Recent results of the Bishop-Phelps-Bollobás point property

SHELDON DANTAS POSTECH UNIVERSITY (포스텍)

WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017

Joint work with V. Kadets, S. K. Kim, H. J. Lee and M. Martín October, 2017, Valencia (Spain) (日) (四) (日) (日) (日)

Table of contents

- 1 Motivation & History background
- 2 First results about the BPBpp
- 3 Recent results about the BPBpp
- 4 The dual property

Sheldon Dantas Postech University (포스텍) WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017 The BPBpp - WidaVa 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sac

Notation

X, Y and Z are real or complex Banach spaces.

- $\blacksquare \ \mathbb{K}$ is the field \mathbb{R} or $\mathbb{C},$
- B_X is the closed unit ball of X,
- S_X is the unit sphere of X,
- $\mathcal{L}(X, Y)$ continuous linear operators from X into Y,
- K(X, Y) compact linear operators from X into Y,
- $X^* = \mathcal{L}(X; \mathbb{K})$ topological dual of X.

Sheldon Dantas Postech University (포스텍) WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017 The BPBpp - WidaVa 2017

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Definition

We say that a linear functional $x^* \in X^*$ attains its norm if there exists $x_0 \in S_X$ such that $|x^*(x_0)| = ||x^*||$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Definition

We say that a linear functional $x^* \in X^*$ attains its norm if there exists $x_0 \in S_X$ such that $|x^*(x_0)| = ||x^*||$.

NA(X) is the set of all **norm attaining functionals**.

Sheldon Dantas Postech University (포스텍) WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017 The BPBpp - WidaVa 2017

イロト 不良 とうき とうとう

SOG

Definition

We say that a linear functional $x^* \in X^*$ attains its norm if there exists $x_0 \in S_X$ such that $|x^*(x_0)| = ||x^*||$.

NA(X) is the set of all **norm attaining functionals**.

James theorem (1957)

A Banach space X is **reflexive** if and only if every bounded linear functional is norm attaining.

Sheldon Dantas Postech University (포스텍) WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017 The BPBpp - WidaVa 2017

イロト イポト イヨト イヨト 二日

200

Bishop-Phelps theorem (1961)

Every element in X^* can be approximated by a norm attaining linear functional. In other words, $\overline{NA(X)} = X^*$.

▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 ト ▲ 日 ト

・ロト ・四ト ・ヨト ・ヨト

Sac

Motivation & History background

Bishop-Phelps theorem (1961)

Every element in X^* can be approximated by a norm attaining linear functional. In other words, $\overline{NA(X)} = X^*$.

Question (Bishop-Phelps)

Is it true for bounded linear operators?

Definition

We say that a bounded linear operator $T \in \mathcal{L}(X, Y)$ attains its norm if there exists $x_0 \in S_X$ such that $||T(x_0)|| = ||T||$.

Definition

We say that a bounded linear operator $T \in \mathcal{L}(X, Y)$ attains its norm if there exists $x_0 \in S_X$ such that $||T(x_0)|| = ||T||$.

NA(X, Y) is the set of all norm attaining operators.

Definition

We say that a bounded linear operator $T \in \mathcal{L}(X, Y)$ attains its norm if there exists $x_0 \in S_X$ such that $||T(x_0)|| = ||T||$.

NA(X, Y) is the set of all norm attaining operators.

(1963, Lindenstrauss) Counterexample

There exists a Banach space X such that

 $\overline{\mathsf{NA}(X,X)} \neq \mathcal{L}(X,X),$

showing that the Bishop-Phelps result **does not** hold for bounded linear operators.

Sheldon Dantas Postech University (포스텍) WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017 The BPBpp - WidaVa 2017

イロト イポト イヨト イヨト

In 1970, Bollobás improved the Bishop-Phelps theorem.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへ⊙

In 1970, Bollobás improved the Bishop-Phelps theorem.

