
F-BASES FROM COUNTABLY GENERATED FILTERS

TOMASZ KOCHANEK

Given any filter F of subsets of N and any Banach space X we say that a sequence (en)∞n=1 is an F-basis for
X if and only if for each x ∈ X there is a unique sequence of scalars (an)∞n=1 such that

x = F− lim
n→∞

n
∑

k=1

akek

in the norm topology of X. In such a case we shall denote an = e∗n(x) and Sn(x) =
∑n

k=1
e∗k(x)ek for n ∈ N.

Of course, e∗k : X → R are linear and their continuity, in the case of a countably generated † filter F , follows
from the following result.

Theorem 1. Let F be a countably generated filter of subsets of N and let (en)∞n=1 be an F-basis for a Banach

space X. Then e∗n ∈ X∗ for each n ∈ N.

Proof. We may assume that F does not contain any finite sets, since otherwise the definition of F-basis forces
X to be finite-dimensional and our assertion is trivial. For every A ∈ F we define

XA = {x ∈ X : sup
ν∈A

‖Sν(x)‖ < ∞}.

Obviously, by the uniqueness of the expansion into F-basis, 0 ∈ XA and XA is a linear subspace of X. The
function ‖ · ‖A : XA → [0,∞) defined by

‖x‖A = sup
ν∈A

‖Sν(x)‖

is a norm in XA. To verify the first postulate suppose ‖x‖A = 0. For each ε > 0 one may find B ∈ F such
that ‖Sν(x) − x‖ < ε for ν ∈ B, but then for each ν ∈ A ∩ B, which is non-empty as an element of F , we
have Sν(x) = 0, thus ‖x‖ < ε. By the arbitrariness of ε, we conclude that x = 0.

Now, assume (xn)∞n=1 is a Cauchy sequence in (XA, ‖ · ‖A). Then for every ε > 0 one may find m ∈ N

such that for each n ≥ m and ν ∈ A we have ‖Sν(xm − xn)‖ < ε/3. We may choose ν in such a way that
‖Sν(xm) − xm‖ < ε/3 and ‖Sν(xn) − xn‖ < ε/3. These three inequalities give ‖xm − xn‖ < ε, which shows
that (xn)∞n=1 is a Cauchy sequence in (XA, ‖ · ‖). Therefore, there exists x0 in the ‖ · ‖-closure of XA such
that

(1) lim
n→∞

‖xn − x0‖ = 0.

Similarly, for every ν ∈ A and m,n ∈ N we have

‖Sν(xm) − Sν(xn)‖ = ‖Sν(xm − xn)‖ ≤ ‖xm − xn‖A,

which shows that (Sν(xn))∞n=1 is a Cauchy sequence in (X, ‖ · ‖), and each of its elements lies in [ej ]j≤ν (the
linear span of e1, . . . , eν). Hence, there is yν ∈ [ej ]j≤ν such that

(2) lim
n→∞

‖Sν(xn) − yν‖ = 0.

For every j ∈ N denote αj = e∗j (yν) for any ν ∈ A, j ≤ ν. This definition does not depend on the choice
of such a ν. Indeed, if k, ` ∈ A satisfy j ≤ k ≤ `, then the continuity of e∗j on the finite-dimensional subspace
[ei]i≤` gives

e∗j (yk) = e∗j ( lim
n→∞

Sk(xn)) = lim
n→∞

e∗j (Sk(xn)) = lim
n→∞

e∗j (S`(xn)) = e∗j (y`).

†A filter F of subsets of N is called countably generated, if there exist a subfamily {An}n<ω of F such that for every A ∈ F
we have An ⊂ A for some n < ω.
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We shall show that

x0 = F−
∞
∑

n=1

αnen,

that is, in particular, Sν(x0) = yν for every ν ∈ A. To this end fix any ε > 0 and choose m ∈ N such that
for each n ≥ m we have ‖Sν(xm) − Sν(xn)‖ < ε/3 (for any ν ∈ A) and ‖xm − xn‖ < ε/3. Now, let B ∈ F
be such that for each ν ∈ B we have ‖Sν(xm) − xm‖ < ε/3. Then A ∩ B ∈ F and for every ν ∈ A ∩ B the
following estimate holds true:

‖yν − x0‖ =
∥

∥ lim
n→∞

Sν(xn) − lim
n→∞

xn

∥

∥

≤ lim
n→∞

‖Sν(xm) − Sν(xn)‖ + ‖Sν(xm) − xm‖ + lim
n→∞

‖xm − xn‖ ≤ ε,

in view of (1) and (2). This shows that

x0 = F− lim
ν→∞
ν∈A

yν .

Moreover, a similar estimate, for an arbitrary ν ∈ A and m ∈ N chosen as above, yields

‖yν‖ ≤ ‖x0‖ +
1

3
ε + ‖Sν(xm)‖ + ‖xm‖ +

1

3
ε ≤ 2

3
ε + ‖x0‖ + ‖xm‖A + ‖xm‖,

which implies

sup
ν∈A

‖Sν(x0)‖ = sup
ν∈A

‖yν‖ < ∞,

thus x0 ∈ XA. Now, for any n ∈ N we have

‖xn − x0‖A = sup
ν∈A

‖Sν(xn) − Sν(x0)‖ = sup
ν∈A

‖Sν(xn) − lim
m→∞

Sν(xm)‖

≤ lim sup
m→∞

sup
ν∈A

‖Sν(xn) − Sν(xm)‖,

which shows that limn→∞ ‖xn − x0‖A = 0 and, consequently, (XA, ‖ · ‖A) is a Banach space.
Now, we consider the identity map iA : (XA, ‖ · ‖A) → (X, ‖ · ‖) (which is continuous, by ‖ · ‖A ≥ ‖ · ‖).

