGroup(4) );;
gap> WedderburnDecomposition(QQ16);
[ Rationals, Rationals, Rationals, Rationals, ( Rationalsˆ[ 2, 2 ] ),
<crossed product with center NF(8,[ 1, 7 ]) over AsField( NF(8,
[ 1, 7 ]), CF(8) ) of a group of size 2> ]

gap> WedderburnDecomposition( QS4 );
[ Rationals, Rationals, ( Rationalsˆ[ 3, 3 ] ), ( Rationalsˆ[ 3, 3 ] ),
<crossed product with center Rationals over CF(3) of a group of size 2> ]

gap> WedderburnDecompositionInfo(QQ16);
[ [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ],
[ 2, Rationals ], [ 1, NF(8,[ 1, 7 ]), 8, [ 2, 7, 4 ] ] ]

gap> WedderburnDecompositionInfo(QS4);
[ [ 1, Rationals ], [ 1, Rationals ], [ 3, Rationals ], [ 3, Rationals ],
[ 1, Rationals, 3, [ 2, 2, 0 ] ] ]

In the previous example we computed the Wedderburn decomposition of the rational group algebra
QQ16 of the quaternion group of order 16 and the rational group algebra QS4 of the symmetric group
on four letters. For the two group algebras we used both WedderburnDecomposition (2.1.1) and
WedderburnDecompositionInfo (2.1.2).

The output of WedderburnDecomposition (2.1.1) shows that

QQ16 = 4Q⊕M2(Q)⊕A,

QS4 = 2Q⊕2M3(Q)⊕B,

where A and B are crossed products (7.6) with coefficients in the cyclotomic fields Q(ξ8) and Q(ξ3)
respectively. This output can be used as a GAP object, but it does not give clear information on the
structure of the algebras A and B.

The numerical information displayed by WedderburnDecompositionInfo (2.1.2) means that

A = Q(ξ|ξ8 = 1)[g|ξg = ξ
7 = ξ

−1,g2 = ξ
4 =−1],

B = Q(ξ|ξ3 = 1)[g|ξg = ξ
2 = ξ

−1,g2 = 1].

Both A and B are quaternion algebras over its centre which is Q(ξ + ξ−1) and the former is equal to
Q(
√

2) and Q respectively.
In B, one has (g+1)(g−1) = 0, while g is neither 1 nor−1. This shows that B = M2(Q). However

the relation g2 =−1 in A shows that

A = Q(
√

2)[i,g|i2 = g2 =−1, ig =−gi]

and so A is a division algebra with centre Q(
√

2), which is a subalgebra of the algebra of Hamiltonian
quaternions. This could be deduced also using well known methods on cyclic algebras (see e.g.
[Rei03]).
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The next example shows the output of WedderburnDecompositionInfo for QG and
Q(ξ3)G, where G = SmallGroup(48,15). The user can compare it with the output of
WedderburnDecomposition (2.1.1) for the same group in the previous section. Notice that the last
entry of the Wedderburn decomposition (7.3) of QG is not given as a matrix algebra of a cyclic algebra.
However, the corresponding entry of Q(ξ3)G is a matrix algebra of a cyclic algebra.

Example

gap> WedderburnDecompositionInfo( GroupRing( Rationals, SmallGroup(48,15) ) );
[ [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ],
[ 2, Rationals ], [ 1, Rationals, 3, [ 2, 2, 0 ] ], [ 2, CF(3) ],
[ 1, Rationals, 6, [ 2, 5, 0 ] ], [ 1, NF(8,[ 1, 7 ]), 8, [ 2, 7, 0 ] ],
[ 1, Rationals, 12, [ [ 2, 5, 9 ], [ 2, 7, 0 ] ], [ [ 9 ] ] ] ]

gap> WedderburnDecompositionInfo( GroupRing( CF(3), SmallGroup(48,15) ) );
[ [ 1, CF(3) ], [ 1, CF(3) ], [ 1, CF(3) ], [ 1, CF(3) ], [ 2, CF(3) ],
[ 2, CF(3), 3, [ 1, 1, 0 ] ], [ 2, CF(3) ], [ 2, CF(3) ],
[ 2, CF(3), 6, [ 1, 1, 0 ] ], [ 1, NF(24,[ 1, 7 ]), 8, [ 2, 7, 0 ] ],
[ 2, CF(3), 12, [ 2, 7, 0 ] ] ]

In some cases some of the first entries of the output of WedderburnDecompositionInfo (2.1.2)
are not integers and so the correspoding Wedderburn components (7.3) are given as ”frac-
tional matrix algebras” of cyclotomic algebras (7.11). See 7.3 for a theoretical explanation of
this phenomenon. In that case a warning message will be displayed during the first call of
WedderburnDecompositionInfo.

Example

gap> QG:=GroupRing(Rationals,SmallGroup(240,89));
<algebra-with-one over Rationals, with 2 generators>
gap> WedderburnDecompositionInfo(QG);
Wedderga: Warning!!!
Some of the Wedderburn components displayed are FRACTIONAL MATRIX ALGEBRAS!!!

[ [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals, 10, [ 4, 3, 5 ] ],
[ 4, Rationals ], [ 4, Rationals ], [ 5, Rationals ], [ 5, Rationals ],
[ 6, Rationals ], [ 1, NF(12,[ 1, 11 ]), 10, [ 4, 3, 5 ] ],
[ 3/2, NF(8,[ 1, 7 ]), 10, [ 4, 3, 5 ] ] ]

The interpretation of the output in the previous example gives rise to the following Wedderburn de-
composition (7.3) of QG for G the small group [240,89]:

QG = 2Q⊕2M4(Q)⊕2M5(Q)⊕M6(Q)⊕A⊕B⊕C

where
A = Q(ξ10)[u|ξu

10 = ξ
3
10,u

4 =−1],

B is an algebra of degree (4∗2)/2 = 4 which is Brauer equivalent (7.5) to

B1 = Q(ξ60)[u,v|ξu
60 = ξ

13
60,u

4 = ξ
5
60,ξ

v
60 = ξ

11
60,v

2 = 1,vu = uv],

and C is an algebra of degree (4∗2)∗3/4 = 6 which is Brauer equivalent (7.5) to

C1 = Q(ξ60)[u,v|ξu
60 = ξ

7
60,u

4 = ξ
5
60,ξ

v
60 = ξ

31
60,v

2 = 1,vu = uv].

The precise description of B and C requires the usage of ”ad hoc” arguments.
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2.2 Simple quotients

2.2.1 SimpleAlgebraByCharacter

♦ SimpleAlgebraByCharacter(FG, chi) (operation)

Returns: A simple algebra.
The first input FG should be a semisimple group algebra (7.2) over a finite group G and the second

input should be an irreducible character of G.
The output is a matrix algebra of a cyclotomic algebras (7.11) which is isomorphic to the unique

Wedderburn component (7.3) A of FG such that χ(A) 6= 0.
Example

gap> A5 := AlternatingGroup(5);
Alt( [ 1 .. 5 ] )
gap> SimpleAlgebraByCharacter( GroupRing( Rationals , A5 ) , Irr( A5 ) [3] );
( NF(5,[ 1, 4 ])ˆ[ 3, 3 ] )
gap> SimpleAlgebraByCharacter( GroupRing( GF(7) , A5 ) , Irr( A5 ) [3] );
( GF(7ˆ2)ˆ[ 3, 3 ] )
gap> G:=SmallGroup(128,100);
<pc group of size 128 with 7 generators>
gap> SimpleAlgebraByCharacter( GroupRing( Rationals , G ) , Irr(G)[19] );
<crossed product with center NF(8,[ 1, 3 ]) over AsField( NF(8,[ 1, 3 ]), CF(
8) ) of a group of size 2>

2.2.2 SimpleAlgebraByCharacterInfo

♦ SimpleAlgebraByCharacterInfo(FG, chi) (operation)

Returns: The numerical description of the output of SimpleAlgebraByCharacter (2.2.1).
The first input FG is a semisimple group algebra (7.2) over a finite group G and the second input

is an irreducible character of G.
The output is the numerical description 7.12 of the cyclotomic algebra (7.11) which is isomorphic

to the unique Wedderburn component (7.3) A of FG such that χ(A) 6= 0.
See 7.12 for the interpretation of the numerical information given by the output.

Example

gap> G:=SmallGroup(144,11);
<pc group of size 144 with 6 generators>
gap> QG:=GroupRing(Rationals,G);
<algebra-with-one over Rationals, with 6 generators>
gap> SimpleAlgebraByCharacter( QG , Irr(G)[48] );
<crossed product with center NF(36,[ 1, 17 ]) over AsField( NF(36,
[ 1, 17 ]), CF(36) ) of a group of size 2>
gap> SimpleAlgebraByCharacterInfo( QG , Irr(G)[48] );
[ 1, NF(36,[ 1, 17 ]), 36, [ 2, 17, 18 ] ]

2.2.3 SimpleAlgebraByStrongSP (for rational group algebra)

♦ SimpleAlgebraByStrongSP(QG, K, H) (operation)

♦ SimpleAlgebraByStrongSPNC(QG, K, H) (operation)
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♦ SimpleAlgebraByStrongSP(FG, K, H, C) (operation)

♦ SimpleAlgebraByStrongSPNC(FG, K, H, C) (operation)

Returns: A simple algebra.
In the three-argument version the input must be formed by a semisimple rational group algebra

QG (see 7.2) and two subgroups K and H of G which form a strong Shoda pair (7.15) of G.
The three-argument version returns the Wedderburn component (7.3) of the rational group algebra

QG realized by the strong Shoda pair (K,H).
In the four-argument version the first argument is a semisimple finite group algebra FG, (K,H)

is a strong Shoda pair of G and the fourth input data is either a generating q-cyclotomic class modulo
the index of H in K or a representative of a generating q-cyclotomic class modulo the index of H in K
(see 7.17).

