Multiple Dirichlet series

Jaime Castillo

Joint work with D. García and M. Maestre

Universitat de Valencia, Spain

Workshop on Infinite Dimensional Analysis Valencia, October 17th, 2017

- Introduction
- 2 Convergence of multiple Dirichlet series
- $oxed{3}$ The algebras $\mathcal{H}_{\infty}(\mathbb{C}^k_+)$
- \P The isometries of $\mathcal{H}_\infty(\mathbb{C}_+^k)$ and $\mathcal{A}(\mathbb{C}_+^k)$

Dirichlet series

Definition

An ordinary Dirichlet series is a series of the form

$$\sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

where $\{a_n\}_{n=1}^{\infty}\subset\mathbb{C}$ is the sequence of coefficients of the series, and $s\in\mathbb{C}$ is a complex variable.

Introduction Multiple Dirichlet series 2 / 23

Dirichlet series

Definition

An ordinary Dirichlet series is a series of the form

$$\sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

where $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$ is the sequence of coefficients of the series, and $s \in \mathbb{C}$ is a complex variable.

Theorem

If a Dirichlet series is convergent at $s_0 \in \mathbb{C}$, then it is convergent in $[Re > Re s_0]$.

> Introduction 2 / 23

Uniform convergence in angular regions

Theorem

Let $D(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ a Dirichlet series which converges at s_0 . Then D(s) converges uniformly on the angular region

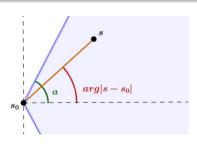
$$\mathcal{S}_{s_0,a} = \{s \in \mathbb{C} : |\operatorname{Arg}(s - s_0)| \le a < \frac{\pi}{2}\}.$$

Introduction Multiple Dirichlet series 3 / 23

Uniform convergence in angular regions

Theorem

Let $D(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ a Dirichlet series which converges at s_0 . Then D(s) converges uniformly on the angular region $S_{s_0,a} = \{s \in \mathbb{C} : |\operatorname{Arg}(s - s_0)| \le a < \frac{\pi}{2}\}.$



Introduction Multiple Dirichlet series 3 / 23

Abscissas of convergence

$$\sigma_c(D) = \inf\{\sigma \in \mathbb{R} : \sum_{n=1}^{\infty} \frac{a_n}{n^s} \text{ is convergent in } [\operatorname{Re} s > \sigma]\},$$

Abscissas of convergence

$$\sigma_c(D) = \inf\{\sigma \in \mathbb{R} : \sum_{n=1}^{\infty} \frac{a_n}{n^s} \text{ is convergent in } [\operatorname{Re} s > \sigma]\},$$

$$\sigma_a(D) = \inf\{\sigma \in \mathbb{R} : \sum_{n=1}^{\infty} \frac{a_n}{n^s} \text{ is absolutely convergent in } [\operatorname{Re} s > \sigma]\},$$

$$\sigma_u(D) = \inf\{\sigma \in \mathbb{R} : \sum_{n=1}^{\infty} \frac{a_n}{n^s} \text{ is uniformly convergent in } [\operatorname{Re} s > \sigma]\},$$

$$\sigma_b(D) = \inf\{\sigma \in \mathbb{R} : \sum_{n=1}^{\infty} \frac{a_n}{n^s} \text{ is convergent and bounded in } [\operatorname{Re} s > \sigma]\},$$

Introduction Multiple Dirichlet series 4 / 23

Abscissas of convergence

$$\sigma_c(D) = \inf\{\sigma \in \mathbb{R} : \sum_{n=1}^{\infty} \frac{a_n}{n^s} \text{ is convergent in } [\operatorname{Re} s > \sigma]\},$$

$$\sigma_a(D) = \inf\{\sigma \in \mathbb{R} : \sum_{n=1}^{\infty} \frac{a_n}{n^s} \text{ is absolutely convergent in } [\operatorname{Re} s > \sigma]\},$$

$$\sigma_u(D) = \inf\{\sigma \in \mathbb{R} : \sum_{n=1}^{\infty} \frac{a_n}{n^s} \text{ is uniformly convergent in } [\operatorname{Re} s > \sigma]\},$$

$$\sigma_b(D) = \inf\{\sigma \in \mathbb{R} : \sum_{n=1}^{\infty} \frac{a_n}{n^s} \text{ is convergent and bounded in } [\operatorname{Re} s > \sigma]\},$$

$$\sigma_c(D) \le \sigma_u(D) \le \sigma_a(D), \qquad \sup_D \sigma_a(D) - \sigma_c(D) = 1.$$

Introduction Multiple Dirichlet series 4 / 23

The algebra $\mathcal{H}_{\infty}(\mathbb{C}_{+})$

Definition

We denote by $\mathcal{H}_{\infty}(\mathbb{C}_+)$ the space of all Dirichlet D series which are convergent on \mathbb{C}_+ and define a bounded holomorphic function there.

