Segre cone of Banach spaces and Σ -operators

Maite Fernández Unzueta

Cimat

Guanajuato, México

Conference on Non-Linear Functional Analysis

Universitat Politècnica de València (Spain)

17-20 October 2017.

Contents

- 1 The reason for this.
- 2 Tensors of rank $\leq r$ in Banach spaces.
- 3 The Segre cone of Banach spaces and Σ-operators.
- 4 How it works. An example.

To study multilinear mappings with an eye on linear operators.

To study multilinear mappings with an eye on linear operators.

Example (Continuity)

To study multilinear mappings with an eye on linear operators.

Example (Continuity)

To study multilinear mappings with an eye on linear operators.

Example (Continuity)

$T: X \to Y$ linear

- $||T(x)|| \le c||x||$
- T unif. cont.
- T Lipschitz.

To study multilinear mappings with an eye on linear operators.

Example (Continuity)

$T: X \to Y$ linear

- $||T(x)|| \le c||x||$
- T unif. cont.
- T Lipschitz.

To study multilinear mappings with an eye on linear operators.

Example (Continuity)

$T:X\to Y$ linear

- $||T(x)|| \le c||x||$
- T unif. cont.
- T Lipschitz.

$T: X_1 \times X_2 \to Y$ multilinear

- $\bullet \ ||T(x,y)|| \le c||(x,y)||$
- T unif. cont.
- T Lipschitz
- $||T(x,y)|| \le c||x|| \cdot ||y||$

To study multilinear mappings with an eye on linear operators.

Example (Continuity)

$T:X\to Y$ linear

- $||T(x)|| \le c||x||$
- T unif. cont.
- T Lipschitz.

$T: X_1 \times X_2 \to Y$ multilinear

- $\bullet \ ||T(x,y)|| \le c||(x,y)||$
- T unif. cont.
- T Lipschitz
- $||T(x,y)|| \le c||x|| \cdot ||y||$

To study multilinear mappings with an eye on linear operators.

Example (Continuity)

$T:X\to Y$ linear

- $||T(x)|| \le c||x||$
- T unif. cont.
- T Lipschitz.

$T: X_1 \times X_2 \to Y$ multilinear

- $\bullet \ \|T(x,y)\| \le c\|(x,y)\|$
- T unif. cont.
- T Lipschitz
- $||T(x,y)|| \le c||x|| \cdot ||y||$

What to do with other "bounded" conditions?

Example (p-summability)

$$||T(u)|| \le c \cdot \left(\int_{B_{T,*}} |x^*(u)|^p d\mu(x^*)\right)^{1/p}$$
 T linear

To study multilinear mappings with an eye on linear operators.

Example (Continuity)

$T:X\to Y$ linear

- $||T(x)|| \le c||x||$
- T unif. cont.
- T Lipschitz.

$T: X_1 \times X_2 \to Y$ multilinear

- $\bullet \ \|T(x,y)\| \le c\|(x,y)\|$
- T unif. cont.
- T Lipschitz
- $||T(x,y)|| \le c||x|| \cdot ||y||$

What to do with other "bounded" conditions?

Example (p-summability)

$$||T(u)|| \le c \cdot \left(\int_{B_{T,*}} |x^*(u)|^p d\mu(x^*)\right)^{1/p}$$
 T linear

To study multilinear mappings with an eye on linear operators.

Example (Continuity)

$T:X\to Y$ linear

- $||T(x)|| \le c||x||$
- T unif. cont.
- T Lipschitz.

$T: X_1 \times X_2 \to Y$ multilinear

- $\bullet \ \|T(x,y)\| \le c\|(x,y)\|$
- T unif. cont.
- T Lipschitz
- $||T(x,y)|| \le c||x|| \cdot ||y||$

What to do with other "bounded" conditions?

Example (p-summability)

$$||T(u)|| \le c \cdot \left(\int_{B_{XX}} |x^*(u)|^p d\mu(x^*)\right)^{1/p}$$
 T linear

If T is multilinear?

Segre cone and Σ -operators:

A geometrical framework to study multilinear mappings.

