Recent results of the Bishop-Phelps-Bollobás point property

Sheldon Dantas
Postech University (포스텍)

WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017

Joint work with V. Kadets, S. K. Kim, H. J. Lee and M. Martín October, 2017, Valencia (Spain)

Table of contents

1 Motivation \& History background

2 First results about the BPBpp

3 Recent results about the BPBpp

4 The dual property

Notation

X, Y and Z are real or complex Banach spaces.

- \mathbb{K} is the field \mathbb{R} or \mathbb{C},
- B_{X} is the closed unit ball of X,
- S_{X} is the unit sphere of X,
- $\mathcal{L}(X, Y)$ continuous linear operators from X into Y,
- $K(X, Y)$ compact linear operators from X into Y,
- $X^{*}=\mathcal{L}(X ; \mathbb{K})$ topological dual of X.

Motivation \& History background

Definition

We say that a linear functional $x^{*} \in X^{*}$ attains its norm if there exists $x_{0} \in S_{X}$ such that $\left|x^{*}\left(x_{0}\right)\right|=\left\|x^{*}\right\|$.

Motivation \& History background

Definition

We say that a linear functional $x^{*} \in X^{*}$ attains its norm if there exists $x_{0} \in S_{X}$ such that $\left|x^{*}\left(x_{0}\right)\right|=\left\|x^{*}\right\|$.
$\mathrm{NA}(X)$ is the set of all norm attaining functionals.

Motivation \& History background

Definition

We say that a linear functional $x^{*} \in X^{*}$ attains its norm if there exists $x_{0} \in S_{X}$ such that $\left|x^{*}\left(x_{0}\right)\right|=\left\|x^{*}\right\|$.
$\mathrm{NA}(X)$ is the set of all norm attaining functionals.

James theorem (1957)

A Banach space X is reflexive if and only if every bounded linear functional is norm attaining.

Motivation \& History background

Bishop-Phelps theorem (1961)

Every element in X^{*} can be approximated by a norm attaining linear functional. In other words, $\mathrm{NA}(X)=X^{*}$.

Motivation \& History background

Bishop-Phelps theorem (1961)

Every element in X^{*} can be approximated by a norm attaining linear functional. In other words, $\mathrm{NA}(X)=X^{*}$.

Question (Bishop-Phelps)

Is it true for bounded linear operators?

Motivation \& History background

Definition

We say that a bounded linear operator $T \in \mathcal{L}(X, Y)$ attains its norm if there exists $x_{0} \in S_{X}$ such that $\left\|T\left(x_{0}\right)\right\|=\|T\|$.

Motivation \& History background

Definition

We say that a bounded linear operator $T \in \mathcal{L}(X, Y)$ attains its norm if there exists $x_{0} \in S_{X}$ such that $\left\|T\left(x_{0}\right)\right\|=\|T\|$.
$\mathrm{NA}(X, Y)$ is the set of all norm attaining operators.

Motivation \& History background

Definition

We say that a bounded linear operator $T \in \mathcal{L}(X, Y)$ attains its norm if there exists $x_{0} \in S_{X}$ such that $\left\|T\left(x_{0}\right)\right\|=\|T\|$.
$\mathrm{NA}(X, Y)$ is the set of all norm attaining operators.
(1963, Lindenstrauss) Counterexample
There exists a Banach space X such that

$$
\overline{\mathrm{NA}(X, X)} \neq \mathcal{L}(X, X)
$$

showing that the Bishop-Phelps result does not hold for bounded linear operators.

Motivation \& History background

In 1970, Bollobás improved the Bishop-Phelps theorem.

