Multiple summing maps: coordinatewise summability, inclusion theorems and *p*-Sidon sets

F. Bayart

Université Clermont Auvergne

Nonlinear Functional Analysis 2017

Let $L: c_0 \to \mathbb{K}$ be linear and continuous. Then $\sum_n |L(e_n)| \le ||L||$. Basic question: let $L: c_0 \times c_0 \to \mathbb{K}$ be bilinear and continuous. What can be said on the sequence $(L(e_i, e_i))_{i,i}$?

Let $L: c_0 \to \mathbb{K}$ be linear and continuous. Then $\sum_n |L(e_n)| \le ||L||$. Basic question: let $L: c_0 \times c_0 \to \mathbb{K}$ be bilinear and continuous. What can be said on the sequence $(L(e_i, e_j))_{i,j}$?

Theorem (Littlewood, 1930)

There exists C > 0 such that, for all $L : c_0 \times c_0 \to \mathbb{K}$ bilinear and continuous,

$$\left(\sum_{i,j} |L(e_i, e_j)|^{4/3}\right)^{3/4} \leq C \|L\|.$$

Moreover, the exponent 4/3 is optimal.

Proof - Step 1: an inequality on matrices

Lemma

Let $(a_{i,j})_{1 \le i,j \le N}$. Then

$$\left(\sum_{i,j}|a_{i,j}|^{4/3}\right)^{3/4} \leq \left(\sum_{i=1}^{N} \left(\sum_{j=1}^{N}|a_{i,j}|^2\right)^{1/2}\right)^{1/2} \left(\sum_{j=1}^{N} \left(\sum_{i=1}^{N}|a_{i,j}|^2\right)^{1/2}\right)^{1/2}.$$

The proof is done by successive applications of Minkowski and Hölder inequalities.

Lemma

For each $p \in [1, +\infty)$, there exist $A_p, B_p > 0$ such that, for all sequences $(x_i)_{i=1}^N$ of complex numbers,

$$A_p\left(\sum_{i=1}^N|x_i|^2\right)^{1/2}\leq \left(\int_\Omega\left|\sum_{i=1}^N\varepsilon_i(\omega)x_i\right|^pd\mathbb{P}(\omega)\right)^{1/p}\leq B_p\left(\sum_{i=1}^N|x_i|^2\right)^{1/2},$$

where $(\varepsilon_i)_{i=1}^N$ is a sequence of independent Bernoulli variables on $(\Omega, \mathcal{A}, \mathbb{P})$.

$$\sum_{i\leq N} \left(\sum_{j\leq N} |L(e_i, e_j)|^2 \right)^{1/2} \leq C \sum_{i\leq N} \int_{\Omega} \left| \sum_{j\leq N} L(e_i, e_j) \varepsilon_j(\omega) \right| d\mathbb{P}(\omega)$$

$$\sum_{i \leq N} \left(\sum_{j \leq N} |L(e_i, e_j)|^2 \right)^{1/2} \leq C \sum_{i \leq N} \int_{\Omega} \left| \sum_{j \leq N} L(e_i, e_j) \varepsilon_j(\omega) \right| d\mathbb{P}(\omega)$$

$$\leq C \int_{\Omega} \sum_{i \leq N} \left| L \left(e_i, \sum_{j \leq N} \varepsilon_j(\omega) e_j \right) \right| d\mathbb{P}(\omega)$$

$$\sum_{i \leq N} \left(\sum_{j \leq N} |L(e_i, e_j)|^2 \right)^{1/2} \leq C \sum_{i \leq N} \int_{\Omega} \left| \sum_{j \leq N} L(e_i, e_j) \varepsilon_j(\omega) \right| d\mathbb{P}(\omega)$$

$$\leq C \int_{\Omega} \sum_{i \leq N} \left| L \left(e_i, \sum_{j \leq N} \varepsilon_j(\omega) e_j \right) \right| d\mathbb{P}(\omega)$$

$$\leq C \int_{\Omega} \sup_{y \in B_{c_0}} \sum_{i \leq N} |L(e_i, y)| d\mathbb{P}(\omega)$$

$$\sum_{i \leq N} \left(\sum_{j \leq N} |L(e_i, e_j)|^2 \right)^{1/2} \leq C \sum_{i \leq N} \int_{\Omega} \left| \sum_{j \leq N} L(e_i, e_j) \varepsilon_j(\omega) \right| d\mathbb{P}(\omega)$$

$$\leq C \int_{\Omega} \sum_{i \leq N} \left| L \left(e_i, \sum_{j \leq N} \varepsilon_j(\omega) e_j \right) \right| d\mathbb{P}(\omega)$$

$$\leq C \int_{\Omega} \sup_{y \in B_{c_0}} \sum_{i \leq N} |L(e_i, y)| d\mathbb{P}(\omega)$$

