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Introduction



Hypecyclicity

An operator T : X → X is called hypercyclic if there is some x ∈ X
whose orbit under T is dense in X . In such a case, x is called a
hypercyclic vector for T . The set of hypercyclic vectors for T is
denoted by HC (T ).

Definition (hypercyclic operator).

orb(x ,T ) = {x ,Tx ,T 2x ,T 3x , . . .}

A linear dynamical system is a pair (X ,T ) consisting of a separable
Banach (Fréchet) space X and a continuous linear operator T : X →
X .

Definition (Linear dynamical system).

We’re here!
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Classical examples

• Birkhoff

(1929)

: On the space H(C) of entire functions we consider the
translation operators given by

Taf (z) = f (z + a), a 6= 0.

• MacLane

(1952)

: The differentiation operator

D : f → f ′

on H(C).

• Rolewicz

(1969)

: On the spaces X := `p, 1 ≤ p <∞, or X := c0 we
consider the multiple

T = λB : X −→ X
(x1, x2, x3, . . .)  λ(x2, x3, x4, . . .).

of the backward shift, where λ ∈ K, |λ| > 1.
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Structures in HC (T )



Linear structures

can we find big “reasonable” structures in HC (T )?

As a consequence of the Baire category theorem the set HC(T) is always
residual if T is hypercyclic, which implies that

X = HC (T ) + HC (T ).

So there is no reason why the sum of two hypercyclic vectors should be
hypercyclic.

Does a given hypercyclic operator admit a closed and infinite-
dimensional subspace in which every non-zero vector is hypercyclic?

Question.

The answer is YES and NO, i. e. depends on the operator.
If the answer is yes we say that T has a hypercyclic subspace.
For example:
• Birkhoff’s and MacLane’s operators have hypercyclic subspaces.
• Rolewicz’s operators doesn’t have any hypercyclic subspace.



Linear structures

can we find big “reasonable” structures in HC (T )?

As a consequence of the Baire category theorem the set HC(T) is always
residual if T is hypercyclic, which implies that

X = HC (T ) + HC (T ).

So there is no reason why the sum of two hypercyclic vectors should be
hypercyclic.

Does a given hypercyclic operator admit a closed and infinite-
dimensional subspace in which every non-zero vector is hypercyclic?

Question.

The answer is YES and NO, i. e. depends on the operator.
If the answer is yes we say that T has a hypercyclic subspace.
For example:
• Birkhoff’s and MacLane’s operators have hypercyclic subspaces.
• Rolewicz’s operators doesn’t have any hypercyclic subspace.



Linear structures

can we find big “reasonable” structures in HC (T )?

As a consequence of the Baire category theorem the set HC(T) is always
residual if T is hypercyclic, which implies that

X = HC (T ) + HC (T ).

So there is no reason why the sum of two hypercyclic vectors should be
hypercyclic.

Does a given hypercyclic operator admit a closed and infinite-
dimensional subspace in which every non-zero vector is hypercyclic?

Question.

The answer is YES and NO,

i. e. depends on the operator.
If the answer is yes we say that T has a hypercyclic subspace.
For example:
• Birkhoff’s and MacLane’s operators have hypercyclic subspaces.
• Rolewicz’s operators doesn’t have any hypercyclic subspace.



Linear structures

can we find big “reasonable” structures in HC (T )?

As a consequence of the Baire category theorem the set HC(T) is always
residual if T is hypercyclic, which implies that

X = HC (T ) + HC (T ).

So there is no reason why the sum of two hypercyclic vectors should be
hypercyclic.

Does a given hypercyclic operator admit a closed and infinite-
dimensional subspace in which every non-zero vector is hypercyclic?

Question.

The answer is YES and NO, i. e. depends on the operator.

If the answer is yes we say that T has a hypercyclic subspace.
For example:
• Birkhoff’s and MacLane’s operators have hypercyclic subspaces.
• Rolewicz’s operators doesn’t have any hypercyclic subspace.



Linear structures

can we find big “reasonable” structures in HC (T )?

As a consequence of the Baire category theorem the set HC(T) is always
residual if T is hypercyclic, which implies that

X = HC (T ) + HC (T ).

So there is no reason why the sum of two hypercyclic vectors should be
hypercyclic.

