Preserved extreme points in Lipschitz-free spaces

Ramón J. Aliaga

(joint work with A. J. Guirao)

Instituto Universitario de Matemática Pura y Aplicada (IUMPA) Universitat Politècnica de València (UPV)

5th Workshop on Functional Analysis Valencia, 17 Oct 2017 • (X, d) is a complete metric space

• (X,d) is a complete metric space • $\widetilde{X} = \left\{ (x,y) \in X^2 : x \neq y \right\}$

- (X, d) is a complete metric space
- $\bullet \ \widetilde{X} = \left\{ (x,y) \in X^2 : x \neq y \right\}$
- $f: X \to \mathbb{R}$ is *Lipschitz* iff

$$L(f) = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)} : (x, y) \in \widetilde{X}\right\} < \infty$$

- (X,d) is a complete metric space
- $\widetilde{X} = \left\{ (x, y) \in X^2 : x \neq y \right\}$
- $f: X \to \mathbb{R}$ is *Lipschitz* iff

$$L(f) = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)} : (x, y) \in \widetilde{X}\right\} < \infty$$

• $\operatorname{Lip}(X) = \left\{ f \in \mathbb{R}^X : L(f) < \infty \right\}$

• (X, d) is a complete metric space

•
$$\widetilde{X} = \left\{ (x, y) \in X^2 : x \neq y \right\}$$

• $f: X \to \mathbb{R}$ is *Lipschitz* iff

$$L(f) = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)} : (x, y) \in \widetilde{X}\right\} < \infty$$

•
$$\operatorname{Lip}(X) = \left\{ f \in \mathbb{R}^X : L(f) < \infty \right\}$$

Theorem

Let $X' \subset X$. Every $f : X' \to \mathbb{R}$ can be extended to X in such a way that L(f) and $||f||_{\infty}$ are preserved.

• (X, d) is a complete metric space

•
$$\widetilde{X} = \left\{ (x, y) \in X^2 : x \neq y \right\}$$

• $f: X \to \mathbb{R}$ is *Lipschitz* iff

$$L(f) = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)} : (x, y) \in \widetilde{X}\right\} < \infty$$

•
$$\operatorname{Lip}(X) = \left\{ f \in \mathbb{R}^X : L(f) < \infty \right\}$$

Theorem

Let $X' \subset X$. Every $f : X' \to \mathbb{R}$ can be extended to X in such a way that L(f) and $||f||_{\infty}$ are preserved.

This is *not* true if \mathbb{R} is replaced by \mathbb{C} .

• X is a *pointed* metric space with base point e

• X is a *pointed* metric space with base point e

•
$$\operatorname{Lip}_0(X) = \{ f \in \operatorname{Lip}(X) : f(e) = 0 \}$$

• X is a *pointed* metric space with base point e

•
$$\operatorname{Lip}_0(X) = \{ f \in \operatorname{Lip}(X) : f(e) = 0 \}$$

• $\operatorname{Lip}_0(X)$ is a Banach space with ||f|| = L(f)

• X is a *pointed* metric space with base point e

•
$$\operatorname{Lip}_0(X) = \{ f \in \operatorname{Lip}(X) : f(e) = 0 \}$$

- $\operatorname{Lip}_0(X)$ is a Banach space with ||f|| = L(f)
- $\operatorname{Lip}_0(X, e) \simeq \operatorname{Lip}_0(X, e')$ under $f \mapsto f f(e')$

• $j(x): f \mapsto f(x)$ is the evaluation operator on $x \in X$

j(*x*) : *f* → *f*(*x*) is the evaluation operator on *x* ∈ *X j* : *X* → Lip₀(*X*)^{*} is an isometry

j(*x*) : *f* → *f*(*x*) is the evaluation operator on *x* ∈ *X j* : *X* → Lip₀(*X*)^{*} is an isometry

Lipschitz-free space

$$\mathcal{F}(X) = \overline{\operatorname{span}} \, j(X) \subset \operatorname{Lip}_0(X)^*$$

j(*x*) : *f* → *f*(*x*) is the evaluation operator on *x* ∈ *X j* : *X* → Lip₀(*X*)^{*} is an isometry

Lipschitz-free space

$$\mathcal{F}(X) = \overline{\operatorname{span}} j(X) \subset \operatorname{Lip}_0(X)^*$$

Theorem (Arens, Eells 1956)

 $\mathcal{F}(X)^* \simeq \operatorname{Lip}_0(X).$

Theorem (Weaver 1999)

Let *Y* be a Banach space. If $f: X \to Y$ is Lipschitz and f(e) = 0 then there is $h \in \mathcal{B}(\mathcal{F}(X), Y)$ with ||h|| = L(f) and $f = h \circ j$.

