Multiple summing maps: coordinatewise summability, inclusion theorems and p-Sidon sets

F. Bayart

Université Clermont Auvergne

Nonlinear Functional Analysis 2017

Let $L: c_{0} \rightarrow \mathbb{K}$ be linear and continuous. Then $\sum_{n}\left|L\left(e_{n}\right)\right| \leq\|L\|$. Basic question: let $L: c_{0} \times c_{0} \rightarrow \mathbb{K}$ be bilinear and continuous. What can be said on the sequence $\left(L\left(e_{i}, e_{j}\right)\right)_{i, j}$?

Let $L: c_{0} \rightarrow \mathbb{K}$ be linear and continuous. Then $\sum_{n}\left|L\left(e_{n}\right)\right| \leq\|L\|$. Basic question: let $L: c_{0} \times c_{0} \rightarrow \mathbb{K}$ be bilinear and continuous. What can be said on the sequence $\left(L\left(e_{i}, e_{j}\right)\right)_{i, j}$?

Theorem (Littlewood, 1930)
There exists $C>0$ such that, for all $L: c_{0} \times c_{0} \rightarrow \mathbb{K}$ bilinear and continuous,

$$
\left(\sum_{i, j}\left|L\left(e_{i}, e_{j}\right)\right|^{4 / 3}\right)^{3 / 4} \leq C\|L\|
$$

Moreover, the exponent $4 / 3$ is optimal.

Proof - Step 1: an inequality on matrices

Lemma

Let $\left(a_{i, j}\right)_{1 \leq i, j \leq N}$. Then
$\left(\sum_{i, j}\left|a_{i, j}\right|^{4 / 3}\right)^{3 / 4} \leq\left(\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i, j}\right|^{2}\right)^{1 / 2}\right)^{1 / 2}\left(\sum_{j=1}^{N}\left(\sum_{i=1}^{N}\left|a_{i, j}\right|^{2}\right)^{1 / 2}\right)^{1 / 2}$
The proof is done by successive applications of Minkowski and Hölder inequalities.

Proof - Step 2: an application of Khinchine inequality

Lemma

For each $p \in[1,+\infty)$, there exist $A_{p}, B_{p}>0$ such that, for all sequences $\left(x_{i}\right)_{i=1}^{N}$ of complex numbers,

$$
A_{p}\left(\sum_{i=1}^{N}\left|x_{i}\right|^{2}\right)^{1 / 2} \leq\left(\int_{\Omega}\left|\sum_{i=1}^{N} \varepsilon_{i}(\omega) x_{i}\right|^{p} d \mathbb{P}(\omega)\right)^{1 / p} \leq B_{p}\left(\sum_{i=1}^{N}\left|x_{i}\right|^{2}\right)^{1 / 2}
$$

where $\left(\varepsilon_{i}\right)_{i=1}^{N}$ is a sequence of independent Bernoulli variables on $(\Omega, \mathcal{A}, \mathbb{P})$.

Proof - Step 2: an application of Khinchine inequality

Let $L: c_{0} \times c_{0} \rightarrow \mathbb{K}$ be bilinear and bounded. Then Later Much later

$$
\sum_{i \leq N}\left(\sum_{j \leq N}\left|L\left(e_{i}, e_{j}\right)\right|^{2}\right)^{1 / 2} \leq C \sum_{i \leq N} \int_{\Omega}\left|\sum_{j \leq N} L\left(e_{i}, e_{j}\right) \varepsilon_{j}(\omega)\right| d \mathbb{P}(\omega)
$$

Proof - Step 2: an application of Khinchine inequality

Let $L: c_{0} \times c_{0} \rightarrow \mathbb{K}$ be bilinear and bounded. Then Later Much later

$$
\begin{aligned}
\sum_{i \leq N}\left(\sum_{j \leq N}\left|L\left(e_{i}, e_{j}\right)\right|^{2}\right)^{1 / 2} & \leq C \sum_{i \leq N} \int_{\Omega}\left|\sum_{j \leq N} L\left(e_{i}, e_{j}\right) \varepsilon_{j}(\omega)\right| d \mathbb{P}(\omega) \\
& \leq C \int_{\Omega} \sum_{i \leq N}\left|L\left(e_{i}, \sum_{j \leq N} \varepsilon_{j}(\omega) e_{j}\right)\right| d \mathbb{P}(\omega)
\end{aligned}
$$

Proof - Step 2: an application of Khinchine inequality

Let $L: c_{0} \times c_{0} \rightarrow \mathbb{K}$ be bilinear and bounded. Then Later Much later

$$
\begin{aligned}
\sum_{i \leq N}\left(\sum_{j \leq N}\left|L\left(e_{i}, e_{j}\right)\right|^{2}\right)^{1 / 2} & \leq C \sum_{i \leq N} \int_{\Omega}\left|\sum_{j \leq N} L\left(e_{i}, e_{j}\right) \varepsilon_{j}(\omega)\right| d \mathbb{P}(\omega) \\
& \leq C \int_{\Omega} \sum_{i \leq N}\left|L\left(e_{i}, \sum_{j \leq N} \varepsilon_{j}(\omega) e_{j}\right)\right| d \mathbb{P}(\omega) \\
& \leq C \int_{\Omega} \sup _{y \in B_{c_{0}}} \sum_{i \leq N}\left|L\left(e_{i}, y\right)\right| d \mathbb{P}(\omega)
\end{aligned}
$$