The domain

If X_1, \ldots, X_n are vector spaces, we denote the set of **decomposable tensors** as

$$\Sigma_{X_1,\dots,X_n} := \{x_1 \otimes \dots \otimes x_n; \ x_i \in X_i\} \subset X_1 \otimes \dots \otimes X_n.$$

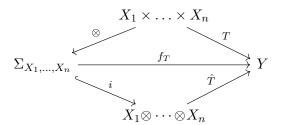
• The Segre variety is the image of the Segre embedding:

$$\frac{\Sigma_{n,m}: \mathbb{P}^n \times \mathbb{P}^m}{((x_0: \ldots: x_n), (y_0: \ldots: y_m))} \longrightarrow \mathbb{P}^{(m+1)(n+1)-1}$$

• We will use the same notation for the cone: Σ .

Mappings

Given $T \in L(X_1, ..., X_n; Y)$, let $\hat{T} \in L(X_1 \otimes ... \otimes X_n; Y)$ its associated linear mapping and $f_T := \hat{T}_{|_{\Sigma_{X_1,...,X_n}}}$. Then,



and/vs

 Σ -operators.

How to proceed:

and/vs

 Σ -operators.

How to proceed:

- **①** Change, by \otimes ((x_1, \ldots, x_n) vs $x_1 \otimes \cdots \otimes x_n$) and T by f_T .
- ② Solve in terms of \otimes and f_T . The work to do is here*.
- **3** Change \otimes by , and f_T by T.

and/vs

 Σ -operators.

How to proceed:

- **①** Change, by \otimes ((x_1, \ldots, x_n) vs $x_1 \otimes \cdots \otimes x_n$) and T by f_T .
- 2 Solve in terms of \otimes and f_T . The work to do is here*.
- **3** Change \otimes by , and f_T by T.

Benefit: a geometric insight.

- $\Sigma_{X_1,...,X_n}$ is richer than $X_1 \times ... \times X_n$.
- The metric, the tensor and the multilinear structures merge in $f_T: \Sigma_{X_1,...,X_n} \to Y$.

and/vs

 Σ -operators.

How to proceed:

- **①** Change, by \otimes ((x_1, \ldots, x_n) vs $x_1 \otimes \cdots \otimes x_n$) and T by f_T .
- 2 Solve in terms of \otimes and f_T . The work to do is here*.
- **3** Change \otimes by , and f_T by T.

Benefit: a geometric insight.

- $\Sigma_{X_1,...,X_n}$ is richer than $X_1 \times ... \times X_n$.
- The metric, the tensor and the multilinear structures merge in $f_T: \Sigma_{X_1,...,X_n} \to Y$.

and/vs

 Σ -operators.

How to proceed:

- **①** Change, by \otimes ((x_1, \ldots, x_n) vs $x_1 \otimes \cdots \otimes x_n$) and T by f_T .
- ② Solve in terms of \otimes and f_T . The work to do is here*.
- **3** Change \otimes by , and f_T by T.

Benefit: a geometric insight.

- $\Sigma_{X_1,...,X_n}$ is richer than $X_1 \times ... \times X_n$.
- The metric, the tensor and the multilinear structures merge in $f_T: \Sigma_{X_1,...,X_n} \to Y$.
- * The problem now lies within a geometric environment.

$$(S^r_{X_1,\ldots,X_n},d_\beta)$$

 X_1, \ldots, X_n vector spaces, the rank of $z \in X_1 \otimes \cdots \otimes X_n$ is:

$$r_z := \min\{r \in \mathbb{N}; \ z = \sum_{i=1}^r x_1^i \otimes \cdots \otimes x_n^i; \ x_j^i \in X_j\}.$$

$$(S^r_{X_1,\ldots,X_n},d_{\beta})$$

 X_1, \ldots, X_n vector spaces, the rank of $z \in X_1 \otimes \cdots \otimes X_n$ is:

$$r_z := \min\{r \in \mathbb{N}; \ z = \sum_{i=1}^r x_1^i \otimes \cdots \otimes x_n^i; \ x_j^i \in X_j\}.$$

For $r \in \mathbb{N}$, we will denote

$$S_{X_1,\ldots,X_n}^r := \{ z \in X_1 \otimes \cdots \otimes X_n; \ r_z \leq r \}.$$

$$(S^r_{X_1,\dots,X_n},d_\beta)$$

 X_1, \ldots, X_n vector spaces, the rank of $z \in X_1 \otimes \cdots \otimes X_n$ is:

$$r_z := \min\{r \in \mathbb{N}; \ z = \sum_{i=1}^r x_1^i \otimes \cdots \otimes x_n^i; \ x_j^i \in X_j\}.$$