The four-argument version returns the Wedderburn component (7.3) of the finite group algebra FG
realized by the strong Shoda pair (K,H) and the cyclotomic class C (or the cyclotomic class containing
C).

The versions ending in NC do not check if (K,H) is a strong Shoda pair of G. In the four-argument
version it is also not checked whether C is either a generating q-cyclotomic class modulo the index of
H in K or an integer coprime to the index of H in K.

Example

gap> F:=FreeGroup("a","b");; a:=F.1;; b:=F.2;;
gap> G:=F/[ aˆ16, bˆ2*aˆ8, bˆ-1*a*b*aˆ9 ];; a:=G.1;; b:=G.2;;
gap> K:=Subgroup(G,[a]);; H:=Subgroup(G,[]);;
gap> QG:=GroupRing( Rationals, G );;
gap> FG:=GroupRing( GF(7), G );;
gap> SimpleAlgebraByStrongSP( QG, K, H );
<crossed product over CF(16) of a group of size 2>
gap> SimpleAlgebraByStrongSP( FG, K, H, [1,7] );
( GF(7)ˆ[ 2, 2 ] )
gap> SimpleAlgebraByStrongSP( FG, K, H, 1 );
( GF(7)ˆ[ 2, 2 ] )

2.2.4 SimpleAlgebraByStrongSPInfo (for rational group algebra)

♦ SimpleAlgebraByStrongSPInfo(QG, K, H) (operation)

♦ SimpleAlgebraByStrongSPInfoNC(QG, K, H) (operation)

♦ SimpleAlgebraByStrongSPInfo(FG, K, H, C) (operation)

♦ SimpleAlgebraByStrongSPInfoNC(FG, K, H, C) (operation)

Returns: A numerical description of one simple algebra.
In the three-argument version the input must be formed by a semisimple rational group algebra

(7.2) QG and two subgroups K and H of G which form a strong Shoda pair (7.15) of G. It returns the
numerical information describing the Wedderburn component (7.12) of the rational group algebra QG
realized by a the strong Shoda pair (K,H).

In the four-argument version the first input is a semisimple finite group algebra FG, (K,H) is
a strong Shoda pair of G and the fourth input data is either a generating q-cyclotomic class modulo
the index of H in K or a representative of a generating q-cyclotomic class modulo the index of H in K
(7.17). It returns a pair of positive integers [n,r] which represent the n×n matrix algebra over the field
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of order r which is isomorphic to the Wedderburn component of FG realized by a the strong Shoda
pair (K,H) and the cyclotomic class C (or the cyclotomic class containing the integer C).

The versions ending in NC do not check if (K,H) is a strong Shoda pair of G. In the four-argument
version it is also not checked whether C is either a generating q-cyclotomic class modulo the index of
H in K or an integer coprime with the index of H in K.

Example

gap> F:=FreeGroup("a","b");; a:=F.1;; b:=F.2;;
gap> G:=F/[ aˆ16, bˆ2*aˆ8, bˆ-1*a*b*aˆ9 ];; a:=G.1;; b:=G.2;;
gap> K:=Subgroup(G,[a]);; H:=Subgroup(G,[]);;
gap> QG:=GroupRing( Rationals, G );;
gap> FG:=GroupRing( GF(7), G );;
gap> SimpleAlgebraByStrongSP( QG, K, H );
<crossed product over CF(16) of a group of size 2>
gap> SimpleAlgebraByStrongSPInfo( QG, K, H );
[ 1, NF(16,[ 1, 7 ]), 16, [ [ 2, 7, 8 ] ], [ ] ]
gap> SimpleAlgebraByStrongSPInfo( FG, K, H, [1,7] );
[ 2, 7 ]
gap> SimpleAlgebraByStrongSPInfo( FG, K, H, 1 );
[ 2, 7 ]



Chapter 3

Strong Shoda pairs

3.1 Computing strong Shoda pairs

3.1.1 StrongShodaPairs

♦ StrongShodaPairs(G) (attribute)

Returns: A list of pairs of subgroups of the input group.
The input should be a finite group G.
Computes a list of representatives of the equivalence classes of strong Shoda pairs (7.15) of a

finite group G.
Example

gap> StrongShodaPairs( SymmetricGroup(4) );
[ [ Sym( [ 1 .. 4 ] ), Group([ (1,3)(2,4), (1,4)(2,3), (2,4,3), (1,2) ]) ],
[ Sym( [ 1 .. 4 ] ), Group([ (1,3)(2,4), (1,4)(2,3), (2,4,3) ]) ],
[ Group([ (1,2)(3,4), (1,3,2,4), (3,4) ]), Group([ (1,2)(3,4), (1,3,2,4) ])

],
[ Group([ (1,2)(3,4), (3,4), (1,3,2,4) ]), Group([ (1,2)(3,4), (3,4) ]) ],
[ Group([ (1,4)(2,3), (1,3)(2,4), (2,4,3) ]),

Group([ (1,4)(2,3), (1,3)(2,4) ]) ] ]
gap> StrongShodaPairs( DihedralGroup(64) );
[ [ <pc group of size 64 with 6 generators>,

Group([ f6, f5, f4, f3, f1, f2 ]) ],
[ <pc group of size 64 with 6 generators>, Group([ f6, f5, f4, f3, f1*f2 ])

],
[ <pc group of size 64 with 6 generators>, Group([ f6, f5, f4, f3, f2 ]) ],
[ <pc group of size 64 with 6 generators>, Group([ f6, f5, f4, f3, f1 ]) ],
[ Group([ f1*f2, f4*f5*f6, f5*f6, f6, f3, f3 ]),

Group([ f6, f5, f4, f1*f2 ]) ],
[ Group([ f6, f5, f2, f3, f4 ]), Group([ f6, f5 ]) ],
[ Group([ f6, f2, f3, f4, f5 ]), Group([ f6 ]) ],
[ Group([ f2, f3, f4, f5, f6 ]), Group([ ]) ] ]

16
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3.2 Properties related with Shoda pairs

3.2.1 IsStrongShodaPair

♦ IsStrongShodaPair(G, K, H) (operation)

The first argument should be a finite group G, the second one a sugroup K of G and the third one
a subgroup of K.

Returns true if (K,H) is a strong Shoda pair (7.15) of G, and false otherwise.
Example

gap> G:=SymmetricGroup(3);; K:=Group([(1,2,3)]);; H:=Group( () );;
gap> IsStrongShodaPair( G, K, H );
true
gap> IsStrongShodaPair( G, G, H );
false
gap> IsStrongShodaPair( G, K, K );
false
gap> IsStrongShodaPair( G, G, K );
true

3.2.2 IsShodaPair

♦ IsShodaPair(G, K, H) (operation)

The first argument should be a finite group G, the second a subgroup K of G and the third one a
subgroup of K.

Returns true if (K,H) is a Shoda pair (7.14) of G.
Note that every strong Shoda pair is a Shoda pair, but the converse is not true.

Example

gap> G:=AlternatingGroup(5);;
gap> K:=AlternatingGroup(4);;
gap> H := Group( (1,2)(3,4), (1,3)(2,4) );;
gap> IsStrongShodaPair( G, K, H );
false
gap> IsShodaPair( G, K, H );
true
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3.2.3 IsStronglyMonomial

♦ IsStronglyMonomial(G) (operation)

The input G should be a finite group.
Returns true if G is a strongly monomial (7.16) finite group.

Example

gap> S4:=SymmetricGroup(4);;
gap> IsStronglyMonomial(S4);
true
gap> G:=SmallGroup(24,3);;
gap> IsStronglyMonomial(G);
false
gap> IsMonomial(G);
false
gap> G:=SmallGroup(1000,86);;
gap> IsMonomial(G);
true
gap> IsStronglyMonomial(G);
false
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Idempotents

4.1 Computing idempotents from character table

4.1.1 PrimitiveCentralIdempotentsByCharacterTable

♦ PrimitiveCentralIdempotentsByCharacterTable(FG) (operation)

Returns: A list of group algebra elements.
The input FG should be a semisimple group algebra.
Returns the list of primitive central idempotents of FG using the character table of G (7.4).