Introduction Multiple Dirichlet series 5 / 23

The algebra $\mathcal{H}_{\infty}(\mathbb{C}_{+})$

Definition

We denote by $\mathcal{H}_{\infty}(\mathbb{C}_+)$ the space of all Dirichlet D series which are convergent on \mathbb{C}_+ and define a bounded holomorphic function there.

Endowed with the norm $||D||_{\infty}=\sup_{\mathrm{Re}\,s>0}\left|\sum_{n=1}^{\infty}\frac{a_n}{n^s}\right|$, the space $\mathcal{H}_{\infty}(\mathbb{C}_+)$ is a Banach algebra.

Introduction Multiple Dirichlet series 5 / 23

The algebra $\mathcal{H}_{\infty}(\mathbb{C}_{+})$

Definition

We denote by $\mathcal{H}_{\infty}(\mathbb{C}_+)$ the space of all Dirichlet D series which are convergent on \mathbb{C}_+ and define a bounded holomorphic function there.

Endowed with the norm $||D||_{\infty}=\sup_{\mathrm{Re}\,s>0}\left|\sum_{n=1}^{\infty}\frac{a_n}{n^s}\right|$, the space $\mathcal{H}_{\infty}(\mathbb{C}_+)$ is a Banach algebra.

Theorem

For every Dirichlet series D, $\sigma_u(D) = \sigma_b(D)$.

Bohr's fundamental result

Theorem

Let $D(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ be a Dirichlet series and $\sigma > 0$. Suppose that D is convergent in $[\text{Re} > \sigma]$ to an analytic function f, which is bounded on \mathbb{C}_+ and f(s) = D(s) in $[\text{Re} > \sigma]$. Then $D \in \mathcal{H}_{\infty}(\mathbb{C}_+)$ and, for every $\delta > 0$, D converges uniformly to f in $[\text{Re} > \delta]$. Furthermore, for every $\delta > 0$ there exists $c_{\delta} > 0$ only dependent on δ such that

$$\sup_{\mathsf{Re}\, s>\delta} \left| f(s) - \sum_{n=1}^M \frac{a_n}{n^s} \right| \leq c_\delta \frac{\log M}{M^\delta} ||f||_\infty.$$

Introduction Multiple Dirichlet series 6 / 23

Introduction

- Convergence of multiple Dirichlet series
- $oxed{3}$ The algebras $\mathcal{H}_{\infty}(\mathbb{C}^k_+)$
- 4 The isometries of $\mathcal{H}_\infty(\mathbb{C}_+^k)$ and $\mathcal{A}(\mathbb{C}_+^k)$

Convergence of multiple series

Definition

A k-multiple Dirichlet series is a series of the form

$$\sum_{m_1,\ldots,m_k=1}^{\infty} \frac{a_{m_1,\ldots,m_k}}{m_1^{s_1}\cdots m_k^{s_k}},$$

where $\{a_{m_1,\ldots,m_k}\}\subset\mathbb{C}$ is the k-multiple sequence of coefficients of the series, and $s_1,\ldots,s_k\in\mathbb{C}$ are complex variables.

Convergence of multiple series

Definition

A k-multiple Dirichlet series is a series of the form

$$\sum_{m_1,\ldots,m_k=1}^{\infty} \frac{a_{m_1,\ldots,m_k}}{m_1^{s_1}\cdots m_k^{s_k}},$$

where $\{a_{m_1,...,m_k}\}\subset\mathbb{C}$ is the k-multiple sequence of coefficients of the series, and $s_1,\ldots,s_k\in\mathbb{C}$ are complex variables.

Definition

We say that a k-multiple series is convergent to S if for every $\varepsilon > 0$ we can find $M_0 \in \mathbb{N}$ such that $\min\{m_1, \ldots, m_k\} \geq M_0$ implies $|s_{m_1, \ldots, m_k} - S| < \varepsilon$, where s_{m_1, \ldots, m_k} denotes the partial sum of the series and S is the sum of the series.

Cauchy condition for multiple series

Condition 1

For every $\varepsilon>0$ we can find $M_0\in\mathbb{N}:\min\{n_j\}\geq M_0$ implies

$$\left|\sum_{m_1=n_1}^{p_1}\cdots\sum_{m_k=n_k}^{p_k}a_{m_1,\ldots,m_k}\right|<\delta,\quad p_j\geq n_j,\quad 1\leq j\leq k.$$

Cauchy condition for multiple series

Condition 1

For every $\varepsilon>0$ we can find $M_0\in\mathbb{N}:\min\{n_j\}\geq M_0$ implies

$$\left|\sum_{m_1=n_1}^{p_1}\cdots\sum_{m_k=n_k}^{p_k}a_{m_1,\ldots,m_k}\right|<\delta,\quad p_j\geq n_j,\quad 1\leq j\leq k.$$

1	1	1	1	1	1	
1	0	0	0	0	0	
1	0	0	0	0	0	
1	0	0	0	0	0	
1	0	0	0	0	0	
1	0	0	0	0	0	
:	:	:	:	:	:	٠.,

Counterexamples

The double series defined by:

0	0	1	2	3	4	
0	0	-1	-2	-3	-4	• • •
1	-1	0	0	0	0	• • •
2	-2	0	0	0	0	• • •
3	-3	0	0	0	0	• • •
4	-4	0	0	0	0	
:	:	:	:		:	

is convergent but neither $\{a_{m,n}\}$ nor $\{s_{m,n}\}$ is bounded.

