Marek Cúth, Marián Fabian

Marek Cúth, Marián Fabian

Marek Cúth, Marián Fabian

Dedicated to the memory of Jonathan Michael Borwein (1951-2016)

Marek Cúth, Marián Fabian

Dedicated to the memory of Jonathan Michael Borwein (1951-2016)

Valencia, October 2017

(i)
$$||P_{\alpha}|| = 1$$
 and dens $P_{\alpha}X \leq \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \neq \omega \implies \overline{\bigcup_{\beta < \alpha} P_{\beta+1}X} = P_{\alpha}X$.

(i)
$$||P_{\alpha}|| = 1$$
 and dens $P_{\alpha}X \leq \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \neq \omega \implies \overline{\bigcup_{\beta < \alpha} P_{\beta + 1}X} = P_{\alpha}X$.

PRI proved to be a very efficient tool for constructing injections of X into $c_0(\text{dens } X)$, Markuševič bases, and LUR renormings.

(i)
$$||P_{\alpha}|| = 1$$
 and dens $P_{\alpha}X \leq \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \neq \omega \implies \overline{\bigcup_{\beta < \alpha} P_{\beta + 1}X} = P_{\alpha}X$.

PRI proved to be a very efficient tool for constructing injections of X into c_0 (dens X), Markuševič bases, and LUR renormings. In particular in WCG spaces.

(i)
$$||P_{\alpha}|| = 1$$
 and dens $P_{\alpha}X \leq \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \neq \omega \implies \overline{\bigcup_{\beta < \alpha} P_{\beta + 1}X} = P_{\alpha}X$.

PRI proved to be a very efficient tool for constructing injections of X into c_0 (dens X), Markuševič bases, and LUR renormings. In particular in WCG spaces.

(i)
$$||P_{\alpha}|| = 1$$
 and dens $P_{\alpha}X \leq \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \neq \omega \implies \overline{\bigcup_{\beta < \alpha} P_{\beta + 1}X} = P_{\alpha}X$.

PRI proved to be a very efficient tool for constructing injections of X into $c_0(\text{dens }X)$, Markuševič bases, and LUR renormings. In particular in WCG spaces.

(i)
$$P_s X$$
 is separable for every $s \in \Gamma$,

(i)
$$\|P_{\alpha}\| = 1$$
 and dens $P_{\alpha}X \leq \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \neq \omega \implies \overline{\bigcup_{\beta < \alpha} P_{\beta + 1}X} = P_{\alpha}X$.

PRI proved to be a very efficient tool for constructing injections of X into $c_0(\text{dens }X)$, Markuševič bases, and LUR renormings. In particular in WCG spaces.

(i)
$$P_s X$$
 is separable for every $s \in \Gamma$,
(ii) $X = \bigcup_{s \in \Gamma} P_s X$,

(i)
$$||P_{\alpha}|| = 1$$
 and dens $P_{\alpha}X \leq \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \neq \omega \implies \overline{\bigcup_{\beta < \alpha} P_{\beta + 1}X} = P_{\alpha}X$.

PRI proved to be a very efficient tool for constructing injections of X into $c_0(\text{dens }X)$, Markuševič bases, and LUR renormings. In particular in WCG spaces.

(i)
$$P_s X$$
 is separable for every $s \in \Gamma$,
(ii) $X = \bigcup_{s \in \Gamma} P_s X$,
(iii) $P_t \circ P_s = P_s = P_s \circ P_t$ whenever $s, t \in \Gamma$ and $s \leq t$, and

(i)
$$||P_{\alpha}|| = 1$$
 and dens $P_{\alpha}X \leq \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \neq \omega \implies \overline{\bigcup_{\beta < \alpha} P_{\beta + 1}X} = P_{\alpha}X$.

PRI proved to be a very efficient tool for constructing injections of X into $c_0(\text{dens } X)$, Markuševič bases, and LUR renormings. In particular in WCG spaces.

(i)
$$P_s X$$
 is separable for every $s \in \Gamma$,
(ii) $X = \bigcup_{s \in \Gamma} P_s X$,
(iii) $P_t \circ P_s = P_s = P_s \circ P_t$ whenever $s, t \in \Gamma$ and $s \leq t$, and
(iv) Given a sequence $s_1 < s_2 < \cdots$ in Γ , then
 $P_{\sup_{n \in \mathbb{N}} s_n} X = \bigcup_{n \in \mathbb{N}} P_{s_n} X$.