Does a given hypercyclic operator admit a closed and infinite-
dimensional subspace in which every non-zero vector is hypercyclic?

Question.

The answer is YES and NO, i. e. depends on the operator.
If the answer is yes we say that T has a hypercyclic subspace.
For example:
• Birkhoff’s and MacLane’s operators have hypercyclic subspaces.

• Rolewicz’s operators doesn’t have any hypercyclic subspace.



Linear structures

can we find big “reasonable” structures in HC (T )?

As a consequence of the Baire category theorem the set HC(T) is always
residual if T is hypercyclic, which implies that

X = HC (T ) + HC (T ).

So there is no reason why the sum of two hypercyclic vectors should be
hypercyclic.

Does a given hypercyclic operator admit a closed and infinite-
dimensional subspace in which every non-zero vector is hypercyclic?

Question.

The answer is YES and NO, i. e. depends on the operator.
If the answer is yes we say that T has a hypercyclic subspace.
For example:
• Birkhoff’s and MacLane’s operators have hypercyclic subspaces.
• Rolewicz’s operators doesn’t have any hypercyclic subspace.



Algebraic structures

When the underlying vector space X is a Banach or Fréchet algebra, it is natural to ask whether
the set of hypercyclic vectors for a given hypercyclic operator T ∈ HC (X ) also contains a
non-trivial algebra (except zero). Such an algebra is called a hypercyclic algebra for T .

Recall a Fréchet algebra is an algebra X over the complex numbers that at the same
time is a (locally convex) Fréchet space whose topology is induced by an increasing
family (pq)q≥1 of seminorms that are submultiplicative, i.e.,

pq(xy) ≤ pq(x)pq(y).

Definition.

For the space H(C) endowed with pointwise multiplication.

• Birkhoff translation operator Ta =⇒ Does NOT contain a hypercyclic algebra.

• MacLane differentiation operator D =⇒ Constains a hypercyclic algebra.

Shkarin (2010)

Constructive approach

Bayard and Matheron

Using Baire’s theorem
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Let p be a positive integer, and let f ∈ H(C) \ {0}. Also, let T be a non-
trivial translation operator on H(C). If a non-constant function g ∈ H(C)
belongs to the closure of Orb(f p,T ) then the order of each zero of g is a
multiple of p.

Theorem (Aron, Conejero, Peris and Seoane-Sepúlveda).
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When the underlying vector space X is a Banach or Fréchet algebra, it is natural to ask whether
the set of hypercyclic vectors for a given hypercyclic operator T ∈ HC (X ) also contains a
non-trivial algebra (except zero). Such an algebra is called a hypercyclic algebra for T .
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family (pq)q≥1 of seminorms that are submultiplicative, i.e.,

pq(xy) ≤ pq(x)pq(y).

Definition.
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• Birkhoff translation operator Ta =⇒ Does NOT contain a hypercyclic algebra.

• MacLane differentiation operator D =⇒ Constains a hypercyclic algebra.

Shkarin (2010)

Constructive approach

Bayard and Matheron

Using Baire’s theorem

There exists f ∈ H(C) such that f k ∈ HC (D) for every k ∈ N. Moreover,
this behavior is generic, i.e. the following set is residual {f ∈ H(C) : f k ∈
HC (D) for every k ∈ N}.

Theorem (Aron, Conejero, Peris and Seoane-Sepúlveda).



Product structures
A sequence space is a subspace of

ω := {x = (xn)n≥1 : xn ∈ C, n ∈ N}

When we have an additional structure of a Fréchet algebra such that the canonical
embedding into ω is continuous we speak of a Fréchet sequence algebra.

Two options

• coordinatewise multiplication

(xn)n · (yn)n = (xnyn)n

• Cauchy product

(xn)n ∗ (yn)n = (cn)n where cn =
n∑

l=0

xlyn−l .

• (`p, ·) or (c0, ·)

and (`p, ∗) or (c0, ∗),

• The space H(C) of entire functions considered as a sequence space via
Taylor coefficients with the family of seminorms

pq((an)n≥0) =
∞∑
n=0

|an|qn, q ≥ 1.

Example (Fréchet algebras).
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Weighted backward shift

A weighted backward shift on X is an operator Bw given by

Bw (x1, x2, x3, ...) = (w2x2,w3x3,w4x4, ...), x ∈ ω,

where w = (wn) is a sequence of non-zero complex numbers, called a weight
sequence.