For $r \in \mathbb{N}$, we will denote

$$\mathcal{S}^r_{X_1,\ldots,X_n} := \{ z \in X_1 \otimes \cdots \otimes X_n; \ r_z \le r \}.$$

Theorem (Lipschitz equivalence of tensor metrics in S^r)

Let X_i be B.s. and α , β are r.c. norms on $X_1 \otimes \cdots \otimes X_n$, then:

$$(\mathcal{S}^r_{X_1,\dots,X_n},d_{\alpha}) \stackrel{Id}{\simeq} (\mathcal{S}^r_{X_1,\dots,X_n},d_{\beta}).$$

$$d_{\alpha}(w,z) \le (2r)^{n-1} d_{\beta}(w,z) \text{ and } ||z||_{\alpha} \le r^{n-1} ||z||_{\beta}.$$

$$(S^r_{X_1,\dots,X_n},d_\beta)$$

If X_i B.s. and α is a r.c. norm on $X_1 \otimes \cdots \otimes X_n$, the completion of $(\mathcal{S}^r_{X_1,\ldots,X_n},d_{\alpha})$ is the closure

$$\overline{\mathcal{S}_{X_1,\dots,X_n}^r}^{\alpha} \subset X_1 \hat{\otimes}_{\alpha} \cdots \hat{\otimes}_{\alpha} X_n.$$

Corollary (The closure is independent of the r.c.norm)

$$\overline{\mathcal{S}^r_{X_1,\dots,X_n}}^{\alpha} = \overline{\mathcal{S}^r_{X_1,\dots,X_n}}^{\pi}$$

Thus, $(S_{X_1,...,X_n}^r, d_{\alpha})$ is complete iff $(S_{X_1,...,X_n}^r, d_{\beta})$ is complete.

$$(S^r_{X_1,\dots,X_n},d_\beta)$$

If X_i B.s. and α is a r.c. norm on $X_1 \otimes \cdots \otimes X_n$, the completion of $(\mathcal{S}^r_{X_1,\ldots,X_n},d_{\alpha})$ is the closure

$$\overline{\mathcal{S}_{X_1,\ldots,X_n}^r}^{\alpha} \subset X_1 \hat{\otimes}_{\alpha} \cdots \hat{\otimes}_{\alpha} X_n.$$

Corollary (The closure is independent of the r.c.norm)

$$\overline{\mathcal{S}^r_{X_1,\dots,X_n}}^{\alpha} = \overline{\mathcal{S}^r_{X_1,\dots,X_n}}^{\pi}$$

Thus, $(S_{X_1,\ldots,X_n}^r,d_{\alpha})$ is complete iff $(S_{X_1,\ldots,X_n}^r,d_{\beta})$ is complete.

Corollary (A unique topolgy)

All r.c norms on $X_1 \otimes \cdots \otimes X_n$ induce the same topology on $\mathcal{S}^r_{X_1,\dots,X_n}$.

Closedness of $\mathcal{S}^r_{X_1,\dots,X_n}$

Let X_1, \ldots, X_n be Banach spaces. Then,

- $r=1, n \geq 1 \implies S^1_{X_1,\dots,X_n} (= \Sigma_{X_1,\dots,X_n})$ is closed.
- $r \ge 1$, $n = 2 \implies S^r_{X_1, X_2}$ is closed.
- $r \geq 2, n \geq 3 \implies S_{X_1,\dots,X_n}^r$ is not* closed.
- * If the spaces are finite dimensional, sometimes it is closed (depends on r and the dimensions of X_j).

The Segre cone

For X_1, \ldots, X_n B.s. and α, β are r.c.n. on $X_1 \otimes \cdots \otimes X_n$,

$$(\Sigma_{X_1,\ldots,X_n},d_{\alpha}) \stackrel{Id}{\simeq} (\Sigma_{X_1,\ldots,X_n},d_{\beta})$$

with $d_{\alpha}(w,z) \leq d_{\pi}(w,z) \leq 2^{n-1}d_{\alpha}(w,z)$. With this,

Definition

The Segre cone in the Banach space category is $(\Sigma_{X_1,...,X_n}, d_{\pi})$.

