Algebras of hypercyclic vectors

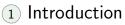
J. Falcó

October 19, 2017

Vniver§itat © València

Conference on Non Linear Functional Analysis Workshop on Infinite Dimensional Analysis Valencia 2017 (Joint work with Karl Grosse-Erdmann)

Overview



 $\label{eq:definition} \ensuremath{\mathsf{Defining}}\xspace$ our framework. Some basic definitions (hyperciclycity and dense orbits)

Overview

1 Introduction

 $\label{eq:definition} \ensuremath{\mathsf{Defining}}\xspace$ our framework. Some basic definitions (hyperciclycity and dense orbits)

Overview

1 Introduction

 $\label{eq:definition} \ensuremath{\mathsf{Defining}}\xspace$ our framework. Some basic definitions (hyperciclycity and dense orbits)

2 Structures in HC(T)

How big is HC(T)? Our quest to find algebraic structures

3 Pushing harder

On frequently hypercyclic operators

Introduction

Definition (Linear dynamical system).

A linear dynamical system is a pair (X, T) consisting of a separable Banach (Fréchet) space X and a continuous linear operator $T : X \rightarrow X$.

Definition (hypercyclic operator).

An operator $T : X \to X$ is called *hypercyclic* if there is some $x \in X$ whose orbit under T is dense in X. In such a case, x is called a *hypercyclic vector* for T. The set of hypercyclic vectors for T is denoted by HC(T).

$$orb(x, T) = \{x, Tx, T^2x, T^3x, \ldots\}$$

Definition (Linear dynamical system).

A linear dynamical system is a pair (X, T) consisting of a separable Banach (Fréchet) space X and a continuous linear operator $T : X \rightarrow X$.

Definition (hypercyclic operator).

Definition (hypercyclic operator).

Definition (hypercyclic operator).

Definition (hypercyclic operator).

х

Definition (hypercyclic operator).

х

Definition (hypercyclic operator).

An operator $T : X \to X$ is called *hypercyclic* whose orbit under T is dense in X. In such *hypercyclic vector* for T. The set of hyper denoted by HC(T).

Definition (hypercyclic opera

An operator $T: X \to X$ is cal whose orbit under T is dense hypercyclic vector for T. The denoted by HC(T).

s some $x \in X$ x is called a ctors for T is

Dallas, Texas

Definition (hypercyclic operator).

An operator $T : X \to X$ is called *hypercyclic* if there whose orbit under T is dense in X. In such a case *hypercyclic vector* for T. The set of hypercyclic vector denoted by HC(T).

Definition (hypercyclic operator).

Definition (hypercyclic operator).

Definition (hypercyclic operator).

• Birkhoff : On the space $H(\mathbb{C})$ of entire functions we consider the translation operators given by

$$T_af(z) = f(z+a), \quad a \neq 0.$$

• Birkhoff : On the space $H(\mathbb{C})$ of entire functions we consider the translation operators given by

$$T_a f(z) = f(z+a), \quad a \neq 0.$$

• MacLane : The differentiation operator

 $D: f \to f'$

on $H(\mathbb{C})$.

• Birkhoff : On the space $H(\mathbb{C})$ of entire functions we consider the translation operators given by

$$T_af(z)=f(z+a), \quad a\neq 0.$$

• MacLane : The differentiation operator

$$D: f \rightarrow f'$$

on $H(\mathbb{C})$.

• Rolewicz : On the spaces $X := \ell^p, 1 \le p < \infty$, or $X := c_0$ we consider the multiple

$$T = \lambda B: \begin{array}{ccc} X & \longrightarrow & X \\ (x_1, x_2, x_3, \ldots) & \rightsquigarrow & \lambda(x_2, x_3, x_4, \ldots). \end{array}$$

of the backward shift, where $\lambda \in \mathbb{K}$, $|\lambda| > 1$.

 Birkhoff (1929): On the space H(ℂ) of entire functions we consider the translation operators given by

$$T_a f(z) = f(z+a), \quad a \neq 0.$$

• MacLane (1952): The differentiation operator

$$D: f \to f'$$

on $H(\mathbb{C})$.

Rolewicz (1969): On the spaces X := ℓ^p, 1 ≤ p < ∞, or X := c₀ we consider the multiple

$$T = \lambda B: \begin{array}{ccc} X & \longrightarrow & X \\ (x_1, x_2, x_3, \ldots) & \rightsquigarrow & \lambda(x_2, x_3, x_4, \ldots). \end{array}$$

of the backward shift, where $\lambda \in \mathbb{K}$, $|\lambda| > 1$.

Structures in HC(T)

can we find big "reasonable" structures in HC(T)?

can we find big "reasonable" structures in HC(T)?

As a consequence of the Baire category theorem the set HC(T) is always residual if T is hypercyclic, which implies that

$$X = HC(T) + HC(T).$$

So there is no reason why the sum of two hypercyclic vectors should be hypercyclic.

can we find big "reasonable" structures in HC(T)?

As a consequence of the Baire category theorem the set HC(T) is always residual if T is hypercyclic, which implies that

$$X = HC(T) + HC(T).$$

So there is no reason why the sum of two hypercyclic vectors should be hypercyclic.

Question.

Does a given hypercyclic operator admit a closed and infinitedimensional subspace in which every non-zero vector is hypercyclic?

The answer is YES and NO,

can we find big "reasonable" structures in HC(T)?

As a consequence of the Baire category theorem the set HC(T) is always residual if T is hypercyclic, which implies that

$$X = HC(T) + HC(T).$$

So there is no reason why the sum of two hypercyclic vectors should be hypercyclic.

Question.

Does a given hypercyclic operator admit a closed and infinitedimensional subspace in which every non-zero vector is hypercyclic?

The answer is YES and NO, i. e. depends on the operator.

can we find big "reasonable" structures in HC(T)?

As a consequence of the Baire category theorem the set HC(T) is always residual if T is hypercyclic, which implies that

$$X = HC(T) + HC(T).$$

So there is no reason why the sum of two hypercyclic vectors should be hypercyclic.

Question.

Does a given hypercyclic operator admit a closed and infinitedimensional subspace in which every non-zero vector is hypercyclic?

The answer is YES and NO, i. e. depends on the operator. If the answer is yes we say that T has a *hypercyclic subspace*. For example:

• Birkhoff's and MacLane's operators have hypercyclic subspaces.

can we find big "reasonable" structures in HC(T)?

As a consequence of the Baire category theorem the set HC(T) is always residual if T is hypercyclic, which implies that

$$X = HC(T) + HC(T).$$

So there is no reason why the sum of two hypercyclic vectors should be hypercyclic.

Question.

Does a given hypercyclic operator admit a closed and infinitedimensional subspace in which every non-zero vector is hypercyclic?

The answer is YES and NO, i. e. depends on the operator.

If the answer is yes we say that T has a *hypercyclic subspace*. For example:

- Birkhoff's and MacLane's operators have hypercyclic subspaces.
- Rolewicz's operators **doesn't have** any hypercyclic subspace.

Definition.

Recall a *Fréchet algebra* is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_q)_{q>1}$ of seminorms that are submultiplicative, i.e.,

 $p_q(xy) \leq p_q(x)p_q(y).$

When the underlying vector space X is a Banach or Fréchet algebra, it is natural to ask whether the set of hypercyclic vectors for a given hypercyclic operator $T \in HC(X)$ also contains a non-trivial algebra (except zero). Such an algebra is called a *hypercyclic algebra* for T.

Definition.

Recall a *Fréchet algebra* is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_q)_{q>1}$ of seminorms that are submultiplicative, i.e.,

 $p_q(xy) \leq p_q(x)p_q(y).$

When the underlying vector space X is a Banach or Fréchet algebra, it is natural to ask whether the set of hypercyclic vectors for a given hypercyclic operator $T \in HC(X)$ also contains a non-trivial algebra (except zero). Such an algebra is called a *hypercyclic algebra* for T.

Definition.

Recall a *Fréchet algebra* is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_q)_{q>1}$ of seminorms that are submultiplicative, i.e.,

 $p_q(xy) \leq p_q(x)p_q(y).$

For the space $H(\mathbb{C})$ endowed with pointwise multiplication.

When the underlying vector space X is a Banach or Fréchet algebra, it is natural to ask whether the set of hypercyclic vectors for a given hypercyclic operator $T \in HC(X)$ also contains a non-trivial algebra (except zero). Such an algebra is called a *hypercyclic algebra* for T.

Definition.

Recall a *Fréchet algebra* is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_q)_{q>1}$ of seminorms that are submultiplicative, i.e.,

 $p_q(xy) \leq p_q(x)p_q(y).$

For the space $H(\mathbb{C})$ endowed with pointwise multiplication.