Example

gap> QS3 := GroupRing( Rationals, SymmetricGroup(3) );;
gap> PrimitiveCentralIdempotentsByCharacterTable( QS3 );
[ (1/6)*()+(-1/6)*(2,3)+(-1/6)*(1,2)+(1/6)*(1,2,3)+(1/6)*(1,3,2)+(-1/6)*(1,3),
(2/3)*()+(-1/3)*(1,2,3)+(-1/3)*(1,3,2), (1/6)*()+(1/6)*(2,3)+(1/6)*(1,2)+(1/
6)*(1,2,3)+(1/6)*(1,3,2)+(1/6)*(1,3) ]

gap> QG:=GroupRing( Rationals , SmallGroup(24,3) );
<algebra-with-one over Rationals, with 4 generators>
gap> FG:=GroupRing( CF(3) , SmallGroup(24,3) );
<algebra-with-one over CF(3), with 4 generators>
gap> pciQG := PrimitiveCentralIdempotentsByCharacterTable(QG);;
gap> pciFG := PrimitiveCentralIdempotentsByCharacterTable(FG);;
gap> Length(pciQG);
5
gap> Length(pciFG);
7

4.2 Testing lists of idempotents for completeness

4.2.1 IsCompleteSetOfOrthogonalIdempotents

♦ IsCompleteSetOfOrthogonalIdempotents(R, list) (operation)

The input should be formed by a unital ring R and a list list of elements of R.
Returns true if the list list is a complete list of orthogonal idempotents of R. That is, the output

is true provided the following conditions are satisfied:

19
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· The sum of the elements of list is the identity of R,
· e2 = e, for every e in list and
· e∗ f = 0, if e and f are elements in different positions of list.
No claim is made on the idempotents being central or primitive.
Note that the if a non-zero element t of R appears in two different positions of list then the

output is false, and that the list list must not contain zeroes.
Example

gap> QS5 := GroupRing( Rationals, SymmetricGroup(5) );;
gap> idemp := PrimitiveCentralIdempotentsByCharacterTable( QS5 );;
gap> IsCompleteSetOfOrthogonalIdempotents( QS5, idemp );
true
gap> IsCompleteSetOfOrthogonalIdempotents( QS5, [ One( QS5 ) ] );
true
gap> IsCompleteSetOfOrthogonalIdempotents( QS5, [ One( QS5 ), One( QS5 ) ] );
false

4.3 Idempotents from Shoda pairs

4.3.1 PrimitiveCentralIdempotentsByStrongSP

♦ PrimitiveCentralIdempotentsByStrongSP(FG) (attribute)

Returns: A list of group algebra elements.
The input FG should be a semisimple group algebra of a finite group G whose coefficient field F

is either a finite field or the field Q of rationals.
If F = Q then the output is the list of primitive central idempotents of the group algebra FG

realizable by strong Shoda pairs (7.15) of G.
If F is a finite field then the output is the list of primitive central idempotents of FG realizable by

strong Shoda pairs (K,H) of G and q-cyclotomic classes modulo the index of H in K (7.17).
If the list of primitive central idempotents given by the output is not complete (i.e. if the group G

is not strongly monomial (7.16)) then a warning is displayed.
Example

gap> QG:=GroupRing( Rationals, AlternatingGroup(4) );;
gap> PrimitiveCentralIdempotentsByStrongSP( QG );
[ (1/12)*()+(1/12)*(2,3,4)+(1/12)*(2,4,3)+(1/12)*(1,2)(3,4)+(1/12)*(1,2,3)+(1/

12)*(1,2,4)+(1/12)*(1,3,2)+(1/12)*(1,3,4)+(1/12)*(1,3)(2,4)+(1/12)*
(1,4,2)+(1/12)*(1,4,3)+(1/12)*(1,4)(2,3),

(1/6)*()+(-1/12)*(2,3,4)+(-1/12)*(2,4,3)+(1/6)*(1,2)(3,4)+(-1/12)*(1,2,3)+(
-1/12)*(1,2,4)+(-1/12)*(1,3,2)+(-1/12)*(1,3,4)+(1/6)*(1,3)(2,4)+(-1/12)*
(1,4,2)+(-1/12)*(1,4,3)+(1/6)*(1,4)(2,3),

(3/4)*()+(-1/4)*(1,2)(3,4)+(-1/4)*(1,3)(2,4)+(-1/4)*(1,4)(2,3) ]
gap> QG := GroupRing( Rationals, SmallGroup(24,3) );;
gap> PrimitiveCentralIdempotentsByStrongSP( QG );;
Wedderga: Warning!!!
The output is a NON-COMPLETE list of prim. central idemp.s of the input!
gap> FG := GroupRing( GF(2), Group((1,2,3)) );;
gap> PrimitiveCentralIdempotentsByStrongSP( FG );
[ (Z(2)ˆ0)*()+(Z(2)ˆ0)*(1,2,3)+(Z(2)ˆ0)*(1,3,2),
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(Z(2)ˆ0)*(1,2,3)+(Z(2)ˆ0)*(1,3,2) ]
gap> FG := GroupRing( GF(5), SmallGroup(24,3) );;
gap> PrimitiveCentralIdempotentsByStrongSP( FG );;
Wedderga: Warning!!!
The output is a NON-COMPLETE list of prim. central idemp.s of the input!

4.3.2 PrimitiveCentralIdempotentsBySP

♦ PrimitiveCentralIdempotentsBySP(QG) (function)

Returns: A list of group algebra elements.
The input should be a rational group algebra of a finite group G.
Returns a list containing all the primitive central idempotents e of the rational group algebra QG

such that χ(e) 6= 0 for some irreducible monomial character χ of G.
The output is the list of all primitive central idempotents of QG if and only if G is monomial,

otherwise a warning message is displayed.
Example

gap> QG := GroupRing( Rationals, SymmetricGroup(4) );
<algebra-with-one over Rationals, with 2 generators>
gap> pci:=PrimitiveCentralIdempotentsBySP( QG );
[ (1/24)*()+(1/24)*(3,4)+(1/24)*(2,3)+(1/24)*(2,3,4)+(1/24)*(2,4,3)+(1/24)*

(2,4)+(1/24)*(1,2)+(1/24)*(1,2)(3,4)+(1/24)*(1,2,3)+(1/24)*(1,2,3,4)+(1/
24)*(1,2,4,3)+(1/24)*(1,2,4)+(1/24)*(1,3,2)+(1/24)*(1,3,4,2)+(1/24)*
(1,3)+(1/24)*(1,3,4)+(1/24)*(1,3)(2,4)+(1/24)*(1,3,2,4)+(1/24)*(1,4,3,2)+(
1/24)*(1,4,2)+(1/24)*(1,4,3)+(1/24)*(1,4)+(1/24)*(1,4,2,3)+(1/24)*(1,4)
(2,3), (1/24)*()+(-1/24)*(3,4)+(-1/24)*(2,3)+(1/24)*(2,3,4)+(1/24)*
(2,4,3)+(-1/24)*(2,4)+(-1/24)*(1,2)+(1/24)*(1,2)(3,4)+(1/24)*(1,2,3)+(-1/
24)*(1,2,3,4)+(-1/24)*(1,2,4,3)+(1/24)*(1,2,4)+(1/24)*(1,3,2)+(-1/24)*
(1,3,4,2)+(-1/24)*(1,3)+(1/24)*(1,3,4)+(1/24)*(1,3)(2,4)+(-1/24)*
(1,3,2,4)+(-1/24)*(1,4,3,2)+(1/24)*(1,4,2)+(1/24)*(1,4,3)+(-1/24)*(1,4)+(
-1/24)*(1,4,2,3)+(1/24)*(1,4)(2,3), (3/8)*()+(-1/8)*(3,4)+(-1/8)*(2,3)+(
-1/8)*(2,4)+(-1/8)*(1,2)+(-1/8)*(1,2)(3,4)+(1/8)*(1,2,3,4)+(1/8)*
(1,2,4,3)+(1/8)*(1,3,4,2)+(-1/8)*(1,3)+(-1/8)*(1,3)(2,4)+(1/8)*(1,3,2,4)+(
1/8)*(1,4,3,2)+(-1/8)*(1,4)+(1/8)*(1,4,2,3)+(-1/8)*(1,4)(2,3),

(3/8)*()+(1/8)*(3,4)+(1/8)*(2,3)+(1/8)*(2,4)+(1/8)*(1,2)+(-1/8)*(1,2)(3,4)+(
-1/8)*(1,2,3,4)+(-1/8)*(1,2,4,3)+(-1/8)*(1,3,4,2)+(1/8)*(1,3)+(-1/8)*(1,3)
(2,4)+(-1/8)*(1,3,2,4)+(-1/8)*(1,4,3,2)+(1/8)*(1,4)+(-1/8)*(1,4,2,3)+(-1/
8)*(1,4)(2,3), (1/6)*()+(-1/12)*(2,3,4)+(-1/12)*(2,4,3)+(1/6)*(1,2)(3,4)+(
-1/12)*(1,2,3)+(-1/12)*(1,2,4)+(-1/12)*(1,3,2)+(-1/12)*(1,3,4)+(1/6)*(1,3)
(2,4)+(-1/12)*(1,4,2)+(-1/12)*(1,4,3)+(1/6)*(1,4)(2,3) ]

gap> IsCompleteSetOfPCIs(QG,pci);
true
gap> QS5 := GroupRing( Rationals, SymmetricGroup(5) );;
gap> pci:=PrimitiveCentralIdempotentsBySP( QS5 );;
Wedderga: Warning!!
The output is a NON-COMPLETE list of prim. central idemp.s of the input!
gap> IsCompleteSetOfPCIs( QS5 , pci );
false
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The output of PrimitiveCentralIdempotentsBySP contains the output of
PrimitiveCentralIdempotentsByStrongSP (4.3.1), possibly properly.

Example

gap> QG := GroupRing( Rationals, SmallGroup(48,28) );;
gap> pci:=PrimitiveCentralIdempotentsBySP( QG );;
Wedderga: Warning!!
The output is a NON-COMPLETE list of prim. central idemp.s of the input!
gap> Length(pci);
6
gap> spci:=PrimitiveCentralIdempotentsByStrongSP( QG );;
Wedderga: Warning!!!
The output is a NON-COMPLETE list of prim. central idemp.s of the input!
gap> Length(spci);
5
gap> IsSubset(pci,spci);
true
gap> QG:=GroupRing(Rationals,SmallGroup(1000,86));
<algebra-with-one over Rationals, with 6 generators>
gap> IsCompleteSetOfPCIs( QG , PrimitiveCentralIdempotentsBySP(QG) );
true
gap> IsCompleteSetOfPCIs( QG , PrimitiveCentralIdempotentsByStrongSP(QG) );
Wedderga: Warning!!!
The output is a NON-COMPLETE list of prim. central idemp.s of the input!
false
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Crossed products

The package Wedderga provides functions to construct crossed products over a group with coefficients
in an associative ring with identity, and with the multiplication determined by a given action and
twisting (see 7.6 for definitions). This can be done using the function CrossedProduct (5.1.1).