Motivation \& History background

In 1970, Bollobás improved the Bishop-Phelps theorem.
1970, Bollobás, Bishop-Phelps-Bollobás theorem
(2014, M. Chica, V. Kadets, M. Martín, S. Moreno-Pulido)
Let $\varepsilon \in(0,2)$. Given $x \in B_{X}$ and $x^{*} \in B_{X^{*}}$ with

$$
\left|x^{*}(x)\right|>1-\frac{\varepsilon^{2}}{2}
$$

there are elements $y \in S_{X}$ and $y^{*} \in S_{X *}$ such that

$$
\left\|y^{*}\right\|=\left|y^{*}(y)\right|=1, \quad\|y-x\|<\varepsilon \quad \text { and } \quad\left\|y^{*}-x^{*}\right\|<\varepsilon .
$$

Motivation \& History background

Observation 1

Bishop-Phelps-Bollobás theorem \Rightarrow Bishop-Phelps theorem.

Motivation \& History background

Observation 1

Bishop-Phelps-Bollobás theorem \Rightarrow Bishop-Phelps theorem.

Observation 2

It is not expected that there exists a Bishop-Phelps-Bollobás theorem version for bounded linear operators in general.

Motivation \& History background

(2008, M. Acosta, R. Aron, D. García, M. Maestre)

Motivation \& History background

(2008, M. Acosta, R. Aron, D. García, M. Maestre)

Bishop-Phelps-Bollobás property (BPBp)

A pair of Banach spaces (X, Y) is said to have the BPBp if for every $\varepsilon \in(0,1)$, there exists $\eta(\varepsilon)>0$ such that if $T \in \mathcal{L}(X, Y)$ with $\|T\|=1$ and $x \in S_{X}$ satisfy

$$
\|T(x)\|>1-\eta(\varepsilon)
$$

there exist $S \in \mathcal{L}(X, Y)$ with $\|S\|=1$ and $x_{0} \in S_{X}$ such that

$$
\left\|S\left(x_{0}\right)\right\|=1, \quad\left\|x_{0}-x\right\|<\varepsilon \quad \text { and } \quad\|T-S\|<\varepsilon
$$

Motivation \& History background

They proved that the pair (X, Y) has the BPBp if:

Motivation \& History background

They proved that the pair (X, Y) has the BPBp if:
(1) X and Y are finite dimensional Banach spaces.

Motivation \& History background

They proved that the pair (X, Y) has the BPBp if:
(1) X and Y are finite dimensional Banach spaces.
(2) X arbitrary and $Y=c_{0}$ or $Y=\ell_{\infty}$.

Motivation \& History background

They proved that the pair (X, Y) has the BPBp if:
(1) X and Y are finite dimensional Banach spaces.
(2) X arbitrary and $Y=c_{0}$ or $Y=\ell_{\infty}$.
(3) $X=\ell_{1}$ and

Motivation \& History background

They proved that the pair (X, Y) has the BPBp if:
(1) X and Y are finite dimensional Banach spaces.
(2) X arbitrary and $Y=c_{0}$ or $Y=\ell_{\infty}$.
(3) $X=\ell_{1}$ and

- $Y=L_{1}(\mu)$ with μ a finite measure.

Motivation \& History background

They proved that the pair (X, Y) has the BPBp if:
(1) X and Y are finite dimensional Banach spaces.
(2) X arbitrary and $Y=c_{0}$ or $Y=\ell_{\infty}$.
(3) $X=\ell_{1}$ and

- $Y=L_{1}(\mu)$ with μ a finite measure.
- Y is uniformly convex.

Motivation \& History background

They proved that the pair (X, Y) has the BPBp if:
(1) X and Y are finite dimensional Banach spaces.
(2) X arbitrary and $Y=c_{0}$ or $Y=\ell_{\infty}$.
(3) $X=\ell_{1}$ and

- $Y=L_{1}(\mu)$ with μ a finite measure.
- Y is uniformly convex.
- $Y=C(K)$ for K a compact Haurdorff space.