• Birkhoff translation operator $T_a \Longrightarrow$ Does NOT contain a hypercyclic algebra.

Theorem (Aron, Conejero, Peris and Seoane-Sepúlveda).

Let p be a positive integer, and let $f \in H(\mathbb{C}) \setminus \{0\}$. Also, let T be a nontrivial translation operator on $H(\mathbb{C})$. If a non-constant function $g \in H(\mathbb{C})$ belongs to the closure of $Orb(f^p, T)$ then the order of each zero of g is a multiple of p.

When the underlying vector space X is a Banach or Fréchet algebra, it is natural to ask whether the set of hypercyclic vectors for a given hypercyclic operator $T \in HC(X)$ also contains a non-trivial algebra (except zero). Such an algebra is called a *hypercyclic algebra* for T.

Definition.

Recall a *Fréchet algebra* is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_q)_{q>1}$ of seminorms that are submultiplicative, i.e.,

 $p_q(xy) \leq p_q(x)p_q(y).$

For the space $H(\mathbb{C})$ endowed with pointwise multiplication.

- Birkhoff translation operator $T_a \Longrightarrow$ Does NOT contain a hypercyclic algebra.
- MacLane differentiation operator $D \implies$ Constains a hypercyclic algebra.

When the underlying vector space X is a Banach or Fréchet algebra, it is natural to ask whether the set of hypercyclic vectors for a given hypercyclic operator $T \in HC(X)$ also contains a non-trivial algebra (except zero). Such an algebra is called a *hypercyclic algebra* for T.

Definition.

Recall a *Fréchet algebra* is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_q)_{q>1}$ of seminorms that are submultiplicative, i.e.,

 $p_q(xy) \leq p_q(x)p_q(y).$

For the space $H(\mathbb{C})$ endowed with pointwise multiplication.

- Birkhoff translation operator $T_a \Longrightarrow$ Does NOT contain a hypercyclic algebra.
- MacLane differentiation operator $D \implies$ Constains a hypercyclic algebra.

Shkarin (2010)

Constructive approach

Algebraic structures

When the underlying vector space X is a Banach or Fréchet algebra, it is natural to ask whether the set of hypercyclic vectors for a given hypercyclic operator $T \in HC(X)$ also contains a non-trivial algebra (except zero). Such an algebra is called a hypercyclic algebra for T.

Definition.

Recall a *Fréchet algebra* is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_a)_{a>1}$ of seminorms that are submultiplicative, i.e.,

There exists $f \in H(\mathbb{C})$ such that $k \in HC(D)$ for every $k \in \mathbb{N}$. Moreover,

Theorem (Aron, Conejero, Peris and Seoane-Sepúlveda).

For the space

- this behavior is generic, i.e. the following set is residual $\{f \in H(\mathbb{C}) : f^k \in$ HC(D) for every $k \in \mathbb{N}$. Birkhoff
- MacLane differentiation operator $D \implies$ Constains a hypercyclic algebra.

Shkarin (2010)

Bavard and Matheron

Constructive approach

Using Baire's theorem

A sequence space is a subspace of

$$\omega := \{ x = (x_n)_{n \ge 1} : x_n \in \mathbb{C}, n \in \mathbb{N} \}$$

When we have an additional structure of a Fréchet algebra such that the canonical embedding into ω is continuous we speak of a *Fréchet sequence algebra*.

A sequence space is a subspace of

$$\omega := \{ x = (x_n)_{n \ge 1} : x_n \in \mathbb{C}, n \in \mathbb{N} \}$$

When we have an additional structure of a Fréchet algebra such that the canonical embedding into ω is continuous we speak of a *Fréchet sequence algebra*. Two options

A sequence space is a subspace of

$$\omega := \{ x = (x_n)_{n \ge 1} : x_n \in \mathbb{C}, n \in \mathbb{N} \}$$

When we have an additional structure of a Fréchet algebra such that the canonical embedding into ω is continuous we speak of a *Fréchet sequence algebra*. Two options

coordinatewise multiplication

$$(x_n)_n \cdot (y_n)_n = (x_n y_n)_n$$

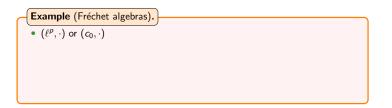
A sequence space is a subspace of

$$\omega := \{ x = (x_n)_{n \ge 1} : x_n \in \mathbb{C}, n \in \mathbb{N} \}$$

When we have an additional structure of a Fréchet algebra such that the canonical embedding into ω is continuous we speak of a *Fréchet sequence algebra*. Two options

· coordinatewise multiplication

$$(x_n)_n \cdot (y_n)_n = (x_n y_n)_n$$



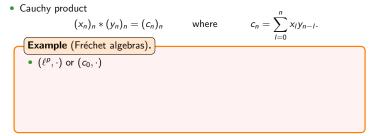
A sequence space is a subspace of

$$\omega := \{ x = (x_n)_{n \ge 1} : x_n \in \mathbb{C}, n \in \mathbb{N} \}$$

When we have an additional structure of a Fréchet algebra such that the canonical embedding into ω is continuous we speak of a *Fréchet sequence algebra*. Two options

coordinatewise multiplication

$$(x_n)_n \cdot (y_n)_n = (x_n y_n)_n$$



A sequence space is a subspace of

$$\omega := \{ x = (x_n)_{n \ge 1} : x_n \in \mathbb{C}, n \in \mathbb{N} \}$$

When we have an additional structure of a Fréchet algebra such that the canonical embedding into ω is continuous we speak of a *Fréchet sequence algebra*. Two options

coordinatewise multiplication

$$(x_n)_n \cdot (y_n)_n = (x_n y_n)_n$$

n

Cauchy product

$$(x_n)_n * (y_n)_n = (c_n)_n$$
 where $c_n = \sum_{l=0}^{n} x_l y_{n-l}$.

Example (Fréchet algebras).

•
$$(\ell^p,\cdot)$$
 or (c_0,\cdot) and $(\ell^p,*)$ or $(c_0,*)$,

• The space $H(\mathbb{C})$ of entire functions considered as a sequence space via Taylor coefficients with the family of seminorms

$$p_q((a_n)_{n\geq 0})=\sum_{n=0}^\infty |a_n|q^n,\quad q\geq 1.$$

A weighted backward shift on X is an operator B_w given by

$$B_w(x_1, x_2, x_3, ...) = (w_2 x_2, w_3 x_3, w_4 x_4, ...), \quad x \in \omega,$$

where $w = (w_n)$ is a sequence of non-zero complex numbers, called a weight sequence.

A weighted backward shift on X is an operator B_w given by

$$B_w(x_1, x_2, x_3, ...) = (w_2 x_2, w_3 x_3, w_4 x_4, ...), \quad x \in \omega,$$

where $w = (w_n)$ is a sequence of non-zero complex numbers, called a weight sequence.

The forward shift associated to the weight w is the operator given by

$$F_w(x_1, x_2, x_3, ...) = (0, w_2 x_1, w_3 x_2, w_4 x_3, ...), \quad x \in \omega.$$

Naturally we have that $B_w F_{w^{-1}} = Id$ where Id is the identity map on X and $w^{-1} = (w_n^{-1})_n$.

Theorem (J. F. – K. G. Grosse-Erdmann).

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under coordinatewise multiplication in which $(e_n)_n$ is a basis with Property A. Let B_w be a hypercyclic weighted backward shift on X. If there exists an increasing sequence $(p_k)_k$ of natural numbers such that

$$\text{for any } n\geq 0, \quad \prod_{\nu=0}^{p_k+n} w_\nu^{-1} \to 0, \quad v_{p_k+n}^{-1} e_{p_k+n} \to 0 \quad \text{ as } k\to\infty,$$

then there exists a point $x \in HC(B_w)$ such that the algebra generated by x, except zero, is contained in $HC(B_w)$.

Theorem (J. F. – K. G. Grosse-Erdmann).

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under coordinatewise multiplication in which $(e_n)_n$ is a basis with Property A. Let B_w be a hypercyclic weighted backward shift on X. If there exists an increasing sequence $(p_k)_k$ of natural numbers such that

$$\text{for any } n\geq 0, \quad \prod_{\nu=0}^{p_k+n} w_\nu^{-1} \to 0, \quad v_{p_k+n}^{-1} e_{p_k+n} \to 0 \quad \text{ as } k\to\infty,$$

then there exists a point $x \in HC(B_w)$ such that the algebra generated by x, except zero, is contained in $HC(B_w)$.

Theorem (J. F. – K. G. Grosse-Erdmann).