Proof - Step 2: an application of Khinchine inequality

Let $L: c_{0} \times c_{0} \rightarrow \mathbb{K}$ be bilinear and bounded. Then Later Much later

$$
\begin{aligned}
\sum_{i \leq N}\left(\sum_{j \leq N}\left|L\left(e_{i}, e_{j}\right)\right|^{2}\right)^{1 / 2} & \leq C \sum_{i \leq N} \int_{\Omega}\left|\sum_{j \leq N} L\left(e_{i}, e_{j}\right) \varepsilon_{j}(\omega)\right| d \mathbb{P}(\omega) \\
& \leq C \int_{\Omega} \sum_{i \leq N}\left|L\left(e_{i}, \sum_{j \leq N} \varepsilon_{j}(\omega) e_{j}\right)\right| d \mathbb{P}(\omega) \\
& \leq C \int_{\Omega} \sup _{y \in B_{c_{0}}} \sum_{i \leq N}\left|L\left(e_{i}, y\right)\right| d \mathbb{P}(\omega) \\
& \leq C \sup _{y \in B_{c_{0}}} \sum_{i \leq N}\left|L\left(e_{i}, y\right)\right|
\end{aligned}
$$

Proof - Step 2: an application of Khinchine inequality

Let $L: c_{0} \times c_{0} \rightarrow \mathbb{K}$ be bilinear and bounded. Then Later Much later

$$
\begin{aligned}
\sum_{i \leq N}\left(\sum_{j \leq N}\left|L\left(e_{i}, e_{j}\right)\right|^{2}\right)^{1 / 2} & \leq C \sum_{i \leq N} \int_{\Omega}\left|\sum_{j \leq N} L\left(e_{i}, e_{j}\right) \varepsilon_{j}(\omega)\right| d \mathbb{P}(\omega) \\
& \leq C \int_{\Omega} \sum_{i \leq N}\left|L\left(e_{i}, \sum_{j \leq N} \varepsilon_{j}(\omega) e_{j}\right)\right| d \mathbb{P}(\omega) \\
& \leq C \int_{\Omega} \sup _{y \in B_{c_{0}}} \sum_{i \leq N}\left|L\left(e_{i}, y\right)\right| d \mathbb{P}(\omega) \\
& \leq C \sup _{y \in B_{c_{0}}} \sum_{i \leq N}\left|L\left(e_{i}, y\right)\right| \\
& \leq C \sup _{y \in B_{c_{0}}} \sup _{x \in B_{c_{0}}}|L(x, y)|
\end{aligned}
$$

Proof - Step 2: an application of Khinchine inequality

Let $L: c_{0} \times c_{0} \rightarrow \mathbb{K}$ be bilinear and bounded. Then Later Much later

$$
\begin{aligned}
\sum_{i \leq N}\left(\sum_{j \leq N}\left|L\left(e_{i}, e_{j}\right)\right|^{2}\right)^{1 / 2} & \leq C \sum_{i \leq N} \int_{\Omega}\left|\sum_{j \leq N} L\left(e_{i}, e_{j}\right) \varepsilon_{j}(\omega)\right| d \mathbb{P}(\omega) \\
& \leq C \int_{\Omega} \sum_{i \leq N}\left|L\left(e_{i}, \sum_{j \leq N} \varepsilon_{j}(\omega) e_{j}\right)\right| d \mathbb{P}(\omega) \\
& \leq C \int_{\Omega} \sup _{y \in B_{c_{0}}} \sum_{i \leq N}\left|L\left(e_{i}, y\right)\right| d \mathbb{P}(\omega) \\
& \leq C \sup _{y \in B_{c_{0}}} \sum_{i \leq N}\left|L\left(e_{i}, y\right)\right| \\
& \leq C \sup _{y \in B_{c_{0}}} \sup _{x \in B_{c_{0}}}|L(x, y)| \\
& \leq C\|L\| .
\end{aligned}
$$

Proof - Step 3: optimality

4/3 is the best exponent such that, for all $L: c_{0} \times c_{0} \rightarrow \mathbb{K}$ bilinear and continuous,

$$
\left(\sum_{i, j}\left|L\left(e_{i}, e_{j}\right)\right|^{4 / 3}\right)^{3 / 4} \leq C\|L\|
$$

Proof - Step 3: optimality

4/3 is the best exponent such that, for all $L: c_{0} \times c_{0} \rightarrow \mathbb{K}$ bilinear and continuous,

$$
\left(\sum_{i, j} \mid L\left(e_{i}, e_{j}\right)^{4 / 3}\right)^{3 / 4} \leq C\|L\| .
$$

We need to produce a bilinear map with small norm and large coefficients!

Proof - Step 3: optimality

$4 / 3$ is the best exponent such that, for all $L: c_{0} \times c_{0} \rightarrow \mathbb{K}$ bilinear and continuous,

$$
\left(\sum_{i, j} \mid L\left(e_{i}, e_{j}\right)^{4 / 3}\right)^{3 / 4} \leq C\|L\| .
$$

We need to produce a bilinear map with small norm and large coefficients!

Theorem (Kahane,Salem,Zygmund)

For all $m \geq 2$, there exists $C_{m}>0$ such that, for all $N \geq 1$, there exists an m-linear form $L: \ell_{\infty}^{N} \times \cdots \times \ell_{\infty}^{N} \rightarrow \mathbb{C}$ which may be written

$$
L\left(z^{(1)}, \ldots, z^{(m)}\right)=\sum_{i_{1}, \ldots, i_{m}=1}^{N} \pm z_{i_{1}}^{(1)} \cdots z_{i_{m}}^{(m)}
$$

and which satisfies $\|L\| \leq C_{m} N^{\frac{m+1}{2}}$.

