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Classical examples

e Birkhoff (1929): On the space H(C) of entire functions we consider the
translation operators given by

T.f(z)=f(z+a), a#0.

e MaclLane (1952): The differentiation operator
D:f—f

on H(C).
e Rolewicz (1969): On the spaces X := (P, 1 < p < 00, or X := ¢y we
consider the multiple

T=M)B: X — X
(X17X2,X3,...) ~ )\(XQ,X3,X4,...).

of the backward shift, where A € K, |A| > 1.
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Linear structures

can we find big “reasonable” structures in HC(T)?

As a consequence of the Baire category theorem the set HC(T) is always
residual if T is hypercyclic, which implies that

X = HC(T) + HC(T).

So there is no reason why the sum of two hypercyclic vectors should be
hypercyclic.

Question.

Does a given hypercyclic operator admit a closed and infinite-
dimensional subspace in which every non-zero vector is hypercyclic?

The answer is YES and NO, i. e. depends on the operator.

If the answer is yes we say that T has a hypercyclic subspace.

For example:

e Birkhoff's and MaclLane's operators have hypercyclic subspaces.
e Rolewicz's operators doesn’t have any hypercyclic subspace.
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multiple of p.
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Algebraic structures

When the underlying vector space X is a Banach or Fréchet algebra, it is natural to ask whether
the set of hypercyclic vectors for a given hypercyclic operator T € HC(X) also contains a
non-trivial algebra (except zero). Such an algebra is called a hypercyclic algebra for T.

Definition.

Recall a Fréchet algebra is an algebra X over the complex numbers that at the same
time is a (locally convex) Fréchet space whose topology is induced by an increasing
family (pq)q>1 of seminorms that are submultiplicative, i.e.,

r—(Theorem (Aron, Conejero, Peris and Seoane-Seplilveda).

There exists f € H(C) such that\{* € HC(D) for every k € N. Moreover,
For the spac  this behavior is generic, i.e. the following set is residual {f € H(C) : fk €
o Birkhoff | HC(D) for every k € N}.

e Maclane differentiation operator D = Constains a hypercyclic algebra.

Shkarin (2010) Bayard and Matheron

Constructive approach Using Baire's theorem
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Product structures

A sequence space is a subspace of
w:={x = (Xa)n>1: X% € C,n € N}

When we have an additional structure of a Fréchet algebra such that the canonical
embedding into w is continuous we speak of a Fréchet sequence algebra.

Two options

e coordinatewise multiplication

(xa)n = (Yn)n = (Xa¥n)n

e Cauchy product "
(X,,),, * (yn)n = (Cn)n where Ch = leyn—/-
=0

Example (Fréchet algebras).}

o (¢P,-) or (co,-) and (P, %) or (co, ),
e The space H(C) of entire functions considered as a sequence space via
Taylor coefficients with the family of seminorms

Pa((an)n>0) = D _lanlg", q>1.
n=0
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Weighted backward shift

A weighted backward shift on X is an operator B,, given by
B (x1, %2, X3, ...) = (Waxp, W3X3, WyXg, ...), X E w,

where w = (w,) is a sequence of non-zero complex numbers, called a weight
sequence.
The forward shift associated to the weight w is the operator given by

Fo(x1, x2, x3,...) = (0, waxy, waxa, Waxs, ...), X € w.

Naturally we have that B, F, -1 = Id where Id is the identity map on X and
wl = (Wn_l)n-
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Let (X, (]| - lq)q) be a Fréchet sequence algebra under coordinatewise
multiplication in which (e,), is a basis with Property A. Let B,, be a
hypercyclic weighted backward shift on X. If there exists an increasing
sequence (px )k of natural numbers such that

pk+n
for any n > 0, H w,t =0, v,;ﬁrnekar,, —0 as k — oo,
v=0

then there exists a point x € HC(B,,) such that the algebra generated
by x, except zero, is contained in HC(B,,).
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hypercyclic weighted backward shift on X. If there exists an increasing
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What is Property A?

Definition.

Let X be a Fréchet sequence space that contains the finite sequences. We say that (e,),
satisfies Property A if there exists an increasing sequence (pg)q of seminorms defining
the topology of X such that, for any integer m > 1 and any g > 1 there is some r > 1
and some M > 0 such that, for all n > 1,

Palen)™ < Mp(e).

Example
(a) If (en)n is a bounded then
Pq(en)™
Pq(en)
is bounded in n for any m,q > 1 (with % =0) and (e,), satisfies property A.
(b) The basis (e,), in the space H(C) of entire functions, considered as a sequence space via
Taylor coefficients, also has Property A. If we consider the seminorms

e}

Pqg((an)nz0) = Z lanlq", q=>1,

then we have that n=0

Pq(en)™ = pgn(€n), n>0.