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under coordinatewise multiplication in which $(e_n)_n$ is a basis with Property A. Let B_w be a hypercyclic weighted backward shift on X. If there exists an increasing sequence $(p_k)_k$ of natural numbers such that

$$\text{for any } n\geq 0, \quad \prod_{\nu=0}^{p_k+n} w_\nu^{-1} \to 0, \quad v_{p_k+n}^{-1} e_{p_k+n} \to 0 \quad \text{ as } k\to\infty,$$

then there exists a point $x \in HC(B_w)$ such that the algebra generated by x, except zero, is contained in $HC(B_w)$.

Theorem (J. F. – K. G. Grosse-Erdmann).

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under coordinatewise multiplication in which $(e_n)_n$ is a basis with Property A. Let B_w be a hypercyclic weighted backward shift on X. If there exists an increasing sequence $(p_k)_k$ of natural numbers such that

for any
$$n \geq 0$$
, $\prod_{\nu=0}^{p_k+n} w_{\nu}^{-1} \rightarrow 0$, $v_{p_k+n}^{-1} e_{p_k+n} \rightarrow 0$ as $k \rightarrow \infty$,

then there exists a point $x \in HC(B_w)$ such that the algebra generated by x, except zero, is contained in $HC(B_w)$.

What is *Property A*?

Definition.

Let X be a Fréchet sequence space that contains the finite sequences. We say that $(e_n)_n$ satisfies *Property A* if there exists an increasing sequence $(p_q)_q$ of seminorms defining the topology of X such that, for any integer $m \ge 1$ and any $q \ge 1$ there is some $r \ge 1$ and some M > 0 such that, for all $n \ge 1$,

 $p_q(e_n)^m \leq Mp_r(e_n).$

What is *Property A*?

Definition.

Let X be a Fréchet sequence space that contains the finite sequences. We say that $(e_n)_n$ satisfies *Property A* if there exists an increasing sequence $(p_q)_q$ of seminorms defining the topology of X such that, for any integer $m \ge 1$ and any $q \ge 1$ there is some $r \ge 1$ and some M > 0 such that, for all $n \ge 1$,

$$p_q(e_n)^m \leq Mp_r(e_n).$$

Example

(a) If $(e_n)_n$ is a bounded then

$$\frac{p_q(e_n)^m}{p_q(e_n)}$$

is bounded in n for any $m, q \ge 1$ (with $\frac{0}{0} = 0$) and $(e_n)_n$ satisfies property A.

What is *Property A*?

Definition.

Let X be a Fréchet sequence space that contains the finite sequences. We say that $(e_n)_n$ satisfies *Property A* if there exists an increasing sequence $(p_q)_q$ of seminorms defining the topology of X such that, for any integer $m \ge 1$ and any $q \ge 1$ there is some $r \ge 1$ and some M > 0 such that, for all $n \ge 1$,

$$p_q(e_n)^m \leq Mp_r(e_n).$$

Example

(a) If $(e_n)_n$ is a bounded then

$$\frac{p_q(e_n)^m}{p_q(e_n)}$$

is bounded in *n* for any $m, q \ge 1$ (with $\frac{0}{0} = 0$) and $(e_n)_n$ satisfies property A.

(b) The basis $(e_n)_n$ in the space $H(\mathbb{C})$ of entire functions, considered as a sequence space via Taylor coefficients, also has Property A. If we consider the seminorms

$$p_q((a_n)_{n\geq 0})=\sum_{n=0}^\infty |a_n|q^n,\quad q\geq 1,$$

then we have that

$$p_q(e_n)^m = p_{q^m}(e_n), \quad n \ge 0.$$

Proposition

Let X be a Fréchet sequence space in which $(e_n)_n$ is a basis. Suppose that the weighted shift B_w is an operator on X. Then B_w is hypercyclic if and only if there exists an increasing sequence $(n_k)_k$ of positive integers such that,

$$v_{n_k}^{-1} e_{n_k} \rightarrow 0$$

Proposition

Let X be a Fréchet sequence space in which (a) is a basis. Suppose that the weighted shift B_w is an ope $v_n^{-1} = \prod_{r=1}^n w_r^{-1} \overset{\text{s}}{\underset{r=1}{}}_w$ is hypercyclic if and only if there exists an increasing sequence $(n_k)_k$ of positive integers such that,

$$v_{n_k}^{-1} e_{n_k} \rightarrow 0$$

Proposition

Let X be a Fréchet sequence space in which $(e_n)_n$ is a basis. Suppose that the weighted shift B_w is an operator on X. Then B_w is hypercyclic if and only if there exists an increasing sequence $(n_k)_k$ of positive integers such that,

$$v_{n_k}^{-1} e_{n_k} \rightarrow 0$$

Proposition

Let X be a Fréchet sequence space in which $(e_n)_n$ is a basis. Suppose that the weighted shift B_w is an operator on X. Then B_w is hypercyclic if and only if there exists an increasing sequence $(n_k)_k$ of positive integers such that, for each $j \ge 1$,

$$v_{n_k+j}^{-1}e_{n_k+j}\to 0$$

Proposition

Let X be a Fréchet sequence space in which $(e_n)_n$ is a basis. Suppose that the weighted shift B_w is an operator on X. Then B_w is hypercyclic if and only if there exists an increasing sequence $(n_k)_k$ of positive integers such that, for each $j \ge 1$,

$$v_{n_k+j}^{-1}e_{n_k+j}
ightarrow 0$$

in X as $k \to \infty$.

Corollary.

Let X be a Fréchet sequence space in which $(e_n)_n$ is a basis and has Property A. Suppose that the weighted shift B_w is a hypercyclic operator on X. Then there exists an increasing sequence $(n_k)_k$ of positive integers such that, for each $j \ge 1$ and each integer $m \ge 1$,

$$v_{n_k+j}^{-\frac{-}{m}}e_{n_k+j}\to 0$$

in X as $k \to \infty$, were $a^{-\frac{1}{m}}$ is any *m*th root of a^{-1} in \mathbb{C} .

Proposition

Let X be a Fréchet sequence space in which $(e_n)_n$ is a basis. Suppose that the weighted shift B_w is an operator on X. Then B_w is hypercyclic if and only if there exists an increasing sequence $(n_k)_k$ of positive integers such that, for each $j \ge 1$,

in X as
$$k \to \infty$$
.
Corollary.
Let X be a Fréchet
has Property A. Supp
operator on X. Ther
positive integers such that, for eac^V, $j \ge 1$ and each integer $m \ge 1$,
 $v_{n_k+j}^{-\frac{1}{m}} e_{n_k+j} \to 0$
in X as $k \to \infty$, were $a^{-\frac{1}{m}}$ is any *m*th root of a^{-1} in \mathbb{C} .

Consider $(y_l)_l$ a dense sequence of points in X with finite support such that for each $l_0 \in \mathbb{N}$ the element y_{l_0} appears repeatedly infinitely many times.

Consider $(y_l)_l$ a dense sequence of points in X with finite support such that for each $l_0 \in \mathbb{N}$ the element y_{l_0} appears repeatedly infinitely many times. Consider a disjoint partition of the natural numbers into an infinite number of infinite sets

$$\mathbb{N}_m = \big((m,l)\big)_{l=1}^{\infty}.$$

Consider $(y_l)_l$ a dense sequence of points in X with finite support such that for each $l_0 \in \mathbb{N}$ the element y_{l_0} appears repeatedly infinitely many times. Consider a disjoint partition of the natural numbers into an infinite number of infinite sets

$$\mathbb{N}_m = \big((m,l)\big)_{l=1}^{\infty}$$

We construct an increasing sequence of natural numbers $(a_r)_r$. If $1 = (m, l) \in \mathbb{N}_m$

$$(y_l) =$$

Consider $(y_l)_l$ a dense sequence of points in X with finite support such that for each $l_0 \in \mathbb{N}$ the element y_{l_0} appears repeatedly infinitely many times. Consider a disjoint partition of the natural numbers into an infinite number of infinite sets

$$\mathbb{N}_m = \big((m,l)\big)_{l=1}^{\infty}$$

We construct an increasing sequence of natural numbers $(a_r)_r$. If $1 = (m, l) \in \mathbb{N}_m$

Consider $(y_l)_l$ a dense sequence of points in X with finite support such that for each $l_0 \in \mathbb{N}$ the element y_{l_0} appears repeatedly infinitely many times. Consider a disjoint partition of the natural numbers into an infinite number of infinite sets

 $\mathbb{N}_m = \big((m,l)\big)_{l=1}^{\infty}.$

We construct an increasing sequence of natural numbers $(a_r)_r$. If $1 = (m, l) \in \mathbb{N}_m$

