Factorization of (p, σ) -continuous operators

Elhadj Dahia University of M'sila, Algeria

Joint work with D. Achour and E. A. Sánchez Pérez

Factorization of (p, σ) -continuous operators

Elhadj Dahia University of M'sila, Algeria

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Abstract

We give the Pietsch factorization theorem for the (p, σ) -absolutely continuous linear operators. Although this result is essentially already known (it was proved by Matter in 1989), we write a new direct proof that highlights the role of the spaces $C(B_{X^*})$ and $L^p(\eta)$, where η is a regular Borel probability measure on B_{X^*} .

As an application we show that (p, σ) -absolutely continuous linear operators are compact under some requirements and we prove a Dvoretzky-Rogers type theorem for this class of operators. Factorization of (p, σ) -continuous operators

p-summing linear operators

Definition (Pietsch 1967) Let $1 \le p < \infty$. We say that $T \in \mathcal{L}(X, Y)$ is *p*-summing if there exists C > 0 such that for every $(x_i)_{i=1}^n$ in X,

$$\left(\sum_{i=1}^{n} \|T(x_i)\|^{p}\right)^{\frac{1}{p}} \leq C \sup_{\|\xi\|_{X^*} \leq 1} \left(\sum_{i=1}^{n} |\xi(x_i)|^{p}\right)^{\frac{1}{p}}, \quad (1)$$

The set of all *p*-summing operators $\prod_{p}(X, Y)$ is Banach space with the norm.

 $\pi_{\rho}(T) := \inf \{C, \text{ for all } C \text{ verifying the inequality (1)} \}.$

Factorization of (p, σ) -continuous operators

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二直 - のへで

 (p, σ) -absolutely continuous linear operators Let $1 \le p < \infty$ and $0 \le \sigma < 1$. Factorization of (p, σ) -continuous operators

 (p, σ) -absolutely continuous linear operators Let $1 \le p < \infty$ and $0 \le \sigma < 1$.

Definition (Matter 1987) We say that $T \in \mathcal{L}(X, Y)$ is a (p, σ) -absolutely continuous operator, in symbols $T \in \prod_{p,\sigma}(X, Y)$, if there exist a Banach space G and an operator $S \in \prod_p(X, G)$ such that

$$||Tx|| \le ||x||^{\sigma} ||Sx||^{1-\sigma}, \quad x \in X.$$
 (2)

In such case, we put $\pi_{p,\sigma}(T) = \inf \pi_p(S)^{1-\sigma}$, taking the infimum over all Banach spaces G and $S \in \prod_p(X,G)$ such that (2) holds.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Factorization of (p, σ) -continuous operators

Elhadj Dahia University of M'sila, Algeria

Preliminary

The subsequent characterizations of $\Pi_{p,\sigma}$ are derived from the corresponding properties of Π_p .

The Pietsch domination theorem concerning the (p, σ) -absolutely continuous linear operators was proved by Matter.

As usual, the unit ball B_{X^*} , of X^* is considered as a compact space with respect to the weak star topology.

Theorem

The following statements are equivalent. (i) $T \in \prod_{p,\sigma} (X, Y)$ (ii) There is a regular Borel probability measure μ on B_{X^*} , such that

$$\|T(x)\| \leq C \left(\int_{B_{X^*}} (|\langle x, x^* \rangle|^{1-\sigma} \, \|x\|^{\sigma})^{\frac{p}{1-\sigma}} d\mu(x^*) \right)^{\frac{1-\sigma}{p}}, \quad x \in X$$

(iii) For every finite sequence $(x_i)_{i=1}^n$ in X,

$$\left\| (T(x_i))_{i=1}^n \right\|_{\frac{p}{1-\sigma}} \leq C. \sup_{\|\xi\|_{X^*} \leq 1} \left(\sum_{i=1}^n \left(|\xi(x_i)|^{1-\sigma} \|x_i\|^\sigma \right)^{\frac{p}{1-\sigma}} \right)^{\frac{1-\sigma}{p}}$$

Factorization of (p, σ) -continuous operators

Factorization of (p, σ) -continuous operators

Elhadj Dahia University of M'sila, Algeria

Preliminary

The main relationship between the *p*-summing and the (p, σ) -absolutely continuous linear operators is the following.

・ロト ・ 日・ ・ 田・ ・ 日・ うらぐ

Factorization of (p, σ) -continuous operators

Elhadj Dahia University of M'sila, Algeria

Preliminary

The main relationship between the *p*-summing and the (p, σ) -absolutely continuous linear operators is the following.

Proposition

The inclusion $\prod_{\frac{p}{1-\sigma}} \subset \prod_{p,\sigma}$ holds. Consequently, every *p*-summing operator is (p, σ) -absolutely continuous.

・ロト ・ 日下・ ・ 田下・ ・ 日下・ く 日下

New results for the class of (p, σ) linear operators

In the following proposition we prove a Dvoretzky-Rogers type theorem for (p, σ) -absolutely continuous linear operators.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Factorization of (p, σ) -continuous operators

New results for the class of (p, σ) linear operators

In the following proposition we prove a Dvoretzky-Rogers type theorem for (p, σ) -absolutely continuous linear operators.

Proposition

Let $1 \le p < \infty$ and $0 \le \sigma < 1$. A Banach space X is finite dimensional if and only if the identity mapping $id_X : X \to X$ is (p, σ) -absolutely continuous.