Some tools

de Leeuw transform

$$\Phi: \operatorname{Lip}(X) \to C(\widetilde{X})$$
 $\Phi f(p,q) = \frac{f(p) - f(q)}{d(p,q)}$

de Leeuw transform

$$\Phi: \operatorname{Lip}(X) \to C(\widetilde{X})$$
 $\Phi f(p,q) = \frac{f(p) - f(q)}{d(p,q)}$

 $L(f) = \|\Phi f\|_{\infty} \quad \Rightarrow \quad \Phi \text{ is a linear isometry } \operatorname{Lip}_0(X) \to C(\widetilde{X})$

de Leeuw transform

$$\Phi: \operatorname{Lip}(X) \to C(\widetilde{X})$$
 $\Phi f(p,q) = \frac{f(p) - f(q)}{d(p,q)}$

 $L(f) = \|\Phi f\|_{\infty} \quad \Rightarrow \quad \Phi \text{ is a linear isometry } \operatorname{Lip}_0(X) \to C(\widetilde{X})$

Elementary molecules

$$u_{pq} = \frac{j(p) - j(q)}{d(p,q)} \in S_{\mathcal{F}(X)}$$

de Leeuw transform

$$\Phi: \operatorname{Lip}(X) \to C(\widetilde{X})$$
 $\Phi f(p,q) = \frac{f(p) - f(q)}{d(p,q)} = \langle f, u_{pq} \rangle$

 $L(f) = \left\| \Phi f \right\|_{\infty} \quad \Rightarrow \quad \Phi \text{ is a linear isometry } \operatorname{Lip}_0(X) \to C(\widetilde{X})$

Elementary molecules

$$u_{pq} = \frac{j(p) - j(q)}{d(p,q)} \in S_{\mathcal{F}(X)}$$

Some tools

de Leeuw transform

$$\Phi: \operatorname{Lip}(X) \to C(\widetilde{X})$$
 $\Phi f(p,q) = \frac{f(p) - f(q)}{d(p,q)} = \langle f, u_{pq} \rangle$

 $L(f) = \left\| \Phi f \right\|_{\infty} \quad \Rightarrow \quad \Phi \text{ is a linear isometry } \operatorname{Lip}_0(X) \to C(\widetilde{X})$

Elementary molecules

$$u_{pq} = \frac{j(p) - j(q)}{d(p,q)} \in S_{\mathcal{F}(X)}$$

Theorem (Weaver 1995)

If $m \in \mathcal{F}(X)$ is a preserved extreme point of $B_{\mathcal{F}(X)}$ then $m = u_{pq}$ for some $(p,q) \in \widetilde{X}$.

- βX , Stone-Čech compactification of X
 - For $p \in X$, consider $d(p, \cdot) \colon \beta X \to [0, \infty]$

$$d(x,\xi) = \lim_{i} d(p,x_i)$$
, where $x_i \to \xi$

• If $d(p,\xi) < \infty$, the evaluation on ξ is in $\operatorname{Lip}_0(X)^*$

$$\langle j(\xi), f \rangle = f(\xi) = \lim_{i} f(x_i)$$

- βX , Stone-Čech compactification of X
 - For $p \in X$, consider $d(p, \cdot) \colon \beta X \to [0, \infty]$

$$d(x,\xi) = \lim_{i} d(p,x_i)$$
, where $x_i \to \xi$

• If $d(p,\xi) < \infty$, the evaluation on ξ is in $\operatorname{Lip}_0(X)^*$

$$\langle j(\xi), f \rangle = f(\xi) = \lim_{i} f(x_i)$$

- $\beta \widetilde{X}$, Stone-Čech compactification of \widetilde{X}
 - For $f \in \operatorname{Lip}(X)$, consider $\Phi f \in C(\beta \widetilde{X})$

$$\Phi f(\zeta) = \lim_{i} \Phi f(x_i, y_i)$$
, where $(x_i, y_i) \to \zeta$

•
$$\Phi: \operatorname{Lip}_0(X) \to C(\beta \widetilde{X})$$
 is an isometry into
• $\Phi^*: M(\beta \widetilde{X}) \to \operatorname{Lip}_0(X)^*$ is onto