Note that this function does not check the associativity conditions, so in fact it is the NC-version
of itself, and its output will be always assumed to be associative. For all crossed products that appear
in Wedderga algorithms the associativity follows from theoretical arguments, so the usage of the NC-
method in the package is safe. If the user will try to construct a crossed product with his own action
and twisting, he/she should check the associativity conditions himself/herself to make sure that the
result is correct.

5.1 Construction of crossed products

5.1.1 CrossedProduct

♦ CrossedProduct(R, G, act, twist) (attribute)

Returns: Ring in the category IsCrossedProduct.
The input should be formed by:
* an associative ring R,
* a group G,
* a function act(RG,g) of two arguments: the crossed product RG and an element g in G. It

must return a mapping from R to R which can be applied via the ”\ˆ” operation, and
* a function twist(RG,g,h) of three arguments: the crossed product RG and a pair of elements

of G. It must return an invertible element of R.
Returns the crossed product of G over the ring R with action act and twisting twist.
The resulting crossed product belongs to the category IsCrossedProduct, which is defined as a

subcategory of IsFLMLORWithOne.
An example of the trivial action:

Example
act := function(RG,a)

return IdentityMapping( LeftActingDomain( RG ) );
end;

and the trivial twisting:

23



Wedderga 24

Example
twist := function( RG , g, h )

return One( LeftActingDomain( RG ) );
end;

Let n be a positive integer and ξn an n-th complex primitive root of unity. The natural action of the
group of units of Zn, the ring of integers modulo n, on Q(ξn) can be defined as follows:

Example
act := function(RG,a)

return ANFAutomorhism( LeftActingDomain( RG ) , Int( a ) );
end;

In the following example one constructs the Hamiltonian quaternion algebra over the rationals as a
crossed product of the group of units of the cyclic group of order 2 over Q(i) = GaussianRationals.
One realizes the cyclic group of order 2 as the group of units of Z/4Z and one uses the natural
isomorphism Z/4Z→ Gal(Q(i)/Q) to describe the action.

Example

gap> R := GaussianRationals;
GaussianRationals
gap> G := Units( ZmodnZ(4) );
<group with 1 generators>
gap> act := function(RG,g)
> return ANFAutomorphism( LeftActingDomain(RG), Int(g) );
> end;
function( RG, g ) ... end
gap> twist1 := function( RG, g, h )
> if IsOne(g) or IsOne(h) then
> return One(LeftActingDomain(RG));
> else
> return -One(LeftActingDomain(RG));
> fi;
> end;
function( RG, g, h ) ... end
gap> RG := CrossedProduct( R, G, act, twist1 );
<crossed product over GaussianRationals of a group of size 2>
gap> i := E(4) * One(G)ˆEmbedding(G,RG);
(ZmodnZObj( 1, 4 ))*(E(4))
gap> j := ZmodnZObj(3,4)ˆEmbedding(G,RG);
(ZmodnZObj( 3, 4 ))*(1)
gap> iˆ2;
(ZmodnZObj( 1, 4 ))*(-1)
gap> jˆ2;
(ZmodnZObj( 1, 4 ))*(-1)
gap> i*j+j*i;
<zero> of ...

One can construct the following generalized quaternion algebra with the same action and a different
twisting

Q(i, j|i2 =−1, j2 =−3, ji =−i j)
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Example

gap> twist2:=function(RG,g,h)
> if IsOne(g) or IsOne(h) then
> return One(LeftActingDomain( RG ));
> else
> return -3*One(LeftActingDomain( RG ));
> fi;
> end;
function( RG, g, h ) ... end
gap> RG := CrossedProduct( R, G, act, twist2 );
<crossed product over GaussianRationals of a group of size 2>
gap> i := E(4) * One(G)ˆEmbedding(G,RG);
(ZmodnZObj( 1, 4 ))*(E(4))
gap> j := ZmodnZObj(3,4)ˆEmbedding(G,RG);
(ZmodnZObj( 3, 4 ))*(1)
gap> iˆ2;
(ZmodnZObj( 1, 4 ))*(-1)
gap> jˆ2;
(ZmodnZObj( 1, 4 ))*(-3)
gap> i*j+j*i;
<zero> of ...

The following example shows how to construct the Hamiltonian quaternion algebra over the rationals
using the rationals as coefficient ring and the Klein group as the underlying group.

Example

gap> C2 := CyclicGroup(2);
<pc group of size 2 with 1 generators>
gap> G := DirectProduct(C2,C2);
<pc group of size 4 with 2 generators>
gap> act := function(RG,a)
> return IdentityMapping( LeftActingDomain(RG));
> end;
function( RG, a ) ... end
gap> twist := function( RG, g , h )
> local one,g1,g2,h1,h2,G;
> G := UnderlyingMagma( RG );
> one := One( C2 );
> g1 := Image( Projection(G,1), g );
> g2 := Image( Projection(G,2), g );
> h1 := Image( Projection(G,1), h );
> h2 := Image( Projection(G,2), h );
> if g = One( G ) or h = One( G ) then return 1;
> elif IsOne(g1) and not IsOne(g2) and not IsOne(h1) and not IsOne(h2)
> then return 1;
> elif not IsOne(g1) and IsOne(g2) and IsOne(h1) and not IsOne(h2)
> then return 1;
> elif not IsOne(g1) and not IsOne(g2) and not IsOne(h1) and IsOne(h2)
> then return 1;
> else return -1;
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> fi;
> end;
function( RG, g, h ) ... end
gap> HQ := CrossedProduct( Rationals, G, act, twist );
<crossed product over Rationals of a group of size 4>

Changing the rationals by the integers as coefficient ring one can construct the Hamiltonian quaternion
ring.

Example

gap> HZ := CrossedProduct( Integers, G, act, twist );
<crossed product over Integers of a group of size 4>
gap> i := GeneratorsOfGroup(G)[1]ˆEmbedding(G,HZ);
(f1)*(1)
gap> j := GeneratorsOfGroup(G)[2]ˆEmbedding(G,HZ);
(f2)*(1)
gap> iˆ2;
(<identity> of ...)*(-1)
gap> jˆ2;
(<identity> of ...)*(-1)
gap> i*j+j*i;
<zero> of ...

One can extract the arguments used for the construction of the crossed product using the following
attributes:

* LeftActingDomain for the coefficient ring.
* UnderlyingMagma for the underlying group.
* ActionForCrossedProduct for the action.
* TwistingForCrossedProduct for the twisting.

Example

gap> LeftActingDomain(HZ);
Integers
gap> G:=UnderlyingMagma(HZ);
<pc group of size 4 with 2 generators>
gap> ac := ActionForCrossedProduct(HZ);
function( RG, a ) ... end
gap> List( G , x -> ac( HZ, x ) );
[ IdentityMapping( Integers ), IdentityMapping( Integers ),
IdentityMapping( Integers ), IdentityMapping( Integers ) ]

gap> tw := TwistingForCrossedProduct( HZ );
function( RG, g, h ) ... end
gap> List( G, x -> List( G , y -> tw( HZ, x, y ) ) );
[ [ 1, 1, 1, 1 ], [ 1, -1, -1, 1 ], [ 1, 1, -1, -1 ], [ 1, -1, 1, -1 ] ]

Some more examples of crossed products arise from the Wedderburn decomposition (7.3) of group
algebras.



Wedderga 27

Example

gap> G := SmallGroup(32,50);
<pc group of size 32 with 5 generators>
gap> A := SimpleAlgebraByCharacter( GroupRing(Rationals,G), Irr(G)[17]) ;
( <crossed product with center Rationals over GaussianRationals of a group of \
size 2>ˆ[ 2, 2 ] )
gap> SimpleAlgebraByCharacterInfo( GroupRing(Rationals,G), Irr(G)[17]) ;
[ 2, Rationals, 4, [ 2, 3, 2 ] ]
gap> B := LeftActingDomain(A);
<crossed product with center Rationals over GaussianRationals of a group of si\
ze 2>
gap> L := LeftActingDomain(B);
GaussianRationals
gap> H := UnderlyingMagma( B );
<group of size 2 with 2 generators>
gap> Elements(H);
[ ZmodnZObj( 1, 4 ), ZmodnZObj( 3, 4 ) ]
gap> i := E(4) * One(H)ˆEmbedding(H,B);
(ZmodnZObj( 1, 4 ))*(E(4))
gap> j := ZmodnZObj(3,4)ˆEmbedding(H,B);
(ZmodnZObj( 3, 4 ))*(1)
gap> iˆ2;
(ZmodnZObj( 1, 4 ))*(-1)
gap> jˆ2;
(ZmodnZObj( 1, 4 ))*(-1)
gap> i*j+j*i;
<zero> of ...
gap> ac := ActionForCrossedProduct( B );
function( RG, a ) ... end
gap> tw := TwistingForCrossedProduct( B );
function( RG, a, b ) ... end
gap> List( H , x -> ac( B, x ) );
[ IdentityMapping( GaussianRationals ), ANFAutomorphism( GaussianRationals,

3 ) ]
gap> List( H , x -> List( H , y -> tw( B, x, y ) ) );
[ [ 1, 1 ], [ 1, -1 ] ]

