The Bishop-Phelps-Bollobás property on closed bounded convex sets

Yun Sung Choi (Joint Work with Dong Hoon Cho) POSTECH, KOREA

Conference on Nonlinear Functional Analysis Universitat Politècnica de Valencia 17-20 October, 2017

THEOREM (E. BISHOP AND R.R. PHELPS (1961))

Let C be a closed bounded convex set in a real Banach space X. Then the set of linear functionals that attain their maximum on C is dense in X^* .

In particular, the set of all norm-attaining linear functionals on a Banach space X is dense in the dual space X^* .

Sar

THEOREM (E. BISHOP AND R.R. PHELPS (1961))

Let C be a closed bounded convex set in a real Banach space X. Then the set of linear functionals that attain their maximum on C is dense in X^* .

In particular, the set of all norm-attaining linear functionals on a Banach space X is dense in the dual space X^* .

V. Lomonosov (2000)

The Bishop-Phelps theorem cannot be extended to general complex Banach spaces by constructing a closed bounded convex set with no support points.

Sar

X, Y =Real or Complex Banach Space

Let S_X and B_X be the unit sphere and closed unit ball of X, respectively.

 $T \in L(X, Y)$ attains its norm if there is $x_0 \in S_X$ such that $\|T(x_0)\| = \|T\|$.

NA(L(X, Y)) = Set of all norm-attaining linear mappings from X into Y.

- ◆ 同 ▶ ◆ 目 ▶ ◆ 目 ● ○ ○ ○

X, Y = Real or Complex Banach Space Let S_X and B_X be the unit sphere and closed unit ball of X, respectively.

 $T \in L(X, Y)$ attains its norm if there is $x_0 \in S_X$ such that $||T(x_0)|| = ||T||$.

NA(L(X, Y)) = Set of all norm-attaining linear mappings from X into Y.

QUESTION.

Is the set NA(L(X, Y)) dense in L(X, Y)?

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● □ ● ● ● ●

(Lindenstrauss, 1963) Counterexamlpe: $X = c_0$, Y = Equivalently Renormed Space c_0 to be Strictly Convex.

The Question is too general to have a reasonably complete solution.

(Lindenstrauss, 1963) Counterexamlpe: $X = c_0$, Y = Equivalently Renormed Space c_0 to be Strictly Convex.

The Question is too general to have a reasonably complete solution.

A Banach space X has property (A) if NA(L(X, Y)) is dense in L(X, Y) for every Banach space Y.

A Banach space Y has property (B) if NA(L(X, Y)) is dense in L(X, Y) for every Banach space X.

(Lindenstrauss, 1963) Counterexamlpe: $X = c_0$, Y = Equivalently Renormed Space c_0 to be Strictly Convex.

The Question is too general to have a reasonably complete solution.

A Banach space X has property (A) if NA(L(X, Y)) is dense in L(X, Y) for every Banach space Y.

A Banach space Y has property (B) if NA(L(X, Y)) is dense in L(X, Y) for every Banach space X.

QUESTION. (THE MOST IRRITATING OPEN PROBLEM)

Does the 2-dimensional Euclidean space \mathbb{R}^2 have property (B) ?

THEOREM (J. BOURGAIN (1977))

A Banach space X has the Radon-Nikodym Property if and only if every Banach space isomorphic to X has property (A).

Examples with RNP : (1) Reflexive spaces (2) Separable Duals (3) WCG Duals (4) Locally Uniformly Convex Space (5) $l_1(I)$, I, any set

THEOREM (C. STEGALL (1978))

Let X be a Banach space with RNP, D be a bounded closed convex subset of X and $f : D \to \mathbb{R}$ be an upper semicontinuous bounded above function. Then for $\epsilon > 0$, there exists $x^* \in X^*$ such that $||x^*|| < \epsilon$ and $f + x^*$, $f + |x^*|$ strongly expose D.