• y is an *extreme point* of B_Y iff

$$y = \frac{1}{2}(y_1 + y_2), \ y_1, y_2 \in B_Y \implies y_1 = y_2 = y$$

• y is an *extreme point* of B_Y iff

$$y = \frac{1}{2}(y_1 + y_2), \ y_1, y_2 \in B_Y \implies y_1 = y_2 = y$$

2 y is a preserved extreme point of B_Y iff

$$y = \frac{1}{2}(y_1^{**} + y_2^{**}), \ y_1^{**}, y_2^{**} \in B_{Y^{**}} \implies y_1^{**} = y_2^{**} = y$$

• y is an *extreme point* of B_Y iff

$$y = \frac{1}{2}(y_1 + y_2), \ y_1, y_2 \in B_Y \implies y_1 = y_2 = y$$

2 y is a preserved extreme point of B_Y iff

$$y = \frac{1}{2}(y_1^{**} + y_2^{**}), \ y_1^{**}, y_2^{**} \in B_{Y^{**}} \implies y_1^{**} = y_2^{**} = y$$

(a) y is a strongly exposed point of B_Y iff

 $\exists f \in B_{Y^*} \text{ s.t. } f(y) = 1 \text{ and } y_n \in B_Y, \ f(y_n) \to 1 \Longrightarrow y_n \to y$

• y is an *extreme point* of B_Y iff

$$y = \frac{1}{2}(y_1 + y_2), \ y_1, y_2 \in B_Y \implies y_1 = y_2 = y$$

2 y is a preserved extreme point of B_Y iff

$$y = \frac{1}{2}(y_1^{**} + y_2^{**}), \ y_1^{**}, y_2^{**} \in B_{Y^{**}} \implies y_1^{**} = y_2^{**} = y$$

(a) y is a strongly exposed point of B_Y iff

 $\exists f \in B_{Y^*} \text{ s.t. } f(y) = 1 \text{ and } y_n \in B_Y, \ f(y_n) \to 1 \Longrightarrow y_n \to y$

Note: $(3) \Rightarrow (2) \Rightarrow (1)$

$$\varepsilon(r;p,q):=d(p,r)+d(q,r)-d(p,q)\geq 0,\,r\in X$$

$$\varepsilon(r;p,q):=d(p,r)+d(q,r)-d(p,q)\geq 0,\,r\in X$$

Theorem

If $\varepsilon(r; p, q) = 0$ for some $r \in X \setminus \{p, q\}$, then u_{pq} is *not* an extreme point of $B_{\mathcal{F}(X)}$.

$$\varepsilon(r;p,q):=d(p,r)+d(q,r)-d(p,q)\geq 0,\,r\in X$$

Theorem

If $\varepsilon(r; p, q) = 0$ for some $r \in X \setminus \{p, q\}$, then u_{pq} is *not* an extreme point of $B_{\mathcal{F}(X)}$.

Proof:

$$u_{pq} = \frac{j(p) - j(q)}{d(p,q)} = \frac{j(p) - j(r) + j(r) - j(q)}{d(p,q)}$$
$$= \frac{d(p,r)}{d(p,q)} u_{pr} + \frac{d(r,q)}{d(p,q)} u_{rq}. \quad \Box$$

$\varepsilon(\boldsymbol{\xi};p,q):=d(p,\boldsymbol{\xi})+d(q,\boldsymbol{\xi})-d(p,q)\geq 0,\,\boldsymbol{\xi}\in\beta X$

$$\varepsilon(\xi;p,q):=d(p,\xi)+d(q,\xi)-d(p,q)\geq 0,\,\xi\in\beta X$$

Theorem (AG 2017)

If $\varepsilon(\xi; p, q) = 0$ for some $\xi \in \beta X \setminus \{p, q\}$, then u_{pq} is *not* a preserved extreme point of $B_{\mathcal{F}(X)}$.

$$\varepsilon(\xi; p, q) := d(p, \xi) + d(q, \xi) - d(p, q) \ge 0, \, \xi \in \beta X$$

Theorem (AG 2017)

If $\varepsilon(\xi; p, q) = 0$ for some $\xi \in \beta X \setminus \{p, q\}$, then u_{pq} is *not* a preserved extreme point of $B_{\mathcal{F}(X)}$.

Proof: $d(p,\xi), d(q,\xi) < \infty \Rightarrow j(\xi) \in \operatorname{Lip}_0(X)^* = \mathcal{F}(X)^{**}$

$$\varepsilon(\xi; p, q) := d(p, \xi) + d(q, \xi) - d(p, q) \ge 0, \, \xi \in \beta X$$

Theorem (AG 2017)

If $\varepsilon(\xi; p, q) = 0$ for some $\xi \in \beta X \setminus \{p, q\}$, then u_{pq} is *not* a preserved extreme point of $B_{\mathcal{F}(X)}$.