Why do we need Property A?

Proposition

Let X be a Fréchet sequence space in which (e,), is a basis. Suppose that
the weighted shift B,, is an operator on X. Then B,, is hypercyclic if and
only if there exists an increasing sequence (ng)y of positive integers such
that, .

Vo, en —0

in X as k — oo.
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Proposition
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Why do we need Property A?

Proposition

Let X be a Fréchet sequence space in which (e,), is a basis. Suppose that
the weighted shift B,, is an operator on X. Then B,, is hypercyclic if and
only if there exists an increasing sequence (ng)y of positive integers such
that, for each j > 1,

1

-1 _1
in X as k — co. pq(Vnkijenk—t-j) = |V’7k+j| mpq(enk+j)

1
Corollary. = (|Vnk+j|_lpq(enk+j)m) "

1

Let X be a Fréchet < (|Vnk+j|_1 M,Dr(enk+j));
has Property A. Supp _ 1 1 oo
operator on X. Ther = (Mp: (v, jenci) 0

positive integers such that, for ea¢’<j > 1 and each integer m > 1,
1

VnkIjenk""j —0

in X as k — oo, were a~ = is any mth root of a—! in C.
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Key ingredients for the proof

Consider (y;); a dense sequence of points in X with finite support such that
for each Iy € N the element y;, appears repeatedly infinitely many times.
Consider a disjoint partition of the natural numbers into an infinite number
of infinite sets
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Key ingredients for the proof

Consider (y;); a dense sequence of points in X with finite support such that
for each Iy € N the element y;, appears repeatedly infinitely many times.
Consider a disjoint partition of the natural numbers into an infinite number
of infinite sets

Np = ((m, /))zl.

We construct an increasing sequence of natural numbers (a,),. If

1=(m,l)eN,
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Key ingredients for the proof

Consider (y;); a dense sequence of points in X with finite support such that
for each Iy € N the element y;, appears repeatedly infinitely many times.
Consider a disjoint partition of the natural numbers into an infinite number
of infinite sets

Np = ((m, /))21

We construct an increasing sequence of natural numbers (a,),. If
1=(m,l)eN,

0004"’2’"8 1 0000xxxx 0000xxxxxXxXX OOXX OOOXXX 00
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The increasing sequence of natural numbers (a,), such that, if
r=(m,l) € Ny, then

1
° H(Saryl)m” <27r

S T (SR ) <2 fori=1r -1 =1 d,
® ar—ar1 Zsl’a

where d, = max(pm y<,m and r —1 = (m', /).
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To finish;
e each element y;, appears repeatedly infinitely many times
o [P w,t —0 ask— oo,

gives us that for x = Zyzj a, xy form some aj,...,ay € C with a; # 0

I T2(x) =y | == 0

where (k = (j, /;)); goes to infinity and y;, = yj,.
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v=0

then HC(B,,) contains an algebra, except zero, that is not finitely
generated.
In other words, HC(B,,) is algebrable.
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A stronger result for Rolewicz's operators.

Proposition.

Set X = {5, 1 <p<ooorX=c. Letfix A € Cwith [\| > 1, a natural
number j and a point xo € X. If x; € HC(AB), then for all N € N, N > j,
and all aji1,...,ay € C the point x} + ZCI:J-H ayx§ € HC(AB).
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existence of a hypercyclic algebra for the particular case of the Rolewicz's operator.
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A stronger result for Rolewicz's operators.

Proposition.

Set X = {5, 1 <p<ooorX=c. Letfix A € Cwith [\| > 1, a natural
number j and a point xo € X. If x; € HC(AB), then for all N € N, N > j,
and all aji1,...,ay € C the point x} + ZCI:J-H ayx§ € HC(AB).

This proposition with a Baire argument provides an alternative proof of the
existence of a hypercyclic algebra for the particular case of the Rolewicz's operator.

Proposition.
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What about the Cauchy product?
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backward shift on X. Then there exists a point x € HC(B,,) such that the
algebra generated by x, except zero, is contained in HC(B,).
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in which (e,), is a basis with Property B, and let B,, be a mixing weighted
backward shift on X. Then there exists a point x € HC(B,,) such that the
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Let (X, (|| - |lq)q) be a Fréchet sequence space that contains the finite sequences. We say
that (e,), has Property B if the following conditions hold:

o there is some g > 1 such that ||e,||q > 0 for all n > 0;
e for any r > 1 there is some g > 1 and some C; > 0 such that, for all n, k > 0,

llenllr - llexll- < Gillensilla:

e forany m>2, M > 1, r > 1 there is some p > 1 such that for any t > 1 there is some
7 > 1 and some C, > 0 such that, forany 0 < k< M, n> M,

1
lemnlle - llen—kllr < Collemnll# - llemn—«llp-
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in which (e,), is a basis with Property B, and let B, be a mixing weighted
backward shift on X. Then there exists a point x € HC(B,,) such that the
algebra generated by x, except zero, is contained in HC(B,).

