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Littlewood inequality

Let L : cg — K be linear and continuous. Then > |L(es)| < [[L]].
Basic question: let L : ¢g X ¢g — K be bilinear and continuous. What can
be said on the sequence (L(ej, €j))i;?
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Littlewood inequality

Let L : cg — K be linear and continuous. Then > |L(es)| < [[L]].

Basic question: let L : ¢g X ¢g — K be bilinear and continuous. What can
be said on the sequence (L(ej, €))i?

Theorem (Littlewood, 1930)

There exists C > 0 such that, for all L : ¢g x cg — K bilinear and

continuous,
3/4

> ILen )| < L.
i

Moreover, the exponent 4/3 is optimal.
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Littlewood inequality

Proof - Step 1: an inequality on matrices

Lemma

Let (a,-J)lS,-JSN. Then

4 1/2
3/ N N /

1/2 1/2
N N
Sht?| < [ 3l Z(Zlaw'2>
i

1 j=1 \i=1

1/2

i=1 \ j=

The proof is done by successive applications of Minkowski and Holder
inequalities.
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Littlewood inequality

Proof - Step 2: an application of Khinchine inequality

Lemma

For each p € [1,+00), there exist Ay, B, > 0 such that, for all sequences

(x))\_, of complex numbers,
p 1/p N 1/2
dIP’(w)) < B, (Z \x,-12> ;
i=1

N 1/2 N
Ap (Z |Xi‘2> < (/
i=1 =
-, is a sequence of independent Bernoulli variables on (2, A, P).

Z ei(w)x;

i=1

where (g;)N

v
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Proof - Step 2: an application of Khinchine inequality

Let L: ¢g X cg — K be bilinear and bounded. Then
1/2

S S| = X []3 teng)ie)| dr)

i<N \j<N i<n 7 |ji<n
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Proof - Step 2: an application of Khinchine inequality

Let L: ¢g X cg — K be bilinear and bounded. Then

DD (e )l

i<N \J<N
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1/2

< ¢y [13 Ueng)s)| dr(w)
<N’ |i<n

< C/Z L e;,Zsj(w)ej dP(w)
Qicn J<N
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Proof - Step 2: an application of Khinchine inequality

Let L: ¢g X cg — K be bilinear and bounded. Then

1/2
2
> (D IL(ei )l
i<N \ <N
F. Bayart (Clermont-Ferrand)

< ¢y [13 Ueng)s)| dr(w)
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Let L: ¢g X cg — K be bilinear and bounded. Then

1/2

DD (e )l

i<N \J<N
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< CZ/ > L(ei, g)ej(w)| dP(w)
i< |j<N

< C/Z L{enY eilwe || dP(w)
Qi< J<N

< C [ sup L(ei, y)|dP(w)
deBCOiSZIV

< Csup > |L(e;y)
Y€Bqy i<

< Csup sup |L(x,y)|
yEBCOXEBCO
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Proof - Step 3: optimality
4/3 is the best exponent such that, for all L : ¢y x ¢g — K bilinear and

continuous,
3/4

> IL(ene)l? ] < CliL].
i
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Proof - Step 3: optimality

4/3 is the best exponent such that, for all L : ¢y x ¢g — K bilinear and
continuous,

3/4
> |L(e, )" < C[L]]-
ij

We need to produce a bilinear map with small norm and large coefficients!
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Proof - Step 3: optimality

4/3 is the best exponent such that, for all L : ¢y x ¢g — K bilinear and

continuous,
3/4

> IL(ene)l? ] < CliL].
i

We need to produce a bilinear map with small norm and large coefficients!

Theorem (Kahane,Salem,Zygmund)

For all m > 2, there exists C,, > 0 such that, for all N > 1, there exists an
m-linear form L : €N x ... x ¢N — C which may be written

yernyim=1

m+1

and which satisfies ||L|| < C,,N 2.

v
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Littlewood inequality

If we apply this for m = 2, then for all N > 1, we get a bilinear form
Ly : 0N x eN — C with |L(ej, )] = 1 and ||L]| < GN32. If pis a
convenient exponent, for all N > 1,

N 1/p
dolllene)l? ] < QN2
i=1
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Littlewood inequality

If we apply this for m = 2, then for all N > 1, we get a bilinear form
Ly : 0N x eN — C with |L(ej, )] = 1 and ||L]| < GN32. If pis a
convenient exponent, for all N > 1,

N 1/p
(Z |L(ei, ej)!”) < GNP,
i=1

namel
’ N3/P < C,N3/2.