Counterexamples

The double series defined by:

0	0	1	2	3	4	
0	0	-1	-2	-3	-4	• • •
1	-1	0	0	0	0	• • •
2	-2	0	0	0	0	• • •
3	-3	0	0	0	0	• • •
4	-4	0	0	0	0	
:	:	:	:			

is convergent but neither $\{a_{m,n}\}$ nor $\{s_{m,n}\}$ is bounded. Moreover, the row-subseries and column-subseries are not convergent.

Definition

We say that a k-multiple series is *regularly convergent* if it is convergent and all of its j-dimensional subseries are convergent, where a j-dimensional subseries is a series of the same multiple sequence in which we take the sum over j indexes m_{i_1}, \ldots, m_{i_j} , where the other indexes $m_{l_1}, \ldots, m_{l_{k-j}}$ remain fixed.

Definition

We say that a k-multiple series is *regularly convergent* if it is convergent and all of its j-dimensional subseries are convergent, where a j-dimensional subseries is a series of the same multiple sequence in which we take the sum over j indexes m_{i_1}, \ldots, m_{i_j} , where the other indexes $m_{l_1}, \ldots, m_{l_{k-j}}$ remain fixed.

Definition

We say that a k-multiple series converges in a restricted sense if for every $\varepsilon > 0$ there exists $M_0 > 0$: max $\{n_j\} \ge M_0$ implies

$$\left|\sum_{m_1=n_1}^{p_1}\cdots\sum_{m_k=n_k}^{p_k}a_{m_1,\ldots,m_k}\right|<\varepsilon\quad p_j\geq n_j,\quad 1\leq j\leq k.$$

Theorem

A k-multiple series converges regularly if and only if it converges in a restricted sense.

Theorem

A k-multiple series converges regularly if and only if it converges in a restricted sense.

Problems solved:

• Boundedness of terms and partial sums.

Theorem

A k-multiple series converges regularly if and only if it converges in a restricted sense.

Problems solved:

- Boundedness of terms and partial sums.
- Existence of row and column subseries.

Theorem

A k-multiple series converges regularly if and only if it converges in a restricted sense.

Problems solved:

- Boundedness of terms and partial sums.
- Existence of row and column subseries.
- $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m,n} = \sum_{m,n=1}^{\infty} a_{m,n} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{m,n}$.

Convergence of multiple Dirichlt series

Theorem

Let $D(s_1,\ldots,s_k)=\sum_{m_1,\ldots,m_k}\frac{a_{m_1,\ldots,m_k}}{m_1^{s_1},\ldots,m_k^{s_k}}$ be a k-multiple Dirichlet series which converges regularly at $(\bar{s}_1,\ldots,\bar{s}_k)$. Then it converges regularly and uniformly on the angular region

$$\mathcal{S}_a^k = \{(s_1,\ldots,s_k) : |\operatorname{Arg}(s_i - \bar{s_i})| \leq a < \frac{\pi}{2}, 1 \leq i \leq k\}.$$

Convergence of multiple Dirichlt series

Theorem

Let $D(s_1, \ldots, s_k) = \sum_{m_1, \ldots, m_k} \frac{a_{m_1, \ldots, m_k}}{m_1^{\bar{s}_1}, \ldots, m_k^{\bar{s}_k}}$ be a k-multiple Dirichlet series which converges regularly at $(\bar{s}_1, \ldots, \bar{s}_k)$. Then it converges regularly and uniformly on the angular region

$$\mathcal{S}_a^k = \{(s_1, \dots, s_k) : |\operatorname{\mathsf{Arg}}(s_i - \bar{s_i})| \le a < \frac{\pi}{2}, 1 \le i \le k\}.$$

Corollary

Let $D(s_1,\ldots,s_k)=\sum_{m_1,\ldots,m_k}\frac{a_{m_1,\ldots,m_k}}{m_1^{\bar{s}_1},\ldots,m_k^{\bar{s}_k}}$ be a k-multiple Dirichlet series which converges regularly at $(\bar{s}_1,\ldots,\bar{s}_k)$. Then it converges regularly on the product of complex half-planes $[\operatorname{Re} s_1>\operatorname{Re} \bar{s}_1]\times\cdots\times[\operatorname{Re} s_k>\operatorname{Re} \bar{s}_k]$.