For a fixed element y € Xy of length s and a natural number m bigger than one
there exists sequences of natural numbers (v4)n, (71)n and sequences of complex
numbers (o(nj))n, j =1,...,s and (B,), such that the point

Pm,n = qm,n + 5ne'y,,

where

s
dm,n = Z O‘(n,j)YU)en,.+j
j=t

satisfies that v > 1 + 2s and:
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An easier and much shorter proof...

Find x € @ with

The itinerary (as originally planned)

London, UK to Suez, Egypt ail to Brindisi, Haly and steamer (the Mongolia) across the Mediterranean Sea 7 days
Suez to Bombay, India steamer (the Mongolia) across the Red Sea and the Indian Ocean 13 days
Bombay to Calcutta, India il 3days
Calcutta to Victoria, Hong Kong | steamer (the Rangoon) across the South China Sea 13 days
Hong Kong to Yokohama, Japan | steamer (the Camatic) across the South China Sea, East China Sea, and the Pacific Ocean | 6 days
Yokohama to San Francisco, US | steamer (the General Gran) across the Pacific Ocean 22 days
San Francisco to New York City, US | rail 7 days
X = New York o London steamer (the China) across the Atlantic Ocean to Liverpool and rail 9days
Total 80 days

Phileas Fogg

Map of the trip
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e 21 pages (more than 10 times shorter!)

e We work on Fréchet sequence algebras with

“reasonable” conditions

e We provide many hypercyclic vectors

* Provide the complete orbit of the vectors

Expected
impact!

252 pages
Only studies one specific space

He studies the orbit of one point

Focuses on the first 80 days

e The first version sold 108,000 copies,

e Was translated into English, Russian, Italian,
and Spanish as soon as it was published,

¢ Base of a board game and a mobile game,

® Inspired 9 movies and 5 to tv shows,




What can we do now?
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Pushing harder



Frequently hypercyclic operators

The lower density of a subset A C Ny is defined as

d{0 < n<N; A
dens(A) = liminf card{0 < n< Nine }
N—oo N—|— 1

~—{ Definition. \
An operator T on a Fréchet space X is called frequently hypercyclic
if there is some x € X so that, for any non-empty open subset U of

X,

dens{n € Ny; T"x € U} > 0.

In this case, x is called a frequently hypercyclic vector for T. The set
of frequently hypercyclic vectors for T is denoted by FHC(T).
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Birkhoff, MacLane and Rolewicz operators are examples of frequently
hypercyclic operators.
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,—{ Proposition. N

Let consider the Banach algebra X = /,, 1 < p < 00, or X = ¢y endowed
with coordinatewise multiplication. Then, for any A € C with || > 1, if xp €
FHC(AB), then there exists a natural number My such that x}¥ ¢ HC(AB)

for any M > Mj.
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Proposition

Let consider the Banach algebra X = {,, 1 < p < 00, or X = ¢y endowed with
coordinatewise multiplication. If x, € X with x} € FHC( w), then for all N € N,
N > j, and all aji1,...,an € C the point x} + N v=j100X5 € FHC(Bu).



A TRUE positive example

~{ Theorem. N

Let consider the Banach algebra (¢1, x). For any A € C with |A| > 1
there exists an algebraically independent sequence of vectors (x,), C
{1 such that B = C[xy, %o, .. .] but zero is in FHC(AB). Furthermore,

the vectorial space
By = {ZO[J'XJ' ckeNag,...,ar € (C}

j=1
satisfies that By & B. )
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Let consider the Banach algebra (¢1, x). For any A € C with |A| > 1
there exists an algebraically independent sequence of vectors (x,), C
{1 such that B = C[xy, %o, .. .] but zero is in FHC(AB). Furthermore,
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Given two sequences x, y of ¢; we consider the product x X y = z given by

Ay(1) =1
z(t) =< x(L)y(t —1) if ng+2<t<ng+s for some n, € A(l)
0 otherwise.

where (ni)k, (s1); are two fixed sequences of natural numbers and A(/) is a
set of positive lower density for all / € N.
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