Some Problems concerning algebras of holomorphic functions

RICHARD M. ARON KENT STATE UNIVERSITY

Valencia October, 2017

Plan of talk

Problems collected over a long period, with many co-authors:

D. Carando, P. Galindo, D. García, T. W. Gamelin, M. Maestre, ... M. Maestre

Basic background
 A Problem involving *H_b(X)* Problems involving *H[∞](B_X)*

X is a complex Banach space with open unit ball B_X . We'll be interested in two algebras of holomorphic functions

- *H_b(X)*, the (Fréchet) algebra of all entire functions
 f : *X* → C such that ||*f*||_{nBx} < ∞, ∀*n*,
- *H*[∞](*B_X*), the (Banach) algebra of all holomorphic functions
 f : *B_X* → C such that ||*f*|| = sup_{x∈B_X} |*f*(x)| < ∞. To a lesser
 extent, we'll look at

- ► A_u(B_X), the subalgebra of H[∞](B_X) consisting of all uniformly continuous holomorphic functions on B_X.

Let's call any of these three algebras \mathcal{A} , for now.

Let $\mathcal{M}(\mathcal{A})$ denote the set of all $\neq 0$ homomorphisms $\varphi : \mathcal{A} \to \mathbb{C}$. In the the case of *Banach algebras*, any such φ is automatically continuous. However, for $\mathcal{A} = \mathcal{H}_b(X)$, the automatic continuity of φ is unknown ("Michael problem"). For this talk, we'll assume automatic continuity of such homomorphisms φ . For Banach algebras $\mathcal{A}, \mathcal{M}(\mathcal{A}) \subset \overline{B}_{\mathcal{A}^*}$ and is weak-star compact. A few more basics later.

2) $\mathcal{H}_b(X)$

By [A & Berner], every $f \in \mathcal{H}_b(X)$ admits an extension (via a canonical map) to $\tilde{f} \in \mathcal{H}_b(X^{**})$. Moreover, $f \to \tilde{f}$ is itself a homomorphism, i.e. it's linear, multiplicative, and continuous. By [Davie & Gamelin], it follows that every $f \in \mathcal{H}^{\infty}(B_X)$ admits an extension $\tilde{f} \in \mathcal{H}^{\infty}(B_{X^{**}})$. The same holds for $\mathcal{A}_u(B_X)$. As above, $f \to \tilde{f}$ is a homomorphism.

Examples

1. $X = \mathbb{C}$: $\mathcal{M}(\mathcal{H}(\mathbb{C})) = \{\delta_c \mid c \in \mathbb{C}\}.$ Also $\mathcal{M}(\mathcal{A}_u(\mathcal{B}_{\mathbb{C}})) = \mathcal{M}(\mathcal{A}(\mathbb{D})) = \{\delta_c \mid c \in \mathbb{C}, |c| \leq 1\},$ However, $\mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D}))$ is very complicated and very interesting. The only obvious homomorphisms are $\{\delta_c \mid |c| < 1\}$. But this isn't (cannot be) all, because of the compactness of $\mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D})).$

Examples

2. $X = c_0$: It is known that $\mathcal{M}(\mathcal{H}_b(c_0))$ consists of $\{\delta_b \mid b \in c_0\}$ together with all $\{\tilde{\delta}_{b^{**}} \mid b^{**} \in \ell_\infty\}$, where $\tilde{\delta}_{b^{**}}(f) = \tilde{f}(b^{**})$. Also it is known that $\mathcal{M}(\mathcal{A}_u(B_{c_0}))$ is all δ_b , $b \in c_0$, $|b|| \leq 1$, together with all $\tilde{\delta}_{b^{**}}$, where $b^{**} \in \ell_\infty$, $||b^{**}|| \leq 1$. 3. $X = \ell_2$. There are many more non-trivial homomorphisms in $\mathcal{M}(\mathcal{H}_b(\ell_2))$ than merely the evaluation homomorphisms $\delta_x, x \in \ell_2$.

Question For a fixed $b^{**} \in X^{**}$, by "performing" $\tilde{\delta}_{b}^{**}: f \in \mathcal{H}_{b}(X) \to \tilde{f} \in \mathcal{H}_{b}(X^{**}) \to \tilde{f}(b^{**}),$ we showed that X^{**} can be viewed as a subset of $\mathcal{M}(\mathcal{H}_b(X))$. Can we continue this procedure, going from $f \in \mathcal{H}_b(X) \longrightarrow \tilde{f} \in \mathcal{H}_b(X^{**})$, and then from $\tilde{f} \in \mathcal{H}_b(X^{**}) \longrightarrow \tilde{\tilde{f}} \in \mathcal{H}_b(X^{iv})$? In this way, for each fixed $b^{i\nu} \in X^{i\nu}$, can we get *new* homomorphisms $ilde{\delta}_{_{hiv}}\in\mathcal{M}(\mathcal{H}_b(X)), \ \ f\rightsquigarrow ilde{f}(b^{iv})$ Answer: Sometimes yes (when Xis "regular"), sometimes no. If X is a C^* -algebra, or if X is reflexive (trivial), then no. Namely, to each $b^{iv} \in X^{iv}$, there corresponds $b^{**} \in X^{**}$ such that $\tilde{\delta}_{b^{iv}} = \tilde{\delta}_{b^{**}}$. However,

Example

4. $X = \ell_1$. **Theorem**: There are points $b^{i\nu} \in \ell_1^{i\nu}$ such that $\tilde{\delta}_{b^{i\nu}} \neq \tilde{\delta}_{b^{**}}$ for any $b^{**} \in \ell_1^{**}$.