Introduction

- 2 Convergence of multiple Dirichlet series
- $oxed{3}$ The algebras $\mathcal{H}_{\infty}(\mathbb{C}_+^k)$
- 4 The isometries of $\mathcal{H}_{\infty}(\mathbb{C}^k_+)$ and $\mathcal{A}(\mathbb{C}^k_+)$

Definitions and elemental consequences

Definition

For every $k \in \mathbb{N}$, $\mathcal{H}_{\infty}(\mathbb{C}_{+}^{k})$ is the space of all k-multiple Dirichlet series that are regularly convergent on \mathbb{C}_{+}^{k} to a bounded holomorphic function $f \in \mathcal{H}_{\infty}(\mathbb{C}_{+}^{k})$.

Definitions and elemental consequences

Definition

For every $k \in \mathbb{N}$, $\mathcal{H}_{\infty}(\mathbb{C}_{+}^{k})$ is the space of all k-multiple Dirichlet series that are regularly convergent on \mathbb{C}_{+}^{k} to a bounded holomorphic function $f \in \mathcal{H}_{\infty}(\mathbb{C}_{+}^{k})$.

ullet For every $m\in\mathbb{N}$ and every $t\in\mathbb{C}_+$,

$$\sum_{n=1}^{\infty} \frac{a_{mn}}{m^s n^t} = \frac{1}{m^s} \sum_{n=1}^{\infty} \frac{a_{mn}}{n^t} = \frac{1}{m^s} \alpha_m(t) \text{ converges.}$$

Definitions and elemental consequences

Definition

For every $k \in \mathbb{N}$, $\mathcal{H}_{\infty}(\mathbb{C}_{+}^{k})$ is the space of all k-multiple Dirichlet series that are regularly convergent on \mathbb{C}_{+}^{k} to a bounded holomorphic function $f \in \mathcal{H}_{\infty}(\mathbb{C}_{+}^{k})$.

ullet For every $m\in\mathbb{N}$ and every $t\in\mathbb{C}_+$,

$$\sum_{n=1}^{\infty} \frac{a_{mn}}{m^s n^t} = \frac{1}{m^s} \sum_{n=1}^{\infty} \frac{a_{mn}}{n^t} = \frac{1}{m^s} \alpha_m(t) \text{ converges.}$$

ullet For every $n\in\mathbb{N}$ and every $s\in\mathbb{C}_+$,

$$\sum_{m=1}^{\infty} \frac{a_{mn}}{m^s n^t} = \frac{1}{n^t} \sum_{m=1}^{\infty} \frac{a_{mn}}{m^s} = \frac{1}{n^t} \beta_n(s) \text{ converges.}$$

•

$$D_t(s) = \sum_{m=1}^{\infty} \frac{\alpha_m(t)}{m^s} = \sum_{m,n=1}^{\infty} \frac{a_{mn}}{m^s n^t} = \sum_{n=1}^{\infty} \frac{\beta_n(s)}{n^t} = D_s(t)$$

•

$$D_{t}(s) = \sum_{m=1}^{\infty} \frac{\alpha_{m}(t)}{m^{s}} = \sum_{m,n=1}^{\infty} \frac{a_{mn}}{m^{s} n^{t}} = \sum_{n=1}^{\infty} \frac{\beta_{n}(s)}{n^{t}} = D_{s}(t)$$

• $||\alpha_m||_{\infty} \leq ||D||_{\infty}, ||\beta_n||_{\infty} \leq ||D||_{\infty}, \forall m, n \in \mathbb{N},$

•

$$D_t(s) = \sum_{m=1}^{\infty} \frac{\alpha_m(t)}{m^s} = \sum_{m,n=1}^{\infty} \frac{a_{mn}}{m^s n^t} = \sum_{n=1}^{\infty} \frac{\beta_n(s)}{n^t} = D_s(t)$$

- $||\alpha_m||_{\infty} \leq ||D||_{\infty}, ||\beta_n||_{\infty} \leq ||D||_{\infty}, \forall m, n \in \mathbb{N},$
- $||D_s||_{\infty} \le ||D||_{\infty}, ||D_t||_{\infty} \le ||D||_{\infty}; \ \forall s, t \in \mathbb{C}_+.$

•

$$D_{t}(s) = \sum_{m=1}^{\infty} \frac{\alpha_{m}(t)}{m^{s}} = \sum_{m,n=1}^{\infty} \frac{a_{mn}}{m^{s} n^{t}} = \sum_{n=1}^{\infty} \frac{\beta_{n}(s)}{n^{t}} = D_{s}(t)$$

