Preliminaries and motivation The class of $\mathcal{F}_{p,q}$ -factorable operators Some examples and applications

On *p*-summing operators that factor through *L^p*-spaces of a vector measure

Orlando Galdames Bravo

5th Work-Shop on Functional Analysis. 17 - 20 October, Valencia

Orlando Galdames Bravo On *p*-summing operators that factor by *L^p* of vector measure

イロト イヨト イヨト

Preliminaries and motivation

- The L^p-space of a vector measure
- The class of *p*-th power factorable operators
- The operator ideal of (p, q)-factorable operators

Preliminaries and motivation

- The L^p-space of a vector measure
- The class of *p*-th power factorable operators
- The operator ideal of (p, q)-factorable operators

2 The class of $\mathcal{F}_{p,q}$ -factorable operators

- Extrapolation from classical theory
- $\mathcal{F}_{p,q}$ -factorable operator
- Extrapolation from $\mathcal{F}_{p,q}$

< ロ > < 同 > < 回 > < 回 >

Preliminaries and motivation

- The L^p-space of a vector measure
- The class of *p*-th power factorable operators
- The operator ideal of (p, q)-factorable operators

The class of $\mathcal{F}_{p,q}$ -factorable operators

- Extrapolation from classical theory
- $\mathcal{F}_{p,q}$ -factorable operator
- Extrapolation from $\mathcal{F}_{p,q}$

Some examples and applications

- Kernel operators
- Convolution type operators
- Application to extrapolation in $\mathcal{L}_{p,q}$

< ロ > < 同 > < 三 > < 三 >

Preliminaries and motivation The class of $\mathcal{F}_{p,q}$ -factorable operators Some examples and applications The L^p -space of a vector measure The class of *p*-th power factorable operators The operator ideal of (p, q)-factorable operators

Preliminaries and motivation

- The L^p-space of a vector measure
- The class of *p*-th power factorable operators
- The operator ideal of (p, q)-factorable operators

2) The class of $\mathcal{F}_{p,q}$ -factorable operators

- Extrapolation from classical theory
- $\mathcal{F}_{p,q}$ -factorable operator
- Extrapolation from $\mathcal{F}_{p,q}$

Some examples and applications

- Kernel operators
- Convolution type operators
- Application to extrapolation in $\mathcal{L}_{p,q}$

< ロ > < 同 > < 回 > < 回 >

The L^p -space of a vector measure The class of *p*-th power factorable operators The operator ideal of (p, q)-factorable operators

The L^p -space of a vector measure

(Ω, Σ) Measure space

- $m \colon \Sigma \to E$ Banach space-valued measure
- $\langle m, x^*
 angle(A) := \langle m(A), x^*
 angle$ control measure, $x^* \in E^*$
- Let f real or complex function. $f \in L^1(m)$ if :
- (1) $f \in L^1(|\langle m, x^* \rangle|)$ for every $x^* \in E$, (2) there exists $x_0 \in E$ such that

$$\langle x_0, x^*
angle = \int_\Omega |f| \; d\langle m, x^*
angle$$
 for every $x^* \in E$.

 $L^1(m)$ is **Banach** and

$$\|f\|_{L^1(m)} := \sup_{x^* \in B_{E^*}} \int_{\Omega} |f| \ d\langle m, x^* \rangle.$$

On *p*-summing operators that factor by *L^p* of vector measure

The L^p -space of a vector measure The class of *p*-th power factorable operators The operator ideal of (p, q)-factorable operators

The L^p -space of a vector measure

- Let μ finite scalar measure and $\mathbf{0} < \mathbf{p} < \infty$.
- $Z(\mu)$ **B.f.s.** (Banach function space) as **Lindenstrauss-Tzafriri**. $Z(\mu)_{[p]}$ p-th power space of $Z(\mu)$, i.e. its 1/p-covexification. quasi-norm: $\|f\|_{Z(\mu)_{[p]}} := \||f|^{1/p}\|_{Z(\mu)}$. Also $Z(\mu) \subseteq Z(\mu)_{[p]}$ $(p \ge 1)$. $L^{1}(m)$ is a **B.f.s. over** (m, x^{*}) , and $L^{p}(m) := L^{1}(m)_{[1/p]}$. $S: Z(\mu) \to Y$ linear operator, $Z(\mu)$ o.c. (order continuous). S always factors through $L^1(m_S)$, where $\mathbf{m}_{\mathbf{S}}(\mathbf{A}) := \mathbf{S}(\chi_{\mathbf{A}})$. And **sometimes** S factors through $L^{p}(m_{T})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

The L^p -space of a vector measure **The class of** *p*-th power factorable operators The operator ideal of (p, q)-factorable operators

The class of *p*-th power factorable operators

$S: Z(\mu) \rightarrow Y$ linear operator, $Z(\mu)$ o.c..

Orlando Galdames Bravo On *p*-summing operators that factor by *L^p* of vector measure

The L^{p} -space of a vector measure **The class of** *p*-th power factorable operators The operator ideal of (p, q)-factorable operators

The class of *p*-th power factorable operators

 $S: Z(\mu) \rightarrow Y$ linear operator, $Z(\mu)$ o.c..

