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Bohr radii and the BH-inequality

on the polytorus



Point of departure: Bohr strips for Dirichlet seriesD(s) =
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n ann
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Bohr’s power series theorem, 1914

For each f ∈ H∞(D)

∞∑
k=0

|f (k)(0)|
k!

1

3k
≤ ‖f‖D ,

and the radius r = 1
3 is optimal.

In terms of Fourier analysis ...

For each f ∈ H∞(T)

∞∑
k=0

|f̂(k)| 1
3k
≤ ‖f‖T ,

and the radius r = 1
3 is optimal.
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Definition – Niels Bohr radius

The Bohr radius is a physical constant, approximately equal to the most

probable distance between the center of a nuclide and the electron in a

hydrogen atom in its ground state.

Harald and Niels
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Definition – Harald Bohr radius: Given N ∈ NN ∈ NN ∈ N

KN := sup
{
0 < r < 1 :

∑
α∈NN

0

|f̂(α)| rα ≤ ‖f‖TN , f ∈ H∞(TN )
}

Bohr radius of F ⊂ H∞(TN )F ⊂ H∞(TN )F ⊂ H∞(TN )

K(F) := sup
{
0 < r < 1 :

∑
α∈NN

0

|f̂(α)| rα ≤ ‖f‖TN , f ∈ F
}
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Bohr’s power series theorem

K1 = K(H∞(T)) =
1

3

Sketch of proof – F.Wiener’s argument:

Let

f ∈ H∞(T) with ‖f‖T ≤ 1 .

Then:

• |f̂(k)| ≤ 2(1− |f̂(0)|) for k ≥ 1

•
∑∞
k=0 |f̂(k)|

1
3k
≤ |f̂(0)|+ 2(1− |f̂(0)|)

∑∞
k=1

1
3k

= 1
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Challenges

functions Bohr radius

H∞(TN ) KN

P(TN ) KN
pol

Phom(TN ) KN
hom

P≤d(TN ) KN
≤d

P=d(TN ) KN
=d

Using Wiener’s argument in several variables....

• KN ∼ KN
pol ∼ KN

hom

• KN
≤d ∼ KN

=d
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lim
N→∞

KN
hom√
logN
N

= 1

Highlight

lim
N→∞

KN√
logN
N

= 1

Dineen-Timoney 1989, Boas-Khavinson 1997, Defant-Frerick 2006,

Bayart-Matheron 2008, Defant-Frerick-Ortega-Ounaies-Seip 2011,

Pellegrino-Bayart-Seoane 2014

Crucial step

KN
≤d ∼

(
d

N

) d−1
2d
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In terms of Fourier analysis ...

Let S(N, d) = Sidon constant of all characters zα, |α| = d on the

group TN . Then
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d

N
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Crucial tool – BH-inequality, 1931

For each d ∈ N there is a (best) constant BH≤dT such that every

degree-d polynomial f : CN → C( ∑
|α|≤d

|f̂(α)|
2d

d+1

) d+1
2d ≤ BH≤dT ‖f‖TN .

Moreover, the exponent is optimal.

Lower estimate: BH-inequality plus Wiener’s technique...

1

limd→∞
d

√
BH≤dT

≤ limN→∞
KN√
logN
N
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Again, adding a variable...

BH=d
T = BH≤dT

Bayart-Pellegrino-Seoane, 2014

BH≤dT ≤ C
√
d log d

In particular,

limd
d

√
BH≤dT = 1

The real case? To focus on constants means new difficulties...
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Real BH-inequality

For each d ∈ N there is a (best) constant BH≤d[−1,1] such that every

degree-d polynomial f : RN → R( ∑
|α|≤d

|aα|
2d

d+1

) d+1
2d ≤ BH≤d[−1,1] ‖f‖[−1,1]N .

Surprising?

BH≤d[−1,1] 6= BH=d
[−1,1]

More precisely:

• limd
d

√
BH=d

[−1,1] = 2 • limd
d

√
BH≤d[−1,1] = 1 +

√
2
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Reason: Distortion of different sup norms of real polynomials PPP

in NNN variables ...