This implies p > 4/3.
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Littlewood inequality

The Bohnenblust-Hille inequality

Theorem (Bohnenblust-Hille, 1931)

There exists C,, > 0 such that, for all L : cg X - -+ x ¢cg — C m-linear and
continuous,

(m+1)/2m

S |Leq, .-, €,)PPOmD < CallL].
M yeeeyim
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Littlewood inequality

The Bohnenblust-Hille inequality

Theorem (Bohnenblust-Hille, 1931)

There exists C,, > 0 such that, for all L : cg X - -+ x ¢cg — C m-linear and
continuous,

(m+1)/2m

Z |L(eqs- - -, eim)|2m/(m+1)

115225Im

< CplIL].

@ The inequality would be straighforward with the exponent 2 instead of
(the optimal) 2m/(m + 1);
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Littlewood inequality

The Bohnenblust-Hille inequality

Theorem (Bohnenblust-Hille, 1931)

There exists C,, > 0 such that, for all L : cg X - -+ x ¢cg — C m-linear and
continuous,

(m+1)/2m
S [L(ens -, €)M/ < CallL].

115225Im

@ The inequality would be straighforward with the exponent 2 instead of
(the optimal) 2m/(m + 1);

@ It was used by Bohnenblust and Hille to solve a problem on Dirichlet
series;

@ It was used recently to study problems in complex analysis (the Bohr

radius of the polydisc D"). Here, having an estimate of Cp, is
important.
F. Bayart (Clermont-Ferrand)
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Littlewood inequality

Hardy-Littlewood/Praciano Pereira/Dimant-Sevilla Peris

Theorem

Let1 < p1,p2,...,Ppm < 400 such thati+--'+pim<1. Define

1, (1, 1)l 1 ml
A p1 P an  m 2m

There exists C > 0 such that, for every m-linear T : {p, X --- x £, — K,

g A A

Q@ if;3<t+-+1 <1, then Z | T(ei,-- -, e,)* < C||IT|
yeeeslm

Q@ ifO< -+ -+ <3 then Y |T(ep,...,e,)|* < C|ITIH
Hyenyim

Moreover, these exponents are optimal.
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Multiple summing maps

An abstract version of Littlewood inequality

Let T: X x Y — C be bilinear and continuous and let (x;)%,, (y,), L be
two sequences in X (resp. Y). Let S; : ¢N — X, e+ x;, Sp 1 4N = Y,
ej— yjand L = T(51,5,). Littlewood's inequality says that

3/4

N
> |L(ei ) < CLlf < T x [[S] * [|S2]l-
ij=1
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Multiple summing maps

An abstract version of Littlewood inequality

ISul = sup || D aixil|

(a)€Bi  i<n

= sup  sup Y ai(x*,x)
(ai)€Bp,, x*E€Bxx i
= sup sup > a(x*,x)
x*€Bxx (a)€Byy,

= sup Z](x*,x,-ﬂ.
i

X*GBx*
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Multiple summing maps

An abstract version of Littlewood inequality

ISl = sup || D aixi]

(a)€Bi  i<n

= sup  sup aj(x*, x;)
(a1)€Bey, x*E€Bxx Z e
= sup sup > a(x*,x)

x*€Bxx (a)€Byy,

= sup Z](x*,x,-ﬂ.
i

X*GBx*

Similarly,

ISzl = sup > Hy*, il

y*EByx i
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Multiple summing maps

An abstract version of Littlewood inequality

Thus Littlewood’s inequality says that, for all bilinear forms
T:X x Y — C, for all finite sequences (x;)N;, (i)Y, then

3/4
Do ITGaI*? < CTI > sup D l(x*, )|
ij<N XTEBxx
x sup Y ("l
y*EBy* i
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Multiple summing maps