The Segre cone

For X_1, \ldots, X_n B.s. and α, β are r.c.n. on $X_1 \otimes \cdots \otimes X_n$,

$$(\Sigma_{X_1,\ldots,X_n},d_{\alpha}) \stackrel{Id}{\simeq} (\Sigma_{X_1,\ldots,X_n},d_{\beta})$$

with $d_{\alpha}(w,z) \leq d_{\pi}(w,z) \leq 2^{n-1}d_{\alpha}(w,z)$. With this,

Definition

The Segre cone in the Banach space category is $(\Sigma_{X_1,...,X_n}, d_{\pi})$.

- $(\Sigma_{X_1,\ldots,X_n},d_{\pi})$ is complete.
- If $Y_i \subset X_i$, then $\Sigma_{Y_1,...,Y_n}$ is closed in $\Sigma_{X_1,...,X_n}$.
- If $Y \subset \Sigma_{X_1,...,X_n}$ is a subspace of dim $Y \geq 2$, $Y \subset x_1 \otimes \cdots \otimes x_{i_0-1} \otimes X_{i_0} \otimes x_{i_0+1} \otimes \cdots \otimes x_n$.

Definition

A mapping $f: \Sigma_{X_1,...,X_n} \to Y$ is a (bounded) **\(\Sigma\)-operator** if there exists a (bounded) multilinear mapping $T \in L(X_1,...,X_n;Y)$ such that $f = \hat{T}_{|\Sigma_{X_1,...,X_n}}$.

Definition

A mapping $f: \Sigma_{X_1,...,X_n} \to Y$ is a (bounded) **\(\Sigma\)-operator** if there exists a (bounded) multilinear mapping $T \in L(X_1,...,X_n;Y)$ such that $f = \hat{T}_{|\Sigma_{X_1,...,X_n}}$.

Theorem (Diagram in the B.s. category)

T, \hat{T} and f_T are simultaneously continuous and

$$||T|| = ||\hat{T}||_{\pi} = ||f_T||_{Lip}.$$

Definition

A mapping $f: \Sigma_{X_1,\dots,X_n} \to Y$ is a (bounded) **\(\Sigma\)-operator** if there exists a (bounded) multilinear mapping $T \in L(X_1,\dots,X_n;Y)$ such that $f = \hat{T}_{|\Sigma_{X_1,\dots,X_n}}$.

Theorem (Diagram in the B.s. category)

T, \hat{T} and f_T are simultaneously continuous and

$$||T|| = ||\hat{T}||_{\pi} = ||f_T||_{Lip}.$$

Example (Continuity)

$$f_T: \Sigma_{X_1,\dots,X_n} \to Y$$
 is Lipschitz, i.e., for $u,v \in \Sigma_{X_1,\dots,X_n}$

$$||f_T(u) - f_T(v)||_Y \le ||T|| \cdot d_{\Sigma}(u, v) = c \cdot ||u - v||_{\pi} *$$

Definition

A mapping $f: \Sigma_{X_1,\dots,X_n} \to Y$ is a (bounded) **\(\Sigma\)-operator** if there exists a (bounded) multilinear mapping $T \in L(X_1,\dots,X_n;Y)$ such that $f = \hat{T}_{|\Sigma_{X_1,\dots,X_n}}$.

Theorem (Diagram in the B.s. category)

T, \hat{T} and f_T are simultaneously continuous and

$$||T|| = ||\hat{T}||_{\pi} = ||f_T||_{Lip}.$$

Example (Continuity)

$$f_T: \Sigma_{X_1,\dots,X_n} \to Y$$
 is Lipschitz, i.e., for $u,v \in \Sigma_{X_1,\dots,X_n}$

$$||f_T(u) - f_T(v)||_Y \le ||T|| \cdot d_{\Sigma}(u, v) = c \cdot ||u - v||_{\pi} *$$

Definition

A mapping $f: \Sigma_{X_1,...,X_n} \to Y$ is a (bounded) **\(\Sigma\)-operator** if there exists a (bounded) multilinear mapping $T \in L(X_1,...,X_n;Y)$ such that $f = \hat{T}_{|\Sigma_{X_1,...,X_n}}$.