Example

gap> QG:=GroupRing( Rationals, SmallGroup(24,3) );;
gap> WedderburnDecomposition(QG);
[ Rationals, CF(3), ( Rationalsˆ[ 3, 3 ] ),
<crossed product with center Rationals over GaussianRationals of a group of \

size 2>, <crossed product with center CF(3) over AsField( CF(3), CF(
12) ) of a group of size 2> ]

gap> R:=WedderburnDecomposition( QG )[4];
<crossed product with center Rationals over GaussianRationals of a group of si\
ze 2>
gap> IsCrossedProduct(R);
true
gap> IsAlgebra(R);
true
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gap> IsRing(R);
true
gap> LeftActingDomain( R );
GaussianRationals
gap> AsList( UnderlyingMagma( R ) );
[ ZmodnZObj( 1, 4 ), ZmodnZObj( 3, 4 ) ]
gap> Print( ActionForCrossedProduct( R ) ); Print("\n");
function ( RG, a )

local cond, redu;
cond := OperationRecord( RG ).cond;
redu := OperationRecord( RG ).redu;
return
ANFAutomorphism( CF( cond ), Int( PreImagesRepresentative( redu, a ) ) );

end
gap> Print( TwistingForCrossedProduct( R ) ); Print("\n");
function ( RG, a, b )

local orderroot, cocycle;
orderroot := OperationRecord( RG ).orderroot;
cocycle := OperationRecord( RG ).cocycle;
return E( orderroot ) ˆ Int( cocycle( a, b ) );

end
gap> IsAssociative(R);
true
gap> IsFinite(R);
false
gap> IsFiniteDimensional(R);
true
gap> AsList(Basis(R));
[ (ZmodnZObj( 1, 4 ))*(1), (ZmodnZObj( 3, 4 ))*(1) ]
gap> GeneratorsOfLeftOperatorRingWithOne(R);
[ (ZmodnZObj( 1, 4 ))*(1), (ZmodnZObj( 3, 4 ))*(1) ]
gap> One(R);
(ZmodnZObj( 1, 4 ))*(1)
gap> Zero(R);
<zero> of ...
gap> Characteristic(R);
0
gap> CenterOfCrossedProduct(R);
Rationals

The next example shows how one can use CrossedProduct to produce generalized quaternion alge-
bras. Note that one can construct quaternion algebras using the GAP function QuaternionAlgebra.

Example

gap> Quat := function(R,a,b)
>
> local G,act,twist;
>
> if not(a in R and b in R and a <> Zero(R) and b <> Zero(R) ) then
> Error("<a> and <b> must be non zero elements of <R>!!!");
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> fi;
>
> G := SmallGroup(4,2);
>
> act := function(RG,a)
> return IdentityMapping( LeftActingDomain(RG));
> end;
>
> twist := function( RG, g , h )
> local one,g1,g2;
> one := One(G);
> g1 := G.1;
> g2 := G.2;
> if g = one or h = one then
> return One(R);
> elif g = g1 then
> if h = g2 then
> return One(R);
> else
> return a;
> fi;
> elif g = g2 then
> if h = g1 then
> return -One(R);
> elif h=g2 then
> return b;
> else
> return -b;
> fi;
> else
> if h = g1 then
> return -b;
> elif h=g2 then
> return b;
> else
> return -a*b;
> fi;
> fi;
> end;
> return CrossedProduct(R,G,act,twist);
> end;
function( R, a, b ) ... end
gap> HQ := Quat(Rationals,2,3);
<crossed product over Rationals of a group of size 4>
gap> G := UnderlyingMagma(HQ);
<pc group of size 4 with 2 generators>
gap> tw := TwistingForCrossedProduct( HQ );
function( RG, g, h ) ... end
gap> List( G, x -> List( G, y -> tw( HQ, x, y ) ) );
[ [ 1, 1, 1, 1 ], [ 1, 3, -1, -3 ], [ 1, 1, 2, 2 ], [ 1, 3, -3, -6 ] ]
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5.2 Crossed product elements and their properties

5.2.1 ElementOfCrossedProduct

♦ ElementOfCrossedProduct(Fam, zerocoeff, coeffs, elts) (property)

Returns the element m1 ∗ c1 + ...+mn ∗ cn of a crossed product, where elts = [m1,m2, ...,mn] is
a list of magma elements, coeffs = [c1,c2, ...,cn] is a list of coefficients. The output belongs to the
crossed product whose elements lie in the family Fam. The second argument zerocoeff must be
the zero element of the coefficient ring containing coefficients ci, and will be stored in the attribute
ZeroCoefficient of the crossed product element.

The output will be in the category IsElementOfCrossedProduct, which is a subcategory of
IsRingElementWithInverse. It will have the presentation IsCrossedProductObjDefaultRep.

Similarly to magma rings, one can obtain the list of coefficients and elements with
CoefficientsAndMagmaElements .

Also note from the example below and several other examples in this chapter that instead of
ElementOfCrossedProduct one can use Embedding to embed elements of the coefficient ring and
of the underlying magma into the crossed product.

Example

gap> QG := GroupRing( Rationals, SmallGroup(24,3) );
<algebra-with-one over Rationals, with 4 generators>
gap> R := WedderburnDecomposition( QG )[4];
<crossed product with center Rationals over GaussianRationals of a group of si\
ze 2>
gap> H := UnderlyingMagma( R );;
gap> fam := ElementsFamily( FamilyObj( R ) );;
gap> g := ElementOfCrossedProduct( fam, 0, [ 1, E(4) ], AsList(H) );
(ZmodnZObj( 1, 4 ))*(1)+(ZmodnZObj( 3, 4 ))*(E(4))
gap> CoefficientsAndMagmaElements( g );
[ ZmodnZObj( 1, 4 ), 1, ZmodnZObj( 3, 4 ), E(4) ]
gap> t := List( H, x -> xˆEmbedding( H, R ) );
[ (ZmodnZObj( 1, 4 ))*(1), (ZmodnZObj( 3, 4 ))*(1) ]
gap> t[1] + t[2]*E(4);
(ZmodnZObj( 1, 4 ))*(1)+(ZmodnZObj( 3, 4 ))*(E(4))
gap> g = t[1] + E(4)*t[2];
false
gap> g = t[1] + t[2]*E(4);
true
gap> h := ElementOfCrossedProduct( fam, 0, [ E(4), 1 ], AsList(H) );
(ZmodnZObj( 1, 4 ))*(E(4))+(ZmodnZObj( 3, 4 ))*(1)
gap> g+h;
(ZmodnZObj( 1, 4 ))*(1+E(4))+(ZmodnZObj( 3, 4 ))*(1+E(4))
gap> g*E(4);
(ZmodnZObj( 1, 4 ))*(E(4))+(ZmodnZObj( 3, 4 ))*(-1)
gap> E(4)*g;
(ZmodnZObj( 1, 4 ))*(E(4))+(ZmodnZObj( 3, 4 ))*(1)
gap> g*h;
(ZmodnZObj( 1, 4 ))*(2*E(4))
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Useful properties and functions

6.1 Semisimple group algebras of finite groups

6.1.1 IsSemisimpleZeroCharacteristicGroupAlgebra

♦ IsSemisimpleZeroCharacteristicGroupAlgebra(KG) (property)

The input must be a group ring.
Returns true if the input KG is a semisimple group algebra (7.2) over a field of characteristic zero

(that is if G is finite), and false otherwise.
Example

gap> CG:=GroupRing( GaussianRationals, DihedralGroup(16) );;
gap> IsSemisimpleZeroCharacteristicGroupAlgebra( CG );
true
gap> FG:=GroupRing( GF(2), SymmetricGroup(3) );;
gap> IsSemisimpleZeroCharacteristicGroupAlgebra( FG );
false
gap> f := FreeGroup("a");
<free group on the generators [ a ]>
gap> Qf:=GroupRing(Rationals,f);
<algebra-with-one over Rationals, with 2 generators>
gap> IsSemisimpleZeroCharacteristicGroupAlgebra(Qf);
false

6.1.2 IsSemisimpleRationalGroupAlgebra

♦ IsSemisimpleRationalGroupAlgebra(KG) (property)

The input must be a group ring.
Returns true if KG is a semisimple rational group algebra (7.2) and false otherwise.

Example

gap> QG:=GroupRing( Rationals, SymmetricGroup(4) );;
gap> IsSemisimpleRationalGroupAlgebra( QG );
true
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gap> CG:=GroupRing( GaussianRationals, DihedralGroup(16) );;
gap> IsSemisimpleRationalGroupAlgebra( CG );
false
gap> FG:=GroupRing( GF(2), SymmetricGroup(3) );;
gap> IsSemisimpleRationalGroupAlgebra( FG );
false

6.1.3 IsSemisimpleANFGroupAlgebra

♦ IsSemisimpleANFGroupAlgebra(KG) (property)

The input must be a group ring.
Returns true if KG is the group algebra of a finite group over a subfield of a cyclotomic extension

of the rationals and false otherwise.
Example

gap> IsSemisimpleANFGroupAlgebra( GroupRing( NF(5,[4]) , CyclicGroup(28) ) );
true
gap> IsSemisimpleANFGroupAlgebra( GroupRing( GF(11) , CyclicGroup(28) ) );
false

6.1.4 IsSemisimpleFiniteGroupAlgebra

♦ IsSemisimpleFiniteGroupAlgebra(KG) (property)

The input must be a group ring.
Returns true if KG is a semisimple finite group algebra (7.2), that is a group algebra of a finite

group G over a field K of order coprime to the order of G, and false otherwisse.
Example

gap> FG:=GroupRing( GF(5), SymmetricGroup(3) );;
gap> IsSemisimpleFiniteGroupAlgebra( FG );
true
gap> KG:=GroupRing( GF(2), SymmetricGroup(3) );;
gap> IsSemisimpleFiniteGroupAlgebra( KG );
false
gap> QG:=GroupRing( Rationals, SymmetricGroup(4) );;
gap> IsSemisimpleFiniteGroupAlgebra( QG );
false

6.2 Operations with group rings elements

6.2.1 Centralizer

♦ Centralizer(G, x) (operation)

Returns: A subgroup of a group G.
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The input should be formed by a finite group G and an element x of a group ring FH whose
underlying group H contains G as a subgroup.