$$\leq C \sup_{y \in B_{c_0}} \sum_{j \leq N} |L(e_i, y)|$$

Let $L: c_0 \times c_0 \to \mathbb{K}$ be bilinear and bounded. Then Later

 $\sum_{i < N} \left(\sum_{i < N} |L(e_i, e_j)|^2 \right)^{1/2} \leq C \sum_{i < N} \int_{\Omega} \left| \sum_{i < N} L(e_i, e_j) \varepsilon_j(\omega) \right| d\mathbb{P}(\omega)$ $\leq C \int_{\Omega} \sum_{i \in U} \left| L\left(e_i, \sum_{i \in U} \varepsilon_j(\omega) e_j\right) \right| d\mathbb{P}(\omega)$ $\leq C \int_{\Omega} \sup_{y \in B_{co}} \sum_{i < N} |L(e_i, y)| d\mathbb{P}(\omega)$ $\leq C \sup_{y \in B_{c_0}} \sum_{i < N} |L(e_i, y)|$ $\leq C \sup_{y \in B_{c_0}} \sup_{x \in B_{c_0}} |L(x, y)|$

$$\sum_{i \leq N} \left(\sum_{j \leq N} |L(e_i, e_j)|^2 \right)^{1/2} \leq C \sum_{i \leq N} \int_{\Omega} \left| \sum_{j \leq N} L(e_i, e_j) \varepsilon_j(\omega) \right| d\mathbb{P}(\omega)$$

$$\leq C \int_{\Omega} \sum_{i \leq N} \left| L \left(e_i, \sum_{j \leq N} \varepsilon_j(\omega) e_j \right) \right| d\mathbb{P}(\omega)$$

$$\leq C \int_{\Omega} \sup_{y \in B_{c_0}} \sum_{i \leq N} |L(e_i, y)| d\mathbb{P}(\omega)$$

$$\leq C \sup_{y \in B_{c_0}} \sum_{i \leq N} |L(e_i, y)|$$

$$\leq C \sup_{y \in B_{c_0}} \sup_{x \in B_{c_0}} |L(x, y)|$$

$$\leq C \|L\|.$$

Proof - Step 3: optimality

4/3 is the best exponent such that, for all $L:c_0\times c_0\to \mathbb{K}$ bilinear and continuous,

$$\left(\sum_{i,j} |L(e_i, e_j)|^{4/3}\right)^{3/4} \leq C \|L\|.$$

Proof - Step 3: optimality

4/3 is the best exponent such that, for all $L:c_0\times c_0\to \mathbb{K}$ bilinear and continuous,

$$\left(\sum_{i,j} |L(e_i, e_j)|^{4/3}\right)^{3/4} \leq C \|L\|.$$

We need to produce a bilinear map with small norm and large coefficients!

Proof - Step 3: optimality

4/3 is the best exponent such that, for all $L:c_0\times c_0\to \mathbb{K}$ bilinear and continuous,

$$\left(\sum_{i,j} |L(e_i, e_j)|^{4/3}\right)^{3/4} \leq C \|L\|.$$

We need to produce a bilinear map with small norm and large coefficients!

Theorem (Kahane, Salem, Zygmund)

For all $m \geq 2$, there exists $C_m > 0$ such that, for all $N \geq 1$, there exists an m-linear form $L: \ell_{\infty}^N \times \cdots \times \ell_{\infty}^N \to \mathbb{C}$ which may be written

$$L(z^{(1)},\ldots,z^{(m)}) = \sum_{i_1,\ldots,i_m=1}^{N} \pm z_{i_1}^{(1)} \cdots z_{i_m}^{(m)}$$

and which satisfies $||L|| \leq C_m N^{\frac{m+1}{2}}$.

If we apply this for m=2, then for all $N\geq 1$, we get a bilinear form $L_N:\ell_\infty^N\times\ell_\infty^N\to\mathbb{C}$ with $|L(e_i,e_j)|=1$ and $\|L\|\leq C_2N^{3/2}$. If p is a convenient exponent, for all $N\geq 1$,

$$\left(\sum_{i=1}^{N}|L(e_i,e_j)|^p\right)^{1/p}\leq C_2N^{3/2},$$

If we apply this for m=2, then for all $N\geq 1$, we get a bilinear form $L_N:\ell_\infty^N\times\ell_\infty^N\to\mathbb{C}$ with $|L(e_i,e_j)|=1$ and $\|L\|\leq C_2N^{3/2}$. If p is a convenient exponent, for all $N\geq 1$,

$$\left(\sum_{i=1}^{N}|L(e_i,e_j)|^p\right)^{1/p}\leq C_2N^{3/2},$$

namely

$$N^{2/p} \leq C_2 N^{3/2}.$$

This implies $p \ge 4/3$.