*S p***-th power factorable** \Leftrightarrow it can be extended to $Z(\mu)_{[p]}$, i.e.

$$S: Z(\mu) \stackrel{i_{[\rho]}}{\hookrightarrow} Z(\mu)_{[\rho]} \stackrel{S_{[\rho]}}{\to} Y.$$

The L^p -space of a vector measure **The class of** *p*-th power factorable operators The operator ideal of (p, q)-factorable operators

The class of *p*-th power factorable operators

 $S \colon Z(\mu) \to Y$ linear operator, $Z(\mu)$ o.c..

S p-**th power factorable** \Leftrightarrow it can be extended to $Z(\mu)_{[p]}$, i.e.

$$S: Z(\mu) \stackrel{i_{[p]}}{\hookrightarrow} Z(\mu)_{[p]} \stackrel{S_{[p]}}{\to} Y.$$

S p-th power factorable, then so is for \mathbf{q} s.t. $\mathbf{1} \leq \mathbf{q} \leq \mathbf{p}$.

<ロ> (四) (四) (三) (三) (三) (三)

The L^p -space of a vector measure **The class of** *p*-th power factorable operators The operator ideal of (*p*, *q*)-factorable operators

The class of *p*-th power factorable operators

 $S: Z(\mu) \rightarrow Y$ linear operator, $Z(\mu)$ o.c..

S p-**th power factorable** \Leftrightarrow it can be extended to $Z(\mu)_{[p]}$, i.e.

$$S: Z(\mu) \stackrel{i_{[p]}}{\hookrightarrow} Z(\mu)_{[p]} \stackrel{S_{[p]}}{\to} Y.$$

S p-th power factorable, then so is for \mathbf{q} s.t. $\mathbf{1} \leq \mathbf{q} \leq \mathbf{p}$.

Property 2

(Okada, Ricker & Sánchez-Pérez, 2008)

S p-th power factorable $\Leftrightarrow S: Z(\mu) \stackrel{\text{inclusion/quotien}}{\hookrightarrow} L^p(m_S) \stackrel{I_{m_S}^{(p)}}{\to} Y.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The L^p -space of a vector measure The class of *p*-th power factorable operators The operator ideal of (p, q)-factorable operators

The class of *p*-th power factorable operators

$S \colon Z(\mu) \to Y$ linear operator, $Z(\mu)$ o.c..

Orlando Galdames Bravo On *p*-summing operators that factor by *L^p* of vector measure

The L^p -space of a vector measure **The class of** *p*-th power factorable operators The operator ideal of (p, q)-factorable operators

The class of *p*-th power factorable operators

 $S: Z(\mu) \rightarrow Y$ linear operator, $Z(\mu)$ o.c..

Corollary *S*
$$p$$
-th power factorable \Leftrightarrow

$$\begin{array}{c|c} Z(\mu) \xrightarrow{S} & Y \\ \downarrow^{(p)} & \uparrow^{I_{m_S}} \\ L^p(m_S) \xrightarrow{C} & L^1(m_S) \end{array}$$

イロト イヨト イヨト

The L^p -space of a vector measure The class of *p*-th power factorable operators The operator ideal of (p, q)-factorable operators

The class of *p*-th power factorable operators

$$S: Z(\mu) \to Y \text{ linear operator, } Z(\mu) \text{ o.c..}$$

$$Z(\mu) \xrightarrow{S} Y$$

$$J_{S}^{(p)} \downarrow \qquad \uparrow I_{m_{S}}$$

$$L^{p}(m_{S})^{\subset} \to L^{1}(m_{S})$$

 $\begin{aligned} \mathcal{F}_{\mathbf{p}}(\mathbf{Z}(\mu),\mathbf{Y}) &:= \{p\text{-th power factorable operators}\} \\ \mathcal{F}_{\mathbf{p}}^{\text{dual}}(\mathbf{X},\mathbf{Z}(\mu)) &:= \{\text{oper. with } p\text{-th power factorable adjoint}\} \end{aligned}$

The L^p -space of a vector measure **The class of** *p*-th power factorable operators The operator ideal of (p, q)-factorable operators

The class of *p*-th power factorable operators

$$\begin{split} \mathcal{F}_{\mathbf{p}}(\mathbf{Z}(\mu),\mathbf{Y}) &:= \{\textit{p-th power factorable operators}\}\\ \mathcal{F}_{\mathbf{p}}^{\text{dual}}(\mathbf{X},\mathbf{Z}(\mu)) &:= \{\textit{oper. with }\textit{p-th power factorable adjoint}\} \end{split}$$

Examples

Laplace transform: (Galdames-Bravo, 2017)

 $1 < q \leq 2 \leq p < \infty$. $L^{p}(0, \infty) \subseteq L^{p}(m_{\mathcal{L}}) \xrightarrow{\mathcal{L}} L^{q}(hdx)$, \mathcal{L} is r-th power factorable for $r \in [p/2, p)$.