THEOREM (C. STEGALL (1978))

Let X be a Banach space with RNP, D be a bounded closed convex subset of X and $f: D \to \mathbb{R}$ be an upper semicontinuous bounded above function. Then for $\epsilon > 0$, there exists $x^* \in X^*$ such that $||x^*|| < \epsilon$ and $f + x^*$, $f + |x^*|$ strongly expose D.

Applying this result to a vector-valued case, he showed the following.

THEOREM (C. STEGALL (1978))

Let X be a Banach space with RNP, D be a bounded closed convex subset of X, and Y be a Banach space. Suppose that $\varphi : D \to Y$ is a uniformly bounded function such that the function $x \to ||\varphi(x)||$ is upper semicontinuous. Then, for $\delta > 0$, there exist $T : X \to Y$ a bounded linear operator of rank one, $||T|| < \delta$ such that $\varphi + T$ attains its supremum in norm on D and does so at most two points

< 🗇 🕨

∃ ► 4 Ξ

BISHOP-PHELPS-BOLLOBÁS PROPERTY

The Bishop-Phelps theorem (Bishop and Phelps, 1961)

THEOREM

The set of norm-attaining functionals on a Banach space X is dense in its dual space X^* .

BISHOP-PHELPS-BOLLOBÁS PROPERTY

The Bishop-Phelps theorem (Bishop and Phelps, 1961)

THEOREM

The set of norm-attaining functionals on a Banach space X is dense in its dual space X^* .

Bollobás (1970) sharpened the Bishop-Phelps theorem, which is concerned with the study of simultaneously approximating both **functionals and points** at which they almost attain their norms by norm-attaining functionals and points at which they attain their norms.

BISHOP-PHELPS-BOLLOBÁS PROPERTY

The Bishop-Phelps theorem (Bishop and Phelps, 1961)

THEOREM

The set of norm-attaining functionals on a Banach space X is dense in its dual space X^* .

Bollobás (1970) sharpened the Bishop-Phelps theorem, which is concerned with the study of simultaneously approximating both **functionals and points** at which they almost attain their norms by norm-attaining functionals and points at which they attain their norms.

THEOREM (BOLLOBÁS, 1970)

For $\epsilon > 0$, if $x \in B_X$ and $x^* \in S_{X^*}$ satisfy $|1 - x^*(x)| < \frac{\epsilon^2}{4}$, then there are $y \in S_X$ and $y^* \in S_{X^*}$ such that $y^*(y) = 1$, $||y - x|| < \epsilon$ and $||y^* - x^*|| < \epsilon$.

< E

3

31.1€

< 🗇 →

THEOREM (BRONSTEAD-ROCKAFELLAR THEOREM, PAMS, 1965)

Suppose that f is a convex proper lower semicontinuous function on the Banach space X. The given any point $x_0 \in dom(f)$, $\epsilon > 0$, $\lambda > 0$ and any $x_0^* \in \partial_{\epsilon} f(x_0)$, there exist $x \in dom(f)$ and $x^* \in X^*$ such that

$$x^* \in \partial(f), \ \|x - x_0\| \leq rac{\epsilon}{\lambda}, \ \text{ and } \ \|x^* - x_0^*\| \leq \lambda.$$

In particular, the domain of ∂f is dense in dom(f).

Yun Sung ChoiPOSTECH, Pohang, Sou'Recent developments of optimization ii

DEFINITION (ACOASTA, ARON, GARCÍA AND MAESTRE, JFA 2008)

We say that the couple (X, Y) satisfies the Bishop-Phelps-Bollobás property for operators (BPBp for short), if given $\epsilon > 0$ there exists $\eta(\epsilon) > 0$ such that for $T \in S_{\mathcal{L}(X,Y)}$, if $x_0 \in S_X$ is such that $||Tx_0|| > 1 - \eta(\epsilon)$, then there exist a point $u_0 \in S_X$ and an operator $S \in S_{\mathcal{L}(X,Y)}$ that satisfy the following conditions :

$$||Su_0|| = 1, ||x_0 - u_0|| < \epsilon \text{ and } ||T - S|| < \epsilon.$$

October 20-23, 2016

12 / 24

DEFINITION (ACOASTA, ARON, GARCÍA AND MAESTRE, JFA 2008)