Theorem (Diagram in the B.s. category)

T, \hat{T} and f_T are simultaneously continuous and

$$||T|| = ||\hat{T}||_{\pi} = ||f_T||_{Lip}.$$

Example (Continuity)

 $f_T: \Sigma_{X_1,\dots,X_n} \to Y$ is Lipschitz, i.e., for $u,v \in \Sigma_{X_1,\dots,X_n}$

$$||f_T(u) - f_T(v)||_Y < ||T|| \cdot d_{\Sigma}(u, v) = c \cdot ||u - v||_{\pi} *$$

* No sense in terms of $\{,,T\}$ instead of $\{\otimes,f\}$.

How to proceed?

Problem:

Given a Banach-space condition on linear mappings, how to state an analogous (appropriate? natural? satisfactory?...) condition on multilinear mappings.

How to proceed?

Problem:

Given a Banach-space condition on linear mappings, how to state an analogous (appropriate? natural? satisfactory?...) condition on multilinear mappings.

Part ② of the procedure

Given a boundedness condition on linear operators,

$$\{S:X\to Y\},$$

write the analogous boundedness (Lipschitz) conditions on $\Sigma\text{-operators}^*$

$$\{f: \Sigma_{X_1,\dots,X_n} \to Y\}$$

and work in here.

How to proceed?

Problem:

Given a Banach-space condition on linear mappings, how to state an analogous (appropriate? natural? satisfactory?...) condition on multilinear mappings.

Part ② of the procedure

Given a boundedness condition on linear operators,

$$\{S:X\to Y\},$$

write the analogous boundedness (Lipschitz) conditions on $\Sigma\text{-operators}^*$

$$\{f: \Sigma_{X_1,\dots,X_n} \to Y\}$$

and work in here.

How to proceed?

Problem:

Given a Banach-space condition on linear mappings, how to state an analogous (appropriate? natural? satisfactory?...) condition on multilinear mappings.

Part ② of the procedure

Given a boundedness condition on linear operators,

$$\{S:X\to Y\},$$

write the analogous boundedness (Lipschitz) conditions on $\Sigma\text{-operators}^*$

$$\{f: \Sigma_{X_1,\dots,X_n} \to Y\}$$

and work in here.

^{*} We are already within the geometrical framework.

Definition

A linear mapping $T:X\to Y$ is absolutely *p*-summing if $\exists c>0$

$$\sum_{i=1}^{k} ||T(u_i)||^p \le c^p \cdot \sup_{\varphi \in B_{X^*}} \left\{ \sum_{i=1}^{k} |\varphi(u_i)|^p \right\}$$

Definition

A linear mapping $T:X\to Y$ is absolutely p-summing if $\exists c>0$

$$\sum_{i=1}^{k} \left\| T\left(u_{i}\right) \right\|^{p} \leq c^{p} \cdot \sup_{\varphi \in B_{X^{*}}} \left\{ \sum_{i=1}^{k} \left| \varphi\left(u_{i}\right) \right|^{p} \right\}$$

Definition

A Σ -operator $f: \Sigma_{X_1,\dots,X_n} \to Y$ is *p*-summing if $\exists c > 0$ s.t.

$$\sum_{i=1}^{k} \|f(u_i) - f(v_i)\|^p \le c^p \cdot \sup_{\varphi \in B_{\mathcal{L}_{\Sigma^{\beta}}}} \left\{ \sum_{i=1}^{k} |\varphi(u_i) - \varphi(v_i)|^p \right\}$$

Definition

A linear mapping $T:X\to Y$ is absolutely p-summing if $\exists c>0$

$$\sum_{i=1}^{k} \left\| T\left(u_{i}\right) \right\|^{p} \leq c^{p} \cdot \sup_{\varphi \in B_{X^{*}}} \left\{ \sum_{i=1}^{k} \left| \varphi\left(u_{i}\right) \right|^{p} \right\}$$

Definition

A Σ -operator $f: \Sigma_{X_1,\dots,X_n} \to Y$ is *p*-summing if $\exists c > 0$ s.t.

$$\sum_{i=1}^{k} \|f(u_i) - f(v_i)\|^p \le c^p \cdot \sup_{\varphi \in B_{\mathcal{L}_{\Sigma^{\beta}}}} \left\{ \sum_{i=1}^{k} |\varphi(u_i) - \varphi(v_i)|^p \right\}$$

Definition

A linear mapping $T:X\to Y$ is absolutely p-summing if $\exists c>0$

$$\sum_{i=1}^{k} \left\| T\left(u_{i}\right) \right\|^{p} \leq c^{p} \cdot \sup_{\varphi \in B_{X^{*}}} \left\{ \sum_{i=1}^{k} \left| \varphi\left(u_{i}\right) \right|^{p} \right\}$$