- (i) X admits a PRI (W. Kubiś),
- (ii) There exists a linear injection from X into $c_0(\text{dens } X)$ (W. Kubiś),

- (i) X admits a PRI (W. Kubiś),
- (ii) There exists a linear injection from X into $c_0(\text{dens } X)$ (W. Kubiś),
- (iii) X admits a Markuševič basis (M. Cúth), and

- (i) X admits a PRI (W. Kubiś),
- (ii) There exists a linear injection from X into $c_0(\text{dens } X)$ (W. Kubiś),
- (iii) X admits a Markuševič basis (M. Cúth), and
- (iv) X admits admits an equivalent LUR norm (W. Kubis' modulo S. Troyanski's and V. Zizler's theorems).

If a real or complex Banach space X admits a projectional skeleton, then:

- (i) X admits a PRI (W. Kubiś),
- (ii) There exists a linear injection from X into $c_0(\text{dens } X)$ (W. Kubiś),
- (iii) X admits a Markuševič basis (M. Cúth), and
- (iv) X admits admits an equivalent LUR norm (W. Kubis' modulo S. Troyanski's and V. Zizler's theorems).

Fact. If dens $X = \omega_1$, every PRI is automatically a projectional skeleton,

If a real or complex Banach space X admits a projectional skeleton, then:

- (i) X admits a PRI (W. Kubiś),
- (ii) There exists a linear injection from X into $c_0(\text{dens } X)$ (W. Kubiś),
- (iii) X admits a Markuševič basis (M. Cúth), and
- (iv) X admits admits an equivalent LUR norm (W. Kubis' modulo S. Troyanski's and V. Zizler's theorems).

Fact. If dens $X = \omega_1$, every PRI is automatically a projectional skeleton,

and whenever $(P_s : s \in \Gamma)$ is a projectional skeleton on X, there is a $\Gamma' \subset \Gamma$ order homomorphic to $[\omega, \omega_1)$ such that $(P_s : s \in \Gamma') \cup {\text{Id}_X}$ is a PRI on X.

If a real or complex Banach space X admits a projectional skeleton, then:

- (i) X admits a PRI (W. Kubiś),
- (ii) There exists a linear injection from X into $c_0(\text{dens } X)$ (W. Kubiś),
- (iii) X admits a Markuševič basis (M. Cúth), and
- (iv) X admits admits an equivalent LUR norm (W. Kubis' modulo S. Troyanski's and V. Zizler's theorems).

Fact. If dens $X = \omega_1$, every PRI is automatically a projectional skeleton, and whenever $(P_s : s \in \Gamma)$ is a projectional skeleton on X, there is a $\Gamma' \subset \Gamma$ order homomorphic to $[\omega, \omega_1)$ such that $(P_s : s \in \Gamma') \cup {\mathrm{Id}_X}$ is a PRI on X.

What does Γ usually look like?

Let *E* be a Banach space and let S(E) denote the family of all closed linear separable subspaces.

.

Let *E* be a Banach space and let S(E) denote the family of all closed linear separable subspaces. A subfamily $\mathcal{R} \subset S(E)$ is called rich if

Let *E* be a Banach space and let S(E) denote the family of all closed linear separable subspaces. A subfamily $\mathcal{R} \subset S(E)$ is called rich if

• R is cofinal, that is,

Let E be a Banach space and let S(E) denote the family of all closed linear separable subspaces. A subfamily $\mathcal{R} \subset S(E)$ is called rich if • \mathcal{R} is cofinal, that is, for every $Z \in S(E)$ there is $U \in \mathcal{R}$ so that $U \supset Z$, and

Let E be a Banach space and let S(E) denote the family of all closed linear separable subspaces. A subfamily $\mathcal{R} \subset S(E)$ is called rich if • \mathcal{R} is cofinal, that is, for every $Z \in S(E)$ there is $U \in \mathcal{R}$ so that $U \supset Z$, and

• \mathcal{R} is σ -closed, that is,

Let E be a Banach space and let S(E) denote the family of all closed linear separable subspaces. A subfamily $\mathcal{R} \subset S(E)$ is called rich if • \mathcal{R} is cofinal, that is, for every $Z \in S(E)$ there is $U \in \mathcal{R}$ so that $U \supset Z$, and

• \mathcal{R} is σ -closed, that is, if $U_1 \subset U_2 \subset \cdots$ is a sequence in \mathcal{R} , then $\bigcup U_i \in \mathcal{R}$.