Theorem (Bohnenblust-Hille, 1931)

There exists $C_m > 0$ such that, for all $L: c_0 \times \cdots \times c_0 \to \mathbb{C}$ m-linear and continuous,

$$\left(\sum_{i_1,\ldots,i_m} |L(e_{i_1},\ldots,e_{i_m})|^{2m/(m+1)}\right)^{(m+1)/2m} \leq C_m ||L||.$$

Theorem (Bohnenblust-Hille, 1931)

There exists $C_m > 0$ such that, for all $L: c_0 \times \cdots \times c_0 \to \mathbb{C}$ m-linear and continuous,

$$\left(\sum_{i_1,\ldots,i_m} |L(e_{i_1},\ldots,e_{i_m})|^{2m/(m+1)}\right)^{(m+1)/2m} \leq C_m ||L||.$$

• The inequality would be straighforward with the exponent 2 instead of (the optimal) 2m/(m+1);

Theorem (Bohnenblust-Hille, 1931)

There exists $C_m > 0$ such that, for all $L: c_0 \times \cdots \times c_0 \to \mathbb{C}$ m-linear and continuous,

$$\left(\sum_{i_1,\ldots,i_m} |L(e_{i_1},\ldots,e_{i_m})|^{2m/(m+1)}\right)^{(m+1)/2m} \leq C_m ||L||.$$

- The inequality would be straighforward with the exponent 2 instead of (the optimal) 2m/(m+1);
- It was used by Bohnenblust and Hille to solve a problem on Dirichlet series;

Theorem (Bohnenblust-Hille, 1931)

There exists $C_m > 0$ such that, for all $L: c_0 \times \cdots \times c_0 \to \mathbb{C}$ m-linear and continuous,

$$\left(\sum_{i_1,\ldots,i_m} |L(e_{i_1},\ldots,e_{i_m})|^{2m/(m+1)}\right)^{(m+1)/2m} \leq C_m ||L||.$$

- The inequality would be straighforward with the exponent 2 instead of (the optimal) 2m/(m+1);
- It was used by Bohnenblust and Hille to solve a problem on Dirichlet series;
- It was used recently to study problems in complex analysis (the Bohr radius of the polydisc \mathbb{D}^n). Here, having an estimate of C_m is important.

Hardy-Littlewood/Praciano Pereira/Dimant-Sevilla Peris

Theorem

Let $1 \leq p_1, p_2, \ldots, p_m \leq +\infty$ such that $\frac{1}{p_1} + \cdots + \frac{1}{p_m} < 1$. Define

$$\frac{1}{\lambda}=1-\left(\frac{1}{p_1}+\cdots+\frac{1}{p_m}\right) \ and \ \frac{1}{\mu}=\frac{1}{m\lambda}+\frac{m-1}{2m}.$$

There exists C>0 such that, for every m-linear $T:\ell_{p_1}\times\cdots\times\ell_{p_m}\to\mathbb{K}$,

② if
$$0 \le \frac{1}{p_1} + \dots + \frac{1}{p_m} < \frac{1}{2}$$
, then $\sum_{i_1,\dots,i_m} |T(e_{i_1},\dots,e_{i_m})|^{\mu} \le C \|T\|^{\mu}$.

Moreover, these exponents are optimal. Main result

4 D > 4 D > 4 B > 4 B > B = 990

Let $T: X \times Y \to \mathbb{C}$ be bilinear and continuous and let $(x_i)_{i=1}^N$, $(y_i)_{i=1}^N$ be two sequences in X (resp. Y). Let $S_1: \ell_\infty^N \to X$, $e_i \mapsto x_i$, $S_2: \ell_\infty^N \to Y$, $e_j \mapsto y_j$ and $L = T(S_1, S_2)$. Littlewood's inequality says that

$$\left(\sum_{i,j=1}^{N} |L(e_i,e_j)|^{4/3}\right)^{3/4} \leq C\|L\| \leq C\|T\| \times \|S_1\| \times \|S_2\|.$$

Let $T: X \times Y \to \mathbb{C}$ be bilinear and continuous and let $(x_i)_{i=1}^N$, $(y_i)_{i=1}^N$ be two sequences in X (resp. Y). Let $S_1: \ell_\infty^N \to X$, $e_i \mapsto x_i$, $S_2: \ell_\infty^N \to Y$, $e_i \mapsto y_i$ and $L = T(S_1, S_2)$. Littlewood's inequality says that

$$\left(\sum_{i,j=1}^{N} |L(e_i,e_j)|^{4/3}\right)^{3/4} \leq C\|L\| \leq C\|T\| \times \|S_1\| \times \|S_2\|.$$

