Some Problems concerning algebras of holomorphic functions

Richard M. Aron
Kent State University

Valencia October, 2017

Problems collected over a long period, with many co-authors:
D. Carando, P. Galindo, D. García, T. W. Gamelin, м. Maestre, ... M. Maestre

1. Basic background 2. A Problem involving $\mathcal{H}_{b}(X)$ 3. Problems involving $\mathcal{H}^{\infty}\left(B_{X}\right)$

1) Basics

X is a complex Banach space with open unit ball B_{X}. We'll be interested in two algebras of holomorphic functions

- $\mathcal{H}_{b}(X)$, the (Fréchet) algebra of all entire functions $f: X \rightarrow \mathbb{C}$ such that $\|f\|_{n B_{X}}<\infty, \forall n$,
- $\mathcal{H}^{\infty}\left(B_{X}\right)$, the (Banach) algebra of all holomorphic functions $f: B_{X} \rightarrow \mathbb{C}$ such that $\|f\|=\sup _{x \in B_{X}}|f(x)|<\infty$. To a lesser extent, we'll look at
- $\mathcal{A}_{u}\left(B_{X}\right)$, the subalgebra of $\mathcal{H}^{\infty}\left(B_{X}\right)$ consisting of all uniformly continuous holomorphic functions on B_{X}.
Let's call any of these three algebras \mathcal{A}, for now.

Let $\mathcal{M}(\mathcal{A})$ denote the set of all $\neq 0$ homomorphisms $\varphi: \mathcal{A} \rightarrow \mathbb{C}$. In the the case of Banach algebras, any such φ is automatically continuous. However, for $\mathcal{A}=\mathcal{H}_{b}(X)$, the automatic continuity of φ is unknown ("Michael problem"). For this talk, we'll assume automatic continuity of such homomorphisms φ. For Banach algebras $\mathcal{A}, \mathcal{M}(\mathcal{A}) \subset \bar{B}_{\mathcal{A}^{*}}$ and is weak-star compact.
A few more basics later.

2) $\mathcal{H}_{b}(X)$

By [A \& Berner], every $f \in \mathcal{H}_{b}(X)$ admits an extension (via a canonical map) to $\tilde{f} \in \mathcal{H}_{b}\left(X^{* *}\right)$. Moreover, $f \rightarrow \tilde{f}$ is itself a homomorphism, i.e. it's linear, multiplicative, and continuous. By [Davie \& Gamelin], it follows that every $f \in \mathcal{H}^{\infty}\left(B_{X}\right)$ admits an extension $\tilde{f} \in \mathcal{H}^{\infty}\left(B_{X^{* *}}\right)$. The same holds for $\mathcal{A}_{u}\left(B_{X}\right)$. As above, $f \rightarrow \tilde{f}$ is a homomorphism.

Examples

1. $X=\mathbb{C}: \mathcal{M}(\mathcal{H}(\mathbb{C}))=\left\{\delta_{c} \mid c \in \mathbb{C}\right\}$.

Also $\mathcal{M}\left(\mathcal{A}_{u}\left(B_{\mathbb{C}}\right)\right)=\mathcal{M}(\mathcal{A}(\mathbb{D}))=\left\{\delta_{c}|c \in \mathbb{C},|c| \leq 1\}\right.$, However, $\mathcal{M}\left(\mathcal{H}^{\infty}(\mathbb{D})\right)$ is very complicated and very interesting. The only obvious homomorphisms are $\left\{\delta_{c}| | c \mid<1\right\}$. But this isn't (cannot be) all, because of the compactness of $\mathcal{M}\left(\mathcal{H}^{\infty}(\mathbb{D})\right)$.

Examples

2. $X=c_{0}$: It is known that $\mathcal{M}\left(\mathcal{H}_{b}\left(c_{0}\right)\right)$ consists of $\left\{\delta_{b} \mid b \in c_{0}\right\}$ together with all $\left\{\tilde{\delta}_{b^{* *}} \mid b^{* *} \in \ell_{\infty}\right\}$, where $\tilde{\delta}_{b^{* *}}(f)=\tilde{f}\left(b^{* *}\right)$. Also it is known that $\mathcal{M}\left(\mathcal{A}_{u}\left(B_{c_{0}}\right)\right)$ is all $\delta_{b}, b \in c_{0},|b| \mid \leq 1$, together with all $\tilde{\delta}_{b^{* *}}$, where $b^{* *} \in \ell_{\infty},\left\|b^{* *}\right\| \leq 1$.
3. $X=\ell_{2}$. There are many more non-trivial homomorphisms in $\mathcal{M}\left(\mathcal{H}_{b}\left(\ell_{2}\right)\right)$ than merely the evaluation homomorphisms $\delta_{x}, x \in \ell_{2}$.