Comparison of sup norms

• ‖P‖TN ≤ (1 +
√
2)d‖P‖[−1,1]N

• ‖P‖TN ≤ 2d−1‖P‖[−1,1]N if P is d-homogeneous

Cauchy type estimates

For the m-homogeneous part Pm of P

‖Pm‖[−1,1]N ≤ (1 +
√
2)d‖P‖[−1,1]N
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Boolean radii and the

BH-inequality on the Boolean

cube



George
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Analysis of functions on the Boolean cube

f : {±1}N → R , N ∈ N

Applications

• Theoretical computer sciences

• Combinatorics

• Graph theory

• Social choice theory

• Cryptography

• Quantum computation

Example – majority function

Maj(x) = sign(x1 + . . .+ xN )
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Fourier analysis of functions on the Boolean cube {±1}N{±1}N{±1}N

• G = {±1}N compact abelian group

• Haar measure = normalized counting measure

• Dual group: xS : {±1}N → {±1} , x 7→
∏
n∈S xn , where

S ⊂ [N ] = {1, . . . , N}

• Expectation: E[f ] := 1
2N

∑
x∈{±1}N f(x) for f : {±1}N → R

• Fourier expansion: f(x) =
∑
S⊂[N ] f̂(S)x

S with f̂(S) = E[f · xS ]

Degree-ddd functions and ddd-homogeneous functions on {±1}N ...

d = max{|S| : f̂(S) 6= 0}
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Tetrahedral polynomials

{±1}N RN

Rf Lf

sup
x∈{±1}N

|f(x)| = sup
x∈[−1,1]N

|Lf (x)|

16



Compare – Fourier analysis of functions on the polytorus TNTNTN

• G = TN compact abelian group

• Haar measure = normalized Lebesgue measure

• Dual group: zα : TN → T , z 7→
∏
n∈N z

αn
n with α ∈ ZN0

• Expectation: E[f ] :=
∫
TN f(z)dz for f ∈ L1(TN )

• Fourier expansion: f(z) ∼
∑
α f̂(α) z

α with f̂(α) = E[f · z−α]

17



Finding the coefficients may not be easy:

For N odd

M̂aj(S) =

0 |S| even

(−1) k−1
2

1
2N−1

(N−1
N−1

2

)(N−1
2

k−1
2

)(
N−1
k−1

)−1 |S| = k odd

Definition – Boolean radius

F a subset of functions on f : {±1}N → R

ρ(F) := sup
{
0 < ρ :

∑
S⊂[N ]

|f̂(S)| ρ|S| ≤ ‖f‖{±1}N for all f ∈ F
}
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For what?

• The hamster argument ...

• The study of Bohr radii of classes of functions on the Boolean cube

means to study the Fourier spectrum of these functions.

• What are the similarities of Bohr and Boolean radii, what are the

differences?

In contrast to Bohr’s world Boole’s world is real – so looking at

constants there should be substantial differences.

• Can Bohr’s world offer techniques unknown in the Boolean world,

and vice versa?

More precisely, are Wiener’s techniques or BH-inequalities still useful

in the Boolean world? As e.g. hypercontractivity arguments are

essential in both worlds!

• Is there hope to connect Bohr’s world with the hot topic of quantum

information theory, e.g., XOR games, AA-conjecture ....
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Our challenges

• BN := all fct. on {±1N}

• BN≤d := all degree-d fct.

• BN=d := all d- homo. fct.

• BNhom := all homo. fct.

Moreover, for 0 ≤ δ ≤ 1

• BNδ := all fct. on {±1N} with |E[f ]| ≤ (1− δ)‖f‖∞

Two out of four...
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Theorem

ρ(BN ) = 2
1
N − 1

=
1

N

(
log 2 + o(1)

)

Sketch of proof – an argument à la Wiener:

Take f : {±1}N → [−1, 1], and show first that f̂(S) ≤ 1− f̂(∅) for

every ∅ 6= S ⊂ [N ]. Then for every ρ > 0∑
S⊂[N ]

|f̂(S)|ρ|S| = |f̂(∅)|+
∑
S 6=∅

|f̂(S)|ρ|S|

≤ |f̂(∅)|+ (1− |f̂(∅)|)
(
(1 + ρ)N − 1

)
.

This shows that 2
1
N − 1 ≤ ρ(BN ). For the converse inequality consider

f : {±1}N → {±1} , f(x) =

{
−1 x = 1

1 x 6= 1
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Recall

BN≤d := all functions on {±1}N with of degree ≤ d

Theorem

There is C > 0 such that for all d ≤ N

C−1√
dN
≤ ρ(BN≤d) ≤

C√
dN

The upper bound uses the functions

f(x) = 1− (x1 + . . .+ xN )d

N

22
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Recall

BNδ := all fct. with |E[f ]| ≤ (1− δ)‖f‖∞

Theorem

There is C > 0 such that for all N and 1
2N
≤ δ ≤ 1

C−1√
N
√

log (2/δ)
≤ ρ(BNδ ) ≤ C√

N
√
log (2/δ)

The upper bound uses so-called threshold functions

ψN,α : {±1}N → {±1}, ψN,α(x) = sign(x1 + . . .+ xN − α)
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Theorem

ρ(BN=d) ∼
(
d

N

) d−1
2d

Theorem

ρ(BN=d) ∼
(
d

N

) d−1
2d

Theorem

lim
N→∞

ρ(BNhom)√
logN
N

= 1
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Again, in terms of Fourier analysis ...