$$L(e_i, e_j) = T(x_i, y_j)$$

Let $T: X \times Y \to \mathbb{C}$ be bilinear and continuous and let $(x_i)_{i=1}^N$, $(y_i)_{i=1}^N$ be two sequences in X (resp. Y). Let $S_1: \ell_\infty^N \to X$, $e_i \mapsto x_i$, $S_2: \ell_\infty^N \to Y$, $e_i \mapsto y_i$ and $L = T(S_1, S_2)$. Littlewood's inequality says that

$$\left(\sum_{i,j=1}^{N} |L(e_i,e_j)|^{4/3}\right)^{3/4} \leq C\|L\| \leq C\|T\| \times \|S_1\| \times \|S_2\|.$$

$$L(e_i, e_j) = T(x_i, y_j)$$

$$||S_1|| = \sup_{(a_i) \in B_{\ell_{\infty}}} ||\sum_{i \leq N} a_i x_i||$$

$$= \sup_{(a_i) \in B_{\ell_{\infty}}} \sup_{x^* \in B_{X^*}} \sum_i a_i \langle x^*, x_i \rangle$$

$$= \sup_{x^* \in B_{X^*}} \sup_{(a_i) \in B_{\ell_{\infty}}} \sum_i a_i \langle x^*, x_i \rangle$$

$$= \sup_{x^* \in B_{X^*}} \sum_i |\langle x^*, x_i \rangle|.$$

$$||S_1|| = \sup_{(a_i) \in B_{\ell_{\infty}}} ||\sum_{i \leq N} a_i x_i||$$

$$= \sup_{(a_i) \in B_{\ell_{\infty}}} \sup_{x^* \in B_{X^*}} \sum_i a_i \langle x^*, x_i \rangle$$

$$= \sup_{x^* \in B_{X^*}} \sup_{(a_i) \in B_{\ell_{\infty}}} \sum_i a_i \langle x^*, x_i \rangle$$

$$= \sup_{x^* \in B_{X^*}} \sum_i |\langle x^*, x_i \rangle|.$$

Similarly,

$$||S_2|| = \sup_{y^* \in B_{Y^*}} \sum_i |\langle y^*, y_i \rangle|.$$

Thus Littlewood's inequality says that, for all bilinear forms $T: X \times Y \to \mathbb{C}$, for all finite sequences $(x_i)_{i=1}^N$, $(y_i)_{i=1}^N$, then

$$\left(\sum_{i,j\leq N} \|T(x_i,y_j)\|^{4/3}\right)^{3/4} \leq C\|T\| \times \sup_{x^*\in B_{X^*}} \sum_{i} |\langle x^*,x_i\rangle| \times \sup_{y^*\in B_{Y^*}} \sum_{i} |\langle y^*,y_i\rangle|.$$

Thus Littlewood's inequality says that, for all bilinear forms $T: X \times Y \to \mathbb{C}$, for all finite sequences $(x_i)_{i=1}^N$, $(y_i)_{i=1}^N$, then

$$\left(\sum_{i,j\leq N} \|T(x_i,y_j)\|^{4/3}\right)^{3/4} \leq C\|T\| \times \sup_{x^*\in B_{X^*}} \sum_{i} |\langle x^*,x_i\rangle| \times \sup_{y^*\in B_{Y^*}} \sum_{i} |\langle y^*,y_i\rangle|.$$

This means that T is multiple (4/3; 1)-summing.

Multiple summing maps

For a sequence $x=(x_i)_{i\in\mathbb{N}}\subset X^\mathbb{N}$, its weak ℓ^p -norm is defined by

$$w_p(x) = \sup_{\|x^*\| \le 1} \left(\sum_{i=1}^{+\infty} |x^*(x_i)|^p \right)^{\frac{1}{p}}.$$

Definition (Bombal, Perez-Garcia, Villanueva/Matos (2003-2004))

Let $r \geq 1$ and $\mathbf{p} = (p_1, \dots, p_m) \in [1, +\infty)^m$. An m-linear map $T: X_1 \times \dots \times X_m \to Y$ is multiple (r, \mathbf{p}) -summing if there exists a constant C > 0 such that for all sequences $x(j) \subset X_i^{\mathbb{N}}$, $1 \leq j \leq m$,

$$\left(\sum_{\mathbf{i}\in\mathbb{N}^m}\|T(x_{\mathbf{i}})\|^r\right)^{\frac{1}{r}}\leq Cw_{p_1}(x(1))\cdots w_{p_m}(x(m))$$

where $T(x_i)$ stands for $T(x_{i_1}(1), \ldots, x_{i_m}(m))$.

