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Marek Cúth, Marián Fabian Non-separable Banach spaces studied via projectional skeletons and “rich” families of their separable subspaces



A projectional resolution of the identity (PRI) [J. Lindenstrauss 1965]
on a Banach space (X , ‖ · ‖) is a family (Pα : ω ≤ α ≤ dens X ) of
projections on X such that Pω = 0, P dens X is the identity mapping,
and for all ω ≤ α ≤ dens X the following hold:

(i) ‖Pα‖ = 1 and dens PαX ≤ α,
(ii) Pα ◦ Pβ = Pβ ◦ Pα = Pα whenever β ∈ [ω, α], and

(iii) α 6= ω =⇒
⋃
β<α Pβ+1X = PαX .

PRI proved to be a very efficient tool for constructing injections of X
into c0( dens X ), Markuševič bases, and LUR renormings. In particular
in WCG spaces.

A projectional skeleton [W. Kubiś 2009] in (X , ‖ · ‖) is a family of linear
bounded projections

(
Ps : s ∈ Γ

)
on X , indexed by a partially

ordered, up-directed, and σ-complete set (Γ,≤), such that
(i) PsX is separable for every s ∈ Γ,
(ii) X =

⋃
s∈Γ PsX ,

(iii) Pt ◦ Ps = Ps = Ps ◦ Pt whenever s, t ∈ Γ and s ≤ t , and
(iv) Given a sequence s1 < s2 < · · · in Γ, then

Psupn∈N sn X =
⋃

n∈N Psn X .
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into c0( dens X ), Markuševič bases, and LUR renormings. In particular
in WCG spaces.
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A projectional skeleton [W. Kubiś 2009] in (X , ‖ · ‖) is a family of linear
bounded projections

(
Ps : s ∈ Γ

)
on X , indexed by a partially

ordered, up-directed, and σ-complete set (Γ,≤), such that
(i) PsX is separable for every s ∈ Γ,

(ii) X =
⋃

s∈Γ PsX ,
(iii) Pt ◦ Ps = Ps = Ps ◦ Pt whenever s, t ∈ Γ and s ≤ t , and
(iv) Given a sequence s1 < s2 < · · · in Γ, then

Psupn∈N sn X =
⋃

n∈N Psn X .
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Marek Cúth, Marián Fabian Non-separable Banach spaces studied via projectional skeletons and “rich” families of their separable subspaces



A projectional resolution of the identity (PRI) [J. Lindenstrauss 1965]
on a Banach space (X , ‖ · ‖) is a family (Pα : ω ≤ α ≤ dens X ) of
projections on X such that Pω = 0, P dens X is the identity mapping,
and for all ω ≤ α ≤ dens X the following hold:

(i) ‖Pα‖ = 1 and dens PαX ≤ α,
(ii) Pα ◦ Pβ = Pβ ◦ Pα = Pα whenever β ∈ [ω, α], and

(iii) α 6= ω =⇒
⋃
β<α Pβ+1X = PαX .

PRI proved to be a very efficient tool for constructing injections of X
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Theorem 1
If a real or complex Banach space X admits a projectional skeleton,
then:

(i) X admits a PRI (W. Kubiś),
(ii) There exists a linear injection from X into c0( dens X ) (W. Kubiś),
(iii) X admits a Markuševič basis (M. Cúth), and
(iv) X admits admits an equivalent LUR norm (W. Kubis’ modulo S.

Troyanski’s and V. Zizler’s theorems).

Fact. If dens X = ω1, every PRI is automatically a projectional
skeleton,
and whenever (Ps : s ∈ Γ) is a projectional skeleton on X , there is a
Γ′ ⊂ Γ order homomorphic to [ω, ω1) such that (Ps : s ∈ Γ′) ∪ {IdX} is
a PRI on X .

What does Γ usually look like?
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(iv) X admits admits an equivalent LUR norm (W. Kubis’ modulo S.

Troyanski’s and V. Zizler’s theorems).

Fact. If dens X = ω1, every PRI is automatically a projectional
skeleton,

and whenever (Ps : s ∈ Γ) is a projectional skeleton on X , there is a
Γ′ ⊂ Γ order homomorphic to [ω, ω1) such that (Ps : s ∈ Γ′) ∪ {IdX} is
a PRI on X .

What does Γ usually look like?
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Definition 2 (J. M. Borwein-W. Moors 00)
Let E be a Banach space and let S(E) denote the family of all closed
linear separable subspaces.

A subfamily R ⊂ S(E) is called rich if
• R is cofinal, that is, for every Z ∈ S(E) there is U ∈ R so that
U ⊃ Z, and
• R is σ-closed, that is, if U1 ⊂ U2 ⊂ · · · is a sequence in R, then⋃

Ui ∈ R.

Remark. (R,“⊂”) is an up-directed and σ-complete poset.

Proposition 3
(Important) If R1,R2, . . . are rich families, then R1 ∩R2 ∩ · · · is rich.

Example (important). Given a Banach space X , by a rectangle we
understand any product V × Y where V ∈ S(X ) and Y ∈ S(X ∗).

Let S<=(X × X ∗) denote the family of all such rectangles.

Clearly, S<=(X × X ∗) is a rich subfamily of S(X × X ∗).
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U ⊃ Z, and
• R is σ-closed, that is, if U1 ⊂ U2 ⊂ · · · is a sequence in R, then⋃

Ui ∈ R.