Motivation \& History background

Since 2008, there has been a lot of attention on this topic:

Motivation \& History background

Since 2008, there has been a lot of attention on this topic:

- ($\left.L_{1}[0,1], L_{\infty}[0,1]\right)$ has the BPBp. (2011, R. Aron, Y. S. Choi, D. García, M. Maestre)

Motivation \& History background

Since 2008, there has been a lot of attention on this topic:

- $\left(L_{1}[0,1], L_{\infty}[0,1]\right)$ has the BPBp. (2011, R. Aron, Y. S. Choi, D. García, M. Maestre)
- (X, A) has the BPBp (X Asplund and A uniform algebra). (2013, B. Cascales, A. Guirao, V. Kadets)

Motivation \& History background

Since 2008, there has been a lot of attention on this topic:

- $\left(L_{1}[0,1], L_{\infty}[0,1]\right)$ has the BPBp. (2011, R. Aron, Y. S. Choi, D. García, M. Maestre)
- (X, A) has the BPBp (X Asplund and A uniform algebra). (2013, B. Cascales, A. Guirao, V. Kadets)
- $\left(L_{1}(\mu), L_{1}(\nu)\right)$ has the BPBp. (2014, Y. S. Choi, S. K. Kim, H. J. Lee, M. Martín)

Motivation \& History background

Since 2008, there has been a lot of attention on this topic:

- $\left(L_{1}[0,1], L_{\infty}[0,1]\right)$ has the BPBp. (2011, R. Aron, Y. S. Choi, D. García, M. Maestre)
- (X, A) has the BPBp (X Asplund and A uniform algebra). (2013, B. Cascales, A. Guirao, V. Kadets)
- $\left(L_{1}(\mu), L_{1}(\nu)\right)$ has the BPBp. (2014, Y. S. Choi, S. K. Kim, H. J. Lee, M. Martín)

■ (X, Y) has the BPBp whenever X uniformly convex. (2014, S. K. Kim, H. J. Lee)

Motivation \& History background

Since 2008, there has been a lot of attention on this topic:

- ($\left.L_{1}[0,1], L_{\infty}[0,1]\right)$ has the BPBp. (2011, R. Aron, Y. S. Choi, D. García, M. Maestre)
- (X, A) has the BPBp (X Asplund and A uniform algebra). (2013, B. Cascales, A. Guirao, V. Kadets)
- $\left(L_{1}(\mu), L_{1}(\nu)\right)$ has the BPBp. (2014, Y. S. Choi, S. K. Kim, H. J. Lee, M. Martín)

■ (X, Y) has the BPBp whenever X uniformly convex. (2014, S. K. Kim, H. J. Lee)

- ($\left.C(K), L_{1}(\mu)\right)$ has the BPBp. (2016, M. Acosta)

The Bishop-Phelps-Bollobás point property

The Bishop-Phelps-Bollobás point property

Bishop-Phelps-Bollobás point property (BPBpp)

A pair of Banach spaces (X, Y) is said to have the BPBpp if for every $\varepsilon \in(0,1)$, there exists $\eta(\varepsilon)>0$ such that if $T \in \mathcal{L}(X, Y)$ with $\|T\|=1$ and $x \in S_{X}$ satisfy

$$
\|T(x)\|>1-\eta(\varepsilon)
$$

there exists $S \in \mathcal{L}(X, Y)$ with $\|S\|=1$ such that

$$
\|S(x)\|=1 \quad \text { and } \quad\|T-S\|<\varepsilon
$$

The Bishop-Phelps-Bollobás point property

Bishop-Phelps-Bollobás point property (BPBpp)

A pair of Banach spaces (X, Y) is said to have the BPBpp if for every $\varepsilon \in(0,1)$, there exists $\eta(\varepsilon)>0$ such that if $T \in \mathcal{L}(X, Y)$ with $\|T\|=1$ and $x \in S_{X}$ satisfy

$$
\|T(x)\|>1-\eta(\varepsilon)
$$

there exists $S \in \mathcal{L}(X, Y)$ with $\|S\|=1$ such that

$$
\|S(x)\|=1 \quad \text { and } \quad\|T-S\|<\varepsilon
$$

It is clear that $\mathrm{BPBpp} \Rightarrow \mathrm{BPBp}$.