An abstract version of Littlewood inequality

Thus Littlewood’s inequality says that, for all bilinear forms
T:X x Y — C, for all finite sequences (x;)N;, (i)Y, then

3/4
> ITCa )3 < ClITlx sup Y {xT,x)|
ij<N XTEBxx
x sup Y ("l
y*EBy* i

This means that T is multiple (4/3; 1)-summing.
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Multiple summing maps

Multiple summing maps

For a sequence x = (x;)jen C XY, its weak £P-norm is defined by

+oo %
wp(x) = sup ( IX*(Xf)\”) :
1

[x*[[<1\G=

Definition (Bombal,Perez-Garcia,Villanueva/Matos (2003-2004))

Let r>1and p=(p1,-.-,Pm) € [1,4+00)™. An m-linear map
T: Xy XX Xy — Y is multiple (r, p)-summing if there exists a
constant C > 0 such that for all sequences x(j) C XJN, 1< <m,

(Z IIT(Xi)||r>r < Cwp, (x(1)) - - - wp,, (x(m))

ieNm

where T(x) stands for T(x;(1),...,x;,(m)).
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Multiple summing maps

Multiple summing maps

An m-linear map T : X1 X -+ X X, — Y is multiple (r, p)-summing if

there exists a constant C > 0 such that for all sequences x(j) C XJ-N,
l<j<m,

1
<Z |T(Xi)||r> < Cwp, (x(1)) - - - wp, (x(m)).
ieNm

@ When m = 1, we recover the classical theory of summing linear maps.
@ The duality ¢p/¢; says that all linear forms are (1, 1)-summing.

@ Bohnenblust-Hille inequality says that all m-linear forms

T: Xy XX Xy — K are multiple %’ 1)—summing.
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Multiple summing maps

Littlewood again

A crucial ingredient in the proof of Littlewood's inequality was that, for all
x € Bg, and all y € B,

> I, y)l < L] and Y |L(x, )] < L
i j
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Multiple summing maps

Littlewood again

A crucial ingredient in the proof of Littlewood's inequality was that, for all
x € Bg, and all y € B,

> I, y)l < L] and Y |L(x, )] < L
i j

In other words, in order to prove that any bilinear form T: X x Y — C is
multiple (4/3,1)—summing, a crucial ingredient is that the restrictions
T(x,-) and T(-,y) are (1,1)-summing linear maps.
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Littlewood again

A crucial ingredient in the proof of Littlewood's inequality was that, for all
x € Bg, and all y € B,

> I, y)l < L] and Y |L(x, )] < L
i j

In other words, in order to prove that any bilinear form T: X x Y — C is
multiple (4/3,1)—summing, a crucial ingredient is that the restrictions
T(x,-) and T(-,y) are (1,1)-summing linear maps.

Question: Let T : X1 X --- x X;;, — Y be m-linear such that each

restriction map T(x1,...,Xk—1, ", Xkt1s - - -5 Xm) 1S (rk, px)-summing. Can
we say something on the multiple summability of T7?
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Defant,Popa, Schwarting

Definition

Let T: X1 X+ X Xy — Y be m-linear. We say that T is (r, p)-summing
in the k-th coordinate if, for all

XLy o ooy Xkely Xktly e ooy Xm € X1 X - oo X Xg—1 X Xgg1 X -+ X Xy, the
linear map T(X1,...,Xk—1, ", Xkt1s-- -5 Xm) is (r, p)-summing.

Theorem (Defant, Popa, Schwarting (2010))

Let T : X1 X -+ X X, — Y be m-linear with Y a cotype q space. Let

r € [1,q] and assume that T is (r,1)-summing in each coordinate. Then
T is multiple (s, 1)-summing, with

1 m-1 1

s mq mr’
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Definition

Let T: X1 X+ X Xy — Y be m-linear. We say that T is (r, p)-summing
in the k-th coordinate if, for all

XLy o ooy Xkely Xktly e ooy Xm € X1 X - oo X Xg—1 X Xgg1 X -+ X Xy, the
linear map T(X1,...,Xk—1, ", Xkt1s-- -5 Xm) is (r, p)-summing.