If we apply this for $m=2$, then for all $N \geq 1$, we get a bilinear form $L_{N}: \ell_{\infty}^{N} \times \ell_{\infty}^{N} \rightarrow \mathbb{C}$ with $\left|L\left(e_{i}, e_{j}\right)\right|=1$ and $\|L\| \leq C_{2} N^{3 / 2}$. If p is a convenient exponent, for all $N \geq 1$,

$$
\left(\sum_{i=1}^{N}\left|L\left(e_{i}, e_{j}\right)\right|^{p}\right)^{1 / p} \leq C_{2} N^{3 / 2}
$$

If we apply this for $m=2$, then for all $N \geq 1$, we get a bilinear form $L_{N}: \ell_{\infty}^{N} \times \ell_{\infty}^{N} \rightarrow \mathbb{C}$ with $\left|L\left(e_{i}, e_{j}\right)\right|=1$ and $\|L\| \leq C_{2} N^{3 / 2}$. If p is a convenient exponent, for all $N \geq 1$,

$$
\left(\sum_{i=1}^{N}\left|L\left(e_{i}, e_{j}\right)\right|^{p}\right)^{1 / p} \leq C_{2} N^{3 / 2}
$$

namely

$$
N^{2 / p} \leq C_{2} N^{3 / 2}
$$

This implies $p \geq 4 / 3$.

The Bohnenblust-Hille inequality

Theorem (Bohnenblust-Hille, 1931)
There exists $C_{m}>0$ such that, for all $L: c_{0} \times \cdots \times c_{0} \rightarrow \mathbb{C}$ m-linear and continuous,

$$
\left(\sum_{i_{1}, \ldots, i_{m}}\left|L\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)\right|^{2 m /(m+1)}\right)^{(m+1) / 2 m} \leq C_{m}\|L\|
$$

The Bohnenblust-Hille inequality

Theorem (Bohnenblust-Hille, 1931)
There exists $C_{m}>0$ such that, for all $L: c_{0} \times \cdots \times c_{0} \rightarrow \mathbb{C} m$-linear and continuous,

$$
\left(\sum_{i_{1}, \ldots, i_{m}}\left|L\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)\right|^{2 m /(m+1)}\right)^{(m+1) / 2 m} \leq C_{m}\|L\|
$$

- The inequality would be straighforward with the exponent 2 instead of (the optimal) $2 m /(m+1)$;

The Bohnenblust-Hille inequality

Theorem (Bohnenblust-Hille, 1931)
There exists $C_{m}>0$ such that, for all $L: c_{0} \times \cdots \times c_{0} \rightarrow \mathbb{C} m$-linear and continuous,

$$
\left(\sum_{i_{1}, \ldots, i_{m}}\left|L\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)\right|^{2 m /(m+1)}\right)^{(m+1) / 2 m} \leq C_{m}\|L\|
$$

- The inequality would be straighforward with the exponent 2 instead of (the optimal) $2 m /(m+1)$;
- It was used by Bohnenblust and Hille to solve a problem on Dirichlet series;

The Bohnenblust-Hille inequality

Theorem (Bohnenblust-Hille, 1931)
There exists $C_{m}>0$ such that, for all $L: c_{0} \times \cdots \times c_{0} \rightarrow \mathbb{C} m$-linear and continuous,

$$
\left(\sum_{i_{1}, \ldots, i_{m}}\left|L\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)\right|^{2 m /(m+1)}\right)^{(m+1) / 2 m} \leq C_{m}\|L\|
$$

- The inequality would be straighforward with the exponent 2 instead of (the optimal) $2 m /(m+1)$;
- It was used by Bohnenblust and Hille to solve a problem on Dirichlet series;
- It was used recently to study problems in complex analysis (the Bohr radius of the polydisc \mathbb{D}^{n}). Here, having an estimate of C_{m} is important.

Hardy-Littlewood/Praciano Pereira/Dimant-Sevilla Peris

Theorem

Let $1 \leq p_{1}, p_{2}, \ldots, p_{m} \leq+\infty$ such that $\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}<1$. Define

$$
\frac{1}{\lambda}=1-\left(\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}\right) \text { and } \frac{1}{\mu}=\frac{1}{m \lambda}+\frac{m-1}{2 m} .
$$

There exists $C>0$ such that, for every m-linear $T: \ell_{p_{1}} \times \cdots \times \ell_{p_{m}} \rightarrow \mathbb{K}$,
(1) if $\frac{1}{2} \leq \frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}<1$, then $\sum_{i_{1}, \ldots, i_{m}}\left|T\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)\right|^{\lambda} \leq C\|T\|^{\lambda}$.
(2) if $0 \leq \frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}<\frac{1}{2}$, then $\sum_{i_{1}, \ldots, i_{m}}\left|T\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)\right|^{\mu} \leq C\|T\|^{\mu}$.

Moreover, these exponents are optimal.