First results about the BPBpp

(2016, D., S. K. Kim and H. J. Lee)

- (X, \mathbb{K}) has the BPBpp if and only if X is uniformly smooth.

First results about the BPBpp

(2016, D., S. K. Kim and H. J. Lee)

- (X, \mathbb{K}) has the BPBpp if and only if X is uniformly smooth.
- (X, Y) has the BPBpp for some $Y \Rightarrow X$ is uniformly smooth.

First results about the BPBpp

(2016, D., S. K. Kim and H. J. Lee)
■ (X, \mathbb{K}) has the BPBpp if and only if X is uniformly smooth.

- (X, Y) has the BPBpp for some $Y \Rightarrow X$ is uniformly smooth.
- (H, Y) has the BPBpp for all Hilbert spaces H and any Y.

First results about the BPBpp

(2016, D., S. K. Kim and H. J. Lee)
■ (X, \mathbb{K}) has the BPBpp if and only if X is uniformly smooth.

- (X, Y) has the BPBpp for some $Y \Rightarrow X$ is uniformly smooth.
- (H, Y) has the BPBpp for all Hilbert spaces H and any Y.

■ (X, Y) has the BPBpp for X uniformly smooth and Y property β.

First results about the BPBpp

(2016, D., S. K. Kim and H. J. Lee)
■ (X, \mathbb{K}) has the BPBpp if and only if X is uniformly smooth.

- (X, Y) has the BPBpp for some $Y \Rightarrow X$ is uniformly smooth.
- (H, Y) has the BPBpp for all Hilbert spaces H and any Y.

■ (X, Y) has the BPBpp for X uniformly smooth and Y property β.

- there are uniformly smooth Banach spaces X such that the pair (X, Y) fails the BPBpp for some Y.

Recent results

Sheldon Dantas Postech University (포스텍) WORKSHOP ON INFINITE DIMENSIONAL ANALYSIS VALENCIA 2017 The BPBpp - WidaVa 2017

Recent results about the BPBpp

Stability results

Proposition

Let X_{1} be a one-complemented subspace of X. If (X, Y) has the BPBpp, then $\left(X_{1}, Y\right)$ has the BPBpp.

Recent results about the BPBpp

Stability results

Proposition

Let X_{1} be a one-complemented subspace of X. If (X, Y) has the BPBpp, then $\left(X_{1}, Y\right)$ has the BPBpp.

Questions

(a) Is this true for the BPBp? (201?, D., García, Maestre, Martín)

Recent results about the BPBpp

Stability results

Proposition

Let X_{1} be a one-complemented subspace of X. If (X, Y) has the BPBpp, then $\left(X_{1}, Y\right)$ has the BPBpp.

Questions

(a) Is this true for the BPBp? (201?, D., García, Maestre, Martín)
(b) Is this true for norm attaining operators?

Recent results about the BPBpp

Stability results

Proposition ((201?, D., García, Maestre, Martín) adapted)
 If $Y=Y_{1} \oplus_{a} Y_{2}$ and (X, Y) has the BPBpp, then $\left(X, Y_{j}\right)$ has the BPBpp.

Recent results about the BPBpp

Stability results

Proposition ((201?, D., García, Maestre, Martín) adapted)

If $Y=Y_{1} \oplus_{a} Y_{2}$ and (X, Y) has the BPBpp, then $\left(X, Y_{j}\right)$ has the BPBp.

Proposition ((2015, Aron, Choi, Kim, Lee, Martín) adapted)

If $(X, C(K, Y))$ has the BPBpp, then (X, Y) has the BPBpp.

Recent results about the BPBpp

Universal properties

Recent results about the BPBpp

Universal properties

Definition (2014, Aron, Choi, Kim, Lee, Martín)

(a) X is universal BPBpp domain space if (X, Y) has the BPBpp for all Y.