The forward shift associated to the weight w is the operator given by

Fw (x1, x2, x3, ...) = (0,w2x1,w3x2,w4x3, ...), x ∈ ω.

Naturally we have that BwFw−1 = Id where Id is the identity map on X and
w−1 = (w−1

n )n.
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coordinatewise multiplication

Let (X , (‖ · ‖q)q) be a Fréchet sequence algebra under coordinatewise
multiplication in which (en)n is a basis with Property A. Let Bw be a
hypercyclic weighted backward shift on X . If there exists an increasing
sequence (pk)k of natural numbers such that

for any n ≥ 0,

pk+n∏
ν=0

w−1
ν → 0, v−1

pk+nepk+n → 0 as k →∞,

then there exists a point x ∈ HC (Bw ) such that the algebra generated
by x , except zero, is contained in HC (Bw ).

Theorem (J. F. – K. G. Grosse-Erdmann).
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What is Property A?

Let X be a Fréchet sequence space that contains the finite sequences. We say that (en)n
satisfies Property A if there exists an increasing sequence (pq)q of seminorms defining
the topology of X such that, for any integer m ≥ 1 and any q ≥ 1 there is some r ≥ 1
and some M > 0 such that, for all n ≥ 1,

pq(en)m ≤ Mpr (en).

Definition.

Example
(a) If (en)n is a bounded then

pq(en)m

pq(en)

is bounded in n for any m, q ≥ 1 (with 0
0 = 0) and (en)n satisfies property A.

(b) The basis (en)n in the space H(C) of entire functions, considered as a sequence space via
Taylor coefficients, also has Property A. If we consider the seminorms

pq((an)n≥0) =
∞∑
n=0

|an|qn, q ≥ 1,

then we have that
pq(en)m = pqm(en), n ≥ 0.
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Why do we need Property A?

Proposition
Let X be a Fréchet sequence space in which (en)n is a basis. Suppose that
the weighted shift Bw is an operator on X . Then Bw is hypercyclic if and
only if there exists an increasing sequence (nk)k of positive integers such
that,

for each j ≥ 1,

v−1
nk

+j

enk

+j

→ 0

in X as k →∞.

Let X be a Fréchet sequence space in which (en)n is a basis and
has Property A. Suppose that the weighted shift Bw is a hypercyclic
operator on X . Then there exists an increasing sequence (nk)k of
positive integers such that, for each j ≥ 1 and each integer m ≥ 1,

v
− 1

m

nk+jenk+j → 0

in X as k →∞, were a−
1
m is any mth root of a−1 in C.

Corollary.
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Let X be a Fréchet sequence space in which (en)n is a basis. Suppose that
the weighted shift Bw is an operator on X . Then Bw is hypercyclic if and
only if there exists an increasing sequence (nk)k of positive integers such
that, for each j ≥ 1,

v−1
nk+jenk+j → 0

in X as k →∞.
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Key ingredients for the proof

Consider (yl)l a dense sequence of points in X with finite support such that
for each l0 ∈ N the element yl0 appears repeatedly infinitely many times.

Consider a disjoint partition of the natural numbers into an infinite number
of infinite sets

Nm =
(
(m, l)

)∞
l=1
.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Key ingredients for the proof

The increasing sequence of natural numbers (ar )r such that, if
r = (m, l) ∈ Nm, then

• ‖
(
Sar yl

) 1
m ‖ ≤ 2−r

• ‖T ai
((

Sar yl
) j

m

)
‖ ≤ 2−r for i = 1, . . . , r − 1, j = 1, . . . , dr−1,

• ar − ar−1 ≥ sl′ ,

where dr = max(m,l)<r m and r − 1 = (m′, l ′).
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Key ingredients for the proof

To finish;

• each element yl0 appears repeatedly infinitely many times

•
∏pk+n
ν=0 w−1

ν → 0 as k →∞,

gives us that for x =
∑N

v=j αvx
v
0 form some αj , . . . , αN ∈ C with αj 6= 0

‖T ak (x)− yl0‖
i→∞−−−→ 0

where (k = (j , li ))i goes to infinity and yli = yl0 .
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Let (X , (‖ · ‖q)q) be a Fréchet sequence algebra under coordinatewise
multiplication in which (en)n is a basis with Property A. Let Bw be a
hypercyclic weighted backward shift on X . If there exists an increasing
sequence (pk)k of natural numbers satisfying (2) such that

for any n ≥ 0,

pk+n∏
ν=0

w−1
ν → 0, v−1

pk+nepk+n → 0 as k →∞,

then HC (Bw ) contains an algebra, except zero, that is not finitely
generated.
In other words, HC (Bw ) is algebrable.