1970, Bollobás, Bishop-Phelps-Bollobás theorem (2014, M. Chica, V. Kadets, M. Martín, S. Moreno-Pulido)

Let $\varepsilon \in (0,2)$. Given $x \in B_X$ and $x^* \in B_{X^*}$ with

$$|x^*(x)| > 1 - \frac{\varepsilon^2}{2},$$

there are elements $y \in S_X$ and $y^* \in S_{X^*}$ such that

$$\|y^*\|=|y^*(y)|=1, \quad \|y-x\|$$

Sheldon Dantas Postech University (포스텍) WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017 The BPBpp - WidaVa 2017

イロト 不良 とうき とうとう

SOG

Observation 1

Bishop-Phelps-Bollobás theorem \Rightarrow Bishop-Phelps theorem.

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

イロト イポト イヨト イヨト

Motivation & History background

Observation 1

Bishop-Phelps-Bollobás theorem \Rightarrow Bishop-Phelps theorem.

Observation 2

It is **not** expected that there exists a Bishop-Phelps-Bollobás theorem version for bounded linear operators in general.

(2008, M. Acosta, R. Aron, D. García, M. Maestre)

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

(2008, M. Acosta, R. Aron, D. García, M. Maestre)

Bishop-Phelps-Bollobás property (BPBp)

A pair of Banach spaces (X, Y) is said to have the **BPBp** if for every $\varepsilon \in (0, 1)$, there exists $\eta(\varepsilon) > 0$ such that if $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 and $x \in S_X$ satisfy

$$\|T(x)\| > 1 - \eta(\varepsilon),$$

there exist $S \in \mathcal{L}(X, Y)$ with $\|S\| = 1$ and $x_0 \in S_X$ such that

$$\|S(x_0)\| = 1$$
, $\|x_0 - x\| < \varepsilon$ and $\|T - S\| < \varepsilon$.

Sheldon Dantas Postech University (포스텍) WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017 The BPBpp - WidaVa 2017

イロト イポト イヨト イヨト

They proved that the pair (X, Y) has the BPBp if:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへ⊙

They proved that the pair (X, Y) has the BPBp if:

(1) X and Y are finite dimensional Banach spaces.

They proved that the pair (X, Y) has the BPBp if:

(1) X and Y are finite dimensional Banach spaces.

(2) X arbitrary and $Y = c_0$ or $Y = \ell_{\infty}$.

They proved that the pair (X, Y) has the BPBp if:

(1) X and Y are finite dimensional Banach spaces.

(2) X arbitrary and $Y = c_0$ or $Y = \ell_{\infty}$.

(3) $X = \ell_1$ and

They proved that the pair (X, Y) has the BPBp if:

(1) X and Y are finite dimensional Banach spaces.

(2) X arbitrary and $Y = c_0$ or $Y = \ell_{\infty}$.

(3) $X = \ell_1$ and

• $Y = L_1(\mu)$ with μ a finite measure.

- イロト イロト イヨト イヨト ヨー のへぐ

They proved that the pair (X, Y) has the BPBp if:

(1) X and Y are finite dimensional Banach spaces.

(2) X arbitrary and $Y = c_0$ or $Y = \ell_{\infty}$.

(3) $X = \ell_1$ and

- $Y = L_1(\mu)$ with μ a finite measure.
- Y is uniformly convex.

They proved that the pair (X, Y) has the BPBp if:

(1) X and Y are finite dimensional Banach spaces.

(2) X arbitrary and $Y = c_0$ or $Y = \ell_{\infty}$.

(3) $X = \ell_1$ and

- $Y = L_1(\mu)$ with μ a finite measure.
- Y is uniformly convex.
- Y = C(K) for K a compact Haurdorff space.