Proof:
$$d(p,\xi), d(q,\xi) < \infty \Rightarrow j(\xi) \in \text{Lip}_0(X)^* = \mathcal{F}(X)^{**}$$

Define $u_{p\xi} = \frac{j(p) - j(\xi)}{d(p,\xi)}, u_{\xi q} = \frac{j(\xi) - j(q)}{d(\xi,q)}$. Both are in $S_{\mathcal{F}(X)^{**}}$.
$$\varepsilon(\xi;p,q):=d(p,\xi)+d(q,\xi)-d(p,q)\geq 0,\,\xi\in\beta X$$

If $\varepsilon(\xi; p, q) = 0$ for some $\xi \in \beta X \setminus \{p, q\}$, then u_{pq} is *not* a preserved extreme point of $B_{\mathcal{F}(X)}$.

Proof:
$$d(p,\xi), d(q,\xi) < \infty \Rightarrow j(\xi) \in \operatorname{Lip}_0(X)^* = \mathcal{F}(X)^{**}$$

Define $u_{p\xi} = \frac{j(p) - j(\xi)}{d(p,\xi)}, u_{\xi q} = \frac{j(\xi) - j(q)}{d(\xi,q)}$. Both are in $S_{\mathcal{F}(X)^{**}}$.
 $u_{pq} = \frac{d(p,\xi)}{d(p,q)}u_{p\xi} + \frac{d(\xi,q)}{d(p,q)}u_{\xi q}$.

Suppose $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$. Then u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$.

Suppose $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$. Then u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$.

Proof: Suppose $u_{pq} = \frac{1}{2}(x_1^{**} + x_2^{**})$ where $x_1^{**}, x_2^{**} \in B_{\text{Lip}_0(X)^*}$.

Suppose $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$. Then u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$.

Proof: Suppose $u_{pq} = \frac{1}{2}(x_1^{**} + x_2^{**})$ where $x_1^{**}, x_2^{**} \in B_{\operatorname{Lip}_0(X)^*}$. Then $x_i^{**} = \Phi^* \mu_i$ where $\mu_i \in M(\beta \widetilde{X})$, $\|\mu_i\| = 1$. $\Phi^* \delta_{(p,q)} = u_{pq} \Rightarrow$ Prove that μ_i is concentrated on (p,q) and (q,p).

Suppose $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$. Then u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$.

Proof: Suppose
$$u_{pq} = \frac{1}{2}(x_1^{**} + x_2^{**})$$
 where $x_1^{**}, x_2^{**} \in B_{\operatorname{Lip}_0(X)^*}$.
Then $x_i^{**} = \Phi^* \mu_i$ where $\mu_i \in M(\beta \widetilde{X}), \|\mu_i\| = 1$.
 $\Phi^* \delta_{(p,q)} = u_{pq} \Rightarrow$ Prove that μ_i is concentrated on (p,q) and (q,p) .

Consider the set

 $D_{(p,q)} = \big\{ \zeta \in \beta \widetilde{X} : \text{if } f \in \operatorname{Lip}_0(X) \text{ attains its norm at } (p,q), \\ \text{then } f \text{ also attains its norm at } \zeta \big\}.$

(*f* attains its norm at ζ if $|\Phi f(\zeta)| = L(f)$)

For any $(p,q) \in \widetilde{X}$, μ_i are concentrated in $D_{(p,q)}$.

For any $(p,q) \in \widetilde{X}$, μ_i are concentrated in $D_{(p,q)}$.

Proof: Let $\zeta \in \beta \widetilde{X} \setminus D_{(p,q)}$.

=

For any $(p,q) \in \widetilde{X}$, μ_i are concentrated in $D_{(p,q)}$.

Proof: Let $\zeta \in \beta \widetilde{X} \setminus D_{(p,q)}$. There is $f \in \text{Lip}_0(X)$ such that L(f) = 1, $\Phi f(p,q) = 1$, $|\Phi f(\zeta)| < 1$. There are c < 1 and $U(\zeta)$ such that $|\Phi f(\zeta')| \leq c$ for $\zeta' \in U(\zeta)$.

$$\langle \mu_i, \Phi f \rangle = \int_{\beta \widetilde{X}} (\Phi f) \, d\mu_i = \int_{U(\zeta)} + \int_{\beta \widetilde{X} \setminus U(\zeta)} \leq 1 - (1 - c) \, |\mu_i| \, (U(\zeta))$$

$$\Rightarrow 1 = \langle f, u_{pq} \rangle = \left\langle \frac{1}{2} (\mu_1 + \mu_2), \Phi f \right\rangle \leq 1 - \frac{1 - c}{2} (|\mu_1| + |\mu_2|) (U(\zeta))$$

$$\Rightarrow |\mu_1| \, (U(\zeta)) = |\mu_2| \, (U(\zeta)) = 0$$

For any $(p,q) \in \widetilde{X}$, μ_i are concentrated in $D_{(p,q)}$.