Theorem (J. F. – K. G. Grosse-Erdmann).

x

r

:=
∞∑

m=1

∑
l∈N

r

(
Sa(m,l)yl

) 1
m

r ∈ N

The key point is that xrxr ′ = 0 if r 6= r ′, so

x =
∑
v∈A
|v |=N

αvx
v1
1 · · · x

vs
s

=
s∑

r=1

N∑
v=j

αr ,vx
v
r .



Let (X , (‖ · ‖q)q) be a Fréchet sequence algebra under coordinatewise
multiplication in which (en)n is a basis with Property A. Let Bw be a
hypercyclic weighted backward shift on X . If there exists an increasing
sequence (pk)k of natural numbers satisfying (2) such that

for any n ≥ 0,

pk+n∏
ν=0

w−1
ν → 0, v−1

pk+nepk+n → 0 as k →∞,

then HC (Bw ) contains an algebra, except zero, that is not finitely
generated.
In other words, HC (Bw ) is algebrable.

Theorem (J. F. – K. G. Grosse-Erdmann).

x

r

:=
∞∑

m=1

∑
l∈N

r

(
Sa(m,l)yl

) 1
m

r ∈ N

The key point is that xrxr ′ = 0 if r 6= r ′, so

x =
∑
v∈A
|v |=N

αvx
v1
1 · · · x

vs
s

=
s∑

r=1

N∑
v=j

αr ,vx
v
r .



Let (X , (‖ · ‖q)q) be a Fréchet sequence algebra under coordinatewise
multiplication in which (en)n is a basis with Property A. Let Bw be a
hypercyclic weighted backward shift on X . If there exists an increasing
sequence (pk)k of natural numbers satisfying (2) such that

for any n ≥ 0,

pk+n∏
ν=0

w−1
ν → 0, v−1

pk+nepk+n → 0 as k →∞,

then HC (Bw ) contains an algebra, except zero, that is not finitely
generated.
In other words, HC (Bw ) is algebrable.

Theorem (J. F. – K. G. Grosse-Erdmann).

xr :=
∞∑

m=1

∑
l∈Nr

(
Sa(m,l)yl

) 1
m r ∈ N

The key point is that xrxr ′ = 0 if r 6= r ′, so

x =
∑
v∈A
|v |=N

αvx
v1
1 · · · x

vs
s

=
s∑

r=1

N∑
v=j

αr ,vx
v
r .
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A stronger result for Rolewicz’s operators.

Set X = `p, 1 ≤ p < ∞ or X = c0. Let fix λ ∈ C with |λ| > 1, a natural

number j and a point x0 ∈ X . If x j0 ∈ HC (λB), then for all N ∈ N, N > j ,

and all αj+1, . . . , αN ∈ C the point x j0 +
∑N

v=j+1 αvx
v
0 ∈ HC (λB).

Proposition.

This proposition with a Baire argument provides an alternative proof of the
existence of a hypercyclic algebra for the particular case of the Rolewicz’s operator.

Set X = `p, 1 ≤ p < ∞ or X = c0. For any complex number λ with
|λ| > 1 the set of hypercyclic vectors of the Rolewicz’s operator T = λB on
X contains an infinite dimensional algebra.

Proposition.

A result from Montes-Rodŕıguez prevent us to improve the previous proposition.

What about the Cauchy product?
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Let (X , (‖ · ‖q)q) be a Fréchet sequence algebra under the Cauchy product
in which (en)n is a basis with Property B, and let Bw be a mixing weighted
backward shift on X . Then there exists a point x ∈ HC (Bw ) such that the
algebra generated by x , except zero, is contained in HC (Bw ).

Theorem (J. F. – K. G. Grosse-Erdmann).