An abstract version of Littlewood inequality

Let $T: X \times Y \rightarrow \mathbb{C}$ be bilinear and continuous and let $\left(x_{i}\right)_{i=1}^{N},\left(y_{i}\right)_{i=1}^{N}$ be two sequences in X (resp. Y). Let $S_{1}: \ell_{\infty}^{N} \rightarrow X, e_{i} \mapsto x_{i}, S_{2}: \ell_{\infty}^{N} \rightarrow Y$, $e_{j} \mapsto y_{j}$ and $L=T\left(S_{1}, S_{2}\right)$. Littlewood's inequality says that

$$
\left(\sum_{i, j=1}^{N}\left|L\left(e_{i}, e_{j}\right)\right|^{4 / 3}\right)^{3 / 4} \leq C\|L\| \leq C\|T\| \times\left\|S_{1}\right\| \times\left\|S_{2}\right\| .
$$

An abstract version of Littlewood inequality

Let $T: X \times Y \rightarrow \mathbb{C}$ be bilinear and continuous and let $\left(x_{i}\right)_{i=1}^{N},\left(y_{i}\right)_{i=1}^{N}$ be two sequences in X (resp. Y). Let $S_{1}: \ell_{\infty}^{N} \rightarrow X, e_{i} \mapsto x_{i}, S_{2}: \ell_{\infty}^{N} \rightarrow Y$, $e_{j} \mapsto y_{j}$ and $L=T\left(S_{1}, S_{2}\right)$. Littlewood's inequality says that

$$
\begin{gathered}
\left(\sum_{i, j=1}^{N}\left|L\left(e_{i}, e_{j}\right)\right|^{4 / 3}\right)^{3 / 4} \leq C\|L\| \leq C\|T\| \times\left\|S_{1}\right\| \times\left\|S_{2}\right\| \\
L\left(e_{i}, e_{j}\right)=T\left(x_{i}, y_{j}\right)
\end{gathered}
$$

An abstract version of Littlewood inequality

Let $T: X \times Y \rightarrow \mathbb{C}$ be bilinear and continuous and let $\left(x_{i}\right)_{i=1}^{N},\left(y_{i}\right)_{i=1}^{N}$ be two sequences in X (resp. Y). Let $S_{1}: \ell_{\infty}^{N} \rightarrow X, e_{i} \mapsto x_{i}, S_{2}: \ell_{\infty}^{N} \rightarrow Y$, $e_{j} \mapsto y_{j}$ and $L=T\left(S_{1}, S_{2}\right)$. Littlewood's inequality says that

$$
\begin{gathered}
\left(\sum_{i, j=1}^{N}\left|L\left(e_{i}, e_{j}\right)\right|^{4 / 3}\right)^{3 / 4} \leq C\|L\| \leq C\|T\| \times\left\|S_{1}\right\| \times\left\|S_{2}\right\| \\
L\left(e_{i}, e_{j}\right)=T\left(x_{i}, y_{j}\right)
\end{gathered}
$$

An abstract version of Littlewood inequality

$$
\begin{aligned}
\left\|S_{1}\right\| & =\sup _{\left(a_{i}\right) \in B_{\ell_{\infty}}}\left\|\sum_{i \leq N} a_{i} x_{i}\right\| \\
& =\sup _{\left(a_{i}\right) \in B_{\ell_{\infty}}} \sup _{x^{*} \in B_{X^{*}}} \sum_{i} a_{i}\left\langle x^{*}, x_{i}\right\rangle \\
& =\sup _{x^{*} \in B_{X^{*}}} \sup _{\left(a_{i}\right) \in B_{\ell_{\infty}}} \sum_{i} a_{i}\left\langle x^{*}, x_{i}\right\rangle \\
& =\sup _{x^{*} \in B_{X^{*}}} \sum_{i}\left|\left\langle x^{*}, x_{i}\right\rangle\right|
\end{aligned}
$$

An abstract version of Littlewood inequality

$$
\begin{aligned}
\left\|S_{1}\right\| & =\sup _{\left(a_{i}\right) \in B_{\ell_{\infty}}}\left\|\sum_{i \leq N} a_{i} x_{i}\right\| \\
& =\sup _{\left(a_{i}\right) \in B_{\ell_{\infty}}} \sup _{x^{*} \in B_{X^{*}}} \sum_{i} a_{i}\left\langle x^{*}, x_{i}\right\rangle \\
& =\sup _{x^{*} \in B_{X^{*}}} \sup _{\left(a_{i}\right) \in B_{\ell_{\infty}}} \sum_{i} a_{i}\left\langle x^{*}, x_{i}\right\rangle \\
& =\sup _{x^{*} \in B_{X^{*}}} \sum_{i}\left|\left\langle x^{*}, x_{i}\right\rangle\right| .
\end{aligned}
$$

Similarly,

$$
\left\|S_{2}\right\|=\sup _{y^{*} \in B_{\gamma^{*}}} \sum_{i}\left|\left\langle y^{*}, y_{i}\right\rangle\right|
$$

An abstract version of Littlewood inequality

Thus Littlewood's inequality says that, for all bilinear forms $T: X \times Y \rightarrow \mathbb{C}$, for all finite sequences $\left(x_{i}\right)_{i=1}^{N},\left(y_{i}\right)_{i=1}^{N}$, then

$$
\left.\begin{array}{r}
\left(\sum_{i, j \leq N}\left\|T\left(x_{i}, y_{j}\right)\right\|^{4 / 3}\right)^{3 / 4} \leq C \| \\
\hline
\end{array}\left|\times \sup _{x^{*} \in B_{x^{*}}} \sum_{i}\right|\left\langle x^{*}, x_{i}\right\rangle \right\rvert\, .
$$

An abstract version of Littlewood inequality

Thus Littlewood's inequality says that, for all bilinear forms $T: X \times Y \rightarrow \mathbb{C}$, for all finite sequences $\left(x_{i}\right)_{i=1}^{N},\left(y_{i}\right)_{i=1}^{N}$, then

$$
\left.\begin{array}{r}
\left(\sum_{i, j \leq N}\left\|T\left(x_{i}, y_{j}\right)\right\|^{4 / 3}\right)^{3 / 4} \leq C \| \\
\hline
\end{array}\left|\times \sup _{x^{*} \in B_{X^{*}}} \sum_{i}\right|\left\langle x^{*}, x_{i}\right\rangle \right\rvert\,
$$

This means that T is multiple $(4 / 3 ; 1)$-summing.