Returns the centralizer of x in G.
This operation adds a new method to the operation that already exists in GAP.

Example

gap> D16 := DihedralGroup(16);
<pc group of size 16 with 4 generators>
gap> QD16 := GroupRing( Rationals, D16 );
<algebra-with-one over Rationals, with 4 generators>
gap> a:=QD16.1;b:=QD16.2;
(1)*f1
(1)*f2
gap> e := PrimitiveCentralIdempotentsByStrongSP( QD16)[3];;
gap> Centralizer( D16, a);
Group([ f1, f4 ])
gap> Centralizer( D16, b);
Group([ f2 ])
gap> Centralizer( D16, a+b);
Group([ f4 ])
gap> Centralizer( D16, e);
Group([ f1, f2 ])

6.2.2 OnPoints

♦ OnPoints(x, g) (operation)

♦ \ˆ(x, g) (operation)

Returns: An element of a group ring.
The input should be formed by an element x of a group ring FG and an element g in the underlying

group G of FG.
Returns the conjugate xg = g−1xg of x by g. Usage of xˆg produces the same output.
This operation adds a new method to the operation that already exists in GAP.
The following example is a continuation of the example from the description of Centralizer

(6.2.1).
Example

gap> List(D16,x->aˆx=a);
[ true, true, false, false, true, false, false, true, false, false, false,
false, false, false, false, false ]

gap> List(D16,x->eˆx=e);
[ true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true ]

gap> ForAll(D16,x->aˆx=a);
false
gap> ForAll(D16,x->eˆx=e);
true
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6.2.3 AverageSum

♦ AverageSum(RG, X) (operation)

Returns: An element of a group ring.
The input must be composed of a group ring RG and a finite subset X of the underlying group G

of RG. The order of X must be invertible in the coefficient ring R of RG.
Returns the element of the group ring RG that is equal to the sum of all elements of X divided by

the order of X.
If X is a subgroup of G then the output is an idempotent of RG which is central if and only if X is

normal in G.
Example

gap> G:=DihedralGroup(16);;
gap> QG:=GroupRing( Rationals, G );;
gap> FG:=GroupRing( GF(5), G );;
gap> e:=AverageSum( QG, DerivedSubgroup(G) );
(1/4)*<identity> of ...+(1/4)*f3+(1/4)*f4+(1/4)*f3*f4
gap> f:=AverageSum( FG, DerivedSubgroup(G) );
(Z(5)ˆ2)*<identity> of ...+(Z(5)ˆ2)*f3+(Z(5)ˆ2)*f4+(Z(5)ˆ2)*f3*f4
gap> G=Centralizer(G,e);
true
gap> H:=Subgroup(G,[G.1]);
Group([ f1 ])
gap> e:=AverageSum( QG, H );
(1/2)*<identity> of ...+(1/2)*f1
gap> G=Centralizer(G,e);
false
gap> IsNormal(G,H);
false

6.3 Cyclotomic classes

6.3.1 CyclotomicClasses

♦ CyclotomicClasses(q, n) (operation)

Returns: A partition of [0..n].
The input should be formed by two relatively prime positive integers.
Returns the list q-cyclotomic classes (7.17) modulo n.

Example

gap> CyclotomicClasses( 2, 21 );
[ [ 0 ], [ 1, 2, 4, 8, 16, 11 ], [ 3, 6, 12 ], [ 5, 10, 20, 19, 17, 13 ],
[ 7, 14 ], [ 9, 18, 15 ] ]

gap> CyclotomicClasses( 10, 21 );
[ [ 0 ], [ 1, 10, 16, 13, 4, 19 ], [ 2, 20, 11, 5, 8, 17 ],
[ 3, 9, 6, 18, 12, 15 ], [ 7 ], [ 14 ] ]
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6.3.2 IsCyclotomicClass

♦ IsCyclotomicClass(q, n, C) (operation)

The input should be formed by two relatively prime positive integers q and n and a sublist C of
[0..n].

Returns true if C is a q-cyclotomic class (7.17) modulo n and false otherwise.
Example

gap> IsCyclotomicClass( 2, 7, [1,2,4] );
true
gap> IsCyclotomicClass( 2, 21, [1,2,4] );
false
gap> IsCyclotomicClass( 2, 21, [3,6,12] );
true

6.4 Other commands

6.4.1 InfoWedderga

♦ InfoWedderga (info class)

InfoWedderga is a special Info class for Wedderga algorithms. It has 3 levels: 0, 1 (default) and
2. To change the info level to k, use the command SetInfoLevel(InfoWedderga, k).

In the example below we use this mechanism to see more details about the Wedderburn compo-
nents each time when we call WedderburnDecomposition.

Example

gap> SetInfoLevel(InfoWedderga, 2);
gap> WedderburnDecomposition( GroupRing( CF(5), DihedralGroup( 16 ) ) );
#I Info version : [ [ 1, CF(5) ], [ 1, CF(5) ], [ 1, CF(5) ], [ 1, CF(5) ],
[ 2, CF(5) ], [ 1, NF(40,[ 1, 31 ]), 8, [ 2, 7, 0 ] ] ]

[ CF(5), CF(5), CF(5), CF(5), ( CF(5)ˆ[ 2, 2 ] ),
<crossed product with center NF(40,[ 1, 31 ]) over AsField( NF(40,
[ 1, 31 ]), CF(40) ) of a group of size 2> ]

6.4.2 WEDDERGABuildManual

♦ WEDDERGABuildManual() (function)

This function is used to build the manual in the following formats: DVI, PDF, PS, HTML and
text for online help. We recommend that the user should have a recent and fairly complete TEX
distribution. Since Wedderga is distributed together with its manual, it is not necessary for the user to
use this function. Normally it is intended to be used by the developers only. This is the only function
of Wedderga which requires a UNIX/Linux environment.
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6.4.3 WEDDERGABuildManualHTML

♦ WEDDERGABuildManualHTML() (function)

This fuction is used to build the manual only in HTML format. This does not depend on the
availability of the TEX installation and works under Windows and MacOS as well. Since Wedderga is
distributed together with its manual, it is not necessary for the user to use this function. Normally it is
intended to be used by the developers only.



Chapter 7

The basic theory behind Wedderga

In this chapter we describe the theory that is behind the algorithms used by Wedderga.
All the rings considered in this chapter are associative and have an identity.
We use the following notation: Q denotes the field of rationals and Fq the finite field of order q.

For every positive integer k, we denote a complex k-th primitive root of unity by ξk and so Q(ξk) is
the k-th cyclotomic extension of Q.

7.1 Group rings and group algebras

Given a group G and a ring R, the group ring RG over the group G with coefficients in R is the ring
whose underlying additive group is a right R−module with basis G such that the product is defined by
the following rule

(gr)(hs) = (gh)(rs)

for r,s ∈ R and g,h ∈ G, and extended to RG by linearity.
A group algebra is a group ring in which the coefficient ring is a field.

7.2 Semisimple group algebras

We say that a ring R is semisimple if it is a direct sum of simple left (alternatively right) ideals or
equivalently if R is isomorphic to a direct product of simple algebras each one isomorphic to a matrix
ring over a division ring.

By Maschke’s Theorem, if G is a finite group then the group algebra FG is semisimple if and only
the characteristic of the coefficient field F does not divide the order of G.

In fact, an arbitrary group ring RG is semisimple if and only if the coefficient ring R is semisimple,
the group G is finite and the order of G is invertible in R.

Some authors use the notion semisimple ring for rings with zero Jacobson radical. To avoid
confusion we usually refer to semisimple rings as semisimple artinian rings.

7.3 Wedderburn decomposition

If R is a semisimple ring (7.2) then the Wedderburn decomposition of R is the decomposition of R
as a direct product of simple algebras. The factors of this Wedderburn decomposition are called

37
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Wedderburn components of R. Each Wedderburn component of R is of the form Re for e a primitive
central idempotent (7.4) of R.

Let FG be a semisimple group algebra (7.2). If F has positive characteristic, then the Wedderburn
components of FG are matrix algebras over finite extensions of F . If F has zero characteristic then by
the Brauer-Witt Theorem [Yam74], the Wedderburn components of FG are Brauer equivalent (7.5) to
cyclotomic algebras (7.11).

The main functions of Wedderga compute the Wedderburn components of a semisimple group
algebra FG, such that the coefficient field is either an abelian number field (i.e. a subfield of a finite
cyclotomic extension of the rationals) or a finite field. In the finite case, the Wedderburn components
are matrix algebras over finite fields and so can be described by the size of the matrices and the size
of the finite field.

In the zero characteristic case each Wedderburn component A is Brauer equivalent (7.5) to a
cyclotomic algebra (7.11) and therefore A is a (possibly fractional) matrix algebra over cyclotomic
algebra and can be described numerically in one of the following three forms:

[n,K],

[n,K,k, [d,α,β]],

[n,K,k, [di,αi,βi]mi=1, [γi, j]1≤i< j≤n],

where n is the matrix size, K is the centre of A (a finite field extension of F) and the remaining data
are integers whose interpretation is explained in 7.12.

In some cases (for the zero characteristic coefficient field) the size n of the matrix algebras is not
a positive integer but a positive rational number. This is a consequence of the fact that the Brauer-
Witt Theorem [Yam74] only ensures that each Wedderburn component (7.3) of a semisimple group
algebra is Brauer equivalent (7.5) to a cyclotomic algebra (7.11), but not necessarily isomorphic
to a full matrix algebra of a cyclotomic algebra. For example, a Wedderburn component D of a
group algebra can be a division algebra but not a cyclotomic algebra. In this case Mn(D) is a cy-
clotomic algebra C for some n and therefore D can be described as M1/n(C) (see last Example in
WedderburnDecomposition (2.1.1)).