 $(Sy_l)^{\frac{1}{m}} =$

 $\underline{0} \ \underline{4}^{\underline{1}_{m}} \underline{2}^{\underline{m}} \underline{8}^{\underline{m}} . \underline{1}^{\underline{1}_{m}} \underline{0} \ \underline{0}$

Consider $(y_l)_l$ a dense sequence of points in X with finite support such that for each $l_0 \in \mathbb{N}$ the element y_{l_0} appears repeatedly infinitely many times. Consider a disjoint partition of the natural numbers into an infinite number of infinite sets

 $\mathbb{N}_m = \big((m,l)\big)_{l=1}^{\infty}.$

We construct an increasing sequence of natural numbers $(a_r)_r$. If $1 = (m, l) \in \mathbb{N}_m$

 $(S^2 y_l)^{\frac{1}{m}} =$

Consider $(y_l)_l$ a dense sequence of points in X with finite support such that for each $l_0 \in \mathbb{N}$ the element y_{l_0} appears repeatedly infinitely many times. Consider a disjoint partition of the natural numbers into an infinite number of infinite sets

 $\mathbb{N}_m = \big((m,l)\big)_{l=1}^{\infty}.$

We construct an increasing sequence of natural numbers $(a_r)_r$. If $1 = (m, l) \in \mathbb{N}_m$

Consider $(y_l)_l$ a dense sequence of points in X with finite support such that for each $l_0 \in \mathbb{N}$ the element y_{l_0} appears repeatedly infinitely many times. Consider a disjoint partition of the natural numbers into an infinite number of infinite sets

$$\mathbb{N}_m = ((m, l))_{l=1}^{\infty}$$

We construct an increasing sequence of natural numbers $(a_r)_r$. If $1 = (m, l) \in \mathbb{N}_m$

$$\underbrace{\underline{4^{\frac{1}{m}} 2^{\frac{1}{m}} 8^{\frac{1}{m}} . 1^{\frac{1}{m}}}_{(S^{a_1} y_l)^{\frac{1}{m}}}$$

Consider $(y_l)_l$ a dense sequence of points in X with finite support such that for each $l_0 \in \mathbb{N}$ the element y_{l_0} appears repeatedly infinitely many times. Consider a disjoint partition of the natural numbers into an infinite number of infinite sets

 $\mathbb{N}_m = \big((m,l)\big)_{l=1}^{\infty}.$

We construct an increasing sequence of natural numbers $(a_r)_r$. If $1 = (m, l) \in \mathbb{N}_m$

$$\underbrace{4^{\frac{1}{m}}2^{\frac{n}{m}}\overline{8^{n}}.1^{\frac{1}{m}}}_{(S^{a_{1}}y_{l})^{\frac{1}{m}}} - - \underbrace{X \times X \times X}_{(S^{a_{r}}y_{3})^{\frac{1}{2}}} - \underbrace{X \times X \times X \times X}_{(S^{a_{r}}y_{5})^{\frac{1}{m}}} - \underbrace{X \times X}_{(S^{a_{r}}y_{5})^{\frac{1}{$$

Consider $(y_l)_l$ a dense sequence of points in X with finite support such that for each $l_0 \in \mathbb{N}$ the element y_{l_0} appears repeatedly infinitely many times. Consider a disjoint partition of the natural numbers into an infinite number of infinite sets

 $\mathbb{N}_m = \big((m,l)\big)_{l=1}^{\infty}.$

We construct an increasing sequence of natural numbers $(a_r)_r$. If $1 = (m, l) \in \mathbb{N}_m$

The increasing sequence of natural numbers $(a_r)_r$ such that, if $r = (m, l) \in \mathbb{N}_m$, then

- $\|\left(S^{a_r}y_l\right)^{\frac{1}{m}}\| \leq 2^{-r}$
- $\|T^{a_i}((S^{a_r}y_l)^{\frac{j}{m}})\| \le 2^{-r}$ for $i = 1, ..., r-1, j = 1, ..., d_{r-1}$,
- $a_r a_{r-1} \ge s_{l'}$,

where $d_r = \max_{(m,l) < r} m$ and r - 1 = (m', l').

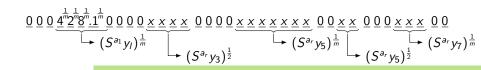
To finish;

To finish;

• each element y_{l_0} appears repeatedly infinitely many times

To finish;

- each element y_{l0} appears repeatedly infinitely many times
- $\prod_{
 u=0}^{p_k+n} w_{
 u}^{-1}
 ightarrow 0$ as $k
 ightarrow \infty$,



Key ingredients for the proof

To finish;

- each element y_{l_0} appears repeatedly infinitely many times
- $\prod_{
 u=0}^{p_k+n} w_{
 u}^{-1}
 ightarrow 0$ as $k
 ightarrow \infty$,

gives us that for $x = \sum_{\nu=j}^{N} \alpha_{\nu} x_{0}^{\nu}$ form some $\alpha_{j}, \ldots, \alpha_{N} \in \mathbb{C}$ with $\alpha_{j} \neq 0$

$$\|T^{a_k}(x) - y_{l_0}\| \xrightarrow{i \to \infty} 0$$

where $(k = (j, l_i))_i$ goes to infinity and $y_{l_i} = y_{l_0}$.

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under coordinatewise multiplication in which $(e_n)_n$ is a basis with Property A. Let B_w be a hypercyclic weighted backward shift on X. If there exists an increasing sequence $(p_k)_k$ of natural numbers satisfying (2) such that

for any
$$n \ge 0$$
, $\prod_{\nu=0}^{p_k+n} w_{\nu}^{-1} \to 0$, $v_{p_k+n}^{-1} e_{p_k+n} \to 0$ as $k \to \infty$,

then $HC(B_w)$ contains an algebra, except zero, that is not finitely generated.

In other words, $HC(B_w)$ is algebrable.

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under coordinatewise multiplication in which $(e_n)_n$ is a basis with Property A. Let B_w be a hypercyclic weighted backward shift on X. If there exists an increasing sequence $(p_k)_k$ of natural numbers satisfying (2) such that

for any
$$n \ge 0$$
, $\prod_{\nu=0}^{p_k+n} w_{\nu}^{-1} \to 0$, $v_{p_k+n}^{-1} e_{p_k+n} \to 0$ as $k \to \infty$,

then $HC(B_w)$ contains an algebra, except zero, that is not finitely generated.

In other words, $HC(B_w)$ is algebrable.

$$x := \sum_{m=1}^{\infty} \sum_{l \in \mathbb{N}} \left(S^{\mathbf{a}_{(m,l)}} y_l \right)^{\frac{1}{m}}$$

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under coordinatewise multiplication in which $(e_n)_n$ is a basis with Property A. Let B_w be a hypercyclic weighted backward shift on X. If there exists an increasing sequence $(p_k)_k$ of natural numbers satisfying (2) such that

for any
$$n \ge 0$$
, $\prod_{\nu=0}^{p_k+n} w_{\nu}^{-1} \to 0$, $v_{p_k+n}^{-1} e_{p_k+n} \to 0$ as $k \to \infty$,

then $HC(B_w)$ contains an algebra, except zero, that is not finitely generated.

In other words, $HC(B_w)$ is algebrable.

$$x_{\mathbf{r}} := \sum_{m=1}^{\infty} \sum_{l \in \mathbb{N}_{\mathbf{r}}} \left(S^{\mathbf{a}_{(m,l)}} y_l \right)^{\frac{1}{m}} \qquad \mathbf{r} \in \mathbb{N}$$

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under coordinatewise multiplication in which $(e_n)_n$ is a basis with Property A. Let B_w be a hypercyclic weighted backward shift on X. If there exists an increasing sequence $(p_k)_k$ of natural numbers satisfying (2) such that

for any
$$n \ge 0$$
, $\prod_{\nu=0}^{p_k+n} w_{\nu}^{-1} \to 0$, $v_{p_k+n}^{-1} e_{p_k+n} \to 0$ as $k \to \infty$,

then $HC(B_w)$ contains an algebra, except zero, that is not finitely generated.

In other words, $HC(B_w)$ is algebrable.

$$x_r := \sum_{m=1}^{\infty} \sum_{I \in \mathbb{N}_r} \left(S^{a_{(m,l)}} y_I \right)^{\frac{1}{m}} \qquad r \in \mathbb{N}$$

The key point is that $x_r x_{r'} = 0$ if $r \neq r'$,

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under coordinatewise multiplication in which $(e_n)_n$ is a basis with Property A. Let B_w be a hypercyclic weighted backward shift on X. If there exists an increasing sequence $(p_k)_k$ of natural numbers satisfying (2) such that

for any
$$n \ge 0$$
, $\prod_{\nu=0}^{p_k+n} w_{\nu}^{-1} \to 0$, $v_{p_k+n}^{-1} e_{p_k+n} \to 0$ as $k \to \infty$,

then $HC(B_w)$ contains an algebra, except zero, that is not finitely generated.

