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The basics

A. Grothendieck (Mem. Amer. Math. Soc. ,1955)
A closed subset K in a Banach space X is compact if and only if K lies
in the absolute “∞-convex hull” of a null sequence.

That is, there exists a sequence (xn)n such that

K ⊂

{ ∞∑
n=1

αnxn :

∞∑
n=1

|αn| ≤ 1

}
and lim

n→∞
‖xn‖ = 0.

Denote by ‖(xn)n‖c0(X) := supn ‖xn‖.

“Measure the size” of K ⊂ X in terms of how dispersed is respect to
the the origin.

m∞(K; X) := sup
x∈K
‖x‖ = inf

{
‖(xn)n‖c0(X)

}
.
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p-compact sets

Compact:
K ⊂ {

∑∞
n=1 αnxn :

∑∞
n=1 |αn| ≤ 1} and limn→∞ ‖xn‖ = 0.

D. P. Sinha, A. K. Karn (Studia Math., 2002)

Let 1 ≤ p <∞ and 1
p + 1

p′ = 1. A closed subset K ⊂ X is p-compact
if there exists a sequence (xn)n such that

K ⊂

{ ∞∑
n=1

αnxn :
∞∑

n=1

|αn|p
′ ≤ 1

}
and

∞∑
n=1

‖xn‖p <∞.

“Measure the size” of a p-compact set K ⊂ X:

mp(K; X) := inf
{
‖(xn)n‖`p(X)

}
.
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Monotonicity: 1 ≤ q ≤ p ≤ ∞, any q-compact set is p-compact.

Therefore, p-compactness reveals “finer and subtle” structures on
compact sets.
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p-compact operators

“Classical” ideal of compact operators:

T ∈ K(X; Y) is compact if T(BX) is a compact set in Y .

Note that in this case, ‖T‖ = supx∈BX
‖Tx‖ = m∞(T(BX)). Thus,

‖T‖K(X;Y) ! m∞(T(BX); Y).

Definition
The class of p-compact operators:

T : X → Y is p-compact if T(BX) is a p-compact set in Y .

Kp(X; Y) denotes the class of such operators.

‖T‖Kp(X;Y) ! mp(T(BX); Y).

Kp is a Banach ideal of operators (in the sense of Pietsch).
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What kind of structure does the class Kp have?

Does Kp relate with the so-called “classical” operator ideals?

Do we have a good characterization of this kind of operators?

Plan:
Kp ! study it from an operator ideal/tensor norm perspective.
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Right p-nuclear mappings

Recall, the Chevet-Saphar tensor norms dp are related with the ideals
of absolutely summing operators in the following way:

(X⊗̂dpY)′ = Πp′(X,Y ′).

The class N p

A right p-nuclear mapping between the Banach spaces X and Y is
exactly an operator which is in the range of

Jp : X′⊗̂dpY → X′⊗̂εY,

and its norm coincides with the quotient norm inherited from the
inclusion.
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Easier way to understand N p

The class N p

Θ : X → Y is right p-nuclear if there is a factorization

X Θ //

U
��

Y

`p′ Dλ
// `1,

V

OO

where λ ∈ `p and Dλ stands for the diagonal multiplication operator.

‖Θ‖N p = inf{‖U‖‖Dλ‖‖V‖},

where the infimum runs over all factorizations as above.
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Characterization of Kp

The following are equivalent:
T : X → Y is p-compact.

There is a right p-nuclear mapping Θ ∈ N p(Z,Y) and a bounded
mapping R ∈ L(X,Z/ ker Θ) with ‖R‖ ≤ 1 such that the
following diagram commutes

X T //

R ##

Y ZΘoo

π{{{{
Z/ ker Θ,

Θ̃

OO

where π stands for the natural quotient mapping and Θ̃ is given
by Θ̃(π(z)) = Θ(z).

‖T‖Kp := inf{‖Θ‖N p}.
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How certain classical ideals relate with Kp

G., Lassalle, Turco (Studia Math., 2012) - Pietsch, (Proc. A.M.S.,
2014)

Kp = (N p)sur.

! these guys are related.

Kp ∼ /dp

Consequences

(Kp)max = Πdual
p .

Operators whose adjoint are p-summing correspond to the one
that map compact sets to relatively p-compact sets.



Starting up... The Banach space setting Operator space framework

How certain classical ideals relate with Kp

G., Lassalle, Turco (Studia Math., 2012) - Pietsch, (Proc. A.M.S.,
2014)

Kp = (N p)sur.! these guys are related.

Kp ∼ /dp

Consequences

(Kp)max = Πdual
p .

Operators whose adjoint are p-summing correspond to the one
that map compact sets to relatively p-compact sets.