We say that the couple (X, Y) satisfies the Bishop-Phelps-Bollobás property for operators (BPBp for short), if given $\epsilon > 0$ there exists $\eta(\epsilon) > 0$ such that for $T \in S_{\mathcal{L}(X,Y)}$, if $x_0 \in S_X$ is such that $||Tx_0|| > 1 - \eta(\epsilon)$, then there exist a point $u_0 \in S_X$ and an operator $S \in S_{\mathcal{L}(X,Y)}$ that satisfy the following conditions :

$$||Su_0|| = 1, ||x_0 - u_0|| < \epsilon \text{ and } ||T - S|| < \epsilon.$$

They showed that if a Banach space Y has property (β), then the couple (X, Y) has the *BPBp* for every Banach space X.

医下颌 医下颌 医

Sar

Recall that J. Lindenstrauss introduced the following two properties.

A Banach space X is said to have Lindenstrauss property A if $\overline{NA(X,Z)} = L(X,Z)$ for every Banach space Z.

A Banach space Y is said to have Lindenstrauss property B if $\overline{NA(Z, Y)} = L(Z, Y)$ for every Banach space Z.

Sar

Recall that J. Lindenstrauss introduced the following two properties.

A Banach space X is said to have Lindenstrauss property A if $\overline{NA(X,Z)} = L(X,Z)$ for every Banach space Z.

A Banach space Y is said to have Lindenstrauss property B if $\overline{NA(Z, Y)} = L(Z, Y)$ for every Banach space Z.

DEFINITION

Let X and Y be Banach spaces. We say that X is a universal BPB domain space if for every Banach space Z, the pair (X, Z) has the BPBp.

We say that Y is a universal BPB range space if for every Banach space Z, the pair (Z, Y) has the BPBp.

白人 化氟人 化医人 化医人二苯

DQC

Recall the result of Bourgain:

THEOREM (J. BOURGAIN (1977))

A Banach space X has the Radon-Nikodym Property if and only if every Banach space isomorphic to X has property (A).

Recall the result of Bourgain:

THEOREM (J. BOURGAIN (1977))

A Banach space X has the Radon-Nikodym Property if and only if every Banach space isomorphic to X has property (A).

THEOREM (R. ARON, C, S.K. KIM, H.J. LEE AND M. MARTIN, TRANSACTIONS AMS 2015)

Every Banach space isomorphic to X is a universal BPB domain space if and only if X is the basic field $\mathbb{K} = \mathbb{R}$ or \mathbb{C}

THEOREM (ACOASTA, ARON, GARCÍA AND MAESTRE, JFA 2008)

The couple (ℓ_1, Y) satisfies the Bishop-Phelps-Bollobás property for operators if and only if Y has the AHSP.

THEOREM (ACOASTA, ARON, GARCÍA AND MAESTRE, JFA 2008)

The couple (ℓ_1, Y) satisfies the Bishop-Phelps-Bollobás property for operators if and only if Y has the AHSP.

The following Banach spaces have the AHSP:

(a) a finite dimensional space, (b)a real or complex space $L_1(\mu)$ for a σ -finite measure μ ,

(c) a real or complex space C(K) for a compact Hausdorff space K, and (d) a uniformly convex space.

San

OPERATORS FROM $\ell_p(c_0) \to Y$

THEOREM (ACOASTA, ARON, GARCÍA AND MAESTRE, JFA 2008)

The couple (ℓ_1, Y) satisfies the Bishop-Phelps-Bollobás property for operators if and only if Y has the AHSP.