イロト イボト イヨト イヨト

The L^p -space of a vector measure **The class of** *p*-th power factorable operators The operator ideal of (p, q)-factorable operators

 $L^p(m_T) \hookrightarrow L^1(m_T)$

イロト 不得 トイヨト イヨト 二日

The class of *p*-th power factorable operators

 $S: Z(\mu) \to Y \text{ linear operator, } Z(\mu) \text{ o.c..}$ $\begin{bmatrix} Corollary \\ S \\ p \text{-th power factorable} \Leftrightarrow \begin{bmatrix} Z(\mu) & \stackrel{S}{\longrightarrow} & Y \\ J_{T}^{(p)} \\ \downarrow \end{bmatrix} \qquad \uparrow_{I_{m_{T}}}$

 $\begin{aligned} \mathcal{F}_{\mathbf{p}}(\mathbf{Z}(\mu),\mathbf{Y}) &:= \{ \textit{p-th power factorable operators} \} \\ \mathcal{F}_{\mathbf{p}}^{\text{dual}}(\mathbf{X},\mathbf{Z}(\mu)) &:= \{ \text{oper. with }\textit{p-th power factorable adjoint} \} \end{aligned}$

Examples

Fourier transform: (Okada, Ricker & Sánchez-Pérez, 2008) $1 . <math>F_p: L^p(G) \rightarrow c_0(\Gamma)$ is *r*-th power factorable for $r \in [1, p]$.

The L^{p} -space of a vector measure **The class of** *p*-th power factorable operators The operator ideal of (p, q)-factorable operators

The class of *p*-th power factorable operators

$$S: Z(\mu) \rightarrow Y$$
 linear operator, $Z(\mu)$ o.c..

Corollary S p-th power factorable
$$\Leftrightarrow \begin{array}{c} Z(\mu) \longrightarrow \\ J_{\tau}^{(p)} \end{bmatrix}$$

$$\begin{array}{c} \mathcal{L}(\mu) \longrightarrow I \\ f_{T}^{(p)} \downarrow & \uparrow I_{m_{T}} \\ \mathcal{L}^{p}(m_{T}) \longrightarrow \mathcal{L}^{1}(m_{T}) \end{array}$$

s v

イロト 不得 トイヨト イヨト 二日

$$\begin{split} \mathcal{F}_{\mathbf{p}}(\mathbf{Z}(\mu),\mathbf{Y}) &:= \{\textit{p-th power factorable operators} \} \\ \mathcal{F}_{\mathbf{p}}^{\text{dual}}(\mathbf{X},\mathbf{Z}(\mu)) &:= \{\textit{oper. with p-th power factorable adjoint} \} \end{split}$$

Examples

Hardy operator adjoint: (Galdames-Bravo & Sánchez-Pérez) $1 \le p \le q < \infty$. $H: L^p[0,1] \to L^q[0,1]$, H^* is r-th power factorable for $r \in [1, 2q')$.

The L^{p} -space of a vector measure **The class of** *p*-th power factorable operators The operator ideal of (p, q)-factorable operators

The class of *p*-th power factorable operators

$$S\colon Z(\mu) o Y$$
 linear operator, $Z(\mu)$ o.c.

Corollary *S p*-th power factorable
$$\Leftrightarrow \begin{bmatrix} Z(\mu) & -S \\ J_T^{(p)} \end{bmatrix}$$

$$\begin{array}{c|c}
Z(\mu) & \xrightarrow{S} & Y \\
\downarrow^{(p)} & & \uparrow^{I_{m_T}} \\
L^p(m_T) & & \downarrow^1(m_T)
\end{array}$$

イロト イヨト イヨト

 \sim

$$\begin{split} \mathcal{F}_{\mathbf{p}}(\mathbf{Z}(\mu),\mathbf{Y}) &:= \{\textit{p-th power factorable operators} \} \\ \mathcal{F}_{\mathbf{p}}^{\text{dual}}(\mathbf{X},\mathbf{Z}(\mu)) &:= \{\textit{oper. with p-th power factorable adjoint} \} \end{split}$$

Examples

Convolution operator adjoint:

 $1 . <math>C_h \colon L^p(G) \to L^p(G)$, C_h^* is p'/r-th power factorable for $r \in (1, p')$.

The operator ideal of (p, q)-factorable operators

They come from *p*-summing operator theory. As a generalization of *p*-integral operators, which are always *p*-summing.

Characterization: $\mathbf{1}/\mathbf{p} + \mathbf{1}/\mathbf{q} \geq \mathbf{1}$

 $\begin{array}{ccc} X & \xrightarrow{T} Y \hookrightarrow Y^{**} & \mathcal{L}_{p,q}(X,Y) \text{ Banach operator ideal} \\ \underset{R}{\downarrow} & \uparrow S & \\ L^{q'}(\mu) & \stackrel{I}{\longrightarrow} L^{p}(\mu) & \text{ with } \alpha_{p,q}(T) := \inf \|S\| \|I\| \|R\|. \end{array}$

Properties

(1) $\mathcal{L}_{p,q}(X,Y) \subseteq \mathcal{L}_{r,s}(X,Y)$ for $p \leq r < \infty$ and $q \leq s < \infty$. (2) $\mathcal{L}_{p,1}(X,Y) = \mathcal{I}_p(X,Y) \subseteq \prod_p(X,Y)$.