Remark. (R,“⊂”) is an up-directed and σ-complete poset.

Proposition 3
(Important) If R1,R2, . . . are rich families, then

R1 ∩R2 ∩ · · · is rich.

Example (important). Given a Banach space X , by a rectangle we
understand any product V × Y where V ∈ S(X ) and Y ∈ S(X ∗).

Let S<=(X × X ∗) denote the family of all such rectangles.

Clearly, S<=(X × X ∗) is a rich subfamily of S(X × X ∗).
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Theorem 4
For a real or complex Banach space (X , ‖ · ‖) the following assertions
are mutually equivalent:

(i) X is Asplund, that is, for every Z ∈ S(X ) the dual Z ∗ is separable.

(ii) There exists a rich family A ⊂ S<=(X × X ∗) such that
for every V × Y ∈ A the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗

is a surjection and an isometry as well.

(iii) X ∗ admits a projectional skeleton (Ps : s ∈ Γ) such that⋃
{Ps
∗X ∗∗ : s ∈ Γ

}
⊃ X.

Proof. (i)⇒(ii) profits from a long bow of ideas across half a century:
[Lindenstrauss65, Amir-Lindenstrauss68, Tacon70, Simons 1972,
John-Zizler74, Gul’ko79, Jayne-Rogers85, Fabian-Godefroy88,
Stegall94,Cúth-Fabian15].

(ii)⇒(iii) is very easy; just take Γ := A.

(iii)⇒(i) is quite easy.
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Marek Cúth, Marián Fabian Non-separable Banach spaces studied via projectional skeletons and “rich” families of their separable subspaces



Theorem 4
For a real or complex Banach space (X , ‖ · ‖) the following assertions
are mutually equivalent:

(i) X is Asplund, that is, for every Z ∈ S(X ) the dual Z ∗ is separable.

(ii) There exists a rich family A ⊂ S<=(X × X ∗) such that
for every V × Y ∈ A the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗

is a surjection and an isometry as well.

(iii) X ∗ admits a projectional skeleton (Ps : s ∈ Γ) such that⋃
{Ps
∗X ∗∗ : s ∈ Γ

}
⊃ X.

Proof. (i)⇒(ii) profits from a long bow of ideas across half a century:

[Lindenstrauss65, Amir-Lindenstrauss68, Tacon70, Simons 1972,
John-Zizler74, Gul’ko79, Jayne-Rogers85, Fabian-Godefroy88,
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WCG SPACES AND THEIR OVERCLASSES

A real or complex Banach space X is called

weakly compactly generated (WCG) if it admits a weakly compact
and linearly dense subset;
e.g. separable, reflexive, C(K ), with K Eberlein compact, L1(µ), with
µ σ-finite,...

weakly Lindelöf determined (WLD) if there is a linearly dense set
M ⊂ X such that every x∗ ∈ X ∗ has the M-support
suppM x∗ := {m ∈ M : x∗(m) 6= 0} at most countable;

e.g. C(K ), where K is a Corson compact with “property M”

Pličko if there is a linearly dense set M ⊂ X such that the set D of all
x∗ ∈ X ∗ with suppM x∗ countable is “norming”.

e.g. L1(µ), with any σ-additive measure µ, duals to C∗ algebras,
order continuous lattices, C(G), with G a compact abelian group, and
preduals of semifinite von Neumann algebras
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weakly Lindelöf determined (WLD) if there is a linearly dense set
M ⊂ X such that every x∗ ∈ X ∗ has the M-support
suppM x∗ := {m ∈ M : x∗(m) 6= 0} at most countable;

e.g. C(K ), where K is a Corson compact with “property M”
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preduals of semifinite von Neumann algebras
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Theorem 5
Let (X , ‖ · ‖) be a real or complex Banach space. TFAE:

(i) X is simultaneously Asplund and WCG.
(ii) There exist a linearly dense set M ⊂ X that countably supports all
elements of X ∗ and a rich family AW ⊂ S<=(X × X ∗) such that for
every V × Y ∈ AW the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗ is a

surjective isometry, V⊥ ∩ Y
w∗

= {0}, M \ V ⊂ Y⊥, and
∀v ∈ V ‖v‖ = sup |〈Y ∩ BX∗ , v〉|.
(iii) There exists a (commutative) projectional skeleton (Qs : s ∈ Γ)
on X such that (Qs

∗ : s ∈ Γ) is a projectional skeleton on X ∗.

Proof. (i)⇒(ii) X Asplund yields an A ⊂ S<=(X × X ∗) such that ...
X WCG, using projectional generators, yields M and another rich
family, sayW ⊂ S<=(X × X ∗), such that ... Put then AW := A ∩W.
(ii)⇒(iii) Put Γ := AW, and endow it by the order “⊂”.
(iii)⇒(i) Needs a longer but not deep work (via transfinite induction).
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Theorem 6 (W. Kubiś 2009)
A real or complex Banach space is Pličko if and only if

it admits a
skeleton (Pγ : γ ∈ Γ) which is moreover commutative, i.e.,
Pγ ◦ Pδ = Pδ ◦ Pγ whenever γ, δ ∈ Γ.

We have an elementary proof of the necessity (i.e., without using
elementary submodels from logic).
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