- $||\alpha_m||_{\infty} \leq ||D||_{\infty}, ||\beta_n||_{\infty} \leq ||D||_{\infty}, \forall m, n \in \mathbb{N},$
- $||D_s||_{\infty} \le ||D||_{\infty}, ||D_t||_{\infty} \le ||D||_{\infty}; \ \forall s, t \in \mathbb{C}_+.$

Therefore

$$\alpha_m, \beta_n, D_s, D_t \in \mathcal{H}_{\infty}(\mathbb{C}_+) \quad \forall m, n \in \mathbb{N}, \ \forall s, t \in \mathbb{C}_+.$$

The vector-valued perspective

•

$$D_{t}(s) = \sum_{m=1}^{\infty} \frac{\alpha_{m}(t)}{m^{s}} = \sum_{m,n=1}^{\infty} \frac{a_{mn}}{m^{s} n^{t}} = \sum_{n=1}^{\infty} \frac{\beta_{n}(s)}{n^{t}} = D_{s}(t)$$

- $||\alpha_m||_{\infty} \leq ||D||_{\infty}, ||\beta_n||_{\infty} \leq ||D||_{\infty}, \forall m, n \in \mathbb{N},$
- $||D_s||_{\infty} \leq ||D||_{\infty}, ||D_t||_{\infty} \leq ||D||_{\infty}; \ \forall s, t \in \mathbb{C}_+.$

Therefore

$$\alpha_m, \beta_n, D_s, D_t \in \mathcal{H}_{\infty}(\mathbb{C}_+) \quad \forall m, n \in \mathbb{N}, \ \forall s, t \in \mathbb{C}_+.$$

$$\Psi: \mathcal{H}_{\infty}(\mathbb{C}^2_+) \longrightarrow \mathcal{H}_{\infty}(\mathbb{C}_+, \mathcal{H}_{\infty}(\mathbb{C}_+))$$

is an isometry into.

Vector-valued results

Theorem

Let X be a Banach space. Let $D(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ be a Dirichlet series with coefficients $\{a_n\} \subset X$ and $\sigma > 0$. Suppose that D is convergent on $[\text{Re} > \sigma]$ to a function $f: \mathbb{C}_+ \to X$, $f \in H_\infty(\mathbb{C}_+, X)$, such that f(s) = D(s) in $[\text{Re} > \sigma]$. Then $D \in \mathcal{H}_\infty(\mathbb{C}_+, X)$ and, for every $\delta > 0$, D converges uniformly to f in $[\text{Re} > \delta]$. Furthermore, for each $\delta > 0$ there exists $c_\delta > 0$ only dependent on δ such that

$$\sup_{\text{Re } s>\delta} \left\| \sum_{n=1}^{N} \frac{a_n}{n^s} - f(s) \right\|_{X} \leq c_{\delta} \frac{\log N}{N^{\delta}} ||f||_{\infty}.$$

Vector-valued results

Theorem

Let X be a Banach space. Let $D(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ be a Dirichlet series with coefficients $\{a_n\} \subset X$ and $\sigma > 0$. Suppose that D is convergent on $[\operatorname{Re} > \sigma]$ to a function $f: \mathbb{C}_+ \to X$, $f \in H_{\infty}(\mathbb{C}_+, X)$, such that f(s) = D(s) in $[\operatorname{Re} > \sigma]$. Then $D \in \mathcal{H}_{\infty}(\mathbb{C}_+, X)$ and, for every $\delta > 0$, D converges uniformly to f in $[\operatorname{Re} > \delta]$. Furthermore, for each $\delta > 0$ there exists $c_{\delta} > 0$ only dependent on δ such that

$$\sup_{\mathsf{Re}\,s>\delta}\left\|\sum_{n=1}^N\frac{a_n}{n^s}-f(s)\right\|_X\leq c_\delta\frac{\log N}{N^\delta}||f||_\infty.$$

$$X = \mathcal{H}_{\infty}(\mathbb{C}_+), \qquad D(s) = \sum_{m=1}^{\infty} \frac{\alpha_m}{m^s}.$$

Vector-valued results

Lemma

Let $F \in \mathcal{H}_{\infty}(\mathbb{C}_+, \mathcal{H}_{\infty}(\mathbb{C}_+))$. Write

$$F(s)(t) = \sum_{m=1}^{\infty} \frac{1}{m^s} \left(\sum_{n=1}^{\infty} \frac{a_{mn}}{n^t} \right), \quad \alpha_m(t) = \sum_{n=1}^{\infty} \frac{a_{mn}}{n^t} \in \mathcal{H}_{\infty}(\mathbb{C}_+)$$

and $F(s) = \sum_{m=1}^{\infty} \frac{\alpha_m}{m^s}$. Then for every $\delta > 0$

$$\sum_{m=1}^{M} \sum_{n=1}^{N} \frac{a_{mn}}{m^{s} n^{t}} converges to F(s)(t)$$

uniformly on $[Re > \delta]^2$.