イロト イヨト イヨト

The L^p -space of a vector measure The class of *p*-th power factorable operators **The operator ideal of** (*p*, *q*)-factorable operators

The operator ideal of (p, q)-factorable operators

They come from *p*-summing operator theory. As a generalization of *p*-integral operators, which are always *p*-summing.

Characterization: $\mathbf{1/p} + \mathbf{1/q} \geq \mathbf{1}$

 $\begin{array}{cccc} X & \xrightarrow{T} Y \hookrightarrow Y^{**} & \mathcal{L}_{p,q}(X,Y) \text{ Banach operator ideal} \\ \underset{R}{\downarrow} & \uparrow S & \\ L^{q'}(\mu) & \stackrel{I}{\longrightarrow} L^{p}(\mu) & \text{ with } \alpha_{p,q}(T) := \inf \|S\| \|I\| \|R\|. \end{array}$

Properties

(1) $\mathcal{L}_{p,q}(X, Y) \subseteq \mathcal{L}_{r,s}(X, Y)$ for $p \leq r < \infty$ and $q \leq s < \infty$.

(2) $\mathcal{L}_{p,1}(X,Y) = \mathcal{I}_p(X,Y) \subseteq \prod_p(X,Y).$

We need some **extrapolation** for the indexes of $\mathcal{L}_{\mathbf{p},\mathbf{q}}$.

Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

Preliminaries and motivation

- The *L^p*-space of a vector measure
- The class of *p*-th power factorable operators
- The operator ideal of (p, q)-factorable operators

The class of $\mathcal{F}_{p,q}$ -factorable operators

- Extrapolation from classical theory
- $\mathcal{F}_{p,q}$ -factorable operator
- Extrapolation from $\mathcal{F}_{p,q}$

Some examples and applications

- Kernel operators
- Convolution type operators
- Application to extrapolation in $\mathcal{L}_{p,q}$

< ロ > < 同 > < 回 > < 回 >

Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

Extrapolation from classical theory

Obviously: for suitable X and Y, there are *p*-summing operators in $\mathcal{L}_{p,q}(\mathbf{X}, \mathbf{Y})$

Preliminaries and motivation The class of $\mathcal{F}_{p,q}$ -factorable operators Some examples and applications Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

Extrapolation from classical theory

Obviously: for suitable X and Y, there are *p*-summing operators in $\mathcal{L}_{p,q}(\mathbf{X}, \mathbf{Y})$

Example 1

Maurey-Rosenthal's Factorization Theorem X and Y Banach lattices. $T \in \mathcal{L}(X, Y)$ p-convex (q-concave) and Y p-concave (X q-convex) $\Rightarrow T: X \to L^p(\mu) \to Y$ ($T: X \to L^q(\mu) \to Y$).

Preliminaries and motivation The class of $\mathcal{F}_{p,q}$ -factorable operators Some examples and applications Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

Extrapolation from classical theory

Obviously: for suitable X and Y, there are *p*-summing operators in $\mathcal{L}_{p,q}(\mathbf{X}, \mathbf{Y})$

Example 1

Maurey-Rosenthal's Factorization Theorem X and Y Banach lattices

 $T \in \mathcal{L}(X, Y)$ *p*-convex (*q*-concave) and *Y p*-concave (*X q*-convex) $\Rightarrow T: X \rightarrow L^{p}(\mu) \rightarrow Y (T: X \rightarrow L^{q}(\mu) \rightarrow Y).$

Corollary

If $1 \le r < p$, $1 \le s < q$, X r'-convex and Y s-concave. Then

$$\Rightarrow \mathcal{L}^+_{p,q}(X,Y) = \mathcal{L}^+_{r,s}(X,Y).$$

Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

Extrapolation from classical theory

Example 2

Maurey's Extrapolation Theorem, '74 $\Pi_p(X, \ell^p) = \Pi_r(X, \ell^p)$ for $1 \le r$

Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

Extrapolation from classical theory

Example 2

Maurey's Extrapolation Theorem, '74 $\Pi_p(X, \ell^p) = \Pi_r(X, \ell^p)$ for $1 \le r$

Corollary

If $1 < r < p < \infty$, $1 < s < q < \infty$, $\Pi_{r'}(X, \ell^{r'}) = \Pi_{p'}(X, \ell^{r'})$ and $\Pi_{s'}(X, \ell^{s'}) = \Pi_{q'}(X, \ell^{s'})$. Thanks to Kwapień representation ('72)

イロト イヨト イヨト

Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

Extrapolation from classical theory

Example 2

Maurey's Extrapolation Theorem, '74 $\Pi_p(X, \ell^p) = \Pi_r(X, \ell^p)$ for $1 \le r$