Let *E* be a Banach space and let S(E) denote the family of all closed linear separable subspaces. A subfamily $\mathcal{R} \subset S(E)$ is called rich if • \mathcal{R} is cofinal, that is, for every $Z \in S(E)$ there is $U \in \mathcal{R}$ so that $U \supset Z$, and

• \mathcal{R} is σ -closed, that is, if $U_1 \subset U_2 \subset \cdots$ is a sequence in \mathcal{R} , then $\bigcup U_i \in \mathcal{R}$.

Remark. (\mathcal{R} , " \subset ") is an up-directed and σ -complete poset.

Let *E* be a Banach space and let S(E) denote the family of all closed linear separable subspaces. A subfamily $\mathcal{R} \subset S(E)$ is called rich if • \mathcal{R} is cofinal, that is, for every $Z \in S(E)$ there is $U \in \mathcal{R}$ so that $U \supset Z$, and • \mathcal{R} is σ -closed, that is, if $U_1 \subset U_2 \subset \cdots$ is a sequence in \mathcal{R} , then

 $\bigcup U_i \in \mathcal{R}.$

Remark. (\mathcal{R} , " \subset ") is an up-directed and σ -complete poset.

Proposition 3

(Important) If $\mathcal{R}_1, \mathcal{R}_2, \dots$ are rich families, then

Let *E* be a Banach space and let S(E) denote the family of all closed linear separable subspaces. A subfamily $\mathcal{R} \subset S(E)$ is called rich if • \mathcal{R} is cofinal, that is, for every $Z \in S(E)$ there is $U \in \mathcal{R}$ so that $U \supset Z$, and • \mathcal{R} is σ -closed, that is, if $U_1 \subset U_2 \subset \cdots$ is a sequence in \mathcal{R} , then

 $\bigcup U_i \in \mathcal{R}.$

Remark. (\mathcal{R} , " \subset ") is an up-directed and σ -complete poset.

Proposition 3

(Important) If $\mathcal{R}_1, \mathcal{R}_2, \ldots$ are rich families, then $\mathcal{R}_1 \cap \mathcal{R}_2 \cap \cdots$ is rich.

Let *E* be a Banach space and let S(E) denote the family of all closed linear separable subspaces. A subfamily $\mathcal{R} \subset S(E)$ is called rich if • \mathcal{R} is cofinal, that is, for every $Z \in S(E)$ there is $U \in \mathcal{R}$ so that $U \supset Z$, and • \mathcal{R} is σ -closed, that is, if $U_1 \subset U_2 \subset \cdots$ is a sequence in \mathcal{R} , then $\boxed{|U_i \in \mathcal{R}}$.

Remark. (\mathcal{R} , " \subset ") is an up-directed and σ -complete poset.

Proposition 3

(Important) If $\mathcal{R}_1, \mathcal{R}_2, \ldots$ are rich families, then $\mathcal{R}_1 \cap \mathcal{R}_2 \cap \cdots$ is rich.

Example (important). Given a Banach space *X*, by a rectangle

Let E be a Banach space and let $\mathcal{S}(E)$ denote the family of all closed linear separable subspaces. A subfamily $\mathcal{R} \subset \mathcal{S}(E)$ is called rich if • \mathcal{R} is cofinal, that is, for every $Z \in \mathcal{S}(E)$ there is $U \in \mathcal{R}$ so that $U \supset Z$, and • \mathcal{R} is σ -closed, that is, if $U_1 \subset U_2 \subset \cdots$ is a sequence in \mathcal{R} , then

 $\bigcup U_i \in \mathcal{R}.$

Remark. (\mathcal{R} , " \subset ") is an up-directed and σ -complete poset.