Operators from $\ell_p(c_0) \to Y$

THEOREM (ACOASTA, ARON, GARCÍA AND MAESTRE, JFA 2008)

The couple (ℓ_1, Y) satisfies the Bishop-Phelps-Bollobás property for operators if and only if Y has the AHSP.

THEOREM (AGGM (TAMS, 2012), H.J LEE AND S. K. KIM (CANADIAN J. MATH. 2013))

Let X be a uniformly convex Banach space. Then the couple (X, Y) has the BPBp for every Banach space Y. More precisely, given $0 < \epsilon < 1$, let $0 < \eta < \frac{\epsilon}{8+2\epsilon}\delta(\epsilon)$. If $T \in S_{\mathcal{L}(X,Y)}$ and $x \in S_X$ satisfy

$$||Tx_0|| > 1 - \eta,$$

then there exist $S \in S_{\mathcal{L}(X,Y)}$ and $u_0 \in S_X$ such that $||Su_0|| = 1$, $||S - T|| < \epsilon$ and $||x_0 - u_0|| < \epsilon$.

문에 수 문에 드린.

How about (ℓ_{∞}, Y) or (c_0, Y) ?

[AAGM] For a uniformly convex space Y the couple (ℓ_{∞}^{n}, Y) has the *BPBp* for every $n \in \mathbb{N}$, but they raised a question

Ja C

How about (ℓ_{∞}, Y) or (c_0, Y) ?

[AAGM] For a uniformly convex space Y the couple (ℓ_{∞}^{n}, Y) has the *BPBp* for every $n \in \mathbb{N}$, but they raised a question

QUESTION.

Does the couple (c_0, Y) have the BPBp for a uniformly convex space Y?

How about (ℓ_{∞}, Y) or (c_0, Y) ?

[AAGM] For a uniformly convex space Y the couple (ℓ_{∞}^{n}, Y) has the *BPBp* for every $n \in \mathbb{N}$, but they raised a question

QUESTION.

Does the couple (c_0, Y) have the BPBp for a uniformly convex space Y?

Answer : Yes [Sun Kwang Kim, Israel J. Math. 2013].

Ja C

Operators from $\ell_p(c_0) \to Y$

QUESTION.

Characterize a Banach space Y such that (c_0, Y) has the BPBp.

→ 프 → - 프

DQC

QUESTION.

Characterize a Banach space Y such that (c_0, Y) has the BPBp.

THEOREM (ARON, CASCALES, KOZHUSHKINA, PAMS 2011)

Let L be a locally compact space. Then $(X, C_0(L))$ has the BPBp if X is Asplund. In particular, $(c_0, C_0(L))$ has the BPBp.

QUESTION.

Characterize a Banach space Y such that (c_0, Y) has the BPBp.

THEOREM (ARON, CASCALES, KOZHUSHKINA, PAMS 2011)

Let L be a locally compact space. Then $(X, C_0(L))$ has the BPBp if X is Asplund. In particular, $(c_0, C_0(L))$ has the BPBp.

THEOREM (CASCALES, GUIRAO, AND KADETS, ADVANCES IN MATH. 2012)

Let A be a uniform algebra. Then (X, A) has the BPBp if X is Asplund. In particular, (c_0, A) has the BPBp.

(本語) (本語) (二語)

San

Desinition

X, Y = Banach Space D = X closed, bounded convex

Desinition X, Y = Banach Space

$$D \leq X$$
 closed, bounded convex
We say that (X,Y) has the BPBp on D
is sor every ≤ 70 there exists $n_D(\leq) > 0$
s.t. sor every $T \in L(X,Y)$. $\|T\|_D = 1$ and
sor every $X \in D$ satisfying
 $\|T_X\| \geq 1 - n_D(\leq)$,
there exist $S \in L(X,Y)$ and $Z \in D$ s.t.
 $\|S\|_D = 1 = \|SZ\|$, $\|X - Z\| \leq \epsilon$ and $\|T - S\| \leq \epsilon$.
 $\|T\|_D = \sup\{\|T_X\| : X \in D\}$

The BPBp holds for bounded linear sunctionals on arbitarary bounded convex sets of a real Banach space.