Problems: (1) There are more points in $\ell_1^{i\nu}$ than there are homomorphisms in $\mathcal{M}(\mathcal{H}_b(\ell_1))$. So, which points $b^{i\nu}$ of the fourth dual yield new homomorphisms and which do not? (2) Same questions about going to the *sixth dual* of ℓ_1 . **Enough!** As before, let \mathcal{A} be one of the following three algebras: $\mathcal{H}_b(X), \mathcal{H}^{\infty}(B_X), \mathcal{A}_u(B_X).$

Observation: $X^* \subset \mathcal{A}$. Consequently, for any $x^* \in X^*$ and for any (continuous) homomorphism $\varphi \in \mathcal{M}(\mathcal{A}), \ \varphi(x^*) \in \mathbb{C}$ makes sense. Define $\Pi : \mathcal{A} \to ???$ by $\Pi(\varphi) = \varphi|_{X^*}$. So, what is ???. Answer: It has to be the bidual X^{**} . (Of course nothing new when dim $X < \infty$). For $\mathcal{A} = \mathcal{H}_{\mathcal{A}}(X)$ the

(Of course, nothing new when dim $X < \infty$.) For $\mathcal{A} = \mathcal{H}_b(X)$, the range of Π is all of X^{**} , while in the other two cases, $\mathcal{A} = \mathcal{H}^{\infty}(B_X)$ or $\mathcal{A}_u(B_X)$, the range is $\overline{B}_{X^{**}}$.

Definition

Let z^{**} be in the range of Π . The *fiber* over z^{**} is just $\Pi^{-1}(z^{**})$.

Definition

The *cluster set* of a function $f \in \mathcal{H}^{\infty}(B_X)$ at the point $z^{**} \in \overline{B}_{X^{**}}$ is the set of all limits of values of f along nets in B_X that converge weak-star to z^{**} .

Let's restrict to $\mathcal{A} = \mathcal{H}^{\infty}(\mathbb{D})$. Recall that $\delta(\mathbb{D}) \equiv \{\delta_c \mid c \in \mathbb{D}\} \in \mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D}))$. Also, recall that the natural topology on $\mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D}))$ is the weak-star topology, induced by all seminorms of the form $\varphi \in \mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D})) \rightsquigarrow |\varphi(f)|$, where f varies in $\mathcal{H}^{\infty}(\mathbb{D})$.

Corona Theorem (L. Carleson - 1962) The collection $\delta(\mathbb{D})$ of point evaluations at points of the open unit disc is dense in the space of all homomorphisms $\mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D}))$ on $\mathcal{H}^{\infty}(\mathbb{D})$.

Carleson's theorem (288) appeared one year after a somewhat overlooked paper by I. J. Schark (8). In it, among other things I. J. Schark proved

Cluster Value Theorem (I. J. Schark - 1961) Fix $f \in \mathcal{H}^{\infty}(\mathbb{D})$ and $c \in \overline{\mathbb{D}}$. Then the following sets are equal:

$$\{w \in \mathbb{C} \mid \exists (z_n) \subset \mathbb{D}, z_n \to c \text{ and } f(z_n) \to w\};$$

$$\{\varphi(f) \mid \varphi \in \mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D})) \mid \Pi(\varphi) = c\}.$$

Remarks 0. Schark's result is trivial if |c| < 1.

 Carleson's theorem ⇒ I. J. Schark's theorem, but ∉ is false.
 The analogous result to Carleson's theorem for higher dimensions, e.g. C² with the Euclidean or max norms, is unknown. Put briefly, for dim X = 1, there are no known counterexamples; for dim X ≥ 2, there are no positive results. On the other hand,
 There is no known situation in which I. J. Schark's theorem is

false.

