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The main actors

Let (X , ρX ) and (Y , ρY ) be metric spaces. A mapping f : X → Y
is called nonexpansive if

ρY (f (x), f (y)) ≤ ρX (x , y) for all x , y ∈ X .

Moreover f is called a strict contraction if

ρY (f (x), f (y)) ≤ LρX (x , y) for all x , y ∈ X

and for some L < 1.
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Motivation

Theorem (Brouwer, 1911)

Let C ⊆ Rd be nonempty, bounded, closed and convex. Then every
continuous mapping

f : C → C

has a fixed point.

This is no longer true in infinite dimensions. For example let

C := {g ∈ C[0, 1] : 0 = g(0) ≤ g(t) ≤ g(1) = 1 for t ∈ [0, 1]}

and
T : C → C , (Tg)(t) := tg(t)

Then f is even nonexpansive but has no fixed point.

Christian Bargetz (Universität Innsbruck) Porosity results for sets of strict contractions 3 / 19



Motivation

Theorem (Brouwer, 1911)

Let C ⊆ Rd be nonempty, bounded, closed and convex. Then every
continuous mapping

f : C → C

has a fixed point.

This is no longer true in infinite dimensions. For example let

C := {g ∈ C[0, 1] : 0 = g(0) ≤ g(t) ≤ g(1) = 1 for t ∈ [0, 1]}

and
T : C → C , (Tg)(t) := tg(t)

Then f is even nonexpansive but has no fixed point.

Christian Bargetz (Universität Innsbruck) Porosity results for sets of strict contractions 3 / 19



Generic properties of nonexpansive mappings

Is Brouwer’s fixed point theorem in infinite dimensions at least true
for typical nonexpansive mappings?

In other words, is the set of
nonexpansive mappings without a fixed point a small set?
We define

M := {f : C → C : Lip(f ) ≤ 1}

equipped with the metric of uniform convergence which makesM
a complete metric space.
Let M be a complete metric space. A set A ⊆ M is of the first
Baire category if it is a countable union of nowhere dense sets.
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σ-porous sets

A subset A ⊆ M is said to be porous at x ∈ A if there are constants
α > 0 and ε0 > 0 with the following property: For all ε ∈ (0, ε0)
there is a point y ∈ M with ‖y − x‖ ≤ ε and B(y , α ε) ∩ A = ∅.
The set A is called porous if it is porous at all of its points.
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A subset A ⊆ M is said to be porous at x ∈ A if there are constants
α > 0 and ε0 > 0 with the following property: For all ε ∈ (0, ε0)
there is a point y ∈ M with ‖y − x‖ ≤ ε and B(y , α ε) ∩ A = ∅.
The set A is called porous if it is porous at all of its points.

The set A is called σ-porous if it is a countable union of porous sets.

Note that σ-porous sets are of first category in the sense of the
Baire category theorem.
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Generic properties of nonexpansive mappings, ctd.

Theorem (de Blasi, Myjak, 1989)
Let X be a Banach space and C ⊂ X be nonempty, bounded,
closed and convex. The set of nonexpansive mappings without a
fixed point is a σ-porous subset ofM.

What is behind this result? Is it Banach’s fixed point theorem?
No, at least not in Hilbert spaces . . .

Theorem (de Blasi, Myjak, 1989)
Let X be a Hilbert space and C ⊆ X be nonempty, bounded, closed
and convex. The set of strict contractions is a σ-porous subset of
M.
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Generic properties of nonexpansive mappings, ctd.

Generic existence of fixed points has been shown in many
situations. Some examples:

Self-mappings on nonempty, closed and convex subsets of
hyperbolic spaces: Reich and Zaslavski
Set-valued mappings on nonempty, closed and star-shaped
subsets of hyperbolic spaces: de Blasi, Myjak, Reich and
Zaslavski, Peng and Luo
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How many strict contractions are there?

Theorem (B., Dymond, 2016)
Let X be a Banach space and C ⊆ X be nonempty, bounded,
closed and convex. The set of strict contractions is a σ-porous
subset ofM.

In separable spaces, we also have a local version of this result.

Theorem (B., Dymond, 2016)
Let X be a separable Banach space and C ⊆ X be nonempty,
bounded, closed and convex. The generic nonexpansive mapping
satisfies

Lip(f , x) = lim sup
r→0+

{
‖f (x)− f (y)‖
‖x − y‖

: y ∈ B(x , r) \ {x}
}

= 1

at typical points x of its domain C .
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How many strict contractions are there?

What happens beyond Banach spaces?
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Metric segments and geodesic metric spaces

Let (X , ρX ) be a metric space. (X , ρX ) is called geodesic if for
every pair x , y ∈ X there is an isometric embedding

c : [0, ρX (x , y)]→ X

satisfying c(0) = x and c(ρX (x , y)) = y .

The image of such an embedding is called a metric segment.
For a metric segment [x , y ] and λ ∈ [0, 1] we denote by

(1− λ)x ⊕ λy

the unique point z ∈ [x , y ] satisfying

ρX (x , z) = λρX (x , y) and ρX (z , y) = (1− λ)ρX (x , y).