Multiple summing maps

For a sequence $x=\left(x_{i}\right)_{i \in \mathbb{N}} \subset X^{\mathbb{N}}$, its weak ℓ^{p}-norm is defined by

$$
w_{p}(x)=\sup _{\left\|x^{*}\right\| \leq 1}\left(\sum_{i=1}^{+\infty}\left|x^{*}\left(x_{i}\right)\right|^{p}\right)^{\frac{1}{p}}
$$

Definition (Bombal,Perez-Garcia,Villanueva/Matos (2003-2004))

Let $r \geq 1$ and $\mathbf{p}=\left(p_{1}, \ldots, p_{m}\right) \in[1,+\infty)^{m}$. An m-linear map $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$ is multiple (r, \mathbf{p})-summing if there exists a constant $C>0$ such that for all sequences $x(j) \subset X_{j}^{\mathbb{N}}, 1 \leq j \leq m$,

$$
\left(\sum_{\mathbf{i} \in \mathbb{N}^{m}}\left\|T\left(x_{\mathbf{i}}\right)\right\|^{r}\right)^{\frac{1}{r}} \leq C w_{p_{1}}(x(1)) \cdots w_{p_{m}}(x(m))
$$

where $T\left(x_{i}\right)$ stands for $T\left(x_{i_{1}}(1), \ldots, x_{i_{m}}(m)\right)$.

Multiple summing maps

An m-linear map $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$ is multiple (r, \mathbf{p})-summing if there exists a constant $C>0$ such that for all sequences $x(j) \subset X_{j}^{\mathbb{N}}$, $1 \leq j \leq m$,

$$
\left(\sum_{\mathbf{i} \in \mathbb{N}^{m}}\left\|T\left(x_{\mathbf{i}}\right)\right\|^{r}\right)^{\frac{1}{r}} \leq C w_{p_{1}}(x(1)) \cdots w_{p_{m}}(x(m))
$$

- When $m=1$, we recover the classical theory of summing linear maps.
- The duality c_{0} / ℓ_{1} says that all linear forms are $(1,1)$-summing.
- Bohnenblust-Hille inequality says that all m-linear forms $T: X_{1} \times \cdots \times X_{m} \rightarrow \mathbb{K}$ are multiple $\left(\frac{2 m}{m+1}, 1\right)$-summing.

Littlewood again

A crucial ingredient in the proof of Littlewood's inequality was that, for all $x \in B_{c_{0}}$ and all $y \in B_{c_{0}}$,

$$
\sum_{i}\left|L\left(e_{i}, y\right)\right| \leq\|L\| \text { and } \sum_{j}\left|L\left(x, e_{j}\right)\right| \leq\|L\| .
$$

Littlewood again

A crucial ingredient in the proof of Littlewood's inequality was that, for all $x \in B_{c_{0}}$ and all $y \in B_{c_{0}}$,

$$
\sum_{i}\left|L\left(e_{i}, y\right)\right| \leq\|L\| \text { and } \sum_{j}\left|L\left(x, e_{j}\right)\right| \leq\|L\| .
$$

In other words, in order to prove that any bilinear form $T: X \times Y \rightarrow \mathbb{C}$ is multiple ($4 / 3,1$)-summing, a crucial ingredient is that the restrictions $T(x, \cdot)$ and $T(\cdot, y)$ are (1,1)-summing linear maps.

Littlewood again

A crucial ingredient in the proof of Littlewood's inequality was that, for all $x \in B_{c_{0}}$ and all $y \in B_{c_{0}}$,

$$
\sum_{i}\left|L\left(e_{i}, y\right)\right| \leq\|L\| \text { and } \sum_{j}\left|L\left(x, e_{j}\right)\right| \leq\|L\| .
$$

In other words, in order to prove that any bilinear form $T: X \times Y \rightarrow \mathbb{C}$ is multiple ($4 / 3,1$)-summing, a crucial ingredient is that the restrictions $T(x, \cdot)$ and $T(\cdot, y)$ are (1,1)-summing linear maps.

Question: Let $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$ be m-linear such that each restriction map $T\left(x_{1}, \ldots, x_{k-1}, \cdot, x_{k+1}, \ldots, x_{m}\right)$ is (r_{k}, p_{k})-summing. Can we say something on the multiple summability of T ?

Defant,Popa, Schwarting

Definition

Let $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$ be m-linear. We say that T is (r, p)-summing in the k-th coordinate if, for all $x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{m} \in X_{1} \times \cdots \times X_{k-1} \times X_{k+1} \times \cdots \times X_{m}$, the linear map $T\left(x_{1}, \ldots, x_{k-1}, \cdot, x_{k+1}, \ldots, x_{m}\right)$ is (r, p)-summing.

Theorem (Defant, Popa, Schwarting (2010))
Let $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$ be m-linear with Y a cotype q space. Let $r \in[1, q]$ and assume that T is ($r, 1$)-summing in each coordinate. Then T is multiple $(s, 1)$-summing, with

$$
\frac{1}{s}=\frac{m-1}{m q}+\frac{1}{m r} .
$$

Defant,Popa, Schwarting

Definition

Let $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$ be m-linear. We say that T is (r, p)-summing in the k-th coordinate if, for all $x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{m} \in X_{1} \times \cdots \times X_{k-1} \times X_{k+1} \times \cdots \times X_{m}$, the linear map $T\left(x_{1}, \ldots, x_{k-1}, \cdot, x_{k+1}, \ldots, x_{m}\right)$ is (r, p)-summing.