Recent results about the BPBpp

Universal properties

Definition (2014, Aron, Choi, Kim, Lee, Martín)

(a) X is universal BPBpp domain space if (X, Y) has the BPBpp for all Y.
(b) Y is universal BPBpp range space if (X, Y) has the BPBpp for all X uniformly smooth.

Recent results about the BPBpp

Universal properties

Definition (2014, Aron, Choi, Kim, Lee, Martín)

(a) X is universal BPBpp domain space if (X, Y) has the BPBpp for all Y.
(b) Y is universal BPBpp range space if (X, Y) has the BPBpp for all X uniformly smooth.

Examples (2016, D., S. K. Kim, H. J. Lee)

■ Hilbert spaces are universal BPBpp domain spaces.

Recent results about the BPBpp

Universal properties

Definition (2014, Aron, Choi, Kim, Lee, Martín)

(a) X is universal BPBpp domain space if (X, Y) has the BPBpp for all Y.
(b) Y is universal BPBpp range space if (X, Y) has the BPBpp for all X uniformly smooth.

Examples (2016, D., S. K. Kim, H. J. Lee)

- Hilbert spaces are universal BPBpp domain spaces.
- Uniform algebras and Banach spaces with property β are universal BPBpp range spaces.

Recent results about the BPBpp

Universal properties

Question
We know that Hilbert spaces are universal BPBpp domain spaces.

Recent results about the BPBpp

Universal properties

Question

We know that Hilbert spaces are universal BPBpp domain spaces.
Is it possible to extend the result for L_{p}-spaces with $1<p<\infty$?

Recent results about the BPBpp

Universal properties

Theorem
 If X is universal BPBpp domain space, then X is uniformly convex.

Recent results about the BPBpp

Universal properties

Theorem

If X is universal BPBpp domain space, then X is uniformly convex.

Theorem

If X is universal BPBpp domain space and X is isomorphic to a Hilbert space, then $\delta_{X}(\varepsilon) \geq C \varepsilon^{2}$.

Recent results about the BPBpp

Universal properties

Corollary
 $L_{p}(\mu)$ is not a BPBpp domain space for $p>2$.

Recent results about the BPBpp

Universal properties

Corollary

$L_{p}(\mu)$ is not a BPBpp domain space for $p>2$.

Question

Is $L_{p}(\mu)$ a BPBpp domain space for $1<p<2$?

Recent results about the BPBpp

Universal properties

ACK $_{\rho}$-structure (2017, Cascales, Guirao, Kadets, Soloviova)
Theorem
If Y has $A C K_{\rho}$-structure, then Y is universal BPBpp range space.

Recent results about the BPBpp

Universal properties

ACK $_{\rho}$-structure (2017, Cascales, Guirao, Kadets, Soloviova)

Theorem

If Y has $A C K_{\rho}$-structure, then Y is universal BPBpp range space.

- $C(K)$ and $C_{0}(L)$ and, more in general, uniform algebras.
- Banach spaces with property β.
- finite ℓ_{∞}-sums of Banach spaces with $A C K_{\rho}$-structure.
- $c_{0}(Y), \ell_{\infty}(Y)$ when Y has $A C K_{\rho}$-structure.
- $C(K, Y)$ when Y has $A C K_{\rho}$-structure.

Recent results about the BPBpp

Universal properties

Counterexample

For $p \geq 2$, there is a Banach space X_{p} which is uniformly convex and uniformly smooth such that (X_{p}, ℓ_{p}^{2}) fails the BPBpp.

Recent results about the BPBpp

Universal properties

Counterexample

For $p \geq 2$, there is a Banach space X_{p} which is uniformly convex and uniformly smooth such that (X_{p}, ℓ_{p}^{2}) fails the BPBpp.

- Note that $\left(X_{p}, \ell_{p}^{2}\right)$ has the BPBp since X_{p} is uniformly convex.

Recent results about the BPBpp

Universal properties

Counterexample

For $p \geq 2$, there is a Banach space X_{p} which is uniformly convex and uniformly smooth such that $\left(X_{p}, \ell_{p}^{2}\right)$ fails the BPBpp.