Christian Bargetz (Universität Innsbruck) Porosity results for sets of strict contractions 8 / 19



Metric segments and geodesic metric spaces

Let (X , ρX ) be a metric space. (X , ρX ) is called geodesic if for
every pair x , y ∈ X there is an isometric embedding

c : [0, ρX (x , y)]→ X

satisfying c(0) = x and c(ρX (x , y)) = y .
The image of such an embedding is called a metric segment.

For a metric segment [x , y ] and λ ∈ [0, 1] we denote by

(1− λ)x ⊕ λy

the unique point z ∈ [x , y ] satisfying

ρX (x , z) = λρX (x , y) and ρX (z , y) = (1− λ)ρX (x , y).

Christian Bargetz (Universität Innsbruck) Porosity results for sets of strict contractions 8 / 19



Metric segments and geodesic metric spaces

Let (X , ρX ) be a metric space. (X , ρX ) is called geodesic if for
every pair x , y ∈ X there is an isometric embedding

c : [0, ρX (x , y)]→ X

satisfying c(0) = x and c(ρX (x , y)) = y .
The image of such an embedding is called a metric segment.
For a metric segment [x , y ] and λ ∈ [0, 1] we denote by

(1− λ)x ⊕ λy

the unique point z ∈ [x , y ] satisfying

ρX (x , z) = λρX (x , y) and ρX (z , y) = (1− λ)ρX (x , y).

Christian Bargetz (Universität Innsbruck) Porosity results for sets of strict contractions 8 / 19



Convexity conditions in metric spaces

Let (X , ρX ) be a metric space and F a family of metric segments
in (X , ρX ).

A set C ⊆ X is called ρX -convex if for all x , y ∈ C there is a metric
segment [x , y ] ∈ F joining x and y and [x , y ] ⊆ C .

A set C ⊆ X is called ρX -star-shaped if there is a point c ∈ C such
that for all x ∈ C there is a metric segment [x , c] ∈ F joining x
and c and [x , c] ⊆ C .

For a ρX -star-shaped set C ⊆ X , we denote by star(C ) the set of
all centres of C , i.e. all points points c ∈ C such that for x ∈ C
there is a metric segment [x , c] ∈ F where [x , c] ⊆ C .
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Hyperbolic spaces

Given a metric space (X , ρX ) and a family F of metric segments in
X , we call the triple (X , ρX ,F) hyperbolic if the following
conditions are satisfied:
(i) For each pair x , y ∈ X , there exists a unique metric segment

[x , y ] ∈ F joining x and y .

(ii) For all x , y , z ,w ∈ X and all t ∈ [0, 1],

ρX ((1−t)x⊕ty , (1−t)w⊕tz) ≤ (1−t)ρX (x ,w)+tρX (y , z).

(iii) The collection F is closed with respect to subsegements.
More precisely, for all x , y ∈ X and u, v ∈ [x , y ] we have
[u, v ] ⊆ [x , y ].

Christian Bargetz (Universität Innsbruck) Porosity results for sets of strict contractions 10 / 19



Hyperbolic spaces

Given a metric space (X , ρX ) and a family F of metric segments in
X , we call the triple (X , ρX ,F) hyperbolic if the following
conditions are satisfied:
(i) For each pair x , y ∈ X , there exists a unique metric segment

[x , y ] ∈ F joining x and y .
(ii) For all x , y , z ,w ∈ X and all t ∈ [0, 1],

ρX ((1−t)x⊕ty , (1−t)w⊕tz) ≤ (1−t)ρX (x ,w)+tρX (y , z).

(iii) The collection F is closed with respect to subsegements.
More precisely, for all x , y ∈ X and u, v ∈ [x , y ] we have
[u, v ] ⊆ [x , y ].

Christian Bargetz (Universität Innsbruck) Porosity results for sets of strict contractions 10 / 19



Hyperbolic spaces

Given a metric space (X , ρX ) and a family F of metric segments in
X , we call the triple (X , ρX ,F) hyperbolic if the following
conditions are satisfied:
(i) For each pair x , y ∈ X , there exists a unique metric segment

[x , y ] ∈ F joining x and y .
(ii) For all x , y , z ,w ∈ X and all t ∈ [0, 1],

ρX ((1−t)x⊕ty , (1−t)w⊕tz) ≤ (1−t)ρX (x ,w)+tρX (y , z).

(iii) The collection F is closed with respect to subsegements.
More precisely, for all x , y ∈ X and u, v ∈ [x , y ] we have
[u, v ] ⊆ [x , y ].

Christian Bargetz (Universität Innsbruck) Porosity results for sets of strict contractions 10 / 19



Hyperbolic spaces

The condition

ρX ((1− t)x ⊕ ty , (1− t)w ⊕ tz) ≤ (1− t)ρX (x ,w) + tρX (y , z)

for all x , y , z ,w ∈ X is equivalent to

ρX ((1− t)x ⊕ tz , (1− t)y ⊕ tz) ≤ tρX (x , y)

for all x , y , z ∈ X . The second condition is basically a condition on
triangles.

x y

z
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Hyperbolic spaces

Examples of hyperbolic spaces
Banach spaces
CAT(0)-spaces (and hence all CAT(κ)-spaces for κ ≤ 0)
The Hilbert ball with the hyperbolic metric
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Spherical triangles

This example shows that the sphere
does not even satisfy

ρ((1− t)x⊕ tz , (1− t)y ⊕ tz) ≤ ρ(x , y)

for x , y , z ∈ S2 and t ∈ [0, 1].