Theorem (Defant, Popa, Schwarting (2010))
Let $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$ be m-linear with Y a cotype q space. Let $r \in[1, q]$ and assume that T is $(r, 1)$-summing in each coordinate. Then T is multiple $(s, 1)$-summing, with

$$
\frac{1}{s}=\frac{m-1}{m q}+\frac{1}{m r} .
$$

Bohnenblust-Hille inequality follows immediately (with $r=1$ and $q=2$)!

Theorem (Defant, Popa, Schwarting (2010))
Let $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$ be m-linear with Y a cotype q space. Let $r \in[1, q]$ and assume that T is $(r, 1)$-summing in each coordinate. Then T is multiple $(s, 1)$-summing, with

$$
\frac{1}{s}=\frac{m-1}{m q}+\frac{1}{m r}
$$

We recall that Y has cotype $q \geq 2$ if there exists $C>0$ such that, for all finite sequences y_{1}, \ldots, y_{N} of elements of Y,

$$
\left(\sum_{i=1}^{N}\left\|y_{i}\right\|^{q}\right)^{1 / q} \leq C \int_{\Omega}\left\|\sum_{i=1}^{N} \varepsilon_{i}(\omega) y_{i}\right\| d \mathbb{P}(\omega)
$$

Main results

Hardy-Littlewood

Theorem

Let $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$ be m-linear with Y a cotype q space. Assume that T is (r, p)-summing in each coordinate and let $t \geq p$.

- If $\frac{1}{r}+\frac{1}{p^{*}}-\frac{m}{t^{*}}>\frac{1}{q}$, then T is multiple (s, t)-summing with

$$
\frac{1}{s}=\frac{m-1}{m q}+\frac{1}{m r}+\frac{1}{m p^{*}}-\frac{1}{t^{*}} .
$$

- If $0<\frac{1}{r}+\frac{1}{p^{*}}-\frac{m}{t^{*}} \leq \frac{1}{q}$, then T is multiple (s, t)-summing with

$$
\frac{1}{s}=\frac{1}{r}+\frac{1}{p^{*}}-\frac{m}{t^{*}} .
$$

When $1 \leq p=t \leq 2$ and $q=2$, the above values of s are optimal.

Main results

Theorem

Let $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$ with Y a cotype q space and $\mathbf{p} \in[1,+\infty)^{m}$. Assume that T is $\left(r_{k}, p_{k}\right)$-summing in the k-th coordinate and that there exists $\theta<0$ such that $\frac{1}{r_{k}}-\frac{1}{p_{k}}=\theta$ for all k. Set

$$
\frac{1}{\gamma}=1+\theta-\sum_{k=1}^{m} \frac{1}{p_{k}^{*}}
$$

(1) If $\gamma \in(0, q)$, then T is multiple (s, \mathbf{p})-summing with

$$
\frac{1}{s}=\frac{m-1}{m q}+\frac{1}{\gamma m} .
$$

(2) If $\gamma \geq q$, then T is multiple (γ, \mathbf{p})-summing.

Main results

We have a very general version of this kind (allowing different values for p_{k} and r_{k}, allowing summability on bigger sets of coordinates). In particular, we also get

Corollary (Popa, Sinnamon (2013))

Let $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$ be m-linear with Y a cotype q space. Let $r_{1}, \ldots, r_{m} \in[1, q]$ and assume that T is ($r_{k}, 1$)-summing in the k-th coordinate. Then T is multiple ($s, 1$)-summing, with

$$
s=\frac{q R}{1+R} \text { and } R=\sum_{k=1}^{m} \frac{r_{k}}{q-r_{k}} .
$$

Hardy-Littlewood/Praciano Pereira/Dimant-Sevilla Peris

Theorem (Abstract form)
Let $T: X_{1} \times \cdots \times X_{m} \rightarrow \mathbb{C}$ be m-linear and let $\mathbf{p}=\left(p_{1}, \ldots, p_{m}\right) \in[1,+\infty)^{m}$. We set

$$
\frac{1}{\gamma}=1-\sum_{k=1}^{m} \frac{1}{p_{k}^{*}}
$$

(1) If $\gamma \in(0,2)$ then T is multiple (s, \mathbf{p})-summing with

$$
\frac{1}{s}=\frac{m-1}{2 m}+\frac{1}{m \gamma}
$$

(2) If $\gamma \geq 2$, then T is multiple (γ, \mathbf{p})-summing.

Hardy-Littlewood/Praciano Pereira/Dimant-Sevilla Peris

Theorem (Abstract form)
Let $T: X_{1} \times \cdots \times X_{m} \rightarrow \mathbb{C}$ be m-linear and let
$\mathbf{p}=\left(p_{1}, \ldots, p_{m}\right) \in[1,+\infty)^{m}$. We set

$$
\frac{1}{\gamma}=1-\sum_{k=1}^{m} \frac{1}{p_{k}^{*}}
$$

(1) If $\gamma \in(0,2)$ then T is multiple (s, \mathbf{p})-summing with

$$
\frac{1}{s}=\frac{m-1}{2 m}+\frac{1}{m \gamma}
$$

(2) If $\gamma \geq 2$, then T is multiple (γ, \mathbf{p})-summing.
$q=2, r_{k}=p_{k}$ and the inclusion theorem for summing maps.

