Bohr’s phenomenon for functions on the

Boolean cube

Joint work of: Andreas Defant, Mieczystaw Mastyto, and Antonio Pérez
Workshop: Valencia 2017
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Definition — Niels Bohr radius

The Bohr radius is a physical constant, approximately equal to the most
probable distance between the center of a nuclide and the electron in a
hydrogen atom in its ground state.
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Bohr’s power series theorem

K' = K(Ho(T)) = =

Sketch of proof — F.Wiener’s argument:

Let
f € Hyo(T) with [[flr<1.

Then:
o [f(k) <2(1—|£(0)]) for k>1
o S0 lf(B)3r < 1F(O)]+2(1 = |FO)) TR, 5 =1
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Crucial tool — BH-inequality, 1931

For each d € N there is a (best) constant BH%d such that every
degree-d polynomial f: CN — C

d+1

(X 1f@)I#) ™ < BHE || fllnx.

lof<d

Moreover, the exponent is optimal.

Lower estimate: BH-inequality plus Wiener’s technique...
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Again, adding a variable...

BH;? = BH:!

Bayart-Pellegrino-Seoane, 2014
BH%d < C\/dlogd

Timg {/BHS? = 1

In particular,

The real case? To focus on constants means new difficulties...
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Real BH-inequality

For each d € N there is a (best) constant BH[— 1,17 such that every
degree-d polynomial f : RY — R

(3 laal#) ™ < BEE o

|| <d

Surprising?
BH= || # BHZY

More precisely:

o limy{/BH ;) =2 o Timg {/BHES | = 1+ /2
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Reason: Distortion of different sup norms of real polynomials P
in N variables ...

Comparison of sup norms

o [[Plley < 1+ vV2)!|Pl-1 v
o |[Pllgn < 2971 Py qjn if P is d-homogeneous

Cauchy type estimates
For the m-homogeneous part P, of P

||Pm||[—1,1]N < (1 + \/§)d||P||[—1,1}N
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Boolean radii and the
BH-inequality on the Boolean
cube




George

(A

W= ad W il
: ‘.;,_:,-5,'—;:-.&@5_.:\11“[110“
3 g'i“ .[]11

10

Lo

13



Analysis of functions on the Boolean cube

f:{x1}¥N 2R, NeN

14



Analysis of functions on the Boolean cube

f:{x1}¥N 2R, NeN

Applications
e Theoretical computer sciences e Social choice theory
e Combinatorics e Cryptography

e Graph theory e Quantum computation

14



Analysis of functions on the Boolean cube

f:{x1}¥N 2R, NeN

Applications
e Theoretical computer sciences e Social choice theory
e Combinatorics e Cryptography
e Graph theory e Quantum computation

Example — majority function

Maj(z) = sign(z1 + ... + zn)
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Fourier analysis of functions on the Boolean cube {1}V

G = {£1}" compact abelian group
Haar measure = normalized counting measure

Dual group: z° : {+1}" — {£1}, =~ [],.cg n, where
SC[N={l,...,N}

Expectation: E[f] := Q%er{ﬂ}z\, f(x) for f: {£1}¥ - R

~ ~

Fourier expansion: f(z) = Y gcny f(S) 2% with f(S) = E[f - 2°]

Degree-d functions and d-homogeneous functions on {+1}V...

d = max{|S|: f(S) # 0}
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Tetrahedral polynomials

{:l:l}N C

sup
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Compare — Fourier analysis of functions on the polytorus TV

e G =T compact abelian group

Haar measure = normalized Lebesgue measure

Dual group: 2*: TN =T, 2+ ]

Expectation: E[f] := [[n f(

Fourier expansion: f(z) ~

neN #n

2)dz for f € Ly (TY)

Yoa f(oz) 2% with f(a)

28 with o € ZN

=E[f 27

17



Finding the coefficients may not be easy:
For NV odd

Maj(S) 0 |S] even
el = _1 _ N—1 A=
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Finding the coefficients may not be easy:
For NV odd

|S] even
N-—1

. 0
Maj(S) = . Nt o
o {(—nzwh(m)(k;»(z_;) 51— odd

Definition — Boolean radius
F a subset of functions on f: {1}V — R

p(F) :=sup {0 <p: Z |]?(S)|p‘s| S| fllgeyny forall f e f}
SC[N]
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For what?

e The hamster argument ...

e The study of Bohr radii of classes of functions on the Boolean cube
means to study the Fourier spectrum of these functions.

e What are the similarities of Bohr and Boolean radii, what are the
differences?
In contrast to Bohr's world Boole's world is real — so looking at
constants there should be substantial differences.

e Can Bohr's world offer techniques unknown in the Boolean world,
and vice versa?
More precisely, are Wiener's techniques or BH-inequalities still useful
in the Boolean world? As e.g. hypercontractivity arguments are
essential in both worlds!

e Is there hope to connect Bohr's world with the hot topic of quantum

information theory, e.g., XOR games, AA-conjecture ....
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Our challenges

o BN :=all fct. on {£1V} e BY, :=all d- homo. fct.

° Bgd = all degree-d fct. e BY :=all homo. fct.