Theorem (Defant, Popa, Schwarting (2010))

Let T : X1 X -+ X X, — Y be m-linear with Y a cotype q space. Let
r € [1,q] and assume that T is (r,1)-summing in each coordinate. Then
T is multiple (s, 1)-summing, with

1 m-1 1

s mq mr’

Bohnenblust-Hille inequality follows immediately (with r =1 and g = 2)!
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Multiple summing maps

Theorem (Defant, Popa, Schwarting (2010))

Let T : Xy X -+ X X — Y be m-linear with Y a cotype q space. Let

r € [1,q] and assume that T is (r,1)-summing in each coordinate. Then
T is multiple (s, 1)-summing, with

1 m-1 1

s mgq mr’

We recall that Y has cotype g > 2 if there exists C > 0 such that, for all
finite sequences y1,..., yn of elements of Y,

N 1/q N
| fll"> <C i(W)yi|| dP(w).
Pl et
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Multiple summing maps

Main results

Theorem

Let T : Xy X -+ X Xm — Y be m—linear with Y a cotype q space.
Assume that T is (r, p)-summing in each coordinate and let t > p.

o Ifl+ p% = &> %, then T is multiple (s, t)-summing with

1 m-1 1 1 1
+

s mq mr ' mp*  t*

o IfO< !4 p% =& = %, then T is multiple (s, t)-summing with

1 1 1 m

g ¢ @

When1 < p=t<2andq =2, the above values of s are optimal.
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Multiple summing maps

Main results

Theorem

Let T: Xy x -+ X Xy — Y with Y a cotype q space and p € [1, +00)™.
Assume that T is (rk, px)-summing in the k-th coordinate and that there
exists 8 < 0 such that % — p—lk = 0 for all k. Set

Q Ify€(0,q), then T is multiple (s, p)-summing with

1 m-1 1

s mq ym’

@ If~v > q, then T is multiple (v, p)-summing.
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Main results

We have a very general version of this kind (allowing different values for

pk and ry, allowing summability on bigger sets of coordinates). In
particular, we also get

Corollary (Popa, Sinnamon (2013))

Let T : Xy X -+ X Xm — Y be m-linear with Y a cotype q space. Let
ri,...,rm € [1,q] and assume that T is (ry,1)-summing in the k-th
coordinate. Then T is multiple (s,1)-summing, with

gR

m
rk
= dR= :
s 1+R(m kz_:lq—rk
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Applications

Hardy-Littlewood/Praciano Pereira/Dimant-Sevilla Peris

Theorem (Abstract form)

Let T : X1 X --- X X, — C be m-linear and let
pP=(p1,-..,pm) € [1,+00)". We set

Q I/fy € (0,2) then T is multiple (s, p)-summing with

1 m-1 1

s 2m my’

@ Ify > 2, then T is multiple (v, p)-summing.
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Applications

Hardy-Littlewood/Praciano Pereira/Dimant-Sevilla Peris

Theorem (Abstract form)

Let T : X1 X --- X X, — C be m-linear and let
pP=(p1,-..,pm) € [1,+00)". We set

Q I/fy € (0,2) then T is multiple (s, p)-summing with

1 m-1 1

s 2m my’

@ Ify > 2, then T is multiple (v, p)-summing.

g = 2, ry = px and the inclusion theorem for summing maps.
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Applications

Inclusion theorems

Let T: X — Y be linear. If T is (r, p)-summing, then it is also
(s, g)-summing provided q > p and 1 % =1_ p_
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Applications

Inclusion theorems

Let T: X — Y be linear. If T is (r, p)-summing, then it is also
(s, g)-summing provided g > p and 1 _1_1_

g r p'
Theorem (Perez-Garcia (2004))

Let T: Xy X -+ X Xm — Y be m-linear. If T is multiple (p, p)-summing,
for p € [1,2), then it is also multiple (g, q)-summing for q € [p, 2).
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Applications

Inclusion theorems

Let T: X — Y be linear. If T is (r, p)-summing, then it is also

1 11
(s, g)-summing provided g > p and - p.

Theorem (Perez-Garcia (2004))

Let T: Xy X -+ X Xm — Y be m-linear. If T is multiple (p, p)-summing,
for p € [1,2), then it is also multiple (g, q)-summing for q € [p, 2).