By regularity

$$|\mu_i|\left(\beta \widetilde{X} \setminus D_{(p,q)}\right) = \sup_{\substack{K \subset \beta \widetilde{X} \setminus D_{(p,q)} \\ K \text{ compact}}} |\mu_i|\left(K\right)$$

For any *K*, find a cover $K \subset \bigcup_{j=1}^{n} U(\zeta_j)$.

$$|\mu_i|(K) \le \sum_{j=1}^n |\mu_i|(U(\zeta_j)) = 0$$

 $\Rightarrow |\mu_i| \left(\beta \widetilde{X} \setminus D_{(p,q)}\right) = 0. \ \Box$

For any $(p,q) \in \widetilde{X}$, μ_i are concentrated in $D_{(p,q)}$.

Note: We did not use the fact that $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$.

For any $(p,q) \in \widetilde{X}$, μ_i are concentrated in $D_{(p,q)}$.

Note: We did not use the fact that $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$.

For $D_{(p,q)}=\{(p,q),(q,p)\}$ we get:

Theorem (AG 2017)

If $(p,q) \in \widetilde{X}$ and for every $\zeta \in \beta \widetilde{X}$, $\zeta \neq (p,q), (q,p)$ there is $f \in \operatorname{Lip}_0(X)$ such that $|\Phi f(p,q)| = L(f)$ and $|\Phi(\zeta)| < L(f)$, then u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$.

If $(p,q) \in \widetilde{X}$ and for every $\zeta \in \beta \widetilde{X}$, $\zeta \neq (p,q), (q,p)$ there is $f \in \operatorname{Lip}_0(X)$ such that $|\Phi f(p,q)| = L(f)$ and $|\Phi(\zeta)| < L(f)$, then u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$.

If $(p,q) \in \widetilde{X}$ and for every $\zeta \in \beta \widetilde{X}$, $\zeta \neq (p,q), (q,p)$ there is $f \in \operatorname{Lip}_0(X)$ such that $|\Phi f(p,q)| = L(f)$ and $|\Phi(\zeta)| < L(f)$, then u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$.

Theorem (de Leeuw 1961)

If $(p,q) \in \widetilde{X}$ and there is $f \in \text{Lip}_0(X)$ that peaks at (p,q), then u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$.

(*f* peaks at (p,q) if $|\Phi f| = L(f)$ in (p,q), (q,p) and < L(f) elsewhere)

If $(p,q) \in \widetilde{X}$ and for every $\zeta \in \beta \widetilde{X}$, $\zeta \neq (p,q), (q,p)$ there is $f \in \operatorname{Lip}_0(X)$ such that $|\Phi f(p,q)| = L(f)$ and $|\Phi(\zeta)| < L(f)$, then u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$.

Theorem (de Leeuw 1961)

If $(p,q) \in \widetilde{X}$ and there is $f \in \text{Lip}_0(X)$ that peaks at (p,q), then u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$.

Theorem (García-Lirola, Procházka, Rueda Zoca 2017)

Let *X* be a pointed metric space and $(p,q) \in \widetilde{X}$. TFAE: (i) u_{pq} is a strongly exposed point of $B_{\mathcal{F}(X)}$ (ii) There is $f \in \operatorname{Lip}_0(X)$ that peaks at (p,q)

Step 2?

If $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$, then

$$D_{(p,q)} = \{(p,q), (q,p)\}$$

Step 2?

If $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$, then

$$D_{(p,q)} \equiv \{(p,q), (q,p)\}$$

This is not true in general.

Step 2?

If $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$, then

$$D_{(p,q)} \equiv \{(p,q), (q,p)\}$$

This is not true in general.

Counterexample:

If $p_n \to p$ and $\frac{\varepsilon(p_n; p, q)}{d(p_n, p)} \to 0$ then $D_{(p,q)}$ contains a point that lies over p.