Factorization of (p, σ) -continuous operators

Elhadj Dahia University of M'sila, Algeria

New results for the class of (p, σ) linear operators

Proposition

Let $T \in \mathcal{L}(X, Y)$. Then T is (p, σ) -absolutely continuous if and only if its second adjoint, $T^{**} : X^{**} \longrightarrow Y^{**}$, is (p, σ) -absolutely continuous. In this case

$$\pi_{p,\sigma}(T) = \pi_{p,\sigma}(T^{**}).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

New results for the class of (p, σ) linear operators (Factorization Theorem)

Let X be a Banach space, $p \ge 1$, $0 \le \sigma < 1$ and let η be a regular Borel probability measure on B_{X^*} (with the weak star topology). We denote by i_X the isometric embedding

$$X \longrightarrow C(B_{X^*}), \quad i_X(x) = \langle x, . \rangle$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Factorization of (p, σ) -continuous operators

New results for the class of (p, σ) linear operators (Factorization Theorem)

Let X be a Banach space, $p \ge 1$, $0 \le \sigma < 1$ and let η be a regular Borel probability measure on B_{X^*} (with the weak star topology). We denote by i_X the isometric embedding

$$X \longrightarrow C(B_{X^*}), \quad i_X(x) = \langle x, . \rangle$$

For $f \in i_X(X) \subset C(B_{X^*})$, we define the semi norm,

$$\|f\|_{p,\sigma} = \inf \left\{ \sum_{k=1}^{n} \|f_{k}\|_{i_{X}(X)}^{\sigma} \cdot \left(\int_{B_{X^{*}}} |f_{k}|^{p} \, d\eta \right)^{\frac{1-\sigma}{p}}, \\ f = \sum_{k=1}^{n} f_{k}, \ (f_{k})_{k=1}^{n} \subset i_{X}(X) \right\}$$

Factorization of (p, σ) -continuous operators

Let S be the subspace of $i_X(X)$ given by

$$S = \left\{ f \in i_X(X), \|f\|_{p,\sigma} = 0 \right\}$$

We write $L_{p,\sigma}(\eta)$ for the completion of the quotient space $i_X(X)/S$ with the norm

$$\|[f]\|_{p,\sigma} = \|f\|_{p,\sigma},$$

where [f] is the equivalence class of $f \in i_X(X)$.

Factorization of (p, σ) -continuous operators

Elhadj Dahia University of M'sila, Algeria

くしゃ 本語 * 本語 * 本語 * ふらや

Notice that with this notation in the case $\sigma = 0$ the space $L_{p,0}(\eta)$ do not coincide with $L_p(\eta)$ but with the subspace of $L_p(\eta)$ that allows the factorization theorem for *p*-summing operators.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Factorization of (p, σ) -continuous operators

Notice that with this notation in the case $\sigma = 0$ the space $L_{p,0}(\eta)$ do not coincide with $L_p(\eta)$ but with the subspace of $L_p(\eta)$ that allows the factorization theorem for *p*-summing operators.

Lemma

The canonical mapping

$$J_{p,\sigma}: i_X(X) \longrightarrow L_{p,\sigma}(\eta), \qquad J_{p,\sigma}(\langle x, \cdot \rangle) = [\langle x, \cdot \rangle]$$

is (p, σ) -absolutely continuous, and $\pi_{p,\sigma}(J_{p,\sigma}) \leq 1$.

Factorization of (p, σ) -continuous operators

Theorem

For every linear operator $T : X \rightarrow Y$, the following statements are equivalent.

(i) T is (p, σ) -absolutely continuous. (ii) There exist a regular Borel probability measure μ on B_{X^*} (with the weak star topology) and a linear continuous operator $\widetilde{T} \in \mathcal{L}(L_{p,\sigma}(\mu), Y)$ such that the following diagram commutes

Factorization of (p, σ) -continuous operators

Elhadj Dahia University of M'sila, Algeria

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 のへぐ

(An application)

As an application we show that (p, σ) -absolutely continuous linear operators are compact under some requirements. For this we present the next proposition.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Factorization of (p, σ) -continuous operators

(An application)

As an application we show that (p, σ) -absolutely continuous linear operators are compact under some requirements. For this we present the next proposition.

Proposition

Let $0 \le \sigma < 1$, $1 \le p < \infty$ and X be a Banach space. The mapping

 $i: X \longrightarrow L_{p,\sigma}(\eta), \quad i(x) = [\langle x, . \rangle]$

is completely continuous.

Factorization of (p, σ) -continuous operators

Elhadj Dahia University of M'sila, Algeria

くしゃ 本語 * 本語 * 本語 * ふらや

Factorization of (p, σ) -continuous operators

Elhadj Dahia University of M'sila, Algeria

(An application)

Factorization of (p, σ) -continuous operators

Elhadj Dahia University of M'sila, Algeria

(An application)

Corollary

Let X, Y be Banach space, X in addition reflexive, and let $0 \le \sigma < 1$, $1 \le p < \infty$. If $T \in \prod_{p,\sigma} (X, Y)$, then T is compact.

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

- E. Dahia, D. Achour and E.A. Sánchez-Pérez, Absolutely continuous multilinear operators, J. Math. Anal. Appl. **397** (2013), 205–224.
- J.A. López Molina and E.A. Sánchez-Pérez, *Ideales de operadores absolutamente continuos*, Rev. Real Acad. Ciencias Exactas, Físicas y Naturales, Madrid.
 87 (1993), 349–378.
- U. Matter, Absolutely continuous operators and super-reflexivity, Math. Nachr. 130 (1987), 193–216.
- U. Matter, Factoring trough interpolation spaces and super-reflexive Banach spaces, Rev. Roum. Math. Pures Appl. 34 (1989), 147–156.

Factorization of (p, σ) -continuous operators

Elhadj Dahia University of M'sila, Algeria

Thank You Very Much

For Your Attention

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●