In other words, $HC(B_w)$ is algebrable.

$$x_r := \sum_{m=1}^{\infty} \sum_{l \in \mathbb{N}_r} \left(S^{\mathbf{a}_{(m,l)}} y_l \right)^{rac{1}{m}} \qquad r \in \mathbb{N}$$

The key point is that $x_r x_{r'} = 0$ if $r \neq r'$, so

$$x = \sum_{\substack{v \in A \\ |v| = N}} \alpha_v x_1^{v_1} \cdots x_s^{v_s}$$

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under coordinatewise multiplication in which $(e_n)_n$ is a basis with Property A. Let B_w be a hypercyclic weighted backward shift on X. If there exists an increasing sequence $(p_k)_k$ of natural numbers satisfying (2) such that

for any
$$n \ge 0$$
, $\prod_{\nu=0}^{p_k+n} w_{\nu}^{-1} \to 0$, $v_{p_k+n}^{-1} e_{p_k+n} \to 0$ as $k \to \infty$,

then $HC(B_w)$ contains an algebra, except zero, that is not finitely generated.

In other words, $HC(B_w)$ is algebrable.

$$x_r := \sum_{m=1}^{\infty} \sum_{l \in \mathbb{N}_r} \left(S^{a_{(m,l)}} y_l \right)^{\frac{1}{m}} \qquad r \in \mathbb{N}$$

۸I

The key point is that $x_r x_{r'} = 0$ if $r \neq r'$, so

$$x = \sum_{\substack{v \in A \\ |v| = N}} \alpha_v x_1^{v_1} \cdots x_s^{v_s} = \sum_{r=1}^{\infty} \sum_{v=j}^{N} \alpha_{r,v} x_r^{v}$$

A stronger result for Rolewicz's operators.

Proposition.

Set $X = \ell_p$, $1 \le p < \infty$ or $X = c_0$. Let fix $\lambda \in \mathbb{C}$ with $|\lambda| > 1$, a natural number j and a point $x_0 \in X$. If $x_0^j \in HC(\lambda B)$, then for all $N \in \mathbb{N}$, N > j, and all $\alpha_{j+1}, \ldots, \alpha_N \in \mathbb{C}$ the point $x_0^j + \sum_{i=i+1}^N \alpha_v x_0^v \in HC(\lambda B)$.

A stronger result for Rolewicz's operators.

Proposition.

Set $X = \ell_p$, $1 \le p < \infty$ or $X = c_0$. Let fix $\lambda \in \mathbb{C}$ with $|\lambda| > 1$, a natural number j and a point $x_0 \in X$. If $x_0^j \in HC(\lambda B)$, then for all $N \in \mathbb{N}$, N > j, and all $\alpha_{j+1}, \ldots, \alpha_N \in \mathbb{C}$ the point $x_0^j + \sum_{\nu=j+1}^N \alpha_\nu x_0^\nu \in HC(\lambda B)$.

This proposition with a Baire argument provides an alternative proof of the existence of a hypercyclic algebra for the particular case of the Rolewicz's operator.

Proposition.

Set $X = \ell_p$, $1 \le p < \infty$ or $X = c_0$. For any complex number λ with $|\lambda| > 1$ the set of hypercyclic vectors of the Rolewicz's operator $T = \lambda B$ on X contains an infinite dimensional algebra.

A result from Montes-Rodríguez prevent us to improve the previous proposition.

A stronger result for Rolewicz's operators.

Proposition.

Set $X = \ell_p$, $1 \le p < \infty$ or $X = c_0$. Let fix $\lambda \in \mathbb{C}$ with $|\lambda| > 1$, a natural number j and a point $x_0 \in X$. If $x_0^j \in HC(\lambda B)$, then for all $N \in \mathbb{N}$, N > j, and all $\alpha_{j+1}, \ldots, \alpha_N \in \mathbb{C}$ the point $x_0^j + \sum_{\nu=j+1}^N \alpha_{\nu} x_0^{\nu} \in HC(\lambda B)$.

This proposition with a Baire argument provides an alternative proof of the existence of a hypercyclic algebra for the particular case of the Rolewicz's operator.

Proposition.

Set $X = \ell_p$, $1 \le p < \infty$ or $X = c_0$. For any complex number λ with $|\lambda| > 1$ the set of hypercyclic vectors of the Rolewicz's operator $T = \lambda B$ on X contains an infinite dimensional algebra.

A result from Montes-Rodríguez prevent us to improve the previous proposition.

What about the Cauchy product?

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under the *Cauchy product* in which $(e_n)_n$ is a basis with Property B, and let B_w be a **mixing** weighted backward shift on X. Then there exists a point $x \in HC(B_w)$ such that the algebra generated by x, except zero, is contained in $HC(B_w)$.

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under the *Cauchy product* in which $(e_n)_n$ is a basis with Property B, and let B_w be a **mixing** weighted backward shift on X. Then there exists a point $x \in HC(B_w)$ such that the algebra generated by x, except zero, contained in $HC(B_w)$.

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence space that contains the finite sequences. We say that $(e_n)_n$ has *Property B* if the following conditions hold:

- there is some $q \ge 1$ such that $||e_n||_q > 0$ for all $n \ge 0$;
- for any $r \ge 1$ there is some $q \ge 1$ and some $C_1 > 0$ such that, for all $n, k \ge 0$,

$$||e_n||_r \cdot ||e_k||_r \leq C_1 ||e_{n+k}||_q;$$

• for any $m \ge 2$, $M \ge 1$, $r \ge 1$ there is some $\rho \ge 1$ such that for any $t \ge 1$ there is some $\tau \ge 1$ and some $C_2 > 0$ such that, for any $0 \le k \le M$, $n \ge M$,

 $\|e_{mn}\|_t \cdot \|e_{n-k}\|_r \leq C_2 \|e_{mn}\|_{\tau}^{\frac{1}{m}} \cdot \|e_{mn-k}\|_{\rho}.$

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under the *Cauchy product* in which $(e_n)_n$ is a basis with Property B, and let B_w be a **mixing** weighted backward shift on X. Then there exists a point $x \in HC(B_w)$ such that the algebra generated by x, except zero, is contained in $HC(B_w)$.

For a fixed element $y \in X_{00}$ of length s and a natural number m bigger than one there exists sequences of natural numbers $(\gamma_n)_n$, $(\eta_n)_n$ and sequences of complex numbers $(\alpha_{(n,j)})_n$, $j = 1, \ldots, s$ and $(\beta_n)_n$ such that the point

$$p_{m,n} = q_{m,n} + \beta_n e_{\gamma_n}$$

where

$$q_{m,n} = \sum_{j=1}^{s} \alpha_{(n,j)} y(j) e_{\eta_n + j}$$

satisfies that $\gamma > \eta + 2s$ and:

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under the *Cauchy product* in which $(e_n)_n$ is a basis with Property B, and let B_w be a **mixing** weighted backward shift on X. Then there exists a point $x \in HC(B_w)$ such that the algebra generated by x, except zero, is contained in $HC(B_w)$.

For a fixed element $y \in X_{00}$ of length s and a natural number m bigger than one there exists sequences of natural numbers $(\gamma_n)_n$, $(\eta_n)_n$ and sequences of complex numbers $(\alpha_{(n,j)})_n$, $j = 1, \ldots, s$ and $(\beta_n)_n$ such that the point

$$p_{m,n} = q_{m,n} + \beta_n e_{\gamma_n}$$

where

$$q_{m,n} = \sum_{j=1}^{s} \alpha_{(n,j)} y(j) e_{\eta_n + j}$$

satisfies that $\gamma > \eta + 2s$ and: C.1 $\|p\|_r < \varepsilon$;

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under the *Cauchy product* in which $(e_n)_n$ is a basis with Property B, and let B_w be a **mixing** weighted backward shift on X. Then there exists a point $x \in HC(B_w)$ such that the algebra generated by x, except zero, is contained in $HC(B_w)$.

For a fixed element $y \in X_{00}$ of length s and a natural number m bigger than one there exists sequences of natural numbers $(\gamma_n)_n$, $(\eta_n)_n$ and sequences of complex numbers $(\alpha_{(n,j)})_n$, $j = 1, \ldots, s$ and $(\beta_n)_n$ such that the point

$$p_{m,n} = q_{m,n} + \beta_n e_{\gamma_n}$$

where

$$q_{m,n} = \sum_{j=1}^{s} \alpha_{(n,j)} y(j) e_{\eta_n+j}$$

satisfies that $\gamma > \eta + 2s$ and: **C.1** $\|p\|_r < \varepsilon$; **C.2** $mq * b^{m-1}e_{(m-1)\gamma} = F_{w^{-1}}^{\eta+(m-1)\gamma}y;$

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under the *Cauchy product* in which $(e_n)_n$ is a basis with Property B, and let B_w be a **mixing** weighted backward shift on X. Then there exists a point $x \in HC(B_w)$ such that the algebra generated by x, except zero, is contained in $HC(B_w)$.