The main algorithm of Wedderga is based on a computational oriented proof of the Brauer-Witt
Theorem due to Olteanu [Olt07] which uses previous work by Olivieri, del Rı́o and Simón [OdRS04]
for rational group algebras of strongly monomial groups (7.16).

7.4 Characters and primitive central idempotents

A primitive central idempotent of a ring R is a non-zero central idempotent e which cannot be written
as the sum of two non-zero central idempotents of Re, or equivalently, such that Re is indecomposable
as a direct product of two non-trivial two-sided ideals.

The Wedderburn components (7.3) of a semisimple ring R are the rings of the form Re for e
running over the set of primitive central idempotents of R.

Let FG be a semisimple group algebra (7.2) and χ an irreducible character of G (in an algebraic
closure of F). Then there is a unique Wedderburn component A = AF(χ) of FG such that χ(A) 6= 0.
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Let eF(χ) denote the unique primitive central idempotent of FG in AF(χ), that is the identity of AF(χ),
i.e.

AF(χ) = FGeF(χ).

The centre of AF(χ) is F(χ) = F(χ(g) : g ∈ G), the field of character values of χ over F .
The map χ 7→ AF(χ) defines a surjective map from the set of irreducible characters of G (in an

algebraic closure of F) onto the set of Wedderburn components of FG.
Equivalently, the map χ 7→ eF(χ) defines a surjective map from the set of irreducible characters of

G (in an algebraic closure of F) onto the set of primitive central idempontents of FG.
If the irreducible character χ of G takes values in F then

eF(χ) = e(χ) =
χ(1)
|G| ∑

g∈G
χ(g−1)g.

In general one has
eF(χ) = ∑

σ∈Gal(F(χ)/F)
e(σ◦χ).

7.5 Central simple algebras and Brauer equivalence

Let K be a field. A central simple K-algebra is a finite dimensional K-algebra with center K which has
no non-trivial proper ideals. Every central simple K-algebra is isomorphic to a matrix algebra Mn(D)
where D is a division algebra (which is finite-dimensional over K and has centre K). The division
algebra D is unique up to K-isomorphisms.

Two central simple K-algebras A and B are said to be Brauer equivalent, or simply equivalent, if
there is a division algebra D and two positive integers m and n such that A is isomorphic to Mm(D)
and B is isomorphic to Mn(D).

7.6 Crossed Products

Let R be a ring and G a group.
INTRINSIC DEFINITION. A crossed product [Pas89] of G over R (or with coefficients in R) is a

ring R∗G with a decomposition into a direct sum of additive subgroups

R∗G =
M
g∈G

Ag

such that for each g,h in G one has:
* A1 = R (here 1 denotes the identity of G),
* AgAh = Agh and
* Ag has a unit of R∗G.
EXTRINSIC DEFINITION. Let Aut(R) denote the group of automorphisms of R and let R∗ denote

the group of units of R.
Let a : G→ Aut(R) and t : G×G→ R∗ be mappings satisfying the following conditions for every

g, h and k in G:
(1) a(gh)−1a(g)a(h) is the inner automorphism of R induced by t(g,h) (i.e. the automorphism

x 7→ t(g,h)−1xt(g,h)) and
(2) t(gh,k)t(g,h)k = t(g,hk)t(h,k), where for g ∈ G and x ∈ R we denote a(g)(x) by xg.
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The crossed product [Pas89] of G over R (or with coefficients in R), action a and twisting t is the
ring

R∗t
a G =

M
g∈G

ugR

where {ug : g ∈ G} is a set of symbols in one-to-one correspondence with G, with addition and mul-
tiplication defined by

(ugr)+(ugs) = ug(r + s), (ugr)(uhs) = ught(g,h)rhs

for g,h ∈ G and r,s ∈ R, and extended to R∗t
a G by linearity.

The associativity of the product defined is a consequence of conditions (1) and (2) [Pas89].
EQUIVALENCE OF THE TWO DEFINITIONS. Obviously the crossed product of G over R defined

using the extrinsic definition is a crossed product of G over u1R in the sense of the first definition.
Moreover, there is r0 in R∗ such that u1r0 is the identity of R ∗t

a G and the map r 7→ u1r0r is a ring
isomorphism R → u1R.

Conversely, let R ∗G =
L

g∈G Ag be an (intrinsic) crossed product and select for each g ∈ G a
unit ug ∈ Ag of R ∗G. This is called a basis of units for the crossed product R ∗G. Then the maps
a : G → Aut(R) and t : G×G → R∗ given by

rg = u−1
g rug, t(g,h) = u−1

gh uguh (g,h ∈ G,r ∈ R)

satisfy conditions (1) and (2) and R∗G = R∗t
a G.

The choice of a basis of units ug ∈ Ag determines the action a and twisting t. If {ug ∈ Ag : g ∈ G}
and {vg ∈ Ag : g∈G} are two sets of units of R∗G then vg = ugrg for some units rg of R. Changing the
basis of units results in a change of the action and the twisting and so changes the extrinsic definition
of the crossed product but it does not change the intrinsic crossed product.

It is customary to select u1 = 1. In that case a(1) is the identity map of R and t(1,g) = t(g,1) = 1
for each g in G.

7.7 Cyclic Crossed Products

Let R∗G =
L

g∈G Ag be a crossed product (7.6) and assume that G = 〈g〉 is cyclic. Then the crossed
product can be given using a particularly nice description.

Select a unit u in Ag, and let a be the automorphism of R given by ra = u−1ru.
If G is infinite then set ugk = uk for every integer k. Then

R∗G = R[u|ru = ura],

a skew polynomial ring. Therefore in this case R∗G is determined by

[R,a].

If G is finite of order d then set ugk = uk for 0 ≤ k < d. Then b = ud ∈ R and

R∗G = R[u|ru = ura,ud = b]

Therefore, R∗G is completely determined by the following data:

[R, [d,a,b]]
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7.8 Abelian Crossed Products

Let R ∗G =
L

g∈G Ag be a crossed product (7.6) and assume that G is abelian. Then the crossed
product can be given using a simple description.

Express G as a direct sum of cyclic groups:

G = 〈g1〉× · · ·×〈gn〉

and for each i = 1, . . . ,n select a unit ui in Agi .
Each element g of G has a unique expression

g = gk1
1 · · ·g

kn
n ,

where ki is an arbitrary integer, if gi has infinite order, and 0 ≤ ki < di, if gi has finite order di. Then
one selects a basis for the crossed product by taking

ug = u
gk1

1 ···gkn
n

= uk1
1 · · ·u

kn
n .

* For each i = 1, . . . ,n, let ai be the automorphism of R given by rai = u−1
i rui.

* For each 1 ≤ i < j ≤ n, let ti, j = u−1
j u−1

i u jui ∈ R.
* If gi has finite order di, let bi = udi

i ∈ R.
Then

R∗G = R[u1, . . . ,un|rui = uirai ,u jui = ti juiu j,u
di
i = bi(1 ≤ i < j ≤ n)],

where the last relation vanishes if gi has infinite order.
Therefore R∗G is completely determined by the following data:

[R, [di,ai,bi]ni=1, [ti, j]1≤i< j≤n].

7.9 Classical crossed products

A classical crossed product is a crossed product L ∗t
a G, where L/K is a finite Galois extension,

G = Gal(L/K) is the Galois group of L/K and a is the natural action of G on L. Then t is a 2-
cocycle and the crossed product (7.6) L ∗t

a G is denoted by (L/K, t). The crossed product (L/K, t) is
known to be a central simple K-algebra [Rei03].

7.10 Cyclic Algebras

A cyclic algebra is a classical crossed product (7.9) (L/K, t) where L/K is a finite cyclic field exten-
sion. The cyclic algebras have a very simple form.

Assume that Gal(L/K) is generated by g and has order d. Let u = ug be the basis unit (7.6) of
the crossed product corresponding to g and take the remaining basis units for the crossed product
by setting ugi = ui, (i = 0,1, . . . ,d− 1). Then a = un ∈ K. The cyclic algebra is usually denoted by
(L/K,a) and one has the following description of (L/K, t)

(L/K, t) = (L/K,a) = L[u|ru = urg,ud = a].
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7.11 Cyclotomic algebras

A cyclotomic algebra over F is a classical crossed product (7.9) (F(ξ)/F, t), where F is a field, ξ is a
root of unity in an extension of F and t(g,h) is a root of unity for every g and h in Gal(F(ξ)/F).

The Brauer-Witt Theorem [Yam74] asserts that every Wedderburn component (7.3) of a group
algebra is Brauer equivalent (7.5) (over its centre) to a cyclotomic algebra.

7.12 Numerical description of cyclotomic algebras

Let A = (F(ξ)/F, t) be a cyclotomic algebra (7.11), where ξ = ξk is a k-th root of unity. Then the
Galois group G = Gal(F(ξ)/F) is abelian and therefore one can obtain a simplified form for the
description of cyclotomic algebras as for any abelian crossed product (7.8).

Then the n×n matrix algebra Mn(A) can be described numerically in one of the following forms:
* If F(ξ) = F , (i.e. G = 1) then A = Mn(F) and thus the only data needed to describe A are the

matrix size n and the field F :
[n,F ]

* If G is cyclic (but not trivial) of order d then A is a cyclic cyclotomic algebra

A = F(ξ)[u|ξu = uξ
α,ud = ξ

β]

and so Mn(A) can be described with the following data

[n,F,k, [d,α,β]],

where the integers k, d, α and β satisfy the following conditions:

α
d ≡ 1 mod k, β(α−1)≡ 0 mod k.