The BPBp holds for bounded linear sunctionals on arbitarary bounded convex sets of a real Banach space. Ekeland Variation Principle (JMAA, 1974) Let S: X→IRU(∞} be a proper, loverremicontinuous and bounded below sunction on a real Banach space X. Then given 2>0 and s>0, there exists $x_1 \in X$ s.t. $s(x_1) < s(x) + \varepsilon \|x - x_1\|$ for every XEX, X=X1. Moreover is s(x_) < b + 8/2 where b = ins {s(x): x ex} then X, can be chosen S. that $\|X_i - X_o\| < \delta_{\mathcal{E}}$.

Theorem (Cho/C, JLMS 2016)
Let D be a bounded convex closed subset
of a real Banach space X. Given 270 and

$$870$$
, if $8 \in X^*$ and $x_0 \in D$ s.t.
 $s(x_0) 7 \sup\{s(x): x \in D\} - \frac{s}{2}$,
then there exist $g \in X^*$ and $Y_1 \in D$
satisfying $g(x_1) = \sup\{g(x_1: x \in D\}, \|S - g\| \le 2$ and $\|x_1 - x_0\| \le \frac{s}{2}$.

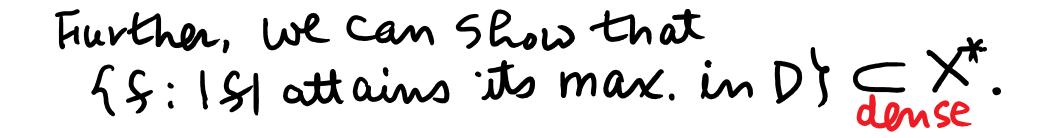
Theorem. Let D be a bounded closed convex set in a real Banach space. Given 0< E< 4 and SEX*, there exists 2* EX* and xoeD s.t. both S+x* and S+1x*1 attain their suprema simultaneously at xo and ||x* ||< 2. Moneover, $(S + \chi^{*})(\chi_{0}) = (S + |\chi^{*}|)(\chi_{0}).$

Theorem. Let D be a bounded closed
convex set in a real Banach space.
Given
$$0 < \varepsilon < \frac{1}{4}$$
 and $\varsigma \in X^*$, there exists
 $\chi^* \in X^*$ and $\chi_0 \in D$ s.t. both $\varsigma + \chi^*$ and
 $\varsigma + |\chi^*|$ attain their suprema simultaneously
at χ_0 and $||\chi^*|| < \varepsilon$. Moreover,
 $(\varsigma + \chi^*)(\chi_0) = (\varsigma + |\chi^*|)(\chi_0)$.
Sketch of Proof May assume $D \leq B_X & ||\varsigma|| = 1$.
 $\beta - p$ theorem $\Rightarrow \exists \chi^*, ||\chi^*|| < \varepsilon/2 \ s.t.$
 $\varsigma + \chi^*$ attains its max. at $\chi_0 \in D$.
 $-\frac{(\varsigma + \chi^*)(\chi_0) \ge (\varsigma + |\chi^*|)(\chi), \forall \chi \in D$

Otherwise, $\exists y \in D \text{ s.t. } S(y) + |\mathcal{X}(y)| > S(x_0) + \mathcal{X}(x_0)$ clearly $\mathcal{X}(y) < D$, and $S(y) - \mathcal{X}(y) > S(x_0) + \mathcal{X}(x_0)$.