Sheldon Dantas Postech University (포스텍) WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017 The BPBpp - WidaVa 2017

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Since 2008, there has been a lot of attention on this topic:

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Since 2008, there has been a lot of attention on this topic:

(L₁[0,1], L_∞[0,1]) has the BPBp.
 (2011, R. Aron, Y. S. Choi, D. García, M. Maestre)

Since 2008, there has been a lot of attention on this topic:

- (L₁[0, 1], L_∞[0, 1]) has the BPBp.
 (2011, R. Aron, Y. S. Choi, D. García, M. Maestre)
- (X, A) has the BPBp (X Asplund and A uniform algebra).
 (2013, B. Cascales, A. Guirao, V. Kadets)

▲ロト ▲畳 ト ▲ 臣 ト ▲ 臣 ト ● ○ ● ● ●

Since 2008, there has been a lot of attention on this topic:

- (L₁[0, 1], L_∞[0, 1]) has the BPBp.
 (2011, R. Aron, Y. S. Choi, D. García, M. Maestre)
- (X, A) has the BPBp (X Asplund and A uniform algebra).
 (2013, B. Cascales, A. Guirao, V. Kadets)
- (L₁(μ), L₁(ν)) has the BPBp.
 (2014, Y. S. Choi, S. K. Kim, H. J. Lee, M. Martín)

《日》《圖》《臣》《臣》 臣 '오오오

Since 2008, there has been a lot of attention on this topic:

- (L₁[0, 1], L_∞[0, 1]) has the BPBp.
 (2011, R. Aron, Y. S. Choi, D. García, M. Maestre)
- (X, A) has the BPBp (X Asplund and A uniform algebra).
 (2013, B. Cascales, A. Guirao, V. Kadets)
- (L₁(µ), L₁(ν)) has the BPBp.
 (2014, Y. S. Choi, S. K. Kim, H. J. Lee, M. Martín)
- (X, Y) has the BPBp whenever X uniformly convex.
 (2014, S. K. Kim, H. J. Lee)

Sheldon Dantas Postech University (포스텍) WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017 The BPBpp - WidaVa 2017

イロト イポト イヨト イヨト 二日

200

Since 2008, there has been a lot of attention on this topic:

- (L₁[0, 1], L_∞[0, 1]) has the BPBp.
 (2011, R. Aron, Y. S. Choi, D. García, M. Maestre)
- (X, A) has the BPBp (X Asplund and A uniform algebra).
 (2013, B. Cascales, A. Guirao, V. Kadets)
- (L₁(μ), L₁(ν)) has the BPBp.
 (2014, Y. S. Choi, S. K. Kim, H. J. Lee, M. Martín)
- (X, Y) has the BPBp whenever X uniformly convex.
 (2014, S. K. Kim, H. J. Lee)

Sheldon Dantas Postech University (포스택) WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017 The BPBpp - WidaVa 2017

イロト イポト イヨト イヨト 二日

200

The Bishop-Phelps-Bollobás point property

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

イロト イロト イヨト イヨト 三日

200

The Bishop-Phelps-Bollobás point property

Bishop-Phelps-Bollobás point property (BPBpp)

A pair of Banach spaces (X, Y) is said to have the **BPBpp** if for every $\varepsilon \in (0, 1)$, there exists $\eta(\varepsilon) > 0$ such that if $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 and $x \in S_X$ satisfy

$$\|T(\mathbf{x})\| > 1 - \eta(\varepsilon),$$

there exists $S \in \mathcal{L}(X, Y)$ with $\|S\| = 1$ such that

$$\|S(x)\| = 1$$
 and $\|T - S\| < \varepsilon$.

イロト イポト イヨト イヨト 二日

200

The Bishop-Phelps-Bollobás point property

Bishop-Phelps-Bollobás point property (BPBpp)

A pair of Banach spaces (X, Y) is said to have the **BPBpp** if for every $\varepsilon \in (0, 1)$, there exists $\eta(\varepsilon) > 0$ such that if $T \in \mathcal{L}(X, Y)$ with ||T|| = 1 and $x \in S_X$ satisfy

$$\|T(\mathbf{x})\| > 1 - \eta(\varepsilon),$$

there exists $S \in \mathcal{L}(X, Y)$ with $\|S\| = 1$ such that

$$\|S(x)\| = 1$$
 and $\|T - S\| < \varepsilon$.