For a fixed element y ∈ X00 of length s and a natural number m bigger than one
there exists sequences of natural numbers (γn)n, (ηn)n and sequences of complex
numbers (α(n,j))n, j = 1, . . . , s and (βn)n such that the point

pm,n = qm,n + βneγn

βm−1
n qm,n

C.1 ‖p‖r < ε;

C.2 mq ∗ bm−1e(m−1)γ = F
η+(m−1)γ
w−1 y ;

C.3 ‖Bη+(m−1)γ
w (bmemγ)‖r < ε.
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Let (X , (‖ · ‖q)q) be a Fréchet sequence space that contains the finite sequences. We say
that (en)n has Property B if the following conditions hold:

• there is some q ≥ 1 such that ‖en‖q > 0 for all n ≥ 0;

• for any r ≥ 1 there is some q ≥ 1 and some C1 > 0 such that, for all n, k ≥ 0,

‖en‖r · ‖ek‖r ≤ C1‖en+k‖q;

• for any m ≥ 2, M ≥ 1, r ≥ 1 there is some ρ ≥ 1 such that for any t ≥ 1 there is some
τ ≥ 1 and some C2 > 0 such that, for any 0 ≤ k ≤ M, n ≥ M,

‖emn‖t · ‖en−k‖r ≤ C2‖emn‖
1
m
τ · ‖emn−k‖ρ.
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What can we do now?

• 21 pages (more than 10 times shorter!)

• We work on Fréchet sequence algebras with
“reasonable” conditions

• We provide many hypercyclic vectors

• Provide the complete orbit of the vectors

E
xp

ec
te

d
im

pa
ct

!

• 252 pages

• Only studies one specific space

• He studies the orbit of one point

• Focuses on the first 80 days

• The first version sold 108,000 copies,
• Was translated into English, Russian, Italian,

and Spanish as soon as it was published,
• Base of a board game and a mobile game,
• Inspired 9 movies and 5 to tv shows,
• Worlds of Fun the amusement park in

Kansas City, Missouri
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Pushing harder



Frequently hypercyclic operators

The lower density of a subset A ⊂ N0 is defined as

dens(A) = lim inf
N→∞

card{0 ≤ n ≤ N; n ∈ A}
N + 1

.

An operator T on a Fréchet space X is called frequently hypercyclic
if there is some x ∈ X so that, for any non-empty open subset U of
X ,

dens{n ∈ N0;T nx ∈ U} > 0.

In this case, x is called a frequently hypercyclic vector for T . The set
of frequently hypercyclic vectors for T is denoted by FHC (T ).

Definition.

Birkhoff, MacLane and Rolewicz operators are examples of frequently
hypercyclic operators.
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Can we translate the results?

In general no!

Let consider the Banach algebra X = `p, 1 ≤ p < ∞, or X = c0 endowed
with coordinatewise multiplication. Then, for any λ ∈ C with |λ| > 1, if x0 ∈
FHC (λB), then there exists a natural number M0 such that xM0 /∈ HC (λB)
for any M ≥ M0.

Any algebra A ⊂ HC (λB) cannot contain a frequently hypercyclic vector.

Proposition.

Proposition
Let consider the Banach algebra X = `p, 1 ≤ p <∞, or X = c0 endowed with

coordinatewise multiplication. If x0 ∈ X with x j0 ∈ FHC (Bw ), then for all N ∈ N,

N > j , and all αj+1, . . . , αN ∈ C the point x j0 +
∑N

v=j+1 αvx
v
0 ∈ FHC (Bw ).
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A TRUE positive example

Let consider the Banach algebra (`1,×). For any λ ∈ C with |λ| > 1
there exists an algebraically independent sequence of vectors (xn)n ⊂
`1 such that B = C[x1, x2, . . .] but zero is in FHC (λB). Furthermore,
the vectorial space

B0 := {
k∑

j=1

αjxj : k ∈ N, α1, . . . , αk ∈ C}

satisfies that B0  B.

Theorem.

Given two sequences x , y of `1 we consider the product x × y = z given by

z(t) =


x(1)y(1) if j = 1

x(1)y(t − 1) if nk + 2 ≤ t ≤ nk + sl for some nk ∈ A(l)

0 otherwise.

where (nk)k , (sl)l are two fixed sequences of natural numbers and A(l) is a
set of positive lower density for all l ∈ N.
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