Multiple summing maps

An m-linear map $T: X_1 \times \cdots \times X_m \to Y$ is multiple (r, \mathbf{p}) -summing if there exists a constant C > 0 such that for all sequences $x(j) \subset X_j^{\mathbb{N}}$, $1 \leq j \leq m$,

$$\left(\sum_{\mathbf{i}\in\mathbb{N}^m}\|T(x_{\mathbf{i}})\|^r\right)^{\frac{1}{r}}\leq Cw_{p_1}(x(1))\cdots w_{p_m}(x(m)).$$

- When m = 1, we recover the classical theory of summing linear maps.
- ullet The duality c_0/ℓ_1 says that all linear forms are (1,1)-summing.
- Bohnenblust-Hille inequality says that all m-linear forms $T: X_1 \times \cdots \times X_m \to \mathbb{K}$ are multiple $\left(\frac{2m}{m+1}, 1\right)$ -summing.

Littlewood again

A crucial ingredient in the proof of Littlewood's inequality was that, for all $x \in B_{c_0}$ and all $y \in B_{c_0}$,

$$\sum_i |L(e_i, y)| \le \|L\| \text{ and } \sum_j |L(x, e_j)| \le \|L\|.$$

Littlewood again

A crucial ingredient in the proof of Littlewood's inequality was that, for all $x \in B_{c_0}$ and all $y \in B_{c_0}$,

$$\sum_{i} |L(e_i, y)| \le ||L|| \text{ and } \sum_{j} |L(x, e_j)| \le ||L||.$$

In other words, in order to prove that any bilinear form $T:X\times Y\to\mathbb{C}$ is multiple (4/3,1)—summing, a crucial ingredient is that the restrictions $T(x,\cdot)$ and $T(\cdot,y)$ are (1,1)-summing linear maps.

Littlewood again

A crucial ingredient in the proof of Littlewood's inequality was that, for all $x \in B_{c_0}$ and all $y \in B_{c_0}$,

$$\sum_{i} |L(e_i, y)| \le ||L|| \text{ and } \sum_{j} |L(x, e_j)| \le ||L||.$$

In other words, in order to prove that any bilinear form $T:X\times Y\to\mathbb{C}$ is multiple (4/3,1)—summing, a crucial ingredient is that the restrictions $T(x,\cdot)$ and $T(\cdot,y)$ are (1,1)-summing linear maps.

Question: Let $T: X_1 \times \cdots \times X_m \to Y$ be m-linear such that each restriction map $T(x_1, \ldots, x_{k-1}, \cdot, x_{k+1}, \ldots, x_m)$ is (r_k, p_k) -summing. Can we say something on the multiple summability of T?

Defant, Popa, Schwarting

Definition

Let $T: X_1 \times \cdots \times X_m \to Y$ be *m*-linear. We say that T is (r, p)-summing in the *k*-th coordinate if, for all

 $x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_m\in X_1\times\cdots\times X_{k-1}\times X_{k+1}\times\cdots\times X_m$, the linear map $T(x_1,\ldots,x_{k-1},\cdot,x_{k+1},\ldots,x_m)$ is (r,p)-summing.

Theorem (Defant, Popa, Schwarting (2010))

Let $T: X_1 \times \cdots \times X_m \to Y$ be m-linear with Y a cotype q space. Let $r \in [1, q]$ and assume that T is (r, 1)-summing in each coordinate. Then T is multiple (s, 1)-summing, with

$$\frac{1}{s} = \frac{m-1}{mq} + \frac{1}{mr}$$

Defant, Popa, Schwarting

Definition

Let $T: X_1 \times \cdots \times X_m \to Y$ be m-linear. We say that T is (r, p)-summing in the k-th coordinate if, for all

 $x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_m \in X_1 \times \cdots \times X_{k-1} \times X_{k+1} \times \cdots \times X_m$, the linear map $T(x_1, \ldots, x_{k-1}, \cdot, x_{k+1}, \ldots, x_m)$ is (r, p)-summing.

Theorem (Defant, Popa, Schwarting (2010))

Let $T: X_1 \times \cdots \times X_m \to Y$ be m-linear with Y a cotype q space. Let $r \in [1, q]$ and assume that T is (r, 1)-summing in each coordinate. Then T is multiple (s, 1)-summing, with

$$\frac{1}{s} = \frac{m-1}{mq} + \frac{1}{mr}$$

Bohnenblust-Hille inequality follows immediately (with r = 1 and q = 2)!

Theorem (Defant, Popa, Schwarting (2010))

Let $T: X_1 \times \cdots \times X_m \to Y$ be m-linear with Y a cotype q space. Let $r \in [1, q]$ and assume that T is (r, 1)-summing in each coordinate. Then T is multiple (s, 1)-summing, with

$$\frac{1}{s} = \frac{m-1}{mq} + \frac{1}{mr}.$$

We recall that Y has cotype $q \ge 2$ if there exists C > 0 such that, for all finite sequences y_1, \ldots, y_N of elements of Y,

$$\left(\sum_{i=1}^{N}\|y_i\|^q\right)^{1/q}\leq C\int_{\Omega}\left\|\sum_{i=1}^{N}\varepsilon_i(\omega)y_i\right\|d\mathbb{P}(\omega).$$

proof

Main results

Hardy-Littlewood

Theorem

Let $T: X_1 \times \cdots \times X_m \to Y$ be m-linear with Y a cotype q space.