It is clear that BPBpp \Rightarrow BPBp.

First results about the BPBpp

(2016, D., S. K. Kim and H. J. Lee)

• (X, \mathbb{K}) has the BPBpp if and only if X is uniformly smooth.

First results about the BPBpp

(2016, D., S. K. Kim and H. J. Lee)

- (X, \mathbb{K}) has the BPBpp if and only if X is uniformly smooth.
- (X, Y) has the BPBpp for some $Y \Rightarrow X$ is uniformly smooth.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 - のへで
First results about the BPBpp

(2016, D., S. K. Kim and H. J. Lee)

- (X, \mathbb{K}) has the BPBpp if and only if X is uniformly smooth.
- (X, Y) has the BPBpp for some $Y \Rightarrow X$ is uniformly smooth.
- (H, Y) has the BPBpp for all Hilbert spaces H and any Y.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

First results about the BPBpp

(2016, D., S. K. Kim and H. J. Lee)

- (X, \mathbb{K}) has the BPBpp if and only if X is uniformly smooth.
- (X, Y) has the BPBpp for some $Y \Rightarrow X$ is uniformly smooth.
- (H, Y) has the BPBpp for all Hilbert spaces H and any Y.
- (X, Y) has the BPBpp for X uniformly smooth and Y property β .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ </p>

First results about the BPBpp

(2016, D., S. K. Kim and H. J. Lee)

- (X, \mathbb{K}) has the BPBpp if and only if X is uniformly smooth.
- (X, Y) has the BPBpp for some $Y \Rightarrow X$ is uniformly smooth.
- (H, Y) has the BPBpp for all Hilbert spaces H and any Y.
- (X, Y) has the BPBpp for X uniformly smooth and Y property β .
- there are uniformly smooth Banach spaces X such that the pair (X, Y) fails the BPBpp for some Y.

Recent results

Stability results

Proposition

Let X_1 be a one-complemented subspace of X. If (X, Y) has the BPBpp, then (X_1, Y) has the BPBpp.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

イロト イポト イヨト イヨト

Sac

Recent results about the BPBpp

Stability results

Proposition

Let X_1 be a one-complemented subspace of X. If (X, Y) has the BPBpp, then (X_1, Y) has the BPBpp.

Questions

(a) Is this true for the BPBp? (201?, D., García, Maestre, Martín)

イロト イポト イヨト イヨト 二日

200

Recent results about the BPBpp

Stability results

Proposition

Let X_1 be a one-complemented subspace of X. If (X, Y) has the BPBpp, then (X_1, Y) has the BPBpp.

Questions

(a) Is this true for the BPBp? (201?, D., García, Maestre, Martín)

(b) Is this true for norm attaining operators?

Stability results

Proposition ((201?, D., García, Maestre, Martín) adapted)

If $Y = Y_1 \oplus_a Y_2$ and (X, Y) has the BPBpp, then (X, Y_i) has the BPBpp.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Recent results about the BPBpp

Stability results

Proposition ((201?, D., García, Maestre, Martín) adapted)

If $Y = Y_1 \oplus_a Y_2$ and (X, Y) has the BPBpp, then (X, Y_i) has the BPBpp.

Proposition ((2015, Aron, Choi, Kim, Lee, Martín) adapted)

If (X, C(K, Y)) has the BPBpp, then (X, Y) has the BPBpp.

Universal properties

Universal properties

Definition (2014, Aron, Choi, Kim, Lee, Martín)

(a) X is **universal BPBpp domain space** if (X, Y) has the BPBpp for all Y.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Universal properties

Definition (2014, Aron, Choi, Kim, Lee, Martín)

- (a) X is **universal BPBpp domain space** if (X, Y) has the BPBpp for all Y.
- (b) *Y* is **universal BPBpp range space** if (*X*, *Y*) has the BPBpp for all *X* uniformly smooth.