For a fixed element $y \in X_{00}$ of length s and a natural number m bigger than one there exists sequences of natural numbers $(\gamma_n)_n$, $(\eta_n)_n$ and sequences of complex numbers $(\alpha_{(n,j)})_n$, $j = 1, \ldots, s$ and $(\beta_n)_n$ such that the point

$$p_{m,n} = q_{m,n} + \beta_n e_{\gamma_n}$$

where

$$q_{m,n} = \sum_{j=1}^{s} \alpha_{(n,j)} y(j) e_{\eta_n+j}$$

satisfies that
$$\gamma > \eta + 2s$$
 and:
C.1 $\|p\|_r < \varepsilon$;
C.2 $mq * b^{m-1}e_{(m-1)\gamma} = F_{w^{-1}}^{\eta+(m-1)\gamma}y;$
C.3 $\|B_w^{\eta+(m-1)\gamma}(b^m e_{m\gamma})\|_r < \varepsilon.$

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under the *Cauchy product* in which $(e_n)_n$ is a basis with Property B, and let B_w be a **mixing** weighted backward shift on X. Then there exists a point $x \in HC(B_w)$ such that the algebra generated by x, except zero, is contained in $HC(B_w)$.

For a fixed element $y \in X_{00}$ of length s and a natural number m bigger than one there exists sequences of natural numbers $(\gamma_n)_n$, $(\eta_n)_n$ and sequences of complex numbers $(\alpha_{(n,j)})_n$, $j = 1, \ldots, s$ and $(\beta_n)_n$ such that the point

$$p_{m,n} = q_{m,n} + \beta_n e_{\gamma_n}$$

 $p_{m,n} = (\underline{0} \ \underline{0} \ \underline{x} \ \underline{x} \ \underline{x} \ \underline{0} \ \underline{\beta_n} \ \underline{0} \ \underline$

C.1 $\|p\|_{r} < \varepsilon;$ **C.2** $mq * b^{m-1}e_{(m-1)\gamma} = F_{w^{-1}}^{\eta+(m-1)\gamma}y;$ **C.3** $\|B_{w}^{\eta+(m-1)\gamma}(b^{m}e_{m\gamma})\|_{r} < \varepsilon.$

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under the *Cauchy product* in which $(e_n)_n$ is a basis with Property B, and let B_w be a **mixing** weighted backward shift on X. Then there exists a point $x \in HC(B_w)$ such that the algebra generated by x, except zero, is contained in $HC(B_w)$.

For a fixed element $y \in X_{00}$ of length s and a natural number m bigger than one there exists sequences of natural numbers $(\gamma_n)_n$, $(\eta_n)_n$ and sequences of complex numbers $(\alpha_{(n,j)})_n$, $j = 1, \ldots, s$ and $(\beta_n)_n$ such that the point

$$p_{m,n} = q_{m,n} + \beta_n e_{\gamma_n}$$

 $p_{m,n} = (\underline{0} \ \underline{0} \ \underline{x} \ \underline{x} \ \underline{x} \ \underline{0} \ \underline{\beta}_n \ \underline{0} \ \underline$

C.1 $||p||_r < \varepsilon;$ **C.2** $mq * b^{m-1}e_{(m-1)\gamma} = F_{w^{-1}}^{\eta+(m-1)\gamma}y;$ **C.3** $||B_w^{\eta+(m-1)\gamma}(b^m e_{m\gamma})||_r < \varepsilon.$

Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under the *Cauchy product* in which $(e_n)_n$ is a basis with Property B, and let B_w be a **mixing** weighted backward shift on X. Then there exists a point $x \in HC(B_w)$ such that the algebra generated by x, except zero, is contained in $HC(B_w)$.

For a fixed element $y \in X_{00}$ of length s and a natural number m bigger than one there exists sequences of natural numbers $(\gamma_n)_n$, $(\eta_n)_n$ and sequences of complex numbers $(\alpha_{(n,j)})_n$, $j = 1, \ldots, s$ and $(\beta_n)_n$ such that the point

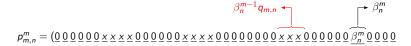
$$p_{m,n} = q_{m,n} + \beta_n e_{\gamma_n}$$

C.1 $\|p\|_{r} < \varepsilon;$ **C.2** $mq * b^{m-1}e_{(m-1)\gamma} = F_{w^{-1}}^{\eta+(m-1)\gamma}y;$ **C.3** $\|B_{w}^{\eta+(m-1)\gamma}(b^{m}e_{m\gamma})\|_{r} < \varepsilon.$

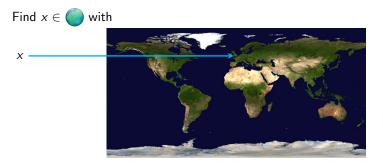
Let $(X, (\|\cdot\|_q)_q)$ be a Fréchet sequence algebra under the *Cauchy product* in which $(e_n)_n$ is a basis with Property B, and let B_w be a **mixing** weighted backward shift on X. Then there exists a point $x \in HC(B_w)$ such that the algebra generated by x, except zero, is contained in $HC(B_w)$.

For a fixed element $y \in X_{00}$ of length s and a natural number m bigger than one there exists sequences of natural numbers $(\gamma_n)_n$, $(\eta_n)_n$ and sequences of complex numbers $(\alpha_{(n,j)})_n$, $j = 1, \ldots, s$ and $(\beta_n)_n$ such that the point

$$p_{m,n} = q_{m,n} + \beta_n e_{\gamma_n}$$



 $\begin{array}{l} \textbf{C.1} \ \|p\|_{r} < \varepsilon; \\ \textbf{C.2} \ mq * b^{m-1} e_{(m-1)\gamma} = F_{w^{-1}}^{\eta + (m-1)\gamma} y; \\ \textbf{C.3} \ \|B_{w}^{\eta + (m-1)\gamma} (b^{m} e_{m\gamma})\|_{r} < \varepsilon. \end{array}$



Find $x \in \bigcirc$ with

Phileas Fogg

Find $x \in \bigcirc$ with

Phileas Fogg

Total			80 days
New Y	fork to London	steamer (the China) across the Atlantic Ocean to Liverpool and rail	9 days
San F	rancisco to New York City, US	rail	7 days
Yokoh	nama to San Francisco, US	steamer (the General Grant) across the Pacific Ocean	22 days
Hong	Kong to Yokohama, Japan	steamer (the Carnatic) across the South China Sea, East China Sea, and the Pacific Ocean	6 days
Calcut	tta to Victoria, Hong Kong	steamer (the Rangoon) across the South China Sea	13 days
Bomb	ay to Calcutta, India	rail	3 days
Suez 1	to Bombay, India	steamer (the Mongolia) across the Red Sea and the Indian Ocean	13 days
Londo	on, UK to Suez, Egypt	rail to Brindisi, Italy and steamer (the Mongolia) across the Mediterranean Sea	7 days

The itinerary (as originally planned)

x =

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR

1. Weighted shifts on Fréchet sequence algebras

We consider a complex *m*-convex Fréchet algebra, that is an algebra *X* over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{d\geq 1}$ of seminorms that are submultiplicative, i.e.,

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR

1. Weighted shifts on Fréchet sequence algebras

We consider a complex *m*-convex Fréchet algebra, that is an algebra *X* over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{d\geq 1}$ of seminorms that are submultiplicative, i.e.,

 $p_q(xy) \le p_q(x)p_q(y)$ for all $x, y \in X$, $q \ge 1$. For brevity we will call X simply a Fréchet algebra.

252 pages

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR

1. Weighted shifts on Fréchet sequence algebras

We consider a complex *m*-convex Fréchet algebra, that is an algebra *X* over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{d\geq 1}$ of seminorms that are submultiplicative, i.e.,

 $p_q(xy) \le p_q(x)p_q(y)$ for all $x, y \in X$, $q \ge 1$. For brevity we will call X simply a Fréchet algebra.

• 21 pages (more than 10 times shorter!)

252 pages

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR

1. Weighted shifts on Fréchet sequence algebras

We consider a complex *m*-convex Fréchet algebra, that is an algebra *X* over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{d\geq 1}$ of seminorms that are submultiplicative, i.e.,

 $p_q(xy) \le p_q(x)p_q(y)$ for all $x, y \in X$, $q \ge 1$. For brevity we will call X simply a Fréchet algebra.