- Note that $\left(X_{p}, \ell_{p}^{2}\right)$ has the BPBp since X_{p} is uniformly convex.

Questions

(1) If Y is universal BPBp range space, then Y is universal BPBpp range for uniformly smooth X ?

Recent results about the BPBpp

Universal properties

Counterexample

For $p \geq 2$, there is a Banach space X_{p} which is uniformly convex and uniformly smooth such that $\left(X_{p}, \ell_{p}^{2}\right)$ fails the BPBpp.

- Note that $\left(X_{p}, \ell_{p}^{2}\right)$ has the BPBp since X_{p} is uniformly convex.

Questions

(1) If Y is universal BPBp range space, then Y is universal BPBpp range for uniformly smooth X ?
(2) It is not known whether all finite dimensional spaces are universal BPBp range spaces or even if they have Lindenstrauss property B.

Recent results about the BPBpp

The BPBpp for compact operators

Recent results about the BPBpp

The BPBpp for compact operators

BPBpp for compact operators

A pair of Banach spaces (X, Y) is said to have the BPBpp for compact operators if for every $\varepsilon \in(0,1)$, there exists $\eta(\varepsilon)>0$ such that if $T \in K(X, Y)$ with $\|T\|=1$ and $x \in S_{X}$ satisfy

$$
\|T(x)\|>1-\eta(\varepsilon)
$$

there exists $S \in K(X, Y)$ with $\|S\|=1$ such that

$$
\|S(x)\|=1 \quad \text { and } \quad\|T-S\|<\varepsilon
$$

Recent results about the BPBpp

The BPBpp for compact operators

■ (H, Y) for H Hilbert spaces and any Y.

Recent results about the BPBpp

The BPBpp for compact operators

- (H, Y) for H Hilbert spaces and any Y.

■ (X, Y) for X is uniformly smooth and Y has $A C K_{\rho}$-structure.

Recent results about the BPBpp

The BPBpp for compact operators

- (H, Y) for H Hilbert spaces and any Y.
- (X, Y) for X is uniformly smooth and Y has $A C K_{\rho}$-structure.
(2017, D., García, Maestre, Martín)

Recent results about the BPBpp

The BPBpp for compact operators

- (H, Y) for H Hilbert spaces and any Y.

■ (X, Y) for X is uniformly smooth and Y has $A C K_{\rho}$-structure.
(2017, D., García, Maestre, Martín)
■ $\left(X, \ell_{p}(Y)\right) \Rightarrow\left(X, L_{p}(\mu, Y)\right)$ for $1 \leq p<\infty$.

Recent results about the BPBpp

The BPBpp for compact operators

- (H, Y) for H Hilbert spaces and any Y.

■ (X, Y) for X is uniformly smooth and Y has $A C K_{\rho}$-structure.
(2017, D., García, Maestre, Martín)
■ $\left(X, \ell_{p}(Y)\right) \Rightarrow\left(X, L_{p}(\mu, Y)\right)$ for $1 \leq p<\infty$.
■ $(X, Y) \Rightarrow\left(X, L_{\infty}(\mu, Y)\right)$

Recent results about the BPBpp

The BPBpp for compact operators

- (H, Y) for H Hilbert spaces and any Y.

■ (X, Y) for X is uniformly smooth and Y has $A C K_{\rho}$-structure.
(2017, D., García, Maestre, Martín)
■ $\left(X, \ell_{p}(Y)\right) \Rightarrow\left(X, L_{p}(\mu, Y)\right)$ for $1 \leq p<\infty$.
■ $(X, Y) \Rightarrow\left(X, L_{\infty}(\mu, Y)\right)$
■ $(X, Y) \Rightarrow(X, C(K, Y))$.