Proposition 3

(Important) If $\mathcal{R}_1, \mathcal{R}_2, \ldots$ are rich families, then $\mathcal{R}_1 \cap \mathcal{R}_2 \cap \cdots$ is rich.

Example (important). Given a Banach space *X*, by a rectangle we understand any product $V \times Y$ where $V \in S(X)$ and $Y \in S(X^*)$.

Let *E* be a Banach space and let S(E) denote the family of all closed linear separable subspaces. A subfamily $\mathcal{R} \subset S(E)$ is called rich if • \mathcal{R} is cofinal, that is, for every $Z \in S(E)$ there is $U \in \mathcal{R}$ so that $U \supset Z$, and • \mathcal{R} is σ -closed, that is, if $U_1 \subset U_2 \subset \cdots$ is a sequence in \mathcal{R} , then

 $\bigcup U_i \in \mathcal{R}.$

Remark. (\mathcal{R} , " \subset ") is an up-directed and σ -complete poset.

Proposition 3

(Important) If $\mathcal{R}_1, \mathcal{R}_2, \ldots$ are rich families, then $\mathcal{R}_1 \cap \mathcal{R}_2 \cap \cdots$ is rich.

Example (important). Given a Banach space *X*, by a rectangle we understand any product $V \times Y$ where $V \in S(X)$ and $Y \in S(X^*)$.

Let $S_{\Box}(X \times X^*)$ denote the family of all such rectangles.

イロト イポト イラト イラト 一戸

Let *E* be a Banach space and let S(E) denote the family of all closed linear separable subspaces. A subfamily $\mathcal{R} \subset S(E)$ is called rich if • \mathcal{R} is cofinal, that is, for every $Z \in S(E)$ there is $U \in \mathcal{R}$ so that $U \supset Z$, and • \mathcal{R} is σ -closed, that is, if $U_1 \subset U_2 \subset \cdots$ is a sequence in \mathcal{R} , then $\boxed{|U_i \in \mathcal{R}}$.

Remark. (\mathcal{R} , " \subset ") is an up-directed and σ -complete poset.

Proposition 3

(Important) If $\mathcal{R}_1, \mathcal{R}_2, \ldots$ are rich families, then $\mathcal{R}_1 \cap \mathcal{R}_2 \cap \cdots$ is rich.

Example (important). Given a Banach space *X*, by a rectangle we understand any product $V \times Y$ where $V \in S(X)$ and $Y \in S(X^*)$.

Let $S_{\Box}(X \times X^*)$ denote the family of all such rectangles.

Clearly, $S_{\Box}(X \times X^*)$ is a rich subfamily of $S(X \times X^*)$.

イロト イポト イラト イラト 一戸

For a real or complex Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

For a real or complex Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund,

4 3 5 4 3

For a real or complex Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

For a real or complex Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that

For a real or complex Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset S_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$

For a real or complex Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset S_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection

For a real or complex Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

For a real or complex Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

(iii) X^* admits a projectional skeleton ($P_s : s \in \Gamma$) such that $\bigcup \{P_s^* X^{**} : s \in \Gamma\} \supset X$.

Proof.

For a real or complex Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

(iii) X^* admits a projectional skeleton ($P_s : s \in \Gamma$) such that $\bigcup \{P_s^* X^{**} : s \in \Gamma\} \supset X$.

Proof. (i) \Rightarrow (ii) profits from a long bow of ideas across half a century:

For a real or complex Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

(iii) X^* admits a projectional skeleton ($P_s : s \in \Gamma$) such that $\bigcup \{P_s^* X^{**} : s \in \Gamma\} \supset X$.

Proof. (i)⇒(ii) profits from a long bow of ideas across half a century: [Lindenstrauss65, Amir-Lindenstrauss68, Tacon70, Simons 1972, John-Zizler74, Gul'ko79, Jayne-Rogers85, Fabian-Godefroy88, Stegall94,Cúth-Fabian15].

For a real or complex Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

(iii) X^* admits a projectional skeleton ($P_s : s \in \Gamma$) such that $\bigcup \{P_s^* X^{**} : s \in \Gamma\} \supset X$.