• 21 pages (more than 10 times shorter!)

252 pages

• Only studies one specific space

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR

1. Weighted shifts on Fréchet sequence algebras

We consider a complex *m*-convex Fréchet algebra, that is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{0:11}$ of seminorms that are submultiplicative, i.e.,

 $p_q(xy) \le p_q(x)p_q(y)$ for all $x, y \in X$, $q \ge 1$. For brevity we will call X simply a Fréchet algebra.

- 21 pages (more than 10 times shorter!)
- We work on Fréchet sequence algebras with "reasonable" conditions

252 pages

• Only studies one specific space

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR.

1. WEIGHTED SHIFTS ON FRÉCHET SEQUENCE ALGEBRAS

We consider a complex m-convex Fréchet algebra, that is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{d\geq 1}$ of seminorms that are submultiplicative, i.e.,

 $p_r(xy) \le p_r(x)p_r(y)$ for all $x, y \in X$, $q \ge 1$. For brevity we will call X simply a Fréchet algebra.

- 21 pages (more than 10 times shorter!)
- · We work on Fréchet sequence algebras with "reasonable" conditions

252 pages



· He studies the orbit of one point

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR.

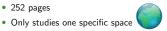
1. WEIGHTED SHIFTS ON FRÉCHET SEQUENCE ALGEBRAS

We consider a complex m-convex Fréchet algebra, that is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{d\geq 1}$ of seminorms that are submultiplicative, i.e.,

 $p_r(xy) \le p_r(x)p_r(y)$ for all $x, y \in X$, $q \ge 1$. For brevity we will call X simply a Fréchet algebra.

- 21 pages (more than 10 times shorter!)
- · We work on Fréchet sequence algebras with "reasonable" conditions
- We provide many hypercyclic vectors

252 pages



· He studies the orbit of one point

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR

1. Weighted shifts on Fréchet sequence algebras

We consider a complex *m*-convex Fréchet algebra, that is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{n\geq 1}$ of seminorms that are submultiplicative, i.e.,

- 21 pages (more than 10 times shorter!)
- We work on Fréchet sequence algebras with "reasonable" conditions
- · We provide many hypercyclic vectors

- 252 pages
- Only studies one specific space

- · He studies the orbit of one point
- · Focuses on the first 80 days

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR

1. Weighted shifts on Fréchet sequence algebras

We consider a complex *m*-convex Fréchet algebra, that is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{n\geq 1}$ of seminorms that are submultiplicative, i.e.,

- 21 pages (more than 10 times shorter!)
- We work on Fréchet sequence algebras with "reasonable" conditions
- · We provide many hypercyclic vectors
- · Provide the complete orbit of the vectors

- 252 pages
- Only studies one specific space

- · He studies the orbit of one point
- · Focuses on the first 80 days

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR

1. Weighted shifts on Fréchet sequence algebras

We consider a complex *m*-convex Fréchet algebra, that is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{n\geq 1}$ of seminorms that are submultiplicative, i.e.,

- 21 pages (more than 10 times shorter!)
- We work on Fréchet sequence algebras with "reasonable" conditions
- · We provide many hypercyclic vectors
- · Provide the complete orbit of the vectors

- 252 pages
- Only studies one specific space

- · He studies the orbit of one point
- · Focuses on the first 80 days

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR

1. Weighted shifts on Fréchet sequence algebras

We consider a complex *m*-convex Fréchet algebra, that is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{n\geq 1}$ of seminorms that are submultiplicative, i.e.,

- 21 pages (more than 10 times shorter!)
- We work on Fréchet sequence algebras with "reasonable" conditions
- · We provide many hypercyclic vectors
- · Provide the complete orbit of the vectors

- 252 pages
- Only studies one specific space

- · He studies the orbit of one point
- Focuses on the first 80 days
 - The first version sold 108,000 copies,

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR

1. Weighted shifts on Fréchet sequence algebras

We consider a complex *m*-convex Fréchet algebra, that is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{n\geq 1}$ of seminorms that are submultiplicative, i.e.,

 $p_q(xy) \le p_q(x)p_q(y)$ for all $x, y \in X$, $q \ge 1$. For heavity we will call X simply a *Prichet algebra*.

- 21 pages (more than 10 times shorter!)
- We work on Fréchet sequence algebras with "reasonable" conditions
- · We provide many hypercyclic vectors
- · Provide the complete orbit of the vectors

- 252 pages
- Only studies one specific space

- · He studies the orbit of one point
- · Focuses on the first 80 days
 - · The first version sold 108,000 copies,
 - Was translated into English, Russian, Italian, and Spanish as soon as it was published,

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR

1. Weighted shifts on Fréchet sequence algebras

We consider a complex *m*-convex Fréchet algebra, that is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{n\geq 1}$ of seminorms that are submultiplicative, i.e.,

 $p_q(xy) \le p_q(x)p_q(y)$ for all $x, y \in X$, $q \ge 1$. For heavity we will call X simply a *Prichet algebra*.

- 21 pages (more than 10 times shorter!)
- We work on Fréchet sequence algebras with "reasonable" conditions
- · We provide many hypercyclic vectors
- · Provide the complete orbit of the vectors

- 252 pages
- Only studies one specific space

- · He studies the orbit of one point
- Focuses on the first 80 days
 - · The first version sold 108,000 copies,
 - Was translated into English, Russian, Italian, and Spanish as soon as it was published,
 - · Base of a board game and a mobile game,

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR

1. Weighted shifts on Fréchet sequence algebras

We consider a complex *m*-convex Fréchet algebra, that is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{0:21}$ of seminorms that are submultiplicative, i.e.,

 $p_q(xy) \le p_q(x)p_q(y)$ for all $x, y \in X$, $q \ge 1$. For brevity we will call X simply a *Prichet algebra*.

- 21 pages (more than 10 times shorter!)
- We work on Fréchet sequence algebras with "reasonable" conditions
- We provide many hypercyclic vectors
- · Provide the complete orbit of the vectors

252 pages

- · He studies the orbit of one point
- Focuses on the first 80 days
 - · The first version sold 108,000 copies,
 - Was translated into English, Russian, Italian, and Spanish as soon as it was published,
 - · Base of a board game and a mobile game,
 - · Inspired 9 movies and 5 to tv shows,

ALGEBRABILITY OF THE SET OF HYPERCYCLIC VECTORS FOR THE BACKWARD SHIFT OPERATOR

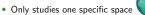
1. Weighted shifts on Fréchet sequence algebras

We consider a complex *m*-convex Fréchet algebra, that is an algebra X over the complex numbers that at the same time is a (locally convex) Fréchet space whose topology is induced by an increasing family $(p_0)_{0:21}$ of seminorms that are submultiplicative, i.e.,

 $p_q(xy) \le p_q(x)p_q(y)$ for all $x, y \in X$, $q \ge 1$. For brevity we will call X simply a *Prichet algebra*.

- 21 pages (more than 10 times shorter!)
- We work on Fréchet sequence algebras with "reasonable" conditions
- · We provide many hypercyclic vectors
- · Provide the complete orbit of the vectors

252 pages



- · He studies the orbit of one point
- Focuses on the first 80 days
 - · The first version sold 108,000 copies,
 - Was translated into English, Russian, Italian, and Spanish as soon as it was published,
 - · Base of a board game and a mobile game,
 - Inspired 9 movies and 5 to tv shows,
 - Worlds of Fun the amusement park in Kansas City, Missouri

What can we do

ALGEBRABILITY OF THE SET OF HYPERC FOR THE BACKWARD SHIFT OPE

1. Weighted shifts on Fréchet sequenc

We consider a complex *m*-convex Fréchet algebra, that the complex numbers that at the same time is a (locally whose topology is induced by an increasing family $(p_0)_{N\geq 1}$ submultiplicative, i.e.,

 $p_q(xy) \le p_q(x)p_q(y)$ for all $x, y \in X$, $q \ge 1$. For brevity we will call X simply

- 21 pages (more than 10 times
- We work on Fréchet sequence "reasonable" conditions
- · We provide many hypercyclic
- Provide the complete orbit of the vectors

Expected

impact!