By the Open Mapping Theorem, either iA is surjective, or the image XA is of the first category in (X, ‖ · ‖).
Since F is countably generated, there is a sequence of An ∈ F (n < ω) such that for any B ∈ F we have
An ⊂ B for some n < ω. For an arbitrary x ∈ X we may pick a set B ∈ F satisfying supν∈B ‖Sν(x)‖ < ∞,
hence x ∈ XAn

provided An ⊂ B. Therefore, X =
⋃

n<ω XAn
and the Baire Category Theorem implies that

not all of the subspaces XAn
may be of the first category in (X, ‖ · ‖). Consequently, there is a set A ∈ F

such that XA = X. Then the inverse operator i−1
A is continuous, i.e. there is a constant K < ∞ such that

‖Sν(x)‖ ≤ K‖x‖ for all x ∈ X and ν ∈ A.
Fix any j ∈ N; we shall show that e∗j is continuous. Suppose, in search of a contradiction, that there is a

sequence (xn)∞n=1 of elements of X such that ‖xn‖ = 1 for n ∈ N and e∗j (xn) → ∞. Pick any index ν ∈ A,
ν ≥ j. Obviously, e1, . . . , eν are linearly independent and since the finite-dimensional subspace [ei]i≤ν,i6=j is
closed, we infer that

δ := inf
{

‖ej + y‖ : y ∈ [ei]i≤ν,i6=j

}

> 0.

Since

Sν(xn) = e∗j (xn)ej +
ν

∑

i=1,i 6=j

e∗i (xn)ei,

we have

‖Sν(xn)‖ ≥ δ · |e∗j (xn)| −→
n→∞

∞,

which contradicts the fact that Sν is continuous. ¤

Remark 1. A filter F of subsets of N is called almost principal, if there is a set A ∈ F such that for every
B ∈ F the set A \ B is finite. The convergence of some sequence (xn)∞n=1 with respect to such a filter F
is equivalent to the ordinary convergence of the subsequence (xnk

)∞k=1, where A = {n1, n2, . . .}. Of course,
almost principal filters are countably generated.

However, the filter F = Fst of sets whose complement is of natural density zero is not countably generated.
This follows, e.g., from the fact that Fst is a P -filter, that is for every countable sequence (An)n<ω in Fst
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there is a set A ∈ Fst such that A ⊆∗ An for each n < ω, i.e. A is almost included † in every An. This implies
that Fst cannot be generated by (An)n<ω, since we may find an infinite set C ⊂ A of density zero and we
have A \ C ∈ Fst, whereas none of An is contained in A \ C.

Remark 2. As it was pointed out by Professor D.H. Fremlin, the above method works also in models where
the Baire Category Theorem holds true for “not small” uncountable number of meager sets.

For instance, if we assume the Martin axiom then the following Booth’s lemma is valid: Given a family
R ⊆ P(ω) of cardinality less than continuum such that for all A1, . . . , An ∈ R the intersection A1 ∩ . . . ∩An

is an infinite set, there exists an infinite set B satisfying B ⊆∗ A for each A ∈ R. Consequently, if a filter F
has character (the minimal cardinality of a family generating F) less than continuum, then for some infinite
set B we have B ⊆∗ A for each A ∈ F , hence XB = X and we may apply the Open Mapping Theorem for
the identity operator iB : (XB , ‖ · ‖B) → (X, ‖ · ‖) getting the following result.

Theorem 2. Assume the Martin axiom. If F is a filter on N with character less than continuum and (en)∞n=1

is an F-basis for a Banach space X, then e∗n ∈ X∗ for each n ∈ N.

Remark 3. A slight modification of Example 1 from the paper [J. Connor, M. Ganichev, V. Kadets, A

characterization of Banach spaces with separable duals via weak statistical convergence, J. Math. Anal. Appl.
244 (2000), 251–261] shows that in general our strategy, based on proving XA = X for some A ∈ F , does
not work. Namely, let Fst be the filter of statistical convergence and let (en)∞n=1 be the standard basis in `2
with coordinate functionals (e∗n)∞n=1. Put also xn =

∑n

i=1
ei. Then, as it is shown in the paper mentioned

above, (xn)∞n=1 is an Fst-basis in `2 with the coordinate functionals given by x∗
n = e∗n − e∗n+1. They are,

of course, continuous but for any increasing sequence of natural numbers n1 < n2 < . . . we may define an
element x =

∑∞
k=1

akek of `2 such that

(3) sup{‖Snk
(x)‖ : k ∈ N} = ∞.

To this end choose an increasing subsequence {mi}∞i=1 ⊂ {ni}∞i=1 with mi > i4 and put

ak =

{

1/ 4
√

k if there is an i ∈ N such that k = mi + 1,
0 otherwise.

Then, repeating the argument from the paper cited above, we obtain (3) which shows that in this case
(`2)A ( `2 for every infinite set A ⊂ N.
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†We say that A is almost included in B, and we write A ⊆∗ B, if the set A \ B is finite.