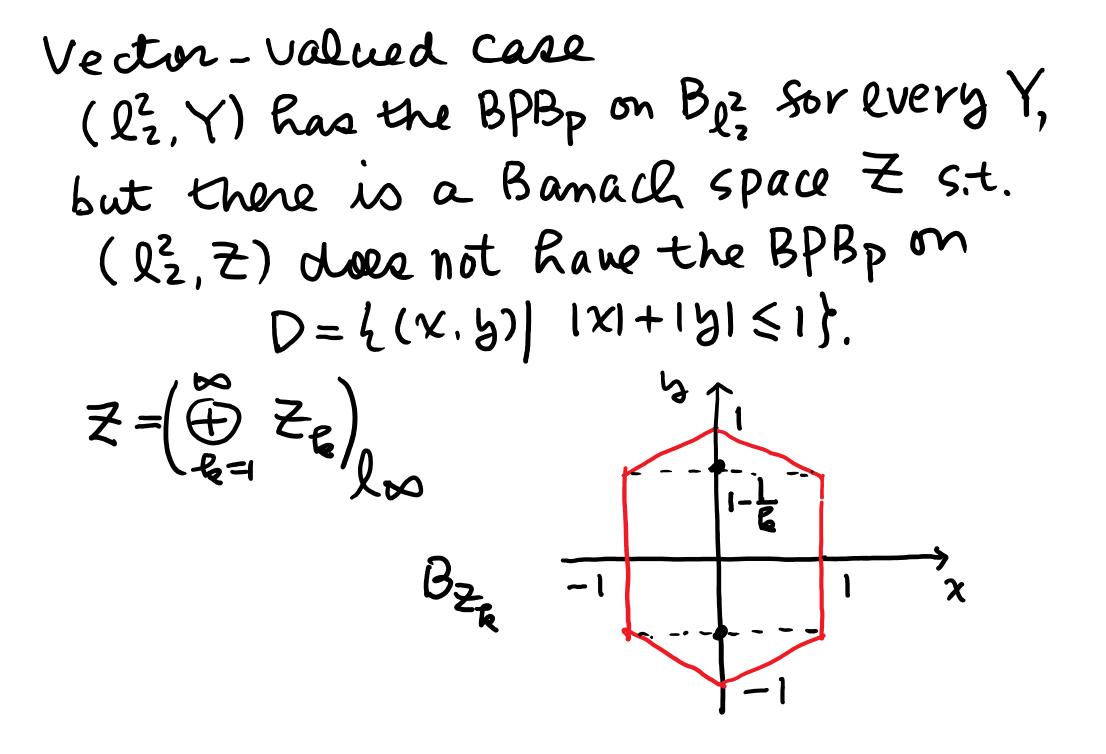
Otherwise, 3 yED s.t. S(y)+ 12(y) > S(x)+2(x) clearly x*(y)<0, and $s(y) - x^{*}(y) - s(x_{0}) + x^{*}(x_{0})$ let S = sup [s(z) - 2*(z) : x E D) & Choose yoeD so that \$(30) - 2*(30) > 5 - 222 $\exists x_1^* \varsigma.t. (\varsigma - \tilde{x}) + x_1^* attains its max.$ at $z_0 \in D$, $\|x_i^*\| \leq \alpha \epsilon$ and $\|y_0 - z_0\| \leq \alpha \epsilon$.

Otherwise, 3 yED s.t. S(y)+ 12(y) > S(x)+2(x) clearly xx(y)<0, and $S(y) - x^{*}(y) - S(x_{0}) + x^{*}(x_{0})$ let S = sup { s(z) - 2*(z) : x e D } & Choose yoeD so that S(30) - 2*(30) > 5 - 222 $\exists x_1^* \varsigma.t. (\varsigma - x^*) + x_1^* attains its max.$ at $z_0 \in D$, $\|z_i^*\| \leq \alpha \epsilon$ and $\|y_0 - z_0\| \leq \alpha \epsilon$. Set $x_{1}^{*} = x^{*} - x_{1}^{*}$. Then $\|x_{2}^{*}\| \leq 2^{k}$ S+1x21 attains its max. at ZoED S(Zo)+1/2(Zo)