Corollary

If $1 < r < p < \infty$, $1 < s < q < \infty$, $\Pi_{r'}(X, \ell^{r'}) = \Pi_{p'}(X, \ell^{r'})$ and $\Pi_{s'}(X, \ell^{s'}) = \Pi_{q'}(X, \ell^{s'})$. Thanks to Kwapień representation ('72)

$$\Rightarrow \Big(\mathcal{L}_{p,q} = \mathcal{D}_{p',q'}^* = (\Pi_{q'}^{dual} \circ \Pi_{p'})^* = (\Pi_{s'}^{dual} \circ \Pi_{r'})^* = \mathcal{L}_{r,s}\Big)(X,Y).$$

イロト イヨト イヨト

Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

 $\mathcal{F}_{p,q}$ -factorable operator

(ロ) (部) (E) (E) (E)

Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

$\mathcal{F}_{p,q}$ -factorable operator

X and Y Banach spaces, $T \in \mathcal{L}(X, Y)$ and $p, q \in [1, \infty)$.

Orlando Galdames Bravo On *p*-summing operators that factor by *L^p* of vector measure

Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

$\mathcal{F}_{p,q}$ -factorable operator

Definition

X and Y Banach spaces, $T \in \mathcal{L}(X, Y)$ and $p, q \in [1, \infty)$.

 $T \mathcal{F}_{\mathbf{p},\mathbf{q}}$ -factorable: If there is μ finite,

Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

$\mathcal{F}_{p,q}$ -factorable operator

Definition

X and Y Banach spaces, $T \in \mathcal{L}(X, Y)$ and $p, q \in [1, \infty)$.

 $T \mathcal{F}_{\mathbf{p},\mathbf{q}}$ -factorable: If there is μ finite,

 $Z(\mu)$ o.c. Fatou with o.c. dual B.f.s.

Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

$\mathcal{F}_{p,q}$ -factorable operator

Definition

X and Y Banach spaces, $T \in \mathcal{L}(X, Y)$ and $p, q \in [1, \infty)$.

- $\mathcal{T} \mathcal{F}_{\mathbf{p},\mathbf{q}}$ -factorable: If there is μ finite,
- $Z(\mu)$ o.c. Fatou with o.c. dual B.f.s.
- $\textbf{R}\in\mathcal{F}_{\textbf{q}}^{\mbox{\tiny dual}}(\textbf{X},\textbf{Z}(\mu))$ and $\textbf{S}\in\mathcal{F}_{\textbf{p}}(\textbf{Z}(\mu),\textbf{Y}^{**})$ such that

Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

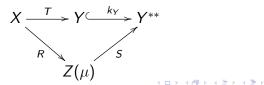
$\mathcal{F}_{p,q}$ -factorable operator

Definition

X and Y Banach spaces, $T \in \mathcal{L}(X, Y)$ and $p, q \in [1, \infty)$. T $\mathcal{F}_{p,q}$ -factorable: If there is μ finite, $Z(\mu)$ o.c. Fatou with o.c. dual B.f.s. $\mathbf{R} \in \mathcal{F}_{q}^{dual}(\mathbf{X}, \mathbf{Z}(\mu))$ and $\mathbf{S} \in \mathcal{F}_{p}(\mathbf{Z}(\mu), \mathbf{Y}^{**})$ such that

 $\mathbf{k_{Y}}\circ\mathbf{T}=\mathbf{S}\circ\mathbf{R}.$

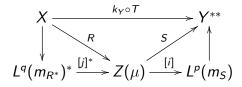
i.e.



Preliminaries and motivation The class of $\mathcal{F}_{p,q}$ -factorable operators Some examples and applications Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

Extrapolation from $\mathcal{F}_{p,q}$

From definition and characterization

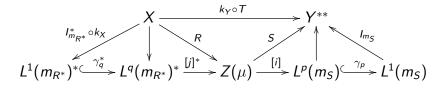


<ロ> (日) (日) (日) (日) (日)

Preliminaries and motivation The class of $\mathcal{F}_{p,q}$ -factorable operators Some examples and applications Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

Extrapolation from $\mathcal{F}_{p,q}$

From definition and characterization

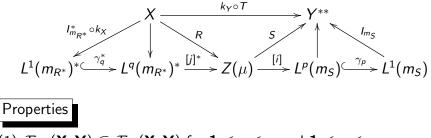


• □ ▶ < □ ▶ < □ ▶ < □ ▶ </p>

Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

Extrapolation from $\mathcal{F}_{p,q}$

From definition and characterization



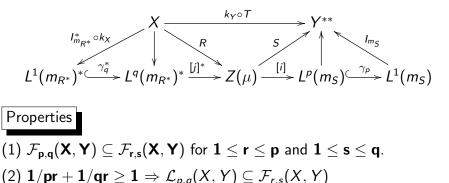
(1) $\mathcal{F}_{p,q}(X,Y) \subseteq \mathcal{F}_{r,s}(X,Y)$ for $1 \leq r \leq p$ and $1 \leq s \leq q$.