Assume that T is (r, p)-summing in each coordinate and let $t \ge p$.

• If $\frac{1}{r} + \frac{1}{p^*} - \frac{m}{t^*} > \frac{1}{q}$, then T is multiple (s,t)-summing with

$$\frac{1}{s} = \frac{m-1}{mq} + \frac{1}{mr} + \frac{1}{mp^*} - \frac{1}{t^*}.$$

• If $0 < \frac{1}{r} + \frac{1}{p^*} - \frac{m}{t^*} \le \frac{1}{q}$, then T is multiple (s, t)-summing with

$$\frac{1}{s} = \frac{1}{r} + \frac{1}{p^*} - \frac{m}{t^*}.$$

When $1 \le p = t \le 2$ and q = 2, the above values of s are optimal.

Main results

Theorem

Let $T: X_1 \times \cdots \times X_m \to Y$ with Y a cotype q space and $\mathbf{p} \in [1, +\infty)^m$. Assume that T is (r_k, p_k) -summing in the k-th coordinate and that there exists $\theta < 0$ such that $\frac{1}{r_k} - \frac{1}{p_k} = \theta$ for all k. Set

$$\frac{1}{\gamma} = 1 + \theta - \sum_{k=1}^{m} \frac{1}{p_k^*}.$$

• If $\gamma \in (0, q)$, then T is multiple (s, \mathbf{p}) -summing with

$$\frac{1}{s} = \frac{m-1}{mq} + \frac{1}{\gamma m}.$$

② If $\gamma \geq q$, then T is multiple (γ, \mathbf{p}) -summing.

Main results

We have a very general version of this kind (allowing different values for p_k and r_k , allowing summability on bigger sets of coordinates). In particular, we also get

Corollary (Popa, Sinnamon (2013))

Let $T: X_1 \times \cdots \times X_m \to Y$ be m-linear with Y a cotype q space. Let $r_1, \ldots, r_m \in [1, q]$ and assume that T is $(r_k, 1)$ -summing in the k-th coordinate. Then T is multiple (s, 1)-summing, with

$$s = \frac{qR}{1+R} \text{ and } R = \sum_{k=1}^{m} \frac{r_k}{q-r_k}.$$

Sidon sets

Thind so al

Hardy-Littlewood/Praciano Pereira/Dimant-Sevilla Peris

Theorem (Abstract form)

Let $T: X_1 \times \cdots \times X_m \to \mathbb{C}$ be m-linear and let $\mathbf{p} = (p_1, \dots, p_m) \in [1, +\infty)^m$. We set

$$\frac{1}{\gamma} = 1 - \sum_{k=1}^{m} \frac{1}{p_k^*}.$$

1 If $\gamma \in (0,2)$ then T is multiple (s,\mathbf{p}) -summing with

$$\frac{1}{s} = \frac{m-1}{2m} + \frac{1}{m\gamma}.$$

② If $\gamma \geq 2$, then T is multiple (γ, \mathbf{p}) -summing.

Hardy-Littlewood/Praciano Pereira/Dimant-Sevilla Peris

Theorem (Abstract form)

Let $T: X_1 \times \cdots \times X_m \to \mathbb{C}$ be m-linear and let $\mathbf{p} = (p_1, \dots, p_m) \in [1, +\infty)^m$. We set

$$\frac{1}{\gamma} = 1 - \sum_{k=1}^{m} \frac{1}{p_k^*}.$$

1 If $\gamma \in (0,2)$ then T is multiple (s,\mathbf{p}) -summing with

$$\frac{1}{s} = \frac{m-1}{2m} + \frac{1}{m\gamma}.$$

② If $\gamma \geq 2$, then T is multiple (γ, \mathbf{p}) -summing.

q=2, $r_k=p_k$ and the inclusion theorem for summing maps.

Inclusion theorems

Let $T: X \to Y$ be linear. If T is (r, p)-summing, then it is also (s, q)-summing provided $q \ge p$ and $\frac{1}{s} - \frac{1}{q} = \frac{1}{r} - \frac{1}{p}$.

Inclusion theorems

Let $T: X \to Y$ be linear. If T is (r, p)-summing, then it is also (s, q)-summing provided $q \ge p$ and $\frac{1}{s} - \frac{1}{q} = \frac{1}{r} - \frac{1}{p}$.