Proof. (i) \Rightarrow (ii) profits from a long bow of ideas across half a century: [Lindenstrauss65, Amir-Lindenstrauss68, Tacon70, Simons 1972, John-Zizler74, Gul'ko79, Jayne-Rogers85, Fabian-Godefroy88, Stegall94,Cúth-Fabian15].

 $(ii) \Rightarrow (iii)$ is very easy;

For a real or complex Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

(iii) X^* admits a projectional skeleton ($P_s : s \in \Gamma$) such that $\bigcup \{P_s^* X^{**} : s \in \Gamma\} \supset X$.

Proof. (i)⇒(ii) profits from a long bow of ideas across half a century: [Lindenstrauss65, Amir-Lindenstrauss68, Tacon70, Simons 1972, John-Zizler74, Gul'ko79, Jayne-Rogers85, Fabian-Godefroy88, Stegall94,Cúth-Fabian15].

(ii) \Rightarrow (iii) is very easy; just take $\Gamma := A$.

 $(iii) \Rightarrow (i)$ is quite easy.

э.

A real or complex Banach space X is called

weakly compactly generated (WCG) if it admits a weakly compact and linearly dense subset;

A real or complex Banach space X is called

weakly compactly generated (WCG) if it admits a weakly compact and linearly dense subset;

e.g. separable, reflexive, C(K), with K Eberlein compact, $L_1(\mu)$, with $\mu \sigma$ -finite,...

A real or complex Banach space X is called

weakly compactly generated (WCG) if it admits a weakly compact and linearly dense subset;

e.g. separable, reflexive, C(K), with K Eberlein compact, $L_1(\mu)$, with $\mu \sigma$ -finite,...

weakly Lindelöf determined (WLD) if there is a linearly dense set $M \subset X$ such that every $x^* \in X^*$ has the *M*-support supp_M $x^* := \{m \in M : x^*(m) \neq 0\}$ at most countable;

A real or complex Banach space X is called

weakly compactly generated (WCG) if it admits a weakly compact and linearly dense subset;

e.g. separable, reflexive, C(K), with K Eberlein compact, $L_1(\mu)$, with $\mu \sigma$ -finite,...

weakly Lindelöf determined (WLD) if there is a linearly dense set $M \subset X$ such that every $x^* \in X^*$ has the *M*-support supp_M $x^* := \{m \in M : x^*(m) \neq 0\}$ at most countable;

e.g. C(K), where K is a Corson compact with "property M"

A real or complex Banach space X is called

weakly compactly generated (WCG) if it admits a weakly compact and linearly dense subset;

e.g. separable, reflexive, C(K), with K Eberlein compact, $L_1(\mu)$, with $\mu \sigma$ -finite,...

weakly Lindelöf determined (WLD) if there is a linearly dense set $M \subset X$ such that every $x^* \in X^*$ has the *M*-support supp $_M x^* := \{m \in M : x^*(m) \neq 0\}$ at most countable;

e.g. C(K), where K is a Corson compact with "property M"

Pličko if there is a linearly dense set $M \subset X$ such that the set *D* of all $x^* \in X^*$ with supp_M x^* countable is "norming".

A real or complex Banach space X is called

weakly compactly generated (WCG) if it admits a weakly compact and linearly dense subset;

e.g. separable, reflexive, C(K), with K Eberlein compact, $L_1(\mu)$, with $\mu \sigma$ -finite,...

weakly Lindelöf determined (WLD) if there is a linearly dense set $M \subset X$ such that every $x^* \in X^*$ has the *M*-support supp $_M x^* := \{m \in M : x^*(m) \neq 0\}$ at most countable;

e.g. C(K), where K is a Corson compact with "property M"

Pličko if there is a linearly dense set $M \subset X$ such that the set *D* of all $x^* \in X^*$ with supp_M x^* countable is "norming".

e.g. $L_1(\mu)$, with any σ -additive measure μ , duals to C^* algebras, order continuous lattices, C(G), with G a compact abelian group, and preduals of semifinite von Neumann algebras

Theorem 5 Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE:

伺 ト イヨ ト イヨ ト

Theorem 5 Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE: (i) X is simultaneously Asplund and WCG.