< ロ > < 同 > < 三 > < 三 >

Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

Extrapolation from $\mathcal{F}_{p,q}$

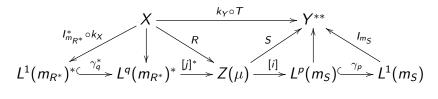
From definition and characterization



Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

Extrapolation from $\mathcal{F}_{p,q}$

From definition and characterization



Properties

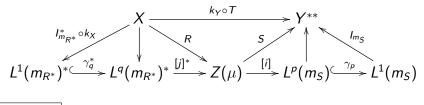
(1) $\mathcal{F}_{p,q}(\mathbf{X}, \mathbf{Y}) \subseteq \mathcal{F}_{r,s}(\mathbf{X}, \mathbf{Y})$ for $\mathbf{1} \leq \mathbf{r} \leq \mathbf{p}$ and $\mathbf{1} \leq \mathbf{s} \leq \mathbf{q}$. (2) $\mathbf{1}/\mathbf{pr} + \mathbf{1}/\mathbf{qr} \geq \mathbf{1} \Rightarrow \mathcal{L}_{p,q}(X, Y) \subseteq \mathcal{F}_{r,s}(X, Y)$

A natural (and open) question: When $L^{q}(m_{R^*}) = L^{s}(\nu)$ or *R* factors through $L^{s}(\nu)$?

Extrapolation from classical theory $\mathcal{F}_{p,q}$ -factorable operator Extrapolation from $\mathcal{F}_{p,q}$

Extrapolation from $\mathcal{F}_{p,q}$

From definition and characterization



Properties

(1) $\mathcal{F}_{p,q}(\mathbf{X}, \mathbf{Y}) \subseteq \mathcal{F}_{r,s}(\mathbf{X}, \mathbf{Y})$ for $\mathbf{1} \leq \mathbf{r} \leq \mathbf{p}$ and $\mathbf{1} \leq \mathbf{s} \leq \mathbf{q}$. (2) $\mathbf{1/pr} + \mathbf{1/qr} > \mathbf{1} \Rightarrow \mathcal{L}_{p,q}(X, Y) \subset \mathcal{F}_{r,s}(X, Y)$

For example: (S. Okada, W. J. Ricker, L. Rodríguez-Piazza, 2002) $L^{q}(m_{R^*}) = L^{q}(|m_{R^*}|)$ when *R* is compact.

Kernel operators Convolution type operators Application to extrapolation in $\mathcal{L}_{p,q}$

Preliminaries and motivation

- The *L^p*-space of a vector measure
- The class of *p*-th power factorable operators
- The operator ideal of (p, q)-factorable operators

2) The class of $\mathcal{F}_{p,q}$ -factorable operators

- Extrapolation from classical theory
- $\mathcal{F}_{p,q}$ -factorable operator
- Extrapolation from $\mathcal{F}_{p,q}$

Some examples and applications

- Kernel operators
- Convolution type operators
- Application to extrapolation in $\mathcal{L}_{p,q}$

< ロ > < 同 > < 回 > < 回 >

Kernel operators Convolution type operators Application to extrapolation in $\mathcal{L}_{p,q}$

Kernel operators

 (Ω, Σ, μ) measure space. Kernel function: $K \in L^1(\mu \otimes \mu)$.

Kernel operators Convolution type operators Application to extrapolation in $\mathcal{L}_{p,q}$

Kernel operators

 (Ω, Σ, μ) measure space. Kernel function: $K \in L^1(\mu \otimes \mu)$. Kernel operator: $T_K f(x) := \int_{\Omega} K(x, y) f(y) d\mu$, $f \mu$ -measurable.

イロト イポト イヨト イヨト 三日

Kernel operators Convolution type operators Application to extrapolation in $\mathcal{L}_{p,q}$

Kernel operators

 (Ω, Σ, μ) measure space. Kernel function: $K \in L^1(\mu \otimes \mu)$.

Kernel operator: $T_{\mathcal{K}}f(x) := \int_{\Omega} \mathcal{K}(x, y)f(y) \ d\mu$, $f \ \mu$ -measurable.

Theorem

(Galdames-Bravo & Sánchez-Pérez) $\mathbf{1/r} = \mathbf{1/p} + \mathbf{1/s}$. $|||K(\cdot, y)||_{L^{q}(\mu)}||_{L^{s/r}(\mu)} < \infty$. Then $T_{K} \colon L^{p}(\mu) \to L^{q}(\mu)$ is *r*-th power factorable.

イロト イポト イヨト イヨト 三日

Kernel operators Convolution type operators Application to extrapolation in $\mathcal{L}_{p,q}$

Kernel operators

 (Ω, Σ, μ) measure space. Kernel function: $K \in L^1(\mu \otimes \mu)$.

Kernel operator: $T_{\mathcal{K}}f(x) := \int_{\Omega} \mathcal{K}(x, y)f(y) \ d\mu$, $f \ \mu$ -measurable.