 $(\zeta \in \beta \widetilde{X} \text{ lies over } p \text{ if } (x_i, y_i) \to \zeta \text{ where } x_i, y_i \to p)$

If $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$, then

 $D_{(p,q)} = \{(p,q), (q,p)\} \cup \{\text{points that lie over } p \text{ or } q\}$

If $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$, then

 $D_{(p,q)} = \{(p,q), (q,p)\} \cup \{\text{points that lie over } p \text{ or } q\}$

Proof: Let $(x_i, y_i) \rightarrow \zeta \in D_{(p,q)}, x_i \rightarrow \xi, y_i \rightarrow \eta$, where $\xi, \eta \in \beta X$. We must show that $\zeta \in D_{(p,q)} \Rightarrow \xi, \eta \in \{p,q\}$. Suppose $\xi, \eta \neq p, q$ (the other case is similar).

$$\varepsilon(\xi; p, q), \varepsilon(\eta; p, q) > 0 \Rightarrow \inf \frac{\varepsilon(x_i; p, q)}{d(x_i, q)}, \inf \frac{\varepsilon(y_i; p, q)}{d(y_i, q)} \ge c > 0$$

Define $g \in \operatorname{Lip}(\{p, q, x_i, y_i\})$ as

$$g(x) = \begin{cases} d(x,q) & \text{if } x = p\\ (1-c) \cdot d(x,q) & \text{if } x = q \text{ or } x_i \text{ or } y_i \end{cases}$$

If $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$, then

 $D_{(p,q)} = \{(p,q), (q,p)\} \cup \{\text{points that lie over } p \text{ or } q\}$

$$g(x) = \begin{cases} d(x,q) & \text{if } x = p\\ (1-c) \cdot d(x,q) & \text{if } x = q \text{ or } x_i \text{ or } y_i \end{cases}$$

$$\begin{array}{l} \bullet \ \Phi g(p,q) = 1 \\ \bullet \ |\Phi g(x,y)| \leq 1 - c \text{ if } x, y \neq p \\ \bullet \ |\Phi g(x,p)| \leq 1 \text{ if } x \neq p, q \text{ (definition of } c) \end{array} \right\} \Rightarrow L(g) = 1 \\ \begin{array}{l} \Rightarrow L(g) = 1 \\ \Rightarrow L(g) = 1, \text{ and } |\Phi f(\zeta)| = 1, \\ \Phi f(p,q) = 1, \text{ and } |\Phi f(\zeta)| = \lim_{i} |\Phi f(x_i, y_i)| \leq 1 - c. \\ \Rightarrow \zeta \notin D_{(p,q)}. \ \Box \end{array} \right\}$$

In our case, μ_1 and μ_2 are concentrated on (p,q) and (q,p).

In our case, μ_1 and μ_2 are concentrated on (p,q) and (q,p).

Proof: Let $\mu_i = \lambda_i + \lambda'_i$ where λ_i is concentrated on $\{(p,q), (q,p)\}$ and λ'_i on $D_{(n,q)} \setminus \{(p,q), (q,p)\}.$ Choose $f \in \text{Lip}_0(X)$ with L(f) = 1, $\Phi f(p,q) = 1$ and f constant in neighborhoods of p and q. Then $\Phi f(\zeta) = 0$ if $\zeta \in \beta X$ lies over p or q. So $\int_{\beta X} (\Phi f) d\lambda'_i = 0$. $1 = \langle f, u_{pq} \rangle = \left\langle \frac{1}{2} (\mu_1 + \mu_2), \Phi f \right\rangle = \frac{1}{2} \left(\int_{\mathscr{X}} (\Phi f) \, d\lambda_1 + \int_{\mathscr{X}} (\Phi f) \, d\lambda_2 \right)$ $\leq \frac{1}{2} \|\Phi f\|_{\infty} \left(\|\lambda_1\| + \|\lambda_2\|\right) \leq \frac{1}{2} \|\Phi f\|_{\infty} \left(\|\mu_1\| + \|\mu_2\|\right) \leq 1$ $\Rightarrow \|\lambda_1'\| = \|\lambda_2'\| = 0.$

Let *X* be a pointed metric space and $p \neq q \in X$. TFAE: (i) u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$ (ii) $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$

Let *X* be a pointed metric space and $p \neq q \in X$. TFAE: (i) u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$ (ii) $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$

(ii) $\Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{such that} \ d(p,r), d(q,r) \ge \varepsilon \Rightarrow \varepsilon(r;p,q) \ge \delta$

Let *X* be a pointed metric space and $p \neq q \in X$. TFAE: (i) u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$ (ii) $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$

(ii) $\Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0$ such that $d(p,r), d(q,r) \ge \varepsilon \Rightarrow \varepsilon(r;p,q) \ge \delta$

Corollary (AG 2017)

Let *X* be a *compact* pointed metric space and $p \neq q \in X$. TFAE: (i) u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$