New York

- Focuses on the first 80 days
 - · The first version sold 108,000 copies,
 - Was translated into English, Russian, Italian, and Spanish as soon as it was published,
 - · Base of a board game and a mobile game,
 - Inspired 9 movies and 5 to tv shows,
 - Worlds of Fun the amusement park in Kansas City, Missouri

What can we do

ALGEBRABILITY OF THE SET OF HYPERC FOR THE BACKWARD SHIFT OPE

1. Weighted shifts on Fréchet sequenc

We consider a complex *m*-convex Fréchet algebra, that the complex numbers that at the same time is a (locally whose topology is induced by an increasing family $(p_q)_{d\geq 1}$ submultiplicative, i.e.,

 $p_q(xy) \le p_q(x)p_q(y)$ for all $x, y \in X$, $q \ge 1$. For brevity we will call X simply

- 21 pages (more than 10 times
- We work on Fréchet sequence "reasonable" conditions
- · We provide many hypercyclic
- Provide the complete orbit of the vectors

Expected

impact!

Tokio

- Focuses on the first 80 days
 - · The first version sold 108,000 copies,
 - Was translated into English, Russian, Italian, and Spanish as soon as it was published,
 - · Base of a board game and a mobile game,
 - Inspired 9 movies and 5 to tv shows,
 - Worlds of Fun the amusement park in Kansas City, Missouri

What can we do

ALGEBRABILITY OF THE SET OF HYPERC FOR THE BACKWARD SHIFT OPE

1. Weighted shifts on Fréchet sequenc

We consider a complex *m*-convex Fréchet algebra, that the complex numbers that at the same time is a (locally whose topology is induced by an increasing family $(p_q)_{q\geq 1}$ submultiplicative, i.e.,

 $p_q(xy) \le p_q(x)p_q(y)$ for all $x, y \in X$, $q \ge 1$. For brevity we will call X simply

- 21 pages (more than 10 times
- We work on Fréchet sequence "reasonable" conditions
- We provide many hypercyclic
- Provide the complete orbit of the vecty

Expected

mpact

Now we construct . . an incre nent. quence $(p_r)_r$ of element Cs.1 $||p_r|| < 2^{-r}$, Cs.2 $\sum_{w \in I_{\bar{m},r}} \|T^{a_i}(A)\|$ $w \in I_{\tilde{n},r} \| T^{r_i} (A_{w_i} \prod_{s=1}^r)$ the multinomial of is the multinon Cs.3 $||T^{a_r}(p_r^m) - y_l||$, $||_{r} < 2^{-1}$ Cs.4 $T^{a_r}(\prod_{z=1}^{i} w_z)$ = 0 for where $d_r = \max$ London

- · The first version sold 108,000 copies,
- Was translated into English, Russian, Italian, and Spanish as soon as it was published,
- · Base of a board game and a mobile game,
- Inspired 9 movies and 5 to tv shows,
- Worlds of Fun the amusement park in Kansas City, Missouri

Pushing harder

Frequently hypercyclic operators

The lower density of a subset $A \subset \mathbb{N}_0$ is defined as

$$\underline{dens}(A) = \liminf_{N \to \infty} \frac{card\{0 \le n \le N; n \in A\}}{N+1}$$

Definition.

An operator T on a Fréchet space X is called *frequently hypercyclic* if there is some $x \in X$ so that, for any non-empty open subset U of X,

 $\underline{dens}\{n \in \mathbb{N}_0; T^n x \in U\} > 0.$

In this case, x is called a *frequently hypercyclic vector* for T. The set of frequently hypercyclic vectors for T is denoted by FHC(T).

Frequently hypercyclic operators

The lower density of a subset $A \subset \mathbb{N}_0$ is defined as

$$\underline{dens}(A) = \liminf_{N \to \infty} \frac{card\{0 \le n \le N; n \in A\}}{N+1}$$

Definition.

An operator T on a Fréchet space X is called *frequently hypercyclic* if there is some $x \in X$ so that, for any non-empty open subset U of X,

<u>dens</u>{ $n \in \mathbb{N}_0$; $T^n x \in U$ } > 0.

In this case, x is called a *frequently hypercyclic vector* for T. The set of frequently hypercyclic vectors for T is denoted by FHC(T).

Birkhoff, MacLane and Rolewicz operators are examples of frequently hypercyclic operators.

In general no!

In general no!

Proposition.

Let consider the Banach algebra $X = \ell_p$, $1 \le p < \infty$, or $X = c_0$ endowed with coordinatewise multiplication. Then, for any $\lambda \in \mathbb{C}$ with $|\lambda| > 1$, if $x_0 \in FHC(\lambda B)$, then there exists a natural number M_0 such that $x_0^M \notin HC(\lambda B)$ for any $M \ge M_0$.

In general no!

Proposition.

Let consider the Banach algebra $X = \ell_p$, $1 \le p < \infty$, or $X = c_0$ endowed with coordinatewise multiplication. Then, for any $\lambda \in \mathbb{C}$ with $|\lambda| > 1$, if $x_0 \in FHC(\lambda B)$, then there exists a natural number M_0 such that $x_0^M \notin HC(\lambda B)$ for any $M \ge M_0$.

Any algebra $\mathcal{A} \subset HC(\lambda B)$ cannot contain a frequently hypercyclic vector.

In general no!

Proposition.

Let consider the Banach algebra $X = \ell_p$, $1 \le p < \infty$, or $X = c_0$ endowed with coordinatewise multiplication. Then, for any $\lambda \in \mathbb{C}$ with $|\lambda| > 1$, if $x_0 \in FHC(\lambda B)$, then there exists a natural number M_0 such that $x_0^M \notin HC(\lambda B)$ for any $M \ge M_0$.

Any algebra $\mathcal{A} \subset HC(\lambda B)$ cannot contain a frequently hypercyclic vector.

Proposition

Let consider the Banach algebra $X = \ell_p$, $1 \le p < \infty$, or $X = c_0$ endowed with coordinatewise multiplication. If $x_0 \in X$ with $x_0^j \in FHC(B_w)$, then for all $N \in \mathbb{N}$, N > j, and all $\alpha_{j+1}, \ldots, \alpha_N \in \mathbb{C}$ the point $x_0^j + \sum_{\nu=j+1}^N \alpha_\nu x_0^\nu \in FHC(B_w)$.

A TRUE positive example

Theorem.

Let consider the Banach algebra (ℓ_1, \times) . For any $\lambda \in \mathbb{C}$ with $|\lambda| > 1$ there exists an algebraically independent sequence of vectors $(x_n)_n \subset$ ℓ_1 such that $\mathcal{B} = \mathbb{C}[x_1, x_2, \ldots]$ but zero is in $FHC(\lambda B)$. Furthermore, the vectorial space $\mathcal{B}_0 := \{\sum_{j=1} \alpha_j x_j : k \in \mathbb{N}, \alpha_1, \dots, \alpha_k \in \mathbb{C}\}$ satisfies that $\mathcal{B}_0 \varsubsetneq \mathcal{B}$.

A TRUE positive example

Theorem.

Let consider the Banach algebra (ℓ_1, \times) . For any $\lambda \in \mathbb{C}$ with $|\lambda| > 1$ there exists an algebraically independent sequence of vectors $(x_n)_n \subset \ell_1$ such that $\mathcal{B} = \mathbb{C}[x_1, x_2, \ldots]$ but zero is in $FHC(\lambda B)$. Furthermore, the vectorial space $\mathcal{B}_0 := \{\sum_{j=1}^k \alpha_j x_j : k \in \mathbb{N}, \alpha_1, \ldots, \alpha_k \in \mathbb{C}\}$ satisfies that $\mathcal{B}_0 \subsetneq \mathcal{B}$.

Given two sequences x, y of ℓ_1 we consider the product $x \times y = z$ given by

$$z(t) = \begin{cases} x(1)y(1) & \text{if } j = 1\\ x(1)y(t-1) & \text{if } n_k + 2 \le t \le n_k + s_l \text{ for some } n_k \in A(l)\\ 0 & \text{otherwise.} \end{cases}$$

where $(n_k)_k$, $(s_l)_l$ are two fixed sequences of natural numbers and A(l) is a set of positive lower density for all $l \in \mathbb{N}$.

Bibliography

Aron, R. M.; Conejero, J. A.; Peris, A.; Seoane-Seplveda, J. B. Powers of hypercyclic functions for some classical hypercyclic operators. Integral Equations Operator Theory 58 (2007), no. 4, 591-596.

Bayart, Frédéric; Matheron, Étienne. Dynamics of linear operators. Cambridge Tracts in Mathematics, 179. Cambridge University Press, Cambridge, 2009. xiv+337 pp. ISBN: 978-0-521-51496-5.

Grosse-Erdmann, Karl-G.; Peris Manguillot, Alfredo. Linear chaos. Universitext. Springer, London, 2011. xii+386 pp. ISBN: 978-1-4471-2169-5.

Shkarin, Stanislav. On the set of hypercyclic vectors for the differentiation operator. Israel J. Math. 180 (2010).

Thank you!