Definition

A Σ -operator $f: \Sigma_{X_1,...,X_n} \to Y$ is *p*-summing if $\exists c > 0$ s.t.

$$\sum_{i=1}^{k} \|f(u_i) - f(v_i)\|^p \le c^p \cdot \sup_{\varphi \in B_{\mathcal{L}_{\Sigma^{\beta}}}} \left\{ \sum_{i=1}^{k} |\varphi(u_i) - \varphi(v_i)|^p \right\}$$

 $\mathcal{L}_{\Sigma^{\beta}} = \{ \text{Scalar valued } \Sigma \text{-operators s.t } \hat{T}_f \in (X_1 \hat{\otimes}_{\beta} \cdots \hat{\otimes}_{\beta} X_n)^* \}.$

* Joint work with J.C Angulo

Equivalences of p-summability (for a r.c.norm β)

• Domination Thm.

$$||f(u) - f(v)|| \le c \cdot \left(\int_{B_{\mathcal{L}_{\Sigma^{\beta}}}} |\varphi(u) - \varphi(v)|^p d\mu(\varphi) \right)^{1/p}$$

Equivalences of p-summability (for a r.c.norm β)

• Domination Thm.

$$||f(u) - f(v)|| \le c \cdot \left(\int_{B_{\mathcal{L}_{\Sigma^{\beta}}}} |\varphi(u) - \varphi(v)|^p d\mu(\varphi) \right)^{1/p}.$$

• Factorization Thm.

$$\Sigma_{X_{1},...,X_{n}} \xrightarrow{f} Y$$

$$\downarrow_{i_{\Sigma}} \qquad \uparrow_{h_{f}}$$

$$\Sigma_{X_{1},...,X_{n}}^{\beta} \xrightarrow{j_{p}|_{\Sigma}} \Sigma_{p}^{\beta}$$

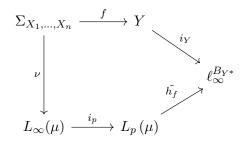
$$\cap \qquad \qquad \cap$$

$$C(B_{\mathcal{L}_{\Sigma^{\beta}}}, w^{*}) \xrightarrow{j_{p}} L_{p}(\mu)$$

where h_f is a Lipschitz mapping.

In the case of the projective norm

• f is p-summing iff



where ν is a Σ -operator and $\tilde{h_f}$ is a Lipschitz mapping.

$T: X_1 \times \cdots \times X_n \to Y$ mulitlinear. Tfae:

• Local notion:

$$\sum_{i=1}^{k} \left\| T\left(u_{i}\right) - T\left(v_{i}\right) \right\|^{p} \leq c^{p} \cdot \sup_{\varphi \in B_{\mathcal{L}}} \left\{ \sum_{i=1}^{k} \left| \varphi\left(u_{i}\right) - \varphi\left(v_{i}\right) \right| \right\}$$

$T: X_1 \times \cdots \times X_n \to Y$ mulitlinear. Tfae:

• Local notion:

$$\sum_{i=1}^{k} \|T(u_i) - T(v_i)\|^p \le c^p \cdot \sup_{\varphi \in B_{\mathcal{L}}} \left\{ \sum_{i=1}^{k} |\varphi(u_i) - \varphi(v_i)| \right\}$$

• Domination:

$$||T(u) - T(v)|| \le c \cdot \left(\int_{B_{\mathcal{L}(X_1, \dots, X_n)}} |\varphi(u) - \varphi(v)|^p d\mu(\varphi) \right)^{1/p}$$

$T: X_1 \times \cdots \times X_n \to Y$ mulitlinear. Tfae:

• Local notion:

$$\sum_{i=1}^{k} \|T(u_i) - T(v_i)\|^p \le c^p \cdot \sup_{\varphi \in B_{\mathcal{L}}} \left\{ \sum_{i=1}^{k} |\varphi(u_i) - \varphi(v_i)| \right\}$$

• Domination:

$$||T(u) - T(v)|| \le c \cdot \left(\int_{B_{\mathcal{L}(X_1, \dots, X_n)}} |\varphi(u) - \varphi(v)|^p d\mu(\varphi) \right)^{1/p}.$$

Factorization

Conference on Non-Linear Functional Analysis

Thank you!