Inclusion theorems

Let $T: X \rightarrow Y$ be linear. If T is (r, p)-summing, then it is also (s, q)-summing provided $q \geq p$ and $\frac{1}{s}-\frac{1}{q}=\frac{1}{r}-\frac{1}{p}$.

Inclusion theorems

Let $T: X \rightarrow Y$ be linear. If T is (r, p)-summing, then it is also (s, q)-summing provided $q \geq p$ and $\frac{1}{s}-\frac{1}{q}=\frac{1}{r}-\frac{1}{p}$.

Theorem (Perez-Garcia (2004))
Let $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$ be m-linear. If T is multiple (p, p)-summing, for $p \in[1,2)$, then it is also multiple (q, q)-summing for $q \in[p, 2)$.

Inclusion theorems

Let $T: X \rightarrow Y$ be linear. If T is (r, p)-summing, then it is also (s, q)-summing provided $q \geq p$ and $\frac{1}{s}-\frac{1}{q}=\frac{1}{r}-\frac{1}{p}$.

Theorem (Perez-Garcia (2004))

Let $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$ be m-linear. If T is multiple (p, p)-summing, for $p \in[1,2)$, then it is also multiple (q, q)-summing for $q \in[p, 2)$.

Theorem

Let $T: X_{1} \times \cdots \times X_{m} \rightarrow Y$ be m-linear, let $r, s \in[1,+\infty)$,
$\mathbf{p}, \mathbf{q} \in[1,+\infty)^{m}$. Assume that T is multiple (r, \mathbf{p})-summing and that $q_{k} \geq p_{k}$ for all $k=1, \ldots, m$. Then T is multiple (s, \mathbf{q})-summing, with

$$
\frac{1}{s}-\sum_{j=1}^{m} \frac{1}{q_{j}}=\frac{1}{r}-\sum_{j=1}^{m} \frac{1}{p_{j}} .
$$

Proved independently by Pellegrino et al when all p_{k} are equal.

Sidon sets

Let G be a compact abelian group with dual group Γ. A subset Λ of Γ is called p-Sidon $(1 \leq p<2)$ if there is a constant $\kappa>0$ such that each $f \in \mathcal{C}(G)$ with \hat{f} supported on Λ satisfies

$$
\|\hat{f}\|_{\ell_{p}} \leq \kappa\|f\|_{\infty}
$$

For instance, $\left\{3^{k} ; k \geq 1\right\}$ is a 1 -Sidon set in \mathbb{Z}, the dual of $\mathbb{T}=\left\{e^{i \theta}: \theta \in \mathbb{R}\right\}$.

Theorem (Edward-Ross (1974), Johnson-Woodward (1974))
The direct product of m-Sidon sets is $2 m /(m+1)$-Sidon.

A subset Λ of Γ is called a $\Lambda(2)$-set if for one $q \in[1,2)$ (equivalently, for all $q \in[1,2)$), there exists $\kappa>0$ such that, for all $f \in \mathcal{C}(G)$ with \hat{f} supported on Λ,

$$
\|f\|_{L^{q}(G)} \leq \kappa\|f\|_{L^{2}(G)}
$$

Theorem

Let $G_{1}, \ldots, G_{m}, m \geq 2$, be compact abelian groups with respective dual groups $\Gamma_{1}, \ldots, \Gamma_{m}$. For $1 \leq j \leq m$, let $\Lambda_{j} \subset \Gamma_{j}$ be a p_{j}-Sidon and $\Lambda(2)$-set. Then $\Lambda_{1} \times \cdots \times \Lambda_{m}$ is a p-Sidon set in $\Gamma_{1} \times \cdots \times \Gamma_{m}$ for

$$
p=\frac{2 R}{R+1} \text { and } R=\sum_{k=1}^{m} \frac{p_{k}}{2-p_{k}} .
$$

Moreover, this value of p is optimal.

First tool: coefficients of nonnegative linear forms

Proposition

Let $m \geq 1,1 \leq p_{1}, \ldots, p_{m} \leq+\infty$ and $A: \ell_{p_{1}} \times \cdots \times \ell_{p_{m}} \rightarrow \mathbb{C}$ be a nonnegative m-linear form. Then

$$
\left(\sum_{\mathbf{i} \in \mathbb{N}^{m}} A\left(e_{\mathbf{i}}\right)^{\rho}\right)^{1 / \rho} \leq\|A\|
$$

provided $\rho^{-1}=1-\sum_{j=1}^{m} p_{j}^{-1}>0$.
The proof is done by using the fact that a nonnegative m-linear map $B: \ell_{p_{1}} \times \cdots \times \ell_{p_{m}} \rightarrow \ell_{q}$ factors through ℓ_{s}, with

$$
\frac{1}{s}=\frac{1}{q}-\left(\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}\right) .
$$

Second tool: an abstract Hardy-Littlewood method

Lemma

Let $p_{1}, p_{2}, q \in[1,+\infty),\left(a_{i, j}\right)_{i, j \in \mathbb{N}}$ a sequence of nonnegative real numbers. Assume that there exists $\kappa>0$ and $0<\alpha, \beta \leq q$ such that

- for all $u \in B_{\ell_{\rho_{1}}},\left(\sum_{j \in \mathbb{N}}\left(\sum_{i \in \mathbb{N}} u_{i}^{q} a_{i, j}^{q}\right)^{\alpha / q}\right)^{1 / \alpha} \leq \kappa$;
- for all $v \in B_{\ell_{p_{2}}},\left(\sum_{i \in \mathbb{N}}\left(\sum_{j \in \mathbb{N}} v_{j}^{q} a_{i, j}^{q}\right)^{\beta / q}\right)^{1 / \beta} \leq \kappa$.