The isometry is bijective

Lemma

Let $F \in \mathcal{H}_{\infty}(\mathbb{C}_+, \mathcal{H}_{\infty}(\mathbb{C}_+))$. Write

$$F(s)(t) = \sum_{m=1}^{\infty} \frac{1}{m^s} \left(\sum_{n=1}^{\infty} \frac{a_{mn}}{n^t} \right), \quad \alpha_m(t) = \sum_{n=1}^{\infty} \frac{a_{mn}}{n^t} \in \mathcal{H}_{\infty}(\mathbb{C}_+)$$

and
$$F(s) = \sum_{m=1}^{\infty} \frac{\alpha_m}{m^s}$$
. If $\beta_n(s) = \sum_{n=1}^{\infty} \frac{a_{m,n}}{m^s}$, then $\beta_n \in \mathcal{H}_{\infty}(\mathbb{C}_+)$.

The isometry is bijective

Lemma

Let $F \in \mathcal{H}_{\infty}(\mathbb{C}_+, \mathcal{H}_{\infty}(\mathbb{C}_+))$. Write

$$F(s)(t) = \sum_{m=1}^{\infty} \frac{1}{m^s} \left(\sum_{n=1}^{\infty} \frac{a_{mn}}{n^t} \right), \quad \alpha_m(t) = \sum_{n=1}^{\infty} \frac{a_{mn}}{n^t} \in \mathcal{H}_{\infty}(\mathbb{C}_+)$$

and
$$F(s) = \sum_{m=1}^{\infty} \frac{\alpha_m}{m^s}$$
. If $\beta_n(s) = \sum_{n=1}^{\infty} \frac{a_{m,n}}{m^s}$, then $\beta_n \in \mathcal{H}_{\infty}(\mathbb{C}_+)$.

Theorem

$$\Psi: \mathcal{H}_{\infty}(\mathbb{C}^2_+) \longrightarrow \mathcal{H}_{\infty}(\mathbb{C}_+, \mathcal{H}_{\infty}(\mathbb{C}_+))$$

is a bijective isometry.

 $\mathcal{H}_{\infty}(\mathbb{C}^2_+)$ is Banach.

Corollary

If a double Dirichlet series D is absolutely convergent in $[Re > \sigma_1] \times [Re > \sigma_2]$ to a function $f \in \mathcal{H}_{\infty}(\mathbb{C}^2_+)$, then it converges uniformly to f in $[Re > \delta]^2$ and $D \in \mathcal{H}(\mathbb{C}^2_+)$.

$$\mathcal{H}_{\infty}(\mathbb{C}^2_+)$$
 is Banach.

Corollary

If a double Dirichlet series D is absolutely convergent in $[Re > \sigma_1] \times [Re > \sigma_2]$ to a function $f \in \mathcal{H}_{\infty}(\mathbb{C}^2_+)$, then it converges uniformly to f in $[Re > \delta]^2$ and $D \in \mathcal{H}(\mathbb{C}^2_+)$.

Theorem

 $\mathcal{H}_{\infty}(\mathbb{C}^2_+)$ is a Banach space.

Introduction

- 2 Convergence of multiple Dirichlet series
- lacksquare The algebras $\mathcal{H}_{\infty}(\mathbb{C}^k_+)$
- \P The isometries of $\mathcal{H}_\infty(\mathbb{C}_+^k)$ and $\mathcal{A}(\mathbb{C}_+^k)$

The spaces $\mathcal{A}(\mathbb{C}_+^k)$

Definition

We denote by $\mathcal{A}(\mathbb{C}_+^k)$ the set of all k-multiple Dirichlet series which are regularly convergent on \mathbb{C}_+^k and define uniformly continuous functions on \mathbb{C}_+^k .

The spaces $\mathcal{A}(\mathbb{C}_+^k)$

Definition

We denote by $\mathcal{A}(\mathbb{C}_+^k)$ the set of all k-multiple Dirichlet series which are regularly convergent on \mathbb{C}_+^k and define uniformly continuous functions on \mathbb{C}_+^k .

Theorem

For every $k \in \mathbb{N}$, $\mathcal{A}(\mathbb{C}_+^k)$ is a closed subspace of $\mathcal{H}_{\infty}(\mathbb{C}_+^k)$. Moreover, $f \in \mathcal{A}(\mathbb{C}_+^k)$ if and only if it is the uniform limit of a multiple sequence of Dirichlet polynomials.

The spaces $\mathcal{A}(\mathbb{C}_+^k)$

Definition

We denote by $\mathcal{A}(\mathbb{C}_+^k)$ the set of all k-multiple Dirichlet series which are regularly convergent on \mathbb{C}_+^k and define uniformly continuous functions on \mathbb{C}_+^k .

Theorem

For every $k \in \mathbb{N}$, $\mathcal{A}(\mathbb{C}_+^k)$ is a closed subspace of $\mathcal{H}_{\infty}(\mathbb{C}_+^k)$. Moreover, $f \in \mathcal{A}(\mathbb{C}_+^k)$ if and only if it is the uniform limit of a multiple sequence of Dirichlet polynomials.