The dual property

The dual property

Recall that (X, Y) has the BPBpp if $\forall \varepsilon \in(0,1), \exists \eta(\varepsilon)>0$:

$$
T \in S_{\mathcal{L}(X, Y)}, x \in S_{X} \text { with }\|T(x)\|>1-\eta(\varepsilon)
$$

$\Rightarrow \exists S \in S_{\mathcal{L}(X, Y)}$ with

$$
\|S(x)\|=1 \quad \text { and } \quad\|T-S\|<\varepsilon
$$

The dual property

Recall that (X, Y) has the BPBpp if $\forall \varepsilon \in(0,1), \exists \eta(\varepsilon)>0$:

$$
T \in S_{\mathcal{L}(X, Y)}, x \in S_{X} \text { with }\|T(x)\|>1-\eta(\varepsilon)
$$

$\Rightarrow \exists S \in S_{\mathcal{L}(X, Y)}$ with

$$
\|S(x)\|=1 \quad \text { and } \quad\|T-S\|<\varepsilon
$$

A possible dual property: $(2016$, D. $)$

The dual property

Recall that (X, Y) has the BPBpp if $\forall \varepsilon \in(0,1), \exists \eta(\varepsilon)>0$:

$$
T \in S_{\mathcal{L}(X, Y)}, x \in S_{X} \text { with }\|T(x)\|>1-\eta(\varepsilon)
$$

$\Rightarrow \exists S \in S_{\mathcal{L}(X, Y)}$ with

$$
\|S(x)\|=1 \quad \text { and } \quad\|T-S\|<\varepsilon
$$

A possible dual property: $(2016$, D.) $\forall \varepsilon \in(0,1), \exists \eta(\varepsilon)>0$:

$$
T \in S_{\mathcal{L}(X, Y)}, x \in S_{X} \text { with }\|T(x)\|>1-\eta(\varepsilon)
$$

$\Rightarrow \exists x_{0} \in S_{X}$ with

$$
\left\|T\left(x_{0}\right)\right\|=1 \quad \text { and } \quad\left\|x_{0}-x\right\|<\varepsilon
$$

The dual property

A possible dual property: $\forall \varepsilon \in(0,1), \exists \eta(\varepsilon)>0$:

$$
T \in S_{\mathcal{L}(X, Y)}, x_{0} \in S_{X} \text { with }\|T(x)\|>1-\eta(\varepsilon)
$$

$\Rightarrow \exists x_{0} \in S_{X}$ with

$$
\left\|T\left(x_{0}\right)\right\|=1 \quad \text { and } \quad\left\|x_{0}-x\right\|<\varepsilon
$$

Theorem (2014, S. K. Kim, H. J. Lee)

X is uniformly convex if and only (X, \mathbb{K}) has the dual property.

The dual property

A possible dual property: $\forall \varepsilon \in(0,1), \exists \eta(\varepsilon)>0$:

$$
T \in S_{\mathcal{L}(X, Y)}, x_{0} \in S_{X} \text { with }\|T(x)\|>1-\eta(\varepsilon)
$$

$\Rightarrow \exists x_{0} \in S_{X}$ with

$$
\left\|T\left(x_{0}\right)\right\|=1 \quad \text { and } \quad\left\|x_{0}-x\right\|<\varepsilon
$$

Theorem (2014, S. K. Kim, H. J. Lee)

X is uniformly convex if and only (X, \mathbb{K}) has the dual property.

Counterexample (D., 2016)
There are many pairs (X, Y) for which this property does not hold.

The dual property

The dual property is not possible for dimensions greater than 1 !

Theorem
If $\operatorname{dim}(X), \operatorname{dim}(Y)>1$, then the pair (X, Y) fails it.

The dual property

The dual property is not possible for dimensions greater than 1 !

Theorem

If $\operatorname{dim}(X), \operatorname{dim}(Y)>1$, then the pair (X, Y) fails it.

Proof.

- Reducing the proof for 2-dimensional spaces.
- Dividing the proof in two cases:
- X is Hilbert (John's maximal ellipsoid theorem)
- X is not Hilbert (Day's and Nordlander's theorems)

Thank you for your attention