Moreover, for 0 < § < 1

e BY :=all fct. on {£1V} with [E[f]| < (1 — )|/ f|lc

Two out of four...
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1

p(BN) =2~ —1 log 2 + o(1))

Sketch of proof — an argument a la Wiener:
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Sketch of proof — an argument a la Wiener:

Take f: {#1}N — [~1,1], and show first that f(S) <1 — f(0) for
every ) # S C [N].  Then for every p > 0

ST UFS) =150+ 317810
SC[N]

S#(

< |FO)+ Q- 1FO))(Q+p)N —1).

This shows that 25 —1 < p(BY).
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Theorem

1 1
Ny _ ok _ 4 _ 1
p(BY) =2 1—N

(log2 + o(1))
Sketch of proof — an argument a la Wiener:

Take f: {#1}N — [~1,1], and show first that f(S) <1 — f(0) for
every ) # S C [N].  Then for every p > 0

ST UFS) =150+ 317810
SC[N]

S#0
< |FO)+ Q- 1FO))(Q+p)N —1).

This shows that 2% — 1 < p(BY). For the converse inequality consider

-1 =1

f:{il}N%{il}vf(x)={l v41 O
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There is C' > 0 such that for all d < N
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€ <Y
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=
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Recall

BY, := all functions on {£1}" with of degree < d

Theorem
There is C' > 0 such that for all d < N

c (BN)<L
Jan =P\t = AN

The upper bound uses the functions

(1 +...+zn)?

L
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Recall

BY = all fet. with [E[f]| < (1= 8)[|flo

Theorem
There is C' > 0 such that for all N and 5% <4 <1

c-! (&

< p(By) <

VN +/log (2/5) VN +/log (2/9)

The upper bound uses so-called threshold functions

VN {EIY = {£1}, Ynao(z) =sign(z; + ...+ 25 — @)
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Again, in terms of Fourier analysis ...

The Sidon constant of the characters z°, |S| = d on the group {1}V

d—1
up to uniform constants equals (&) >
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Summary

all functions

all degree-d fct.

all d-homo. fct.

all homo. fct.

Bohr Boole
log N 1
N N
(i)dﬂl 1
N dN
(&) o ay Ser
N N
log N log N
N N
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Summary

all functions lﬂNﬁ

d d—1
all degree-d fct. (—) 2d
all d-homo. fct.

all homo. fct. l%‘vﬁ

For the last two estimates we need BH-inequalities for functions
on the Boolean cube — with a good control of the constants.
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Theorem, Blei 2003

For each d € N there is a (best) constant BH{Sﬁl} such that for every
[ {£1}Y — R of degree d

d+1

i~ _2d_
(X 1FSIF) ™ <BHEL, 1l
IS|<d

Moreover, the exponent is optimal.
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Theorem, Blei 2003

For each d € N there is a (best) constant BH{Sﬁl} such that for every
[ {£1}Y — R of degree d

d+1

= _2d_ 2
(X 1FSIF) ™ <BHEL, 1l

|S|<d

Moreover, the exponent is optimal.

Blei’s constant is big!

Why is it interesting to improve the constants?
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First reason — as mentioned, we need it for proofs of results like

BN
N—o0 log N
N
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Second reason: the Aaronson-Ambainis conjecture, 2011
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Aaronson-Ambainis, 2011:

The need for structure in quantum speedups

27



Informal conjecture
Every quantum query algorithm can be approximated by a classical
algorithm on 'most’ inputs.
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This follows from the AA conjecture — a conjecture in Fourier
analysis

f{£1}Y — [=1,1] of degree d

Var(f) == > 549 f(S) variance of f

~

Inf;(f) =X 5.5es f(S )? influence of the variable z;

For every such f there is j € [N] such that

poly(Var(f)/d) < Inf;(f).

From the book of O’Donnell: Analysis of Boolean functions

If true, this conjecture would have significant consequences regarding
the limitations of efficient quantum computation.
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What is known so far...

(i) True for Boolean functions f : {£1}" — {£1}
O'Donnell, Schramm, Saks and Servedio, 2005

(i) True replacing in the lower bound d by 2¢
Dinur, Kindler, Friedgut, and O'Donnell, 2007

Montanaro, 2013
e BH-inequalities are useful for the study of XOR-games.

e Can one prove that BH{S:gl} < poly(d) ?

e Whould this imply the AA-conjecture ? In certain cases yes!
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State of art today...

Theorem
There exists a constant C' > 0 such that for all d

1313 b e (0N AT

Timg {/BHE,, = 1.

In particular,
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Esto esta en contraste con...

e The real BH-inequality: limgy {‘/BH[S_d1 = 1++2

o ....and the tetrahedral case is somewhat in between!
e The complex BH-inequality: mdf/];%d =1l

Recall

{1} <

RN
f\R/Lf

sup |[f(z)] = sup [L(z)|
ze{£1}V z€[—1,1]N
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Ingredients for the proof

d-affine symmetric forms associated to real degree-d polynomials

Blei's decomposition for such forms—extended version of B-P-S

e Hypercontractivity (of the noise operator)

a new Harris type polarization formula for real degree-d polynomials
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