(iii) $\varepsilon(r; p, q) > 0$ for all $r \in X \setminus \{p, q\}$

Let *X* be a pointed metric space and $p \neq q \in X$. TFAE: (i) u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$ (ii) $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$

(ii) $\Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0$ such that $d(p,r), d(q,r) \ge \varepsilon \Rightarrow \varepsilon(r;p,q) \ge \delta$

Corollary (AG 2017)

Let *X* be a *compact* pointed metric space and $p \neq q \in X$. TFAE: (i) u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$

(iii) $\varepsilon(r; p, q) > 0$ for all $r \in X \setminus \{p, q\}$

(iii) $\Leftrightarrow d(p,q) < d(p,r) + d(q,r)$ for all $r \in X$, $r \neq p,q$

Let *X* be a pointed metric space and $p \neq q \in X$. TFAE: (i) u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$ (ii) $\varepsilon(\xi; p, q) > 0$ for all $\xi \in \beta X \setminus \{p, q\}$

(ii) $\Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0$ such that $d(p,r), d(q,r) \ge \varepsilon \Rightarrow \varepsilon(r;p,q) \ge \delta$

Corollary (AG 2017)

Let *X* be a *compact* pointed metric space and $p \neq q \in X$. TFAE: (i) u_{pq} is a preserved extreme point of $B_{\mathcal{F}(X)}$ (ii) u_{pq} is an extreme point of $B_{\mathcal{F}(X)}$ (iii) $\varepsilon(r; p, q) > 0$ for all $r \in X \setminus \{p, q\}$

(iii) $\Leftrightarrow d(p,q) < d(p,r) + d(q,r)$ for all $r \in X$, $r \neq p,q$

Concave spaces

X is *concave* if all u_{pq} are preserved extreme points of $B_{\mathcal{F}(X)}$

X is *concave* if all u_{pq} are preserved extreme points of $B_{\mathcal{F}(X)}$

Theorem (Mayer-Wolf 1981)

Let X, Y be concave metric spaces. TFAE: (i) $\operatorname{Lip}_0(X) \simeq \operatorname{Lip}_0(Y)$ (ii) $\mathcal{F}(X) \simeq \mathcal{F}(Y)$ (iii) There is a dilation from X onto Y

$$(f: X \to Y \text{ is a dilation if } \frac{d(f(x), f(y))}{d(x, y)} \text{ is constant})$$

Conjecture (Weaver 1999)

If X is a compact metric space such that d(p,q) < d(p,r) + d(q,r) for all distinct $p, q, r \in X$, then X is concave.

Conjecture (Weaver 1999)

If X is a compact metric space such that d(p,q) < d(p,r) + d(q,r) for all distinct $p, q, r \in X$, then X is concave.

Corollary (AG 2017)

A compact metric space X is concave iff d(p,q) < d(p,r) + d(q,r) for all distinct $p, q, r \in X$.

Conjecture (Weaver 1999)

If X is a compact metric space such that d(p,q) < d(p,r) + d(q,r) for all distinct $p, q, r \in X$, then X is concave.

Corollary (AG 2017)

A compact metric space X is concave iff d(p,q) < d(p,r) + d(q,r) for all distinct $p,q,r \in X.$

Corollary

Compact Hölder spaces are concave.

Theorem

Let *X* be a pointed metric space and $m \in \mathcal{F}(X)$. TFAE: (i) *m* is a preserved extreme point of $B_{\mathcal{F}(X)}$ (ii) $m = u_{pq}$ where $p \neq q \in X$ have the property:

 $\begin{array}{ll} (\mathsf{P}^*) & \text{For any } \varepsilon > 0, \text{ there is } \delta > 0 \text{ such that, for all } r \neq p, q \\ & d(p,r), d(q,r) \geq \varepsilon \, \Rightarrow \, \varepsilon(r;p,q) \geq \delta \end{array}$

Theorem

Let *X* be a pointed metric space and $m \in \mathcal{F}(X)$. TFAE: (i) *m* is a preserved extreme point of $B_{\mathcal{F}(X)}$ (ii) $m = u_{pq}$ where $p \neq q \in X$ have the property:

 $\begin{array}{ll} (\mathsf{P}^*) & \text{For any } \varepsilon > 0, \text{ there is } \delta > 0 \text{ such that, for all } r \neq p, q \\ & d(p,r), d(q,r) \geq \varepsilon \Rightarrow \varepsilon(r;p,q) \geq \delta \end{array}$

(E1*) All preserved extreme points of $B_{\mathcal{F}(X)}$ are of the form u_{pq} .

(E2*) u_{pq} is preserved extreme iff p, q have property (P*).