Theorem

(Galdames-Bravo & Sánchez-Pérez) $\mathbf{1/r} = \mathbf{1/p} + \mathbf{1/s}$. $|||K(\cdot, y)||_{L^{q}(\mu)}||_{L^{s/r}(\mu)} < \infty$. Then $T_{K} \colon L^{p}(\mu) \to L^{q}(\mu)$ is *r*-th power factorable.

Corollary

F and *H* kernel functions and $1/\mathbf{r} = 1/\mathbf{w} + 1/\mathbf{u}$, $1/\mathbf{s} = 1/\mathbf{w}' + 1/\mathbf{v}$. $\mathbf{K}(\mathbf{x}, \mathbf{y}) := \int_{\Omega} \mathbf{F}(\mathbf{x}, \mathbf{z}) \mathbf{H}(\mathbf{z}, \mathbf{y}) \, d\mu(\mathbf{z})$. $\|\|F(\cdot, y)\|_{L^{q}(\mu)}\|_{L^{u/r}(\mu)} < \infty$ and $\|\|H(\mathbf{x}, \cdot)\|_{L^{p'}(\mu)}\|_{L^{v/s}(\mu)} < \infty$. Then $\mathbf{T}_{\mathbf{K}} \in \mathcal{F}_{\mathbf{r},\mathbf{s}}(\mathbf{L}^{\mathbf{p}}(\mu), \mathbf{L}^{\mathbf{q}}(\mu))$.

Kernel operators Convolution type operators Application to extrapolation in $\mathcal{L}_{p,q}$

Convolution type operators

Theorem

(Okada, Ricker & Sánchez-Pérez) $1 < r, u < p, 1/u + 1/r = 1/p + 1, h \in L^{r}(G) \setminus L^{p}(G)$ $C_{h}: L^{p}(G) \rightarrow L^{p}(G)$ is p/u-th power factorable.

イロト イボト イヨト イヨト

Kernel operators Convolution type operators Application to extrapolation in $\mathcal{L}_{p,q}$

Convolution type operators

Theorem

(Okada, Ricker & Sánchez-Pérez) $1 < r, u < p, 1/u + 1/r = 1/p + 1, h \in L^{r}(G) \setminus L^{p}(G)$ $C_{h}: L^{p}(G) \rightarrow L^{p}(G)$ is p/u-th power factorable.

Corollary

$$\begin{split} &\mathbf{1} < \mathbf{u} < \mathbf{q}', \ \mathbf{u} \leq \mathbf{v} \text{ s.t. } \mathbf{1}/\mathbf{u} + \mathbf{1}/\mathbf{q} = \mathbf{1}/\mathbf{v} + \mathbf{1}.\\ &g \in L^q(G) \setminus L^{u'}(G) \text{ and } f \in L^1(G). \text{ Then}\\ &\mathcal{C}_{f*g} = \mathcal{C}_f \circ \mathcal{C}_g \in \mathcal{F}_{1,u'/v'}(L^u(G), L^1(G)) \end{split}$$

Kernel operators Convolution type operators Application to extrapolation in $\mathcal{L}_{p,q}$

Convolution type operators

Theorem

(Okada, Ricker & Sánchez-Pérez) $1 < r, u < p, 1/u + 1/r = 1/p + 1, h \in L^{r}(G) \setminus L^{p}(G)$ $C_{h}: L^{p}(G) \rightarrow L^{p}(G)$ is p/u-th power factorable.

Corollary

$$1 < \mathbf{u} < \mathbf{q}', \ \mathbf{u} \le \mathbf{v} \text{ s.t. } 1/\mathbf{u} + 1/\mathbf{q} = 1/\mathbf{v} + 1.$$

$$g \in L^q(G) \setminus L^{u'}(G) \text{ and } f \in L^1(G). \text{ Then}$$

$$C_{f*g} = C_f \circ C_g \in \mathcal{F}_{1,u'/v'}(L^u(G), L^1(G))$$

Remark

$$C_{f*g} = T_K \text{ for } K(x, y) := \int_G f(x - z)g(z - y) \ d\mu(z), \text{ as}$$

in the previous corollary.

Kernel operators Convolution type operators Application to extrapolation in $\mathcal{L}_{p,q}$

Conditions for extrapolation in $\mathcal{L}_{p,q}$

Orlando Galdames Bravo On *p*-summing operators that factor by L^p of vector measure

イロト イヨト イヨト

Kernel operators Convolution type operators Application to extrapolation in $\mathcal{L}_{p,q}$

Conditions for extrapolation in $\mathcal{L}_{p,q}$

Theorem

(Galdames-Bravo) (1) $1/\text{pr} + 1/\text{qs} \ge 1 \Rightarrow \mathcal{L}_{p,q}(\ell^t, \ell^w) \subseteq \mathcal{L}_{u,v}(\ell^t, \ell^w),$ $1 \le w < 2 < t \le \infty, \ 1 < u \le r \text{ and } 1 < v \le s.$

イロト イボト イヨト イヨト

Kernel operators Convolution type operators Application to extrapolation in $\mathcal{L}_{p,q}$

Conditions for extrapolation in $\mathcal{L}_{p,q}$

Theorem

(Galdames-Bravo) (1) $1/\text{pr} + 1/\text{qs} \ge 1 \Rightarrow \mathcal{L}_{p,q}(\ell^t, \ell^w) \subseteq \mathcal{L}_{u,v}(\ell^t, \ell^w), 1 \le w < 2 < t \le \infty, 1 < u \le r \text{ and } 1 < v \le s.$

Let us denote $\mathcal{F}_{\mathbf{p},\mathbf{q}}^{\mathbf{r}}(\mathbf{X},\mathbf{Y})$ if $Z(\mu)$ is *r*-convex and *r*-concave.