Theorem (Perez-Garcia (2004))

Let $T: X_1 \times \cdots \times X_m \to Y$ be m-linear. If T is multiple (p, p)-summing, for $p \in [1, 2)$, then it is also multiple (q, q)-summing for $q \in [p, 2)$.

Inclusion theorems

Let $T: X \to Y$ be linear. If T is (r, p)-summing, then it is also (s, q)-summing provided $q \ge p$ and $\frac{1}{s} - \frac{1}{q} = \frac{1}{r} - \frac{1}{p}$.

Theorem (Perez-Garcia (2004))

Let $T: X_1 \times \cdots \times X_m \to Y$ be m-linear. If T is multiple (p, p)-summing, for $p \in [1, 2)$, then it is also multiple (q, q)-summing for $q \in [p, 2)$.

Theorem

Let $T: X_1 \times \cdots \times X_m \to Y$ be m-linear, let $r, s \in [1, +\infty)$, $\mathbf{p}, \mathbf{q} \in [1, +\infty)^m$. Assume that T is multiple (r, \mathbf{p}) -summing and that $q_k \geq p_k$ for all $k = 1, \ldots, m$. Then T is multiple (s, \mathbf{q}) -summing, with

$$\frac{1}{s} - \sum_{i=1}^{m} \frac{1}{q_i} = \frac{1}{r} - \sum_{i=1}^{m} \frac{1}{p_i}.$$

Proved independently by Pellegrino et al when all p_k are equal. $\Rightarrow \Rightarrow \Rightarrow 0$

Sidon sets

Let G be a compact abelian group with dual group Γ . A subset Λ of Γ is called p-Sidon $(1 \le p < 2)$ if there is a constant $\kappa > 0$ such that each $f \in \mathcal{C}(G)$ with \hat{f} supported on Λ satisfies

$$\|\hat{f}\|_{\ell_p} \le \kappa \|f\|_{\infty}.$$

For instance, $\{3^k; k \ge 1\}$ is a 1-Sidon set in \mathbb{Z} , the dual of $\mathbb{T} = \{e^{i\theta}: \theta \in \mathbb{R}\}.$

Theorem (Edward-Ross (1974), Johnson-Woodward (1974))

The direct product of m 1-Sidon sets is 2m/(m+1)-Sidon.

A subset Λ of Γ is called a $\Lambda(2)$ -set if for one $q \in [1,2)$ (equivalently, for all $q \in [1,2)$), there exists $\kappa > 0$ such that, for all $f \in \mathcal{C}(G)$ with \hat{f} supported on Λ ,

$$||f||_{L^q(G)} \le \kappa ||f||_{L^2(G)}.$$

Theorem

Let G_1, \ldots, G_m , $m \geq 2$, be compact abelian groups with respective dual groups $\Gamma_1, \ldots, \Gamma_m$. For $1 \leq j \leq m$, let $\Lambda_j \subset \Gamma_j$ be a p_j -Sidon and $\Lambda(2)$ -set. Then $\Lambda_1 \times \cdots \times \Lambda_m$ is a p-Sidon set in $\Gamma_1 \times \cdots \times \Gamma_m$ for

$$p = \frac{2R}{R+1}$$
 and $R = \sum_{k=1}^{m} \frac{p_k}{2-p_k}$.

Moreover, this value of p is optimal.

Multiple summing

First tool: coefficients of nonnegative linear forms

Proposition

Let $m \geq 1$, $1 \leq p_1, \ldots, p_m \leq +\infty$ and $A : \ell_{p_1} \times \cdots \times \ell_{p_m} \to \mathbb{C}$ be a nonnegative m-linear form. Then

$$\left(\sum_{\mathbf{i}\in\mathbb{N}^m}A(\mathsf{e_i})^\rho\right)^{1/\rho}\leq\|A\|$$

provided
$$\rho^{-1} = 1 - \sum_{i=1}^{m} p_i^{-1} > 0$$
.

The proof is done by using the fact that a nonnegative *m*-linear map $B: \ell_{p_1} \times \cdots \times \ell_{p_m} \to \ell_q$ factors through ℓ_s , with

$$\frac{1}{s} = \frac{1}{q} - \left(\frac{1}{p_1} + \dots + \frac{1}{p_m}\right).$$

Second tool: an abstract Hardy-Littlewood method

Lemma

Let $p_1, p_2, q \in [1, +\infty)$, $(a_{i,j})_{i,j \in \mathbb{N}}$ a sequence of nonnegative real numbers. Assume that there exists $\kappa > 0$ and $0 < \alpha, \beta \le q$ such that

• for all
$$u \in B_{\ell_{p_1}}$$
, $\left(\sum_{j \in \mathbb{N}} \left(\sum_{i \in \mathbb{N}} u_i^q a_{i,j}^q\right)^{\alpha/q}\right)^{1/\alpha} \le \kappa$;

• for all
$$v \in B_{\ell_{p_2}}$$
, $\left(\sum_{i \in \mathbb{N}} \left(\sum_{j \in \mathbb{N}} v_j^q a_{i,j}^q\right)^{\beta/q}\right)^{1/\beta} \leq \kappa$.