* If G is abelian but not cyclic then Mn(A) can be described with the following data (see 7.8):

[n,F,k, [di,αi,βi]mi=1, [γi, j]1≤i< j≤m]

representing the n×n matrix ring over the following algebra:

A = F(ξ)[u1, . . . ,um | ξui = uiξ
αi , udi

i = ξ
βi , usur = ξ

γrsurus, i = 1, . . . ,m, 0 ≤ r < s ≤ m]

where
* {g1, . . . ,gm} is an independent set of generators of G,
* di is the order of gi,
* αi, βi and γrs are integers, and

ξ
gi = ξ

αi .
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7.13 Idempotents given by subgroups

Let G be a finite group and F a field whose characteristic does not divide the order of G. If H is a
subgroup of G then set

Ĥ = |H|−1
∑

x∈H
x.

The element Ĥ is an idempotent of FG which is central in FG if and only if H is normal in G.
If H is a proper normal subgroup of a subgroup K of G then set

ε(K,H) = ∏
L

(N̂− L̂)

where L runs on the normal subgroups of K which are minimal among the normal subgroups of K
containing N properly. By convention, ε(K,K) = K̂. The element ε(K,H) is an idempotent of FG.

If H and K are subgroups of G such that H is normal in K then e(G,K,H) denotes the sum of
all different G-conjugates of ε(K,H). The element e(G,K,H) is central in FG. In general it is not
an idempotent but if the different conjugates of ε(K,H) are orthogonal then e(G,K,H) is a central
idempotent of FG.

If (K,H) is a Shoda Pair (7.14) of G then there is a non-zero rational number a such that
ae(G,K,H)) is a primitive central idempotent (7.4) of the rational group algebra QG. If (K,H) is
a strong Shoda pair (7.15) of G then e(G,K,H) is a primitive central idempotent of QG.

Assume now that F is a finite field of order q, (K,H) is a strong Shoda pair of G and C is a
cyclotomic class of K/H containing a generator of K/H. Then eC(G,K,H) is a primitive central
idempotent of FG (see 7.17).

7.14 Shoda pairs

Let G be a finite group. A Shoda pair of G is a pair (K,H) of subgroups of G for which there is
a linear character χ of K with kernel H such that the induced character χG in G is irreducible. By
[Sho33] or [OdRS04], (K,H) is a Shoda pair if and only if the following conditions hold:

* H is normal in K,
* K/H is cyclic and
* if Kg∩K ⊆ H for some g ∈ G then g ∈ K.
If (K,H) is a Shoda pair and χ is a linear character of K ≤ G with kernel H then the primitive

central idempotent (7.4) of QG associated to the irreducible character χG is of the form e = eQ(χG) =
ae(G,K,H) for some a ∈Q [OdRS04] (see 7.13 for the definition of e(G,K,H)). In that case we say
that e is the primitive central idempotent realized by the Shoda pair (K,H) of G.

A group G is monomial, that is every irreducible character of G is monomial, if and only if every
primitive central idempotent of QG is realizable by a Shoda pair of G.

7.15 Strong Shoda pairs

A strong Shoda pair of G is a pair (K,H) of subgroups of G satisfying the following conditions:
* H is normal in K and K is normal in the normalizer N of H in G,
* K/H is cyclic and a maximal abelian subgroup of N/H and
* for every g ∈ G\N , ε(K,H)ε(K,H)g = 0. (See 7.13 for the definition of ε(K,H)).
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Let (K,H) be a strong Shoda pair of G. Then (K,H) is a Shoda pair (7.14) of G. Thus there is a lin-
ear character θ of K with kernel H such that the induced character χ = χ(G,K,H) = θG is irreducible.
Moreover the primitive central idempotent (7.4) eQ(χ) of QG realized by (K,H) is e(G,K,H), see
[OdRS04].

Two strong Shoda pairs (7.15) (K1,H1) and (K2,H2) of G are said to be equivalent if the characters
χ(G,K1,H1) and χ(G,K2,H2) are Galois conjugate, or equivalently if e(G,K1,H1) = e(G,K2,H2).

The advantage of strong Shoda pairs over Shoda pairs is that one can describe the simple algebra
FGeF(χ) as a matrix algebra of a cyclotomic algebra (7.11, see [OdRS04] for F = Q and [Olt07] for
the general case).

More precisely, QGe(G,K,H) is isomorphic to Mn(Q(ξ)∗t
a N/K), where ξ is a [K : H]-th root of

unity, N is the normalizer of H in G, n = [G : N] and Q(ξ)∗t
a N/K is a crossed product (see 7.6) with

action a and twisting t given as follows:
Let x be a fixed generator of K/H and ϕ : N/K → N/H a fixed left inverse of the canonical

projection N/H → N/K. Then
ξ

a(r) = ξ
i, if xϕ(r) = xi

and
t(r,s) = ξ

j, if ϕ(rs)−1
ϕ(r)ϕ(s) = x j,

for r,s ∈ N/K and integers i and j, see [OdRS04]. Notice that the cocycle is the one given by the
natural extension

1 → K/H → N/H → N/K → 1

where K/H is identified with the multiplicative group generated by ξ. Furthermore the centre of the
algebra is Q(χ), the field of character values over Q, and N/K is isomorphic to Gal(Q(ξ)/Q(χ)).

If the rational field is changed to an arbitrary ring F of characteristic 0 then the Wedderburn
component AF(χ), where χ = χ(G,K,H) is isomorphic to F(χ)⊗Q(χ) AQ(χ). Using the description
given above of AQ(χ) = QGe(G,K,H) one can easily describe AF(χ) as Mnd(F(ξ)/F(χ), t ′), where
d = [Q(ξ) : Q(χ)]/[F(ξ) : F(χ)] and t ′ is the restriction to Gal(F(ξ)/F(χ)) of t (a cocycle of N/K =
Gal(Q(ξ)/Q(χ))).

7.16 Strongly monomial characters and strongly monomial groups

Let G be a finite group an χ an irreducible character of G.
One says that χ is strongly monomial if there is a strong Shoda pair (7.15) (K,H) of G and a linear

character θ of K of G with kernel H such that χ = θG.
The group G is strongly monomial if every irreducible character of G is strongly monomial.
Strong Shoda pairs where firstly introduced by Olivieri, del Rı́o and Simón who proved that ev-

ery abelian-by-supersolvable group is strongly monomial [OdRS04]. The algorithm to compute the
Wedderburn decomposition of rational group algebras for strongly monomial groups was explained in
[OdR03]. This method was extended for semisimple finite group algebras by Broche Cristo and del
Rı́o in [BdR07] (see Section 7.17). Finally, Olteanu [Olt07] shows how to compute the Wedderburn
decomposition (7.3) of an arbitrary semisimple group ring by making use of not only the strong Shoda
pairs of G but also the strong Shoda pairs of the subgroups of G.



Wedderga 45

.

7.17 Cyclotomic Classes and Strong Shoda Pairs

Let G be a finite group and F a finite field of order q, coprime to the order of G.
Given a positive integer n, coprime to q, the q-cyclotomic classes modulo n are the set of residue

classes module n of the form
{i, iq, iq2, iq3, . . .}

The q-cyclotomic classes module n form a partition of the set of residue classes module n.
A generating cyclotomic class module n is a cyclotomic class containing a generator of the addi-

tive group of residue classes module n, or equivalently formed by integers coprime to n.
Let (K,H) be a strong Shoda pair (7.15) of G and set n = [K : H]. Fix a primitive n-th root of

unity ξ in some extension of F and an element g of K such that gH is a generator of K/H. Let C be a
generating q-cyclotomic class modulo n. Then set

εC(K,H) = [K : H]−1Ĥ
n−1

∑
i=0

tr(ξ−ci)gi,

where c is an arbitrary element of C and tr is the trace map of the field extension F(ξ)/F . Then
εC(K,H) does not depend on the choice of c ∈C and is a primitive central idempotent (7.4) of FK.

Finally, let eC(G,K,H) denote the sum of the different G-conjugates of εC(K,H). Then
eC(G,K,H) is a primitive central idempotent (7.4) of FG [BdR07]. We say that eC(G,K,H) is the
primitive central idempotent realized by the strong Shoda pair (K,H) of the group G and the cyclo-
tomic class C.

If G is strongly monomial (7.16) then every primitive central idempotent of FG is realizable by
some strong Shoda pair (7.15) of G and some cyclotomic class C [BdR07]. As in the zero char-
acteristic case, this explain how to compute the Wedderburn decomposition (7.3) of FG for a finite
semisimple algebra of a strongly monomial group (see [BdR07] for details). For non strongly mono-
mial groups the algorithm to compute the Wedderburn decomposition just uses the Brauer characters.
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[OdRS04] A. Olivieri, Á. del Rı́o, and J. J. Simón. On monomial characters and central idempotents
of rational group algebras. Comm. Algebra, 32(4):1531–1550, 2004. 5, 38, 43, 44

[Olt07] G. Olteanu. Computing the Wedderburn decomposition of group algebras by the Brauer-
Witt theorem. Math. Comp., 76(258):1073–1087 (electronic), 2007. 5, 38, 44

[Pas89] D. S. Passman. Infinite crossed products, volume 135 of Pure and Applied Mathematics.
Academic Press Inc., Boston, MA, 1989. 39, 40

[Rei03] I. Reiner. Maximal orders, volume 28 of London Mathematical Society Monographs. New
Series. The Clarendon Press Oxford University Press, Oxford, 2003. Corrected reprint of
the 1975 original, With a foreword by M. J. Taylor. 11, 41
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