So if we want to include the sphere we need a weaker condition on
the triangles.
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Weakly hyperbolic spaces

Given a metric space (X , ρX ) and a family F of metric segments in
X , we say that the triple (X , ρX ,F) is weakly hyperbolic if the
following conditions are satisfied:
(i) There exists a constant DX > 0 s. t. for any x , y ∈ X with

ρX (x , y) < DX , there is a unique metric segment [x , y ] ∈ F .

(ii) For all x , y ∈ X with ρX (x , y) < DX and every σ > 0, there
exists a positive number δX = δX (x , y , σ) such that

ρX ((1− t)z ⊕ ty , (1− t)w ⊕ ty) ≤ (1+ σ)ρX (z ,w)

whenever z ,w ∈ B(x , δX ), [z , y ], [w , y ] ∈ F and t ∈ [0, δX ).

(iii) F is closed with respect to subsegments, that is, for all metric
segments [x , y ] ∈ F and all points z ,w ∈ [x , y ] there is a
metric segment [z ,w ] ∈ F with [z ,w ] ⊆ [x , y ].

(iv) For all x ∈ X and r ∈ (0,DX/2), the ball B(x , r) is a
ρX -convex subset of X .
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Weakly hyperbolic spaces

Examples of weakly hyperbolic spaces
Hyperbolic spaces
CAT(κ)-spaces for κ ∈ R.
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Spaces of nonexpansive mappings

Let (X , ρX ) and (Y , ρY ) be two complete metric spaces. In
addition let CX ⊆ X and CY ⊆ Y be closed subsets. We choose
θ ∈ CX and set

M(CX ,CY ) := {f : CX → CY : Lip(f ) ≤ 1}

and

dθ(f , g) := sup
x∈CX

ρY (f (x), f (x))

1+ ρX (x , θ)
for f , g ∈M(CX ,CY ).

Then,
(M(CX ,CY ), dθ) is a complete metric space.
For θ1 6= θ, the metrics dθ and dθ1 are equivalent.
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σ-porosity of the set of strict contractions

Theorem (B., Dymond, Reich, 2016)
Let X and Y be complete weakly hyperbolic spaces and CX ⊆ X
and CY ⊆ Y nonempty, non-singleton, closed and ρX - and
ρY -star-shaped subsets, respectively. In addition assume that
CY ⊆ B(star(CY ),DY ). Then the set

{f : CX → CY : Lip(f ) < 1}

is a σ-porous subset ofM(CX ,CY ).
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σ-porosity of the set of strict contractions—local version

Theorem (B., Dymond, Reich, 2016)
Suppose that in addition CX is separable and ρX -convex. Then
there exists a σ-porous set Ñ ⊆ M(CX ,CY ) such that for every
mapping f ∈M(CX ,CY ) \ Ñ , the set

R(f ) = {x ∈ CX : Lip(f , x) = 1}

is a residual subset of CX .
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Special case I: Nonexpansive self-mappings

Corollary
Let (X , ρX ) be a complete hyperbolic space and CX ⊂ X a
nonempty, non-singleton, closed and ρX -star-shaped subset. The
set of strict contractions is a σ-porous subset of the space
M(CX ,CX ) of nonexpansive self-mappings of CX .

Corollary
Suppose CX is a separable and ρX -convex subset of a weakly
hyperbolic space X . There exists a σ-porous set Ñ ⊆ M(CX ,CX )
such that for every f ∈M(CX ,CX ) \ Ñ , the set

R(f ) = {x ∈ CX : Lip(f , x) = 1}

is a residual subset of CX .
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Special case II: Set-valued mappings

Given a set C , we denote by B(C ) := {A ⊂ C : A bounded, closed}
the hyperspace of bounded and closed subsets of C . We equip
B(C ) with the Hausdorff distance.

Since Y may be slightly more
general than a weakly hyperbolic spaces, we also have the following.

Corollary
Let X be a complete hyperbolic space and C ⊆ X be a non-empty,
non-singleton, closed, ρ-star-shaped subset. Then the set of strict
contractions is a σ-porous subsets of the space

M(C ,B(C )) := {f : C → B(C ) : Lip(f ) ≤ 1}

of all nonexpansive B(C )-valued mappings equipped with the
metric dθ.
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Some remarks

In addition to the hyperspace of bounded and closed sets, the
previous result is also true for

the space of singletons;
the space of compact subsets;
the space of bounded, closed and ρX -convex sets and
the space of compact and ρX -convex sets.

The presented porosity results are also true if we replace the
spaceM(CX ,CY ) by the space of bounded nonexpansive
mappings with the metric

d∞(f , g) := sup
x∈CX

ρY (f (x), g(x)).
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