 $\mathcal{A}_u(B_{c_0^k})$, the algebra of bounded holomorphic functions that are the uniform limit of a multiple sequence of multiple polynomials defined in the unit ball of c_0 .

Bohr's Lemma

$$m = p_1^{\alpha_1} \cdots p_r^{\alpha_r} = \mathfrak{p}^{\alpha}, \quad \text{where} \quad \alpha = (\alpha_1, \dots, \alpha_r, 0, \dots) \in \mathbb{N}_0^{\mathbb{N}}.$$

Bohr's Lemma

$$m = p_1^{\alpha_1} \cdots p_r^{\alpha_r} = \mathfrak{p}^{\alpha}, \quad \text{where} \quad \alpha = (\alpha_1, \dots, \alpha_r, 0, \dots) \in \mathbb{N}_0^{\mathbb{N}}.$$

$$\left| \left| \sum_{m=1}^{M} \frac{a_m}{m^s} \right| \right|_{\infty} = \left| \left| \sum_{1 \le p^{\alpha} \le M} a_{p^{\alpha}} z^{\alpha} \right| \right|_{\infty}. \tag{4.1}$$

Bohr's Lemma

$$m = p_1^{\alpha_1} \cdots p_r^{\alpha_r} = \mathfrak{p}^{\alpha}, \quad \text{where} \quad \alpha = (\alpha_1, \dots, \alpha_r, 0, \dots) \in \mathbb{N}_0^{\mathbb{N}}.$$

$$\left\| \sum_{m=1}^{M} \frac{a_m}{m^s} \right\|_{\infty} = \left\| \sum_{1 \le \mathfrak{p}^{\alpha} \le M} a_{\mathfrak{p}^{\alpha}} z^{\alpha} \right\|_{\infty}. \tag{4.1}$$

Lemma

$$\begin{aligned} \sup_{\substack{\mathsf{Re}\,\mathsf{s}_j>0\\1\leq j\leq k}} \left| \sum_{m_1=1}^{M_1} \cdots \sum_{m_k=1}^{M_k} \frac{a_{m_1,\ldots,m_k}}{m_1^{\mathsf{s}_1}\cdots m_k^{\mathsf{s}_k}} \right| \\ = \sup_{\substack{z_j\in\mathbb{D}^{\pi(M_j)}\\1\leq j\leq k}} \left| \sum_{1\leq \mathfrak{p}^{\alpha_1}\leq M_1} \cdots \sum_{1\leq \mathfrak{p}^{\alpha_k}\leq M_k} a_{\mathfrak{p}^{\alpha_1},\ldots,\mathfrak{p}^{\alpha_k}} z_1^{\alpha_1} \cdots z_k^{\alpha_k} \right|. \end{aligned}$$

Montel's Theorem for $\mathcal{H}_{\infty}(\mathbb{C}^k_+)$

Lemma

Let $k \in \mathbb{N}$ and suppose $\{D_n\}$ is a bounded sequence in $\mathcal{H}_{\infty}(\mathbb{C}_+^k)$. Then there exists a function $D \in \mathcal{H}_{\infty}(\mathbb{C}_+^k)$ and a subsequence $\{D_{n_d}\}$ that converges uniformly to D on $[\text{Re} > \delta]^k$ for every $\delta > 0$.

Montel's Theorem for $\mathcal{H}_{\infty}(\mathbb{C}^k_+)$

Lemma

Let $k \in \mathbb{N}$ and suppose $\{D_n\}$ is a bounded sequence in $\mathcal{H}_{\infty}(\mathbb{C}_+^k)$. Then there exists a function $D \in \mathcal{H}_{\infty}(\mathbb{C}_+^k)$ and a subsequence $\{D_{n_d}\}$ that converges uniformly to D on $[\text{Re} > \delta]^k$ for every $\delta > 0$.

Theorem

The spaces $\mathcal{H}_{\infty}(\mathbb{C}_{+}^{k})$, $k \in \mathbb{N}$, are all isometrically isomorphic to $\mathcal{H}_{\infty}(B_{c_0})$ and the spaces $\mathcal{A}(\mathbb{C}_{+}^{k})$ are all isometrically isomorphic to $\mathcal{A}_{u}(B_{c_0})$.

• c_0^k and c_0 isometrically isomorphic,

- c_0^k and c_0 isometrically isomorphic,
- $H_{\infty}(B_{c_0^k})$ isometrically isomorphic to $H_{\infty}(B_{c_0})$.