イロト イポト イヨト イヨト

Kernel operators Convolution type operators Application to extrapolation in $\mathcal{L}_{p,q}$

Conditions for extrapolation in $\mathcal{L}_{p,q}$

Theorem

(Galdames-Bravo) (1) $1/\text{pr} + 1/\text{qs} \ge 1 \Rightarrow \mathcal{L}_{p,q}(\ell^t, \ell^w) \subseteq \mathcal{L}_{u,v}(\ell^t, \ell^w),$ $1 \le w < 2 < t \le \infty, \ 1 < u \le r \text{ and } 1 < v \le s.$ Let us denote $\mathcal{F}_{p,q}^r(\mathbf{X}, \mathbf{Y})$ if $Z(\mu)$ is *r*-convex and *r*-concave.

(2)
$$1/\text{pr} + 1/\text{qs} = 1 \Rightarrow \mathcal{L}_{r,s}(X,Y) = \mathcal{F}_{p,q}^{\text{pr}}(X,Y).$$

イロト イポト イヨト イヨト

Kernel operators Convolution type operators Application to extrapolation in $\mathcal{L}_{p,q}$

Conditions for extrapolation in $\mathcal{L}_{p,q}$

Theorem

$$\begin{array}{l} (\mathsf{Galdames-Bravo}) \\ (1) \ \mathbf{1/pr} + \mathbf{1/qs} \geq \mathbf{1} \Rightarrow \mathcal{L}_{\mathsf{p},\mathsf{q}}(\ell^{\mathsf{t}},\ell^{\mathsf{w}}) \subseteq \mathcal{L}_{\mathsf{u},\mathsf{v}}(\ell^{\mathsf{t}},\ell^{\mathsf{w}}), \\ 1 \leq w < 2 < t \leq \infty, \ 1 < u \leq r \ \text{and} \ 1 < v \leq s. \end{array} \\ \text{Let us denote } \mathcal{F}_{\mathsf{p},\mathsf{q}}^{\mathsf{r}}(\mathsf{X},\mathsf{Y}) \ \text{if } Z(\mu) \ \text{is } r\text{-convex and } r\text{-concave.} \\ (2) \ \mathbf{1/pr} + \mathbf{1/qs} = \mathbf{1} \Rightarrow \mathcal{L}_{\mathsf{r},\mathsf{s}}(\mathsf{X},\mathsf{Y}) = \mathcal{F}_{\mathsf{p},\mathsf{q}}^{\mathsf{pr}}(\mathsf{X},\mathsf{Y}). \\ \hline \\ \hline \\ \hline \\ \text{Corollary} \\ u \in [1,p], \ v \in [1,q] \ \text{s.t.} \ \mathbf{1/pu} + \mathbf{1/qv} \geq \mathbf{1}, \ r \in [u,p], \ s \in [v,q] \ \text{s.t.} \\ \mathbf{1/rt} + \mathbf{1/sw} = \mathbf{1} \ \text{and} \ \mathcal{F}_{\mathsf{u},\mathsf{v}}^{\mathsf{c}}(\mathsf{X},\mathsf{Y}) \subseteq \mathcal{F}_{\mathsf{t},\mathsf{w}}^{\mathsf{rt}}(\mathsf{X},\mathsf{Y}) \ (c \in [pu,(qv)']) \\ \\ \Rightarrow \mathcal{L}_{\mathsf{p},\mathsf{q}}(\mathsf{X},\mathsf{Y}) \subseteq \mathcal{L}_{\mathsf{r},\mathsf{s}}(\mathsf{X},\mathsf{Y}). \end{array}$$

Preliminaries and motivation The class of $\mathcal{F}_{p,q}$ -factorable operators Some examples and applications Kernel operators Convolution type operators Application to extrapolation in $\mathcal{L}_{p,q}$

References

- O. Galdames-Bravo, Extrapolation theorems for (p, q)-factorable operators, to appear.
- S. Kwapień, On operators factorizable through L^p-spaces, Bull. Soc. Math. France, Mém. **31-32** (1972), 215–225.
- B. Maurey, Théorèmes de factorisation pour les opérateurs à valeurs dans les espaces L^p, Soc. Math. France, Astérisque 11, Paris 1974.
- S. Okada, W. J. Ricker, L. Rodríguez-Piazza, Compactness of the integration operator associated with a vector measure, Studia Math. 150(2) (2002), 133–149.