伺 ト イヨ ト イヨ ト

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE: (i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all elements of X^* and a rich family $AW \subset S_{\Box}(X \times X^*)$ such that

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE: (i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all elements of X^* and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}$,

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE: (i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all elements of X^* and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}, M \setminus V \subset Y_{\perp}$, and $\forall v \in V ||v|| = \sup |\langle Y \cap B_{X^*}, v \rangle|$.

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE: (i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all elements of X^* and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}, M \setminus V \subset Y_{\perp}$, and $\forall v \in V ||v|| = \sup |\langle Y \cap B_{X^*}, v \rangle|$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^* .

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE: (i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all elements of X^* and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}, M \setminus V \subset Y_{\perp}$, and $\forall v \in V ||v|| = \sup |\langle Y \cap B_{X^*}, v \rangle|$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^* .

Proof. (i) \Rightarrow (ii) *X* Asplund yields an $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that ...

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE: (i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all elements of X^* and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}, M \setminus V \subset Y_{\perp}$, and $\forall v \in V ||v|| = \sup |\langle Y \cap B_{X^*}, v \rangle|$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^* .

Proof. (i) \Rightarrow (ii) *X* Asplund yields an $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that ... *X* WCG, using projectional generators, yields *M* and another rich family, say $\mathcal{W} \subset \mathcal{S}_{\Box}(X \times X^*)$, such that ...

周 ト イ ヨ ト イ ヨ ト

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE: (i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all elements of X^* and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}, M \setminus V \subset Y_{\perp}$, and $\forall v \in V ||v|| = \sup |\langle Y \cap B_{X^*}, v \rangle|$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^* .

Proof. (i) \Rightarrow (ii) *X* Asplund yields an $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that ... *X* WCG, using projectional generators, yields *M* and another rich family, say $\mathcal{W} \subset \mathcal{S}_{\Box}(X \times X^*)$, such that ... Put then $\mathcal{A}\mathcal{W} := \mathcal{A} \cap \mathcal{W}$.

周 ト イ ヨ ト イ ヨ ト

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE: (i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all elements of X^* and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}, M \setminus V \subset Y_{\perp}$, and $\forall v \in V ||v|| = \sup |\langle Y \cap B_{X^*}, v \rangle|$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^* .

Proof. (i) \Rightarrow (ii) *X* Asplund yields an $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that ... *X* WCG, using projectional generators, yields *M* and another rich family, say $\mathcal{W} \subset \mathcal{S}_{\Box}(X \times X^*)$, such that ... Put then $\mathcal{A}\mathcal{W} := \mathcal{A} \cap \mathcal{W}$. (ii) \Rightarrow (iii) Put $\Gamma := \mathcal{A}\mathcal{W}$,

くぼう くほう くほう

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE: (i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all elements of X^* and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}, M \setminus V \subset Y_{\perp}$, and $\forall v \in V ||v|| = \sup |\langle Y \cap B_{X^*}, v \rangle|$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^* .

Proof. (i) \Rightarrow (ii) *X* Asplund yields an $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that ... *X* WCG, using projectional generators, yields *M* and another rich family, say $\mathcal{W} \subset \mathcal{S}_{\Box}(X \times X^*)$, such that ... Put then $\mathcal{A}\mathcal{W} := \mathcal{A} \cap \mathcal{W}$. (ii) \Rightarrow (iii) Put $\Gamma := \mathcal{A}\mathcal{W}$, and endow it by the order " \subset ".

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE: (i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all elements of X^* and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}, M \setminus V \subset Y_{\perp}$, and $\forall v \in V ||v|| = \sup |\langle Y \cap B_{X^*}, v \rangle|$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^* .

Proof. (i) \Rightarrow (ii) *X* Asplund yields an $\mathcal{A} \subset S_{\Box}(X \times X^*)$ such that ... *X* WCG, using projectional generators, yields *M* and another rich family, say $\mathcal{W} \subset S_{\Box}(X \times X^*)$, such that ... Put then $\mathcal{A}\mathcal{W} := \mathcal{A} \cap \mathcal{W}$. (ii) \Rightarrow (iii) Put $\Gamma := \mathcal{A}\mathcal{W}$, and endow it by the order " \subset ". (iii) \Rightarrow (i) Needs a longer but not deep work (via transfinite induction).