Further, We can show that fs: 1s attains its max. in D} ⊂ X^t. Theorem. X=real Banach Space DEX bounded, closed, convex Given $S \in X^*$ and E > 0, $\exists x^* \in X^*$ s.t. 15+x*1 attains : Is max. in D and 11x*11<2. Moneover, is Dis symmetric and S(20)> ||S||_ - S/2 Sov some XOED and \$70, then xt and x, ED can be chosen s.t. 112*11<2, 11×1-×011<9/2 15+2* attains its max at x, in D

Vector-valued case (l_{z}^{2}, Y) has the BPBp on $B_{l_{z}}^{2}$ for every Y, but there is a Banach space Z s.t. (l_{z}^{2}, Z) does not have the BPBp on D = L(X, b) $|X| + |b| \leq 1$.



Positive vesults

① X, Y = Sinite dim'l space D ⊆ X bounded closed convex

Positive vesults

① X, Y = Sinite dim'l space D ⊆ X bounded closed convex

③ Y=Banach space with property(B). D⊆X symmetric bounded, closed, convex

Nonlinear Functional Analysis 페이지 9

$$\frac{\text{Recall}}{\text{Figs}} \text{ The convexity of modulus} \\ \overline{\text{Figs}} \circ \langle z \langle 1, \\ S(z) = \inf_{x \in \mathbb{N}} \{1 - \frac{\|x+y\|}{2} : x, y \in \mathbb{R}, \|x-y\| \geq z \}.$$

Recall The convexity of modulus
Fin
$$0 < \varepsilon < 1$$
.
 $S(\varepsilon) = inS\left\{1 - \frac{\|X+Y\|}{2}: X, Y \in B_{X}, \|X-Y\| > \varepsilon\right\}$.
For $0 < \varepsilon < 1$, define
 $S_{D}(\varepsilon) = inS\left\{\frac{1}{2}P_{D}(x) + \frac{1}{2}P_{D}(y) - P_{D}(\frac{X+Y}{2})\right\}$,
where the infimum is taken over all
 $X = (zD + z)P_{D}(x) + \frac{1}{2}P_{D}(y) = 0$

$$x, y \in D$$
 with $\rho_0(x-y) \ge 2$.

Theorem X, Y=real (complex) Banach space. D⊆Bx absorbing, closed, convex& SD(E) > 0 Sovenerge, 0<E<Z. If TEL(X,Y) and XIED satisfy $||T\chi_{1}|| > ||T||_{D} - \varepsilon^{3} S_{D}(\varepsilon)$ Sor sufficiently small & relative to $\|T\|_{D}$, then there exist $S \in L(X,Y)$ and ZED S.t. ||SZ||=||S||D, ||S-T|| < 45/-2 and $||X_1-Z|| \leq P_D(X_1-Z)$ $\leq \frac{\varepsilon}{1-\varepsilon}$.



Avon, Cascales & Kozhushbina, PAMS 2011 BPBp holds on By Sov an Asplund operator from X into Co(L). Theorem For a symmetric bounded closed convex subset DSBX and locally compact Hausdovss space L, let T: X -> Co(L) be an Asplund operator with $\|T\|_{D} = 1$ $\|T\| = M \ge 1$, Given $0 \le \le \frac{M_{2}}{2}$ is NOED satisfies that ||Txo||71- 2-4M, then there exist an Asplund operator S and $U_0 \in D$ s.t. $\|S\|_{D^{-1}} = \|SU_0\|^{2}, \|Y_0 - U_0\| < \varepsilon$ and $\|T - S\| < 4\varepsilon$.

Thank you for your attention !!

Yun Sung ChoiPOSTECH, Pohang, Sou'Recent developments of optimization 11 October 20-23, 2016 24 / 24

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○