First, we're interested in a cluster value theorem, à la I. J. Schark. To start, for a given complex Banach space X, observe that $\delta(B_X) \equiv \{\delta_c \mid c \in B_X\} \subset \mathcal{M}(\mathcal{H}^\infty(B_X))$. Also, as before, endow $\mathcal{M}(\mathcal{H}^{\infty}(B_X))$ with the weak-star topology, considering it as a subspace of $(\mathcal{H}^{\infty}(B_X)^*)$, weak-star). Harder Problem: Is the Cluster Value Theorem still true? Namely, for a fixed $f \in \mathcal{H}^{\infty}(B_X)$ and a fixed point $z^{**} \in \overline{B}_{X^{**}}$, are the following two sets equal? $\{w \in \mathbb{C} \mid \exists \text{ net } (z_{\alpha})_{\alpha} \in B_X, \ z_{\alpha} \to z^{**} \text{ weak} - * \& f(z_{\alpha}) \to w\};$ $\{\varphi(f) \mid \varphi \in \mathcal{M}(\mathcal{H}^{\infty}(B_X)), \ \Pi(\varphi) = z^{**}\}.$

Remark Unlike the case dim $X < \infty$, the fiber over *any, even an interior* point of $B_{X^{**}}$ is rich. In particular, $\beta \mathbb{N} \subset \Pi^{-1}(0)$. Even in this case, the easier (?) problem is open in general: Easier Problem: For a fixed $f \in \mathcal{H}^{\infty}(B_X)$, are the following two sets equal?

 $\{ w \in \mathbb{C} \mid \exists \text{ net } (z_{\alpha})_{\alpha} \in B_X, \ z_{\alpha} \to 0 \text{ weakly } \& f(z_{\alpha}) \to w \}; \\ \{ \varphi(f) \mid \varphi \in \mathcal{M}(\mathcal{H}^{\infty}(B_X)), \ \Pi(\varphi) = 0 \}.$

Yes, even to the "harder" question, if $X = c_0$. Namely, **Theorem**. Fix $f \in \mathcal{H}^{\infty}(B_{c_0})$ and $z^{**} \in \overline{B}_{\ell_{\infty}}$. Then the two sets

$$\{w \in \mathbb{C} \mid \exists \text{ net } (z_{\alpha})_{\alpha} \in B_X, \ z_{\alpha} \to z^{**} \ weak - * \& \ f(z_{\alpha}) \to w\}$$

and

$$\{\varphi(f) \mid \varphi \in \mathcal{M}(\mathcal{H}^{\infty}(\mathcal{B}_X)), \ \Pi(\varphi) = z^{**}\}$$

are equal.

The same result is unknown, even for the apparently easier case of $X = \ell_2$.

One basic idea for proof of harder problem, $X = c_0$. Notation: For $g \in \mathcal{H}^{\infty}(B_{c_0})$ and $n \in \mathbb{N}$, define $g_n \in \mathcal{H}^{\infty}(B_{c_0})$ by $g_n(x_1, ..., x_n, x_{n+1}, ...) \equiv g(0, ..., 0, x_{n+1}, ...)$.

Lemma

Fix $\varphi \in \mathcal{M}(\mathcal{H}(^{\infty}(B_{c_0})))$ so that $\Pi(\varphi) = 0$. For any $g \in \mathcal{H}^{\infty}(B_{c_0})$ and any $n \in \mathbb{N}$, $\varphi(g) = \varphi(g_n)$.

Remark The lemma is false if c_0 is replaced by ℓ_2 (and so we're stuck).

Problems about fibers in $\mathcal{M}(\mathcal{H}^{\infty}(B_X))$. Recall: For a complex Banach space X, $\Pi : \mathcal{M}(\mathcal{H}^{\infty}(B_X)) \to X^{**}, \ \Pi(\varphi) \equiv \varphi|_{X^*}.$

Fix X and two points z^{**} and w^{**} in $\overline{B}_{X^{**}}$. Problem What is the relation between the two fibers $\Pi^{-1}(z^{**})$ and $\Pi^{-1}(w^{**})$? Suppose $X = \ell_2$. If ||z|| = ||w|| = 1, then $\Pi^{-1}(z) \simeq \Pi^{-1}(w)$. The same result holds if ||z|| and ||w|| are both < 1. What if 1 = ||z|| > ||w||?

Suppose $X = c_0$. Then $||z||, ||w|| < 1 \Rightarrow \Pi^{-1}(z) \simeq \Pi^{-1}(w)$. But for ||z|| = ||w|| = 1, the situation is murky.

For the special cases $\mathcal{H}^{\infty}(D)$ and $\mathcal{H}^{\infty}(D^2)$, what is known is that $\Pi^{-1}(1) \subseteq \Pi^{-1}(a, b)$, if one of |a|, |b| = 1 and the other is < 1. Also, $\Pi^{-1}(1)$ and $\Pi^{-1}(1, 1)$ are not homeomorphic. (But the argument really uses dimension 1.)

Remark Even if dim $X < \infty$ (so $B_X = B_{X^{**}}$) and even if ||z||, ||w|| < 1, the problem, of whether $\pi^{-1}(z)$ and $\pi^{-1}(w)$ are (somehow) the "same'," is apparently unknown in general. The problem is that, in general, it isn't known if $\Pi^{-1}(z) = \{\delta_z\}$ if dim $X < \infty$ and ||z|| < 1.