Then $\left(\sum_{j \in \mathbb{N}}\left(\sum_{i \in \mathbb{N}} a_{i, j}^{q}\right)^{\gamma / q}\right)^{1 / \gamma} \leq \kappa$ where $\frac{1}{\gamma}=\frac{1}{\alpha}-\frac{1}{p_{1}}\left(\frac{1-\frac{q}{\alpha}-\frac{q}{p_{2}}}{1-\frac{q}{\beta}-\frac{q}{p_{1}}}\right)$
provided $\gamma>0, \frac{\alpha}{p_{1}} \leq 1$ and $\frac{\beta}{p_{2}} \leq 1$.

Third tool: a mixed norm inequality

$$
\left(\sum_{i, j}\left|a_{i, j}\right|^{4 / 3}\right)^{3 / 4} \leq\left(\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i, j}\right|^{2}\right)^{1 / 2}\right)^{1 / 2}\left(\sum_{j=1}^{N}\left(\sum_{i=1}^{N}\left|a_{i, j}\right|^{2}\right)^{1 / 2}\right)^{1 / 2} .
$$

Third tool: a mixed norm inequality

$$
\left(\sum_{i, j}\left|a_{i, j}\right|^{4 / 3}\right)^{3 / 4} \leq\left(\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i, j}\right|^{2}\right)^{1 / 2}\right)^{1 / 2}\left(\sum_{j=1}^{N}\left(\sum_{i=1}^{N}\left|a_{i, j}\right|^{2}\right)^{1 / 2}\right)^{1 / 2}
$$

In other words,

$$
\begin{aligned}
\left(\int|f(x, y)|^{\frac{4}{3}} d \mu_{1}(x) d \mu_{2}(y)\right)^{\frac{3}{4}} \leq & \left(\int\left(\int|f(x, y)|^{2} d \mu(y)\right)^{\frac{1}{2}} d \mu(x)\right)^{\frac{1}{2}} \\
& \times\left(\int\left(\int|f(x, y)|^{2} d \mu(x)\right)^{\frac{1}{2}} d \mu(y)\right)^{2}
\end{aligned}
$$

Third tool: a mixed norm inequality

Let $\left(M_{j}, \mu_{j}\right)$ be σ-finite measure spaces for $j=1, \ldots, n$ and introduce the product measure spaces $\left(M^{n}, \mu^{n}\right)$ and $\left(M_{j}^{n}, \mu_{j}^{n}\right)$ by $M^{n}=\prod_{k=1}^{n} M_{k}, \mu^{n}=\prod_{k=1}^{n} \mu_{k}, M_{j}^{n}=\prod_{\substack{k=1 \\ k \neq j}}^{n} M_{k}, \mu_{j}^{n}=\prod_{\substack{k=1 \\ k \neq j}}^{n} \mu_{k}$.

Proposition (Popa, Sinnamon, after Benedek, Panzone and Blei)

 Let $q>0, n \geq 2$ and $r_{1}, \ldots, r_{n} \in(0, q)$. If $h \geq 0$ is μ^{n}-measurable, then$$
\left(\int_{M_{n}} h^{Q} d \mu^{n}\right)^{\frac{1}{Q}} \leq \prod_{j=1}^{n}\left(\int_{M_{j}}\left(\int_{M_{j}^{n}} h^{q} d \mu_{j}^{n}\right)^{\frac{r_{j}}{q}} d \mu_{j}\right)^{\frac{1}{R\left(q-r_{j}\right)}}
$$

where $R=\sum_{j=1}^{n} \frac{r_{j}}{q-r_{j}}$ and $Q=\frac{q R}{1+R}$.

Third tool: a mixed norm inequality

Let $\left(M_{j}, \mu_{j}\right)$ be σ-finite measure spaces for $j=1, \ldots, n$ and introduce the product measure spaces $\left(M^{n}, \mu^{n}\right)$ and $\left(M_{j}^{n}, \mu_{j}^{n}\right)$ by $M^{n}=\prod_{k=1}^{n} M_{k}, \mu^{n}=\prod_{k=1}^{n} \mu_{k}, M_{j}^{n}=\prod_{\substack{k=1 \\ k \neq j}}^{n} M_{k}, \mu_{j}^{n}=\prod_{\substack{k=1 \\ k \neq j}}^{n} \mu_{k}$.

Proposition (Popa, Sinnamon, after Benedek, Panzone and Blei) Let $q>0, n \geq 2$ and $r_{1}, \ldots, r_{n} \in(0, q)$. If $h \geq 0$ is μ^{n}-measurable, then

$$
\left(\int_{M_{n}} h^{Q} d \mu^{n}\right)^{\frac{1}{Q}} \leq \prod_{j=1}^{n}\left(\int_{M_{j}}\left(\int_{M_{j}^{n}} h^{q} d \mu_{j}^{n}\right)^{\frac{r_{j}}{q}} d \mu_{j}\right)^{\frac{1}{R\left(q-r_{j}\right)}}
$$

where $R=\sum_{j=1}^{n} \frac{r_{j}}{q-r_{j}}$ and $Q=\frac{q R}{1+R}$.

PoppaSinnamon!

$q=2, r_{1}=r_{2}=2$

Muchas Gracias!