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE: (i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all elements of X^* and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}, M \setminus V \subset Y_{\perp}$, and $\forall v \in V ||v|| = \sup |\langle Y \cap B_{X^*}, v \rangle|$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^* .

Proof. (i) \Rightarrow (ii) *X* Asplund yields an $\mathcal{A} \subset S_{\Box}(X \times X^*)$ such that ... *X* WCG, using projectional generators, yields *M* and another rich family, say $\mathcal{W} \subset S_{\Box}(X \times X^*)$, such that ... Put then $\mathcal{A}\mathcal{W} := \mathcal{A} \cap \mathcal{W}$. (ii) \Rightarrow (iii) Put $\Gamma := \mathcal{A}\mathcal{W}$, and endow it by the order " \subset ". (iii) \Rightarrow (i) Needs a longer but not deep work (via transfinite induction).

Theorem 6 (W. Kubiś 2009)

A real or complex Banach space is Pličko if and only if

Theorem 6 (W. Kubiś 2009)

A real or complex Banach space is Pličko if and only if it admits a skeleton $(P_{\gamma}: \gamma \in \Gamma)$ which is moreover commutative, i.e., $P_{\gamma} \circ P_{\delta} = P_{\delta} \circ P_{\gamma}$ whenever $\gamma, \delta \in \Gamma$.

Theorem 6 (W. Kubiś 2009)

A real or complex Banach space is Pličko if and only if it admits a skeleton $(P_{\gamma} : \gamma \in \Gamma)$ which is moreover commutative, *i.e.*, $P_{\gamma} \circ P_{\delta} = P_{\delta} \circ P_{\gamma}$ whenever $\gamma, \delta \in \Gamma$.

We have an elementary proof of the necessity (i.e., without using elementary submodels from logic).

References

M. Cúth, M. Fabian, *Projections in duals to Asplund spaces made without Simons' lemma, Proc. Amer. Math. Soc.* **143(1)**(2015), 301–308.

M. Cúth, M. Fabian, *Asplund spaces characterized by rich families and separable reduction of Fréchet subdifferentiability*, to appear in J. Fuctional Analysis **270**, Issue 4, (2016), 1361–1378.

M. Cúth, M. Fabian, *Rich families and projectional skeletons in Asplund WCG spaces, J. Math. Anal. Appl.* **448** (2017), 1618–1632; http://arxiv.org/abs/1505.07604

M. Fabian, V. Montesinos, WCG spaces and their subspaces grasped by projectional skeletons, To appear

References

M. Cúth, M. Fabian, *Projections in duals to Asplund spaces made without Simons' lemma, Proc. Amer. Math. Soc.* **143(1)**(2015), 301–308.

M. Cúth, M. Fabian, *Asplund spaces characterized by rich families and separable reduction of Fréchet subdifferentiability*, to appear in J. Fuctional Analysis **270**, Issue 4, (2016), 1361–1378.

M. Cúth, M. Fabian, *Rich families and projectional skeletons in Asplund WCG spaces, J. Math. Anal. Appl.* **448** (2017), 1618–1632; http://arxiv.org/abs/1505.07604

M. Fabian, V. Montesinos, WCG spaces and their subspaces grasped by projectional skeletons, To appear

THANK YOU FOR YOUR ATTENTION

References

M. Cúth, M. Fabian, *Projections in duals to Asplund spaces made without Simons' lemma, Proc. Amer. Math. Soc.* **143(1)**(2015), 301–308.

M. Cúth, M. Fabian, *Asplund spaces characterized by rich families and separable reduction of Fréchet subdifferentiability*, to appear in J. Fuctional Analysis **270**, Issue 4, (2016), 1361–1378.

M. Cúth, M. Fabian, *Rich families and projectional skeletons in Asplund WCG spaces, J. Math. Anal. Appl.* **448** (2017), 1618–1632; http://arxiv.org/abs/1505.07604

M. Fabian, V. Montesinos, WCG spaces and their subspaces grasped by projectional skeletons, To appear

THANK YOU FOR YOUR ATTENTION

fabian@math.cas.cz

marek.cuth@gmail.com