Starting up... The Banach space setting Operator space framework

How certain classical ideals relate with Kp

G., Lassalle, Turco (Studia Math., 2012) - Pietsch, (Proc. A.M.S.,
2014)

Kp = (N p)sur.! these guys are related.

Kp ∼ /dp

Consequences

(Kp)max = Πdual
p .

Operators whose adjoint are p-summing correspond to the one
that map compact sets to relatively p-compact sets.



Starting up... The Banach space setting Operator space framework

How certain classical ideals relate with Kp

G., Lassalle, Turco (Studia Math., 2012) - Pietsch, (Proc. A.M.S.,
2014)

Kp = (N p)sur.! these guys are related.

Kp ∼ /dp

Consequences

(Kp)max = Πdual
p .

Operators whose adjoint are p-summing correspond to the one
that map compact sets to relatively p-compact sets.



Starting up... The Banach space setting Operator space framework

How certain classical ideals relate with Kp

G., Lassalle, Turco (Studia Math., 2012) - Pietsch, (Proc. A.M.S.,
2014)

Kp = (N p)sur.! these guys are related.

Kp ∼ /dp

Consequences

(Kp)max = Πdual
p .

Operators whose adjoint are p-summing correspond to the one
that map compact sets to relatively p-compact sets.



Starting up... The Banach space setting Operator space framework

How certain classical ideals relate with Kp

G., Lassalle, Turco (Studia Math., 2012) - Pietsch, (Proc. A.M.S.,
2014)

Kp = (N p)sur.! these guys are related.

Kp ∼ /dp

Consequences

(Kp)max = Πdual
p .

Operators whose adjoint are p-summing correspond to the one
that map compact sets to relatively p-compact sets.



Starting up... The Banach space setting Operator space framework

Summarizing

We have described Kp in the following way:
1 Those operators that map the ball into compact set with “ more

structure”.

2 In terms of commutative diagram (which involves a factorization
via right p-nuclear mappings).

a) Kp = (N p)sur! relation in the operator ideal framework.
b) Kp ∼ /dp ! relation in the tensor product setting.

There are other characterizations (which for simplicity will be
omitted).

Idea:
See if these two characterizations have a counterpart in the context of
operator spaces.
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Operator spaces

An operator space is a Banach space E given together with an
isometric embedding into B(H):

E ⊂ B(H).

Why is this embedding relevant? What is the difference with the usual
Banach space theory?

Let (xi,j)i,j ∈ Mn(E) (a square matrix of size n with coefficients in the
operator space E)

(xi,j)i,j =

x11 . . . x1,n
...

. . .
xn1 xnn

 ∈ B(Hn)

Therefore, Mn(E) ⊂ B(Hn) this provides a norm for every matrix
level Mn(E).
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Operator spaces

Completely bounded mappings
A linear mapping T : E → F is completely bounded (c.b.) if the
norms of the amplified operators are uniformly bounded.

‖T‖c.b. := sup
n∈N
‖Tn : Mn(E)→ Mn(F)‖ <∞.

Completely bounded operators are relevant morphisms in this context.



Starting up... The Banach space setting Operator space framework

Operator spaces

Completely bounded mappings
A linear mapping T : E → F is completely bounded (c.b.) if the
norms of the amplified operators are uniformly bounded.

‖T‖c.b. := sup
n∈N
‖Tn : Mn(E)→ Mn(F)‖ <∞.

Completely bounded operators are relevant morphisms in this context.



Starting up... The Banach space setting Operator space framework

Operator spaces

Completely bounded mappings
A linear mapping T : E → F is completely bounded (c.b.) if the
norms of the amplified operators are uniformly bounded.

‖T‖c.b. := sup
n∈N
‖Tn : Mn(E)→ Mn(F)‖ <∞.

Completely bounded operators are relevant morphisms in this context.



Starting up... The Banach space setting Operator space framework

Matrix Sets / Matrix compactness

Let E be an operator space.

A matrix set is a sequence of sets K = (Kn), where Kn ⊂ Mn(E),
for all n.

The matrix unit ball is the matrix set
(
BMn(E)

)
.

A very natural way to define “compactness” for mappings between
operator spaces is the following:

Heuristic:
An operator T : E → F is “compact” if it maps the matrix unit ball
into a “compact a matrix set”.

So... we need a good definition of “compacteness for matrix sets”.
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Compactness for matrix sets

In the o.s. setting, there are several definitions of “compacteness for
matrix sets”. Each of them defines a notion of
“compacteness for linear mappings”, and they are not equivalent.

We will be interested in classical definition introduced by Webster his
Ph.D. thesis (1997). This is based on “Grothendieck’s version of
compactness:

operator compactness! a non-commutative version of being in
an “∞-convex hull of a null sequence”.
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Starting up... The Banach space setting Operator space framework

Operator compactness

1 The space of null sequence, c0(X), can be identified with c0⊗̂εX.

2 Grothendieck’s characterization (tensor perspective): K is
compact if there is w ∈ c0⊗̂εX. such that

K ⊂ {(α⊗ id)(w) ∈ X : ‖α‖`1 ≤ 1}.