Then
$$\left(\sum_{j\in\mathbb{N}}\left(\sum_{i\in\mathbb{N}}a_{i,j}^q\right)^{\gamma/q}\right)^{1/\gamma}\leq \kappa$$
 where $\frac{1}{\gamma}=\frac{1}{\alpha}-\frac{1}{p_1}\left(\frac{1-\frac{q}{\alpha}-\frac{q}{p_2}}{1-\frac{q}{\beta}-\frac{q}{p_1}}\right)$ provided $\gamma>0$, $\frac{\alpha}{p_1}\leq 1$ and $\frac{\beta}{p_2}\leq 1$.

$$\left(\sum_{i,j}|a_{i,j}|^{4/3}\right)^{3/4} \leq \left(\sum_{i=1}^{N} \left(\sum_{j=1}^{N}|a_{i,j}|^2\right)^{1/2}\right)^{1/2} \left(\sum_{j=1}^{N} \left(\sum_{i=1}^{N}|a_{i,j}|^2\right)^{1/2}\right)^{1/2}.$$

$$\left(\sum_{i,j}|a_{i,j}|^{4/3}\right)^{3/4} \leq \left(\sum_{i=1}^{N} \left(\sum_{j=1}^{N}|a_{i,j}|^2\right)^{1/2}\right)^{1/2} \left(\sum_{j=1}^{N} \left(\sum_{i=1}^{N}|a_{i,j}|^2\right)^{1/2}\right)^{1/2}.$$

In other words,

$$\begin{split} \left(\int |f(x,y)|^{\frac{4}{3}} d\mu_1(x) d\mu_2(y) \right)^{\frac{3}{4}} & \leq & \left(\int \left(\int |f(x,y)|^2 d\mu(y) \right)^{\frac{1}{2}} d\mu(x) \right)^{\frac{1}{2}} \\ & \times \left(\int \left(\int |f(x,y)|^2 d\mu(x) \right)^{\frac{1}{2}} d\mu(y) \right)^{\frac{1}{2}} \end{split}$$

Let (M_j, μ_j) be σ -finite measure spaces for $j = 1, \ldots, n$ and introduce the product measure spaces (M^n, μ^n) and (M_j^n, μ_j^n) by $M^n = \prod_{k=1}^n M_k, \ \mu^n = \prod_{k=1}^n \mu_k, \ M_j^n = \prod_{k \neq j}^n M_k, \ \mu_j^n = \prod_{k \neq j}^n \mu_k.$

Proposition (Popa, Sinnamon, after Benedek, Panzone and Blei)

Let q > 0, $n \ge 2$ and $r_1, \ldots, r_n \in (0, q)$. If $h \ge 0$ is μ^n -measurable, then

$$\left(\int_{M_n} h^Q d\mu^n\right)^{\frac{1}{Q}} \leq \prod_{j=1}^n \left(\int_{M_j} \left(\int_{M_j^n} h^q d\mu_j^n\right)^{\frac{r_j}{q}} d\mu_j\right)^{\frac{1}{R(q-r_j)}}$$

where
$$R = \sum_{j=1}^{n} \frac{r_j}{q - r_j}$$
 and $Q = \frac{qR}{1 + R}$.

PoppaSinnamon!

Let (M_j, μ_j) be σ -finite measure spaces for j = 1, ..., n and introduce the product measure spaces (M^n, μ^n) and (M_j^n, μ_j^n) by $M^n = \prod_{k=1}^n M_k, \ \mu^n = \prod_{k=1}^n \mu_k, \ M_j^n = \prod_{k=1}^n M_k, \ \mu_j^n = \prod_{k=1}^n \mu_k.$

Proposition (Popa, Sinnamon, after Benedek, Panzone and Blei)

Let q > 0, $n \ge 2$ and $r_1, \ldots, r_n \in (0, q)$. If $h \ge 0$ is μ^n -measurable, then

$$\left(\int_{M_n} h^Q d\mu^n\right)^{\frac{1}{Q}} \leq \prod_{j=1}^n \left(\int_{M_j} \left(\int_{M_j^n} h^q d\mu_j^n\right)^{\frac{r_j}{q}} d\mu_j\right)^{\frac{1}{R(q-r_j)}}$$

where
$$R = \sum_{j=1}^{n} \frac{r_j}{q - r_j}$$
 and $Q = \frac{qR}{1 + R}$.

PoppaSinnamon!

$$q = 2, r_1 = r_2 = 2$$

Muchas Gracias!