Theorem

Let T: Xy x--- X Xpm — Y be m-linear, let r,s € [1,+00),

pP,q € [1,4+00)™. Assume that T is multiple (r,p)-summing and that
gk > px forall k =1,...,m. Then T is multiple (s, q)-summing, with

Proved independently by Pellegrino et al when all py are equal.
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Applications

Sidon sets

Let G be a compact abelian group with dual group I'. A subset A of T is
called p-Sidon (1 < p < 2) if there is a constant k > 0 such that each
f € C(G) with f supported on A satisfies

1Fle, < &llf]loo-

For instance, {3"; k > 1} is a 1-Sidon set in Z, the dual of

T ={e?: 6 cR}.

Theorem (Edward-Ross (1974), Johnson-Woodward (1974))

The direct product of m 1-Sidon sets is 2m/(m + 1)-Sidon. J
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Applications

A subset A of T is called a A(2)-set if for one g € [1,2) (equivalently, for
all g € [1,2)), there exists x > 0 such that, for all f € C(G) with f
supported on A,

Iflleacey < Klifllz(6)-

Theorem

Let Gy,...,Gn, m> 2, be compact abelian groups with respective dual
groups I'y,...,Tm. For1 <j<m,let \j CT; be a pj-Sidon and \(2)-set.
Then Ny X --- X Ny, is a p-Sidon set inT{ x --- x I, for

2R =
and R = 2

R+1 k:12—pk

p:

Moreover, this value of p is optimal.
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Towards the proof

First tool: coefficients of nonnegative linear forms

Proposition

Letm>1,1<p1,....pm < +o0and A:lp X ---x Ly, — C bea
nonnegative m-linear form. Then

1/p
<Z A(e.)p> < ||All

ieNm

provided p~! =1 — ijzl pfl > 0.

The proof is done by using the fact that a nonnegative m-linear map
Bty x - x{p, — Lq factors through £, with

1 1 <1 1)
) i R
S q P1 Pm
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Second tool: an abstract Hardy-Littlewood method
Lemma

Let p1,p2,q € [1,400), (aij)ijen a sequence of nonnegative real
numbers. Assume that there exists k > 0 and 0 < «, 8 < g such that

a/q\ /e
o forallue By, , (ZjeN (ZleN ”qau) ) < k;

B/q\ /8
@ forall v e ng2, ( :eN( jeN Y ) ) < K.

1-9_49
11 1 o p
Then <Zj€N< ,GNaI’J ) </<gwher67 = m(l—g q>
ﬁ

provided v > 0, o < 1 and
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Towards the proof

Third tool: a mixed norm inequality

3/4 N 1/2\ 1/2 1/2

NN 1/2
> ai*? = DS D Z(Z\a,ﬂz)
=1

i i=1 \j=1 i=1
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Towards the proof

Third tool: a mixed norm inequality

1/2

3/4 NN 1/2
(Z a;f”) <> (Z auz)
iy j=1

i=1

(121 (IZ:I; a,-d_2>1/2) 1/2.

1
2

In other words,

(/176 dis(adiats ) < </</|fxy|du(y))édu(><)>
(

1 1

[ ([17npanto)’ du(y)>2
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Third tool: a mixed norm inequality

Let (M, 11j) be o-finite measure spaces for j = 1,...,n and introduce the
product measure spaces (M", u") and (M, pi7') by
M" = [Tizs Mi, 1" = TTg=q sk Mf = [[i=1 Mk, Mf = [Ti=1 pk-

k] ki

Proposition (Popa, Sinnamon, after Benedek, Panzone and Blei)

Letq>0,n>2andr,...,m€(0,q). If h>0 is u"-measurable, then
1

ol n
(f20) <11 ( £, ()
n =1 \Um \Imy

n I R
where R =3 i, 527 and Q = TR

.
£ R(g—rj)
7 j
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1

ol n
(f20) <11 ( £, ()
n =1 \Um \Imy

n I R
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.
£ R(g—rj)
7 j

g=2,n=nrn=2
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Towards the proof

Muchas Gracias!
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