Question For a fixed $b^{* *} \in X^{* *}$, by "performing" $\tilde{\delta}_{b}^{* *}: f \in \mathcal{H}_{b}(X) \rightarrow \tilde{f} \in \mathcal{H}_{b}\left(X^{* *}\right) \rightarrow \tilde{f}\left(b^{* *}\right)$, we showed that $X^{* *}$ can be viewed as a subset of $\mathcal{M}\left(\mathcal{H}_{b}(X)\right)$. Can we continue this procedure, going from $f \in \mathcal{H}_{b}(X) \longrightarrow \tilde{f} \in \mathcal{H}_{b}\left(X^{* *}\right)$, and then from $\tilde{f} \in \mathcal{H}_{b}\left(X^{* *}\right) \longrightarrow \tilde{\tilde{f}} \in \mathcal{H}_{b}\left(X^{i v}\right)$? In this way, for each fixed

$\tilde{\tilde{\delta}}_{b^{i v}} \in \mathcal{M}\left(\mathcal{H}_{b}(X)\right), \quad f \rightsquigarrow \tilde{\tilde{f}}\left(b^{i v}\right)$ Answer: Sometimes yes (when X is "regular"), sometimes no. If X is a C^{*}-algebra, or if X is reflexive (trivial), then no. Namely, to each $b^{i v} \in X^{i v}$, there corresponds $b^{* *} \in X^{* *}$ such that $\tilde{\tilde{\delta}}_{b^{i v}}=\tilde{\delta}_{b^{* *}}$. However,

Example

4. $X=\ell_{1}$. Theorem: There are points $b^{i v} \in \ell_{1}^{i v}$ such that $\tilde{\tilde{\delta}}_{b^{i v}} \neq \tilde{\delta}_{b^{* *}}$ for any $b^{* *} \in \ell_{1}^{* *}$.
Problems: (1) There are more points in $\ell_{1}^{i v}$ than there are homomorphisms in $\mathcal{M}\left(\mathcal{H}_{b}\left(\ell_{1}\right)\right)$. So, which points $b^{i v}$ of the fourth dual yield new homomorphisms and which do not?
(2) Same questions about going to the sixth dual of ℓ_{1}.

Enough!

1) Back to (1) Basics

As before, let \mathcal{A} be one of the following three algebras:
$\mathcal{H}_{b}(X), \mathcal{H}^{\infty}\left(B_{X}\right), \mathcal{A}_{u}\left(B_{X}\right)$.
Observation: $X^{*} \subset \mathcal{A}$. Consequently, for any $x^{*} \in X^{*}$ and for any (continuous) homomorphism $\varphi \in \mathcal{M}(\mathcal{A}), \varphi\left(x^{*}\right) \in \mathbb{C}$ makes sense.
Define $\Pi: \mathcal{A} \rightarrow$??? by $\Pi(\varphi)=\left.\varphi\right|_{X^{*}}$.
So, what is ???. Answer: It has to be the bidual $X^{* *}$.
(Of course, nothing new when $\operatorname{dim} X<\infty$.) For $\mathcal{A}=\mathcal{H}_{b}(X)$, the range of Π is all of $X^{* *}$, while in the other two cases, $\mathcal{A}=\mathcal{H}^{\infty}\left(B_{X}\right)$ or $\mathcal{A}_{u}\left(B_{X}\right)$, the range is $\bar{B}_{X^{* *}}$.

Definition

Let $z^{* *}$ be in the range of Π. The fiber over $z^{* *}$ is just $\Pi^{-1}\left(z^{* *}\right)$.