The Sidon constant of the characters xS , |S| = d on the group {±1}N

up to uniform constants equals
(
d
N

) d−1
2d .
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Summary

Bohr Boole

all functions
√

logN
N

√
logN
N

√
logN
N

1
N
1
N
1
N

all degree-d fct.
(
d
N

) d−1
2d

(
d
N

) d−1
2d

(
d
N

) d−1
2d 1√

dN

1√
dN
1√
dN

all d-homo. fct.
(
d
N

) d−1
2d

(
d
N

) d−1
2d

(
d
N

) d−1
2d

(
d
N

) d−1
2d

(
d
N

) d−1
2d

(
d
N

) d−1
2d

all homo. fct.
√

logN
N

√
logN
N

√
logN
N

√
logN
N

√
logN
N

√
logN
N

For the last two estimates we need BH-inequalities for functions

on the Boolean cube – with a good control of the constants.
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Theorem, Blei 2003

For each d ∈ N there is a (best) constant BH≤d{±1} such that for every

f : {±1}N → R of degree d( ∑
|S|≤d

|f̂(S)|
2d

d+1

) d+1
2d ≤ BH≤d{±1} ‖f‖{±1}N .

Moreover, the exponent is optimal.

Blei’s constant is big!

Why is it interesting to improve the constants?
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First reason – as mentioned, we need it for proofs of results like

lim
N→∞

ρ(BNhom)√
logN
N

= 1

This follows from the AA conjecture – a conjecture in Fourier

analysis

f : {±1}N → [−1, 1] of degree d

Var(f) :=
∑
S 6=∅ f̂(S)

2 variance of f

Infj(f) :=
∑
S:j∈S f̂(S)

2 influence of the variable xj

For every such f there is j ∈ [N ] such that

poly(Var(f)/d) ≤ Infj(f) .

From the book of O’Donnell: Analysis of Boolean functions

If true, this conjecture would have significant consequences regarding

the limitations of efficient quantum computation.
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Second reason: the Aaronson-Ambainis conjecture, 2011

This follows from the AA conjecture – a conjecture in Fourier

analysis
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Aaronson-Ambainis, 2011:

The need for structure in quantum speedups

This follows from the AA conjecture – a conjecture in Fourier

analysis

f : {±1}N → [−1, 1] of degree d

Var(f) :=
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S 6=∅ f̂(S)

2 variance of f

Infj(f) :=
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poly(Var(f)/d) ≤ Infj(f) .

From the book of O’Donnell: Analysis of Boolean functions

If true, this conjecture would have significant consequences regarding

the limitations of efficient quantum computation.
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Informal conjecture

Every quantum query algorithm can be approximated by a classical

algorithm on ’most’ inputs.

This follows from the AA conjecture – a conjecture in Fourier

analysis

f : {±1}N → [−1, 1] of degree d
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What is known so far...

(i) True for Boolean functions f : {±1}N → {±1}
O’Donnell, Schramm, Saks and Servedio, 2005

(ii) True replacing in the lower bound d by 2d

Dinur, Kindler, Friedgut, and O’Donnell, 2007

Montanaro, 2013

• BH-inequalities are useful for the study of XOR-games.

• Can one prove that BH≤d{±1} ≤ poly(d) ?BH≤d{±1} ≤ poly(d) ?BH≤d{±1} ≤ poly(d) ?

• Whould this imply the AA-conjecture ? In certain cases yes!
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State of art today...

Theorem

There exists a constant C > 0 such that for all d

BH≤d{±1} ≤ C
√
d log d

In particular,

limd
d

√
BH≤d{±1} = 1 .
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Esto está en contraste con...

• The real BH-inequality: limd
d

√
BH≤d[−1,1] = 1 +

√
2

• ....and the tetrahedral case is somewhat in between!

• The complex BH-inequality: limd
d

√
BH≤dT = 1

Recall

{±1}N RN

Rf Lf

sup
x∈{±1}N

|f(x)| = sup
x∈[−1,1]N

|Lf (x)|
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Ingredients for the proof

• d-affine symmetric forms associated to real degree-d polynomials

• Blei’s decomposition for such forms–extended version of B-P-S

• Hypercontractivity (of the noise operator)

• a new Harris type polarization formula for real degree-d polynomials
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