< ロ > < 団 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

Universal properties

Definition (2014, Aron, Choi, Kim, Lee, Martín)

- (a) X is **universal BPBpp domain space** if (X, Y) has the BPBpp for all Y.
- (b) Y is **universal BPBpp range space** if (X, Y) has the BPBpp for all X uniformly smooth.

Examples (2016, D., S. K. Kim, H. J. Lee)

■ Hilbert spaces are universal BPBpp domain spaces.

QA

Recent results about the BPBpp

Universal properties

Definition (2014, Aron, Choi, Kim, Lee, Martín)

- (a) X is **universal BPBpp domain space** if (X, Y) has the BPBpp for all Y.
- (b) Y is **universal BPBpp range space** if (X, Y) has the BPBpp for all X uniformly smooth.

Examples (2016, D., S. K. Kim, H. J. Lee)

- Hilbert spaces are universal BPBpp domain spaces.
- Uniform algebras and Banach spaces with property β are universal BPBpp range spaces.

・ロト ・ 一日 ト ・ ヨト ・ ・

Sac

Recent results about the BPBpp

Universal properties

Question

We know that Hilbert spaces are universal BPBpp domain spaces.

イロト イポト イヨト イヨト

Recent results about the BPBpp

Universal properties

Question

We know that Hilbert spaces are universal BPBpp domain spaces.

Is it possible to extend the result for L_p -spaces with 1 ?

Universal properties

Theorem

If X is universal BPBpp domain space, then X is uniformly convex.

・ロト ・母 ト ・ヨ ト ・ ヨ ・ つくで

・ロト ・四ト ・ヨト ・ヨト

Sac

Recent results about the BPBpp

Universal properties

Theorem

If X is universal BPBpp domain space, then X is uniformly convex.

Theorem

If X is universal BPBpp domain space and X is isomorphic to a Hilbert space, then $\delta_X(\varepsilon) \ge C\varepsilon^2$.

Universal properties

Corollary

 $L_p(\mu)$ is **not** a BPBpp domain space for p > 2.

イロト イポト イモト イモト 一日 500

< □ > < □ > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recent results about the BPBpp

Universal properties

 $L_p(\mu)$ is **not** a BPBpp domain space for p > 2.

Question

Is $L_p(\mu)$ a BPBpp domain space for 1 ?

Universal properties

ACK_p-structure (2017, Cascales, Guirao, Kadets, Soloviova)

Theorem

If Y has ACK_{ρ} -structure, then Y is universal BPBpp range space.

イロト イポト イヨト イヨト

200

Recent results about the BPBpp

Universal properties

ACK_p-structure (2017, Cascales, Guirao, Kadets, Soloviova)

Theorem

If Y has ACK_{ρ} -structure, then Y is universal BPBpp range space.

- C(K) and $C_0(L)$ and, more in general, uniform algebras.
- **Banach spaces with property** β .
- finite ℓ_{∞} -sums of Banach spaces with ACK_{ρ} -structure.
- $c_0(Y)$, $\ell_{\infty}(Y)$ when Y has ACK_{ρ} -structure.
- C(K, Y) when Y has ACK_{ρ} -structure.

Universal properties

Counterexample

For $p \ge 2$, there is a Banach space X_p which is **uniformly convex** and **uniformly smooth** such that (X_p, ℓ_p^2) fails the BPBpp.

▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● ● ●

Universal properties

Counterexample

For $p \ge 2$, there is a Banach space X_p which is **uniformly convex** and **uniformly smooth** such that (X_p, ℓ_p^2) fails the BPBpp.

• Note that (X_p, ℓ_p^2) has the BPBp since X_p is uniformly convex.

Universal properties

Counterexample

For $p \ge 2$, there is a Banach space X_p which is **uniformly convex** and **uniformly smooth** such that (X_p, ℓ_p^2) fails the BPBpp.