Theorem (García-Lirola, Procházka, Rueda Zoca 2017)

Let *X* be a pointed metric space and $m \in \mathcal{F}(X)$. TFAE: (i) *m* is a strongly exposed point of $B_{\mathcal{F}(X)}$ (ii) $m = u_{pq}$ where $p \neq q \in X$ have the property:

> (P') There is C > 0 such that, for all $r \neq p, q$ $\varepsilon(r; p, q) \ge C \min \{d(p, r), d(q, r)\}$

Theorem (García-Lirola, Procházka, Rueda Zoca 2017)

Let *X* be a pointed metric space and $m \in \mathcal{F}(X)$. TFAE: (i) *m* is a strongly exposed point of $B_{\mathcal{F}(X)}$ (ii) $m = u_{pq}$ where $p \neq q \in X$ have the property:

> (P') There is C > 0 such that, for all $r \neq p, q$ $\varepsilon(r; p, q) \ge C \min \{d(p, r), d(q, r)\}$

(E1') All strongly exposed points of $B_{\mathcal{F}(X)}$ are of the form u_{pq} .

(E2') u_{pq} is strongly exposed iff p, q have property (P').
Let *X* be a pointed metric space and $m \in \mathcal{F}(X)$. TFAE: (i) *m* is an extreme point of $B_{\mathcal{F}(X)}$ (ii) $m = u_{pq}$ where $p \neq q \in X$ have the property:

 $(\mathsf{P}) \quad d(p,q) < d(p,r) + d(q,r) \text{ for all } r \neq p,q$

Let *X* be a pointed metric space and $m \in \mathcal{F}(X)$. TFAE: (i) *m* is an extreme point of $B_{\mathcal{F}(X)}$ (ii) $m = u_{pq}$ where $p \neq q \in X$ have the property:

 $(\mathsf{P}) \quad d(p,q) < d(p,r) + d(q,r) \text{ for all } r \neq p,q$

(E1) All extreme points of $B_{\mathcal{F}(X)}$ are of the form u_{pq} .

(E2) u_{pq} is extreme iff p, q have property (P).

Let *X* be a pointed metric space and $m \in \mathcal{F}(X)$. TFAE: (i) *m* is an extreme point of $B_{\mathcal{F}(X)}$ (ii) $m = u_{pq}$ where $p \neq q \in X$ have the property:

 $(\mathbf{P}) \quad d(p,q) < d(p,r) + d(q,r) \text{ for all } r \neq p,q$

(E1) All extreme points of $B_{\mathcal{F}(X)}$ are of the form u_{pq} .

(E2) u_{pq} is extreme iff p, q have property (P).

• (E2) is true if X is compact

Let *X* be a pointed metric space and $m \in \mathcal{F}(X)$. TFAE: (i) *m* is an extreme point of $B_{\mathcal{F}(X)}$ (ii) $m = u_{pq}$ where $p \neq q \in X$ have the property:

 $(\mathsf{P}) \quad d(p,q) < d(p,r) + d(q,r) \text{ for all } r \neq p,q$

(E1) All extreme points of $B_{\mathcal{F}(X)}$ are of the form u_{pq} .

(E2) u_{pq} is extreme iff p, q have property (P).

- (E2) is true if X is compact
- (E1) is true if X is compact and lip₀(X) separates points uniformly (in this case, F(X) = lip₀(X)*)

$$\begin{split} \mathrm{lip}_0(X) = & \big\{ f \in \mathrm{Lip}_0(X) : \forall \varepsilon > 0 \, \exists \delta > 0 \text{ such that} \\ & d(p,q) < \delta \Rightarrow |\Phi f(p,q)| < \varepsilon \big\}. \end{split}$$

 $lip_0(X)$ separates points uniformly if $\exists C \ge 1$ such that $\forall p, q \in X$ $\exists f \in lip_0(X)$ with $|\Phi f(p,q)| = 1$ and $L(f) \le C$.

Examples:

- Cantor middle-thirds set
- Compact Hölder spaces
- (Dalet 2015) Compact countable spaces
- (Dalet 2015) Compact ultrametric spaces

Corollary

If X is

- the Cantor middle-thirds set,
- a compact Hölder space,
- a countable compact space, or
- an ultrametric compact space,

then

$$\begin{aligned} & \operatorname{Ext} B_{\mathcal{F}(X)} = \Big\{ u_{pq} : p, q \in X, p \neq q, \\ & d(p,q) < d(p,r) + d(q,r) \text{ for all } r \in X \setminus \{p,q\} \Big\} \end{aligned}$$