- c_0^k and c_0 isometrically isomorphic,
- $H_{\infty}(B_{c_0^k})$ isometrically isomorphic to $H_{\infty}(B_{c_0})$.
- We will show: $\mathcal{H}_{\infty}(\mathbb{C}_{+}^{k})$ isometrically isomorphic to $H_{\infty}(B_{c_{0}^{k}})$, and the same for $\mathcal{A}(\mathbb{C}_{+}^{k})$ and $\mathcal{A}_{u}(B_{c_{n}^{k}})$

- c_0^k and c_0 isometrically isomorphic,
- $H_{\infty}(B_{c_0^k})$ isometrically isomorphic to $H_{\infty}(B_{c_0})$.
- We will show: $\mathcal{H}_{\infty}(\mathbb{C}_{+}^{k})$ isometrically isomorphic to $H_{\infty}(B_{c_{0}^{k}})$, and the same for $\mathcal{A}(\mathbb{C}_{+}^{k})$ and $\mathcal{A}_{u}(B_{c_{0}^{k}})$
- Using the characterizations of $\mathcal{A}_u(B_{c_0^k})$ and $\mathcal{A}(\mathbb{C}_+^k)$, $\mathcal{B}_u: \mathcal{A}_u(B_{c_0^k}) \to \mathcal{A}(\mathbb{C}_+^k)$ is a bijective isometry.

- c_0^k and c_0 isometrically isomorphic,
- $H_{\infty}(B_{c_0^k})$ isometrically isomorphic to $H_{\infty}(B_{c_0})$.
- We will show: $\mathcal{H}_{\infty}(\mathbb{C}_{+}^{k})$ isometrically isomorphic to $H_{\infty}(B_{c_{0}^{k}})$, and the same for $\mathcal{A}(\mathbb{C}_{+}^{k})$ and $\mathcal{A}_{u}(B_{c_{0}^{k}})$
- Using the characterizations of $\mathcal{A}_u(B_{c_0^k})$ and $\mathcal{A}(\mathbb{C}_+^k)$, $\mathcal{B}_u: \mathcal{A}_u(B_{c_0^k}) \to \mathcal{A}(\mathbb{C}_+^k)$ is a bijective isometry.
- Using Montel's Theorem for $\mathcal{H}_{\infty}(\mathbb{C}_{+}^{k})$, $\mathcal{B}: \mathcal{H}_{\infty}(\mathcal{B}_{c_{0}^{k}}) \to \mathcal{H}_{\infty}(\mathbb{C}_{+}^{k})$ is a bijective isometry.

Corollary

The spaces $\mathcal{H}_{\infty}(\mathbb{C}^k_+)$ are all isometrically isomorphic independently from the dimension, and the same holds for the spaces $\mathcal{A}(\mathbb{C}^k_+)$.

Corollary

The spaces $\mathcal{H}_{\infty}(\mathbb{C}^k_+)$ are all isometrically isomorphic independently from the dimension, and the same holds for the spaces $\mathcal{A}(\mathbb{C}^k_+)$.

• Does not need Montel's Theorem for $\mathcal{H}_{\infty}(\mathbb{C}^k_+)$.

Corollary

The spaces $\mathcal{H}_{\infty}(\mathbb{C}_{+}^{k})$ are all isometrically isomorphic independently from the dimension, and the same holds for the spaces $\mathcal{A}(\mathbb{C}_{+}^{k})$.

- Does not need Montel's Theorem for $\mathcal{H}_{\infty}(\mathbb{C}^k_+)$.
- $D(s_1,\ldots,s_k)=f(\frac{1}{\mathfrak{p}^{s_1}},\ldots,\frac{1}{\mathfrak{p}^{s_k}}).$

Corollary

The spaces $\mathcal{H}_{\infty}(\mathbb{C}^k_+)$ are all isometrically isomorphic independently from the dimension, and the same holds for the spaces $\mathcal{A}(\mathbb{C}^k_+)$.

- Does not need Montel's Theorem for $\mathcal{H}_{\infty}(\mathbb{C}^k_+)$.
- $D(s_1,\ldots,s_k)=f(\frac{1}{\mathfrak{p}^{s_1}},\ldots,\frac{1}{\mathfrak{p}^{s_k}}).$
- You can obtain Montel's Theorem for $\mathcal{H}_{\infty}(\mathbb{C}_+^k)$ as a corollary.

Corollary

The spaces $\mathcal{H}_{\infty}(\mathbb{C}^k_+)$ are all isometrically isomorphic independently from the dimension, and the same holds for the spaces $\mathcal{A}(\mathbb{C}^k_+)$.

- Does not need Montel's Theorem for $\mathcal{H}_{\infty}(\mathbb{C}^k_+)$.
- $D(s_1,\ldots,s_k)=f(\frac{1}{\mathfrak{p}^{s_1}},\ldots,\frac{1}{\mathfrak{p}^{s_k}}).$
- You can obtain Montel's Theorem for $\mathcal{H}_{\infty}(\mathbb{C}_+^k)$ as a corollary.

Thank you for your attention!