Definition

The cluster set of a function $f \in \mathcal{H}^{\infty}\left(B_{X}\right)$ at the point $z^{* *} \in \bar{B}_{X^{* *}}$ is the set of all limits of values of f along nets in B_{X} that converge weak-star to $z^{* *}$.
Let's restrict to $\mathcal{A}=\mathcal{H}^{\infty}(\mathbb{D})$. Recall that $\delta(\mathbb{D}) \equiv\left\{\delta_{c} \mid c \in \mathbb{D}\right\} \in \mathcal{M}\left(\mathcal{H}^{\infty}(\mathbb{D})\right)$. Also, recall that the natural topology on $\mathcal{M}\left(\mathcal{H}^{\infty}(\mathbb{D})\right)$ is the weak-star topology, induced by all seminorms of the form $\varphi \in \mathcal{M}\left(\mathcal{H}^{\infty}(\mathbb{D})\right) \rightsquigarrow|\varphi(f)|$, where f varies in $\mathcal{H}^{\infty}(\mathbb{D})$.
Corona Theorem (L. Carleson - 1962) The collection $\delta(\mathbb{D})$ of point evaluations at points of the open unit disc is dense in the space of all homomorphisms $\mathcal{M}\left(\mathcal{H}^{\infty}(\mathbb{D})\right)$ on $\mathcal{H}^{\infty}(\mathbb{D})$.

Carleson's theorem (288) appeared one year after a somewhat overlooked paper by I. J. Schark (8). In it, among other things I. J. Schark proved
Cluster Value Theorem (I. J. Schark - 1961) Fix $f \in \mathcal{H}^{\infty}(\mathbb{D})$ and $c \in \overline{\mathbb{D}}$. Then the following sets are equal:
$\left\{w \in \mathbb{C} \mid \exists\left(z_{n}\right) \subset \mathbb{D}, z_{n} \rightarrow c\right.$ and $\left.f\left(z_{n}\right) \rightarrow w\right\} ;$
$\left\{\varphi(f)\left|\varphi \in \mathcal{M}\left(\mathcal{H}^{\infty}(\mathbb{D})\right)\right| \Pi(\varphi)=c\right\}$.
Remarks 0 . Schark's result is trivial if $|c|<1$.

1. Carleson's theorem \Rightarrow I. J. Schark's theorem, but ψ is false.
2. The analogous result to Carleson's theorem for higher dimensions, e.g. \mathbb{C}^{2} with the Euclidean or max norms, is unknown. Put briefly, for $\operatorname{dim} X=1$, there are no known counterexamples; for $\operatorname{dim} X \geq 2$, there are no positive results. On the other hand, 3. There is no known situation in which I. J. Schark's theorem is false.

(3) Problems involving $\mathcal{H}^{\infty}\left(B_{X}\right)$

First, we're interested in a cluster value theorem, à la I. J. Schark.
To start, for a given complex Banach space X, observe that $\delta\left(B_{X}\right) \equiv\left\{\delta_{c} \mid c \in B_{X}\right\} \subset \mathcal{M}\left(\mathcal{H}^{\infty}\left(B_{X}\right)\right)$. Also, as before, endow $\mathcal{M}\left(\mathcal{H}^{\infty}\left(B_{X}\right)\right)$ with the weak-star topology, considering it as a subspace of $\left(\mathcal{H}^{\infty}\left(B_{X}\right)^{*}\right.$, weak-star).
Harder Problem: Is the Cluster Value Theorem still true? Namely, for a fixed $f \in \mathcal{H}^{\infty}\left(B_{X}\right)$ and a fixed point $z^{* *} \in \bar{B}_{X^{* *}}$, are the following two sets equal?
$\left\{w \in \mathbb{C} \mid \exists \operatorname{net}\left(z_{\alpha}\right)_{\alpha} \in B_{X}, z_{\alpha} \rightarrow z^{* *}\right.$ weak $\left.-* \& f\left(z_{\alpha}\right) \rightarrow w\right\}$;
$\left\{\varphi(f) \mid \varphi \in \mathcal{M}\left(\mathcal{H}^{\infty}\left(B_{X}\right)\right), \Pi(\varphi)=z^{* *}\right\}$.

(3) Problems involving $\mathcal{H}^{\infty}\left(B_{X}\right)$

Remark Unlike the case $\operatorname{dim} X<\infty$, the fiber over any, even an interior point of $B_{X^{* *}}$ is rich. In particular, $\beta \mathbb{N} \subset \Pi^{-1}(0)$. Even in this case, the easier (?) problem is open in general:
Easier Problem: For a fixed $f \in \mathcal{H}^{\infty}\left(B_{X}\right)$, are the following two sets equal?
$\left\{w \in \mathbb{C} \mid \exists\right.$ net $\left(z_{\alpha}\right)_{\alpha} \in B_{X}, z_{\alpha} \rightarrow 0$ weakly \& $\left.f\left(z_{\alpha}\right) \rightarrow w\right\} ;$ $\left\{\varphi(f) \mid \varphi \in \mathcal{M}\left(\mathcal{H}^{\infty}\left(B_{X}\right)\right), \Pi(\varphi)=0\right\}$.