• Note that (X_p, ℓ_p^2) has the BPBp since X_p is uniformly convex.

Questions

(1) If Y is universal BPBp range space, then Y is universal BPBpp range for uniformly smooth X?

Universal properties

Counterexample

For $p \ge 2$, there is a Banach space X_p which is **uniformly convex** and **uniformly smooth** such that (X_p, ℓ_p^2) fails the BPBpp.

• Note that (X_p, ℓ_p^2) has the BPBp since X_p is uniformly convex.

Questions

- (1) If Y is universal BPBp range space, then Y is universal BPBpp range for uniformly smooth X?
- (2) It is not known whether all finite dimensional spaces are universal BPBp range spaces or even if they have Lindenstrauss property B.

The BPBpp for compact operators

化口下 化固下 化压下 化压下

Recent results about the BPBpp

The BPBpp for compact operators

BPBpp for compact operators

A pair of Banach spaces (X, Y) is said to have the **BPBpp for** compact operators if for every $\varepsilon \in (0, 1)$, there exists $\eta(\varepsilon) > 0$ such that if $T \in K(X, Y)$ with ||T|| = 1 and $x \in S_X$ satisfy

$$\|T(x)\| > 1 - \eta(\varepsilon),$$

there exists $S \in K(X, Y)$ with ||S|| = 1 such that

$$\|S(x)\| = 1$$
 and $\|T - S\| < \varepsilon$.

The BPBpp for compact operators

 \blacksquare (*H*, *Y*) for *H* Hilbert spaces and any *Y*.

The BPBpp for compact operators

- \blacksquare (*H*, *Y*) for *H* Hilbert spaces and any *Y*.
- (X, Y) for X is uniformly smooth and Y has ACK_{ρ} -structure.

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨ ● ◇◇◇

The BPBpp for compact operators

- \blacksquare (*H*, *Y*) for *H* Hilbert spaces and any *Y*.
- (X, Y) for X is uniformly smooth and Y has ACK_{ρ} -structure.

(2017, D., García, Maestre, Martín)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

The BPBpp for compact operators

- \blacksquare (*H*, *Y*) for *H* Hilbert spaces and any *Y*.
- (X, Y) for X is uniformly smooth and Y has ACK_{ρ} -structure.

(2017, D., García, Maestre, Martín)

•
$$(X, \ell_p(Y)) \Rightarrow (X, L_p(\mu, Y))$$
 for $1 \le p < \infty$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Recent results about the BPBpp

The BPBpp for compact operators

- \blacksquare (*H*, *Y*) for *H* Hilbert spaces and any *Y*.
- (X, Y) for X is uniformly smooth and Y has ACK_{ρ} -structure.

(2017, D., García, Maestre, Martín)

•
$$(X, \ell_p(Y)) \Rightarrow (X, L_p(\mu, Y))$$
 for $1 \le p < \infty$.

$$(X,Y) \Rightarrow (X,L_{\infty}(\mu,Y))$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Recent results about the BPBpp

The BPBpp for compact operators

- \blacksquare (*H*, *Y*) for *H* Hilbert spaces and any *Y*.
- (X, Y) for X is uniformly smooth and Y has ACK_{ρ} -structure.

(2017, D., García, Maestre, Martín)

•
$$(X, \ell_p(Y)) \Rightarrow (X, L_p(\mu, Y))$$
 for $1 \le p < \infty$.

$$(X,Y) \Rightarrow (X,L_{\infty}(\mu,Y))$$

$$\bullet (X,Y) \Rightarrow (X,C(K,Y)).$$

The dual property

イロト イロト イモト イモト 990 3

The dual property

Recall that (X, Y) has the **BPBpp** if $\forall \varepsilon \in (0, 1), \exists \eta(\varepsilon) > 0$:

$$T \in S_{\mathcal{L}(X,Y)}, x \in S_X \text{ with } ||T(x)|| > 1 - \eta(\varepsilon),$$