C. Webster, 1997 Ph.D. thesis (supervised by Effros)

A matrix set K = (Kn) (recall, Kn ⊂ Mn(E)), is operator
compact if there is W ∈ S∞[E] := K(`2)⊗̂minE such that for
each n ∈ N,

Kn ⊂ {(α⊗ id)(W) : α ∈ Mn(S1), ‖α‖Mn(S1) ≤ 1}.

WHAT THE F#%C IS ALL THIS??

T : E → F is operator compact if it maps the matrix unit ball into
an operator compact matrix set.
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Kn ⊂ {(α⊗ id)(W) : α ∈ Mn(S1), ‖α‖Mn(S1) ≤ 1}.

Operator p-compactness

A matrix set K = (Kn) is operator p-compact if there is
W ∈ Sp[E] such that for each n ∈ N,
Kn ⊂ {(α⊗ id)(W) : α ∈ Mn(Sp′), ‖α‖Mn(Sp′ )

≤ 1}.
Measure of an operator p-compact matrix set:
mp(K; E) := inf

{
‖W‖Sp[E]

}
.

T : E → F is operator p-compact if it maps the matrix unit ball
into an operator p-compact matrix set.

Ko.s.
p endowed with the norm ‖T‖Ko.s.

p
= mp(

(
TnBMn(E)

)
n∈N ; F).
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Starting up... The Banach space setting Operator space framework

We have defined Ko.s.
p , the mapping ideal of p-compact mappings

in the o.s. setting.

Recall that in the Banach space setting Kp was related with the
ideal of p-nuclear mappings Np (and therefore, with the tensor
norm dp).

Do we still have this relations for the class Ko.s.
p ?

This, in some sense, would say that it is an “appropriate/consistent”
definition for p-compactness.
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Non-commutative Chevet-Saphar tensor norm

In the Banach space setting we have:

(X⊗̂dpY)′ = Πp′(X,Y ′).

A. Chávez Domínguez (Houston J. Math., 2016):
Constructed an operator space version of the Chevet-Saphar tensor
norm dp, denoted by do.s.

p such that:

(E⊗̂do.s.
p

F)′ = Πo.s.
p′ (E,F′).

This tensor norm induces a notion of completely right p-nuclear
mappings.
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Completely right p-nuclear mappings

The class N p

A right p-nuclear mapping between the Banach spaces X and Y is
exactly an operator which is in the range of

Jp : X′⊗̂dpY → X′⊗̂εY,

and its norm coincides with the quotient norm inherited from the
inclusion.

Completely right p-nuclear
Let 1 ≤ p ≤ ∞, we say that a linear mapping T : E → F is
completely right p-nuclear if it corresponds to an element in the
range of the canonical inclusion

Jp
o.s. : E′⊗̂do.s.

p
F → E′⊗̂minF.

N p
o.s.(E; F) and we endow it with the quotient o.s. structure

(E′⊗̂do.s.
p

F)/ ker Jp mapping ideal.
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Completely right p-nuclear mappings in terms of certain
factorizations

Chávez Dominguez, Dimant, G.
The following are equivalent:

(a) T : E → F is completely right p-nuclear.

(b) There exist a, b ∈ S2p such that T admits a factorization

E T //

U
��

F

Sp′ M(a,b)
// S1

V

OO

Moreover, in this case

‖T‖N p
o.s.

= inf
{
‖U‖c.b.‖V‖c.b.‖a‖S2p‖b‖S2p

}
where the infimum is taken over all factorizations as in (b).



Starting up... The Banach space setting Operator space framework

The relation of Ko.s.
p with N p

o.s.

Chávez Dominguez, Dimant, G.
The following are equivalent:

T ∈ Ko.s.
p (E,F).

There is a completely right p-nuclear mapping Θ ∈ N p
o.s.(G,F)

and R ∈ CB(E,G/ ker Θ) with ‖R‖c.b. ≤ 1 such that the
following diagram commutes

E T //

R $$

F GΘoo

πzzzz
G/ ker Θ,

Θ̃

OO

Moreover, ‖T‖Ko.s.
p

= inf{‖Θ‖N p
o.s.
}.
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The relation of Ko.s.
p with N p

o.s.

Consequences:

Ko.s.
p = (N p

o.s.)sur

! this allows to define an o.s. structure for
Ko.s.

p (E,F) (a sequence of norms at each level).

Ko.s.
p ∼ /do.s.

p (highly non-trivial local techniques do not
always work!!!!).
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THANK YOU VERY MUCH!!!
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