Yes, even to the "harder" question, if $X=c_{0}$. Namely, Theorem. Fix $f \in \mathcal{H}^{\infty}\left(B_{c_{0}}\right)$ and $z^{* *} \in \bar{B}_{\ell_{\infty}}$. Then the two sets
$\left\{w \in \mathbb{C} \mid \exists \operatorname{net}\left(z_{\alpha}\right)_{\alpha} \in B_{X}, z_{\alpha} \rightarrow z^{* *}\right.$ weak $\left.-* \& f\left(z_{\alpha}\right) \rightarrow w\right\}$ and

$$
\left\{\varphi(f) \mid \varphi \in \mathcal{M}\left(\mathcal{H}^{\infty}\left(B_{X}\right)\right), \Pi(\varphi)=z^{* *}\right\}
$$

are equal.

(3) Problems involving $\mathcal{H}^{\infty}\left(B_{X}\right)$

The same result is unknown, even for the apparently easier case of $X=\ell_{2}$.
One basic idea for proof of harder problem, $X=c_{0}$. Notation: For $g \in \mathcal{H}^{\infty}\left(B_{c_{0}}\right)$ and $n \in \mathbb{N}$, define $g_{n} \in \mathcal{H}^{\infty}\left(B_{c_{0}}\right)$ by $g_{n}\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots\right) \equiv g\left(0, \ldots, 0, x_{n+1}, \ldots\right)$.
Lemma
Fix $\varphi \in \mathcal{M}\left(\mathcal{H}\left({ }^{\infty}\left(B_{c_{0}}\right)\right)\right)$ so that $\Pi(\varphi)=0$. For any $g \in \mathcal{H}^{\infty}\left(B_{c_{0}}\right)$ and any $n \in \mathbb{N}, \varphi(g)=\varphi\left(g_{n}\right)$.
Remark The lemma is false if c_{0} is replaced by ℓ_{2} (and so we're stuck).

(3) Problems involving $\mathcal{H}^{\infty}\left(B_{X}\right)$

Problems about fibers in $\mathcal{M}\left(\mathcal{H}^{\infty}\left(B_{X}\right)\right)$. Recall: For a complex Banach space X,
$\Pi: \mathcal{M}\left(\mathcal{H}^{\infty}\left(B_{X}\right)\right) \rightarrow X^{* *},\left.\Pi(\varphi) \equiv \varphi\right|_{X^{*}}$.
Fix X and two points $z^{* *}$ and $w^{* *}$ in $\bar{B}_{X^{* *}}$.
Problem What is the relation between the two fibers $\Pi^{-1}\left(z^{* *}\right)$ and $\Pi^{-1}\left(w^{* *}\right)$?

(3) Problems involving $\mathcal{H}^{\infty}\left(B_{X}\right)$

Suppose $X=\ell_{2}$. If $\|z\|=\|w\|=1$, then $\Pi^{-1}(z) \simeq \Pi^{-1}(w)$. The same result holds if $\|z\|$ and $\|w\|$ are both <1. What if $1=\|z\|>\|w\|$?

Suppose $X=c_{0}$. Then $\|z\|,\|w\|<1 \Rightarrow \Pi^{-1}(z) \simeq \Pi^{-1}(w)$. But for $\|z\|=\|w\|=1$, the situation is murky.
For the special cases $\mathcal{H}^{\infty}(D)$ and $\mathcal{H}^{\infty}\left(D^{2}\right)$, what is known is that $\Pi^{-1}(1) \bumpeq \Pi^{-1}(a, b)$, if one of $|a|,|b|=1$ and the other is <1. Also, $\Pi^{-1}(1)$ and $\Pi^{-1}(1,1)$ are not homeomorphic.
(But the argument really uses dimension 1.)
Remark Even if $\operatorname{dim} X<\infty$ (so $B_{X}=B_{X^{* *}}$) and even if $\|z\|,\|w\|<1$, the problem, of whether $\pi^{-1}(z)$ and $\pi^{-1}(w)$ are (somehow) the "same'," is apparently unknown in general. The problem is that, in general, it isn't known if $\Pi^{-1}(z)=\left\{\delta_{z}\right\}$ if $\operatorname{dim} X<\infty$ and $\|z\|<1$.