 $\Rightarrow \exists S \in S_{\mathcal{L}(X,Y)}$ with

$$\|S(x)\| = 1$$
 and $\|T - S\| < \varepsilon$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ■ - のへで
Recall that (X, Y) has the **BPBpp** if $\forall \varepsilon \in (0, 1), \exists \eta(\varepsilon) > 0$:

$$T \in S_{\mathcal{L}(X,Y)}, x \in S_X \text{ with } ||T(x)|| > 1 - \eta(\varepsilon),$$

 $\Rightarrow \exists S \in S_{\mathcal{L}(X,Y)}$ with

$$\|S(x)\| = 1$$
 and $\|T - S\| < \varepsilon$.

A possible dual property: (2016, D.)

Recall that (X, Y) has the **BPBpp** if $\forall \varepsilon \in (0, 1), \exists \eta(\varepsilon) > 0$:

$$T \in S_{\mathcal{L}(X,Y)}, x \in S_X \text{ with } ||T(x)|| > 1 - \eta(\varepsilon),$$

 $\Rightarrow \exists S \in S_{\mathcal{L}(X,Y)}$ with

$$\|S(x)\|=1$$
 and $\|T-S\|$

A possible dual property: (2016, D.) $\forall \varepsilon \in (0, 1), \exists \eta(\varepsilon) > 0$:

$$\mathcal{T} \in \mathcal{S}_{\mathcal{L}(X,Y)}, x \in \mathcal{S}_X ext{ with } \|\mathcal{T}(x)\| > 1 - \eta(arepsilon),$$

 $\Rightarrow \exists x_0 \in S_X$ with

$$\|T(x_0)\| = 1$$
 and $\|x_0 - x\| < \varepsilon$.

Sheldon Dantas Postech University (포스텍) WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017 The BPBpp - WidaVa 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A possible dual property: $\forall \epsilon \in (0,1), \exists \eta(\epsilon) > 0$:

$$\mathcal{T} \in S_{\mathcal{L}(X,Y)}, x_0 \in S_X ext{ with } \|\mathcal{T}(x)\| > 1 - \eta(arepsilon),$$

 $\Rightarrow \exists x_0 \in S_X$ with

$$||T(x_0)|| = 1$$
 and $||x_0 - x|| < \varepsilon$.

Theorem (2014, S. K. Kim, H. J. Lee)

X is **uniformly convex** if and only (X, \mathbb{K}) has the dual property.

A possible dual property: $\forall \epsilon \in (0, 1), \exists \eta(\epsilon) > 0$:

$$\mathcal{T}\in S_{\mathcal{L}(X,Y)}, x_0\in S_X ext{ with } \|\,\mathcal{T}(x)\|>1-\eta(arepsilon),$$

 $\Rightarrow \exists x_0 \in S_X$ with

$$\|T(x_0)\| = 1$$
 and $\|x_0 - x\| < \varepsilon$.

Theorem (2014, S. K. Kim, H. J. Lee)

X is **uniformly convex** if and only (X, \mathbb{K}) has the dual property.

Counterexample (D., 2016)

There are many pairs (X, Y) for which this property does **not** hold.

化口下 化固下 化压下 化压下

The dual property is **not** possible for dimensions greater than 1!

Theorem

If dim(X), dim(Y) > 1, then the pair (X, Y) fails it.

The dual property is **not** possible for dimensions greater than 1!

Theorem

If dim(X), dim(Y) > 1, then the pair (X, Y) fails it.

Proof.

- Reducing the proof for 2-dimensional spaces.
- Dividing the proof in two cases:
 - X is Hilbert (John's maximal ellipsoid theorem)
 - X is not Hilbert (Day's and Nordlander's theorems)

Sheldon Dantas Postech University (포스텍) WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017 The BPBpp - WidaVa 2017

イロト イポト イヨト イヨト

Thank you for your attention

イロト イポト イヨト イヨト Sac