Factorization of Multilinear Operators via Σ -Operators

Samuel García Hernández

CIMAT, México

Conference on Non Linear Functional Analysis, Valencia, Spain, October 2017

Contents

- Introduction
 - \bullet Σ -Operators
 - ullet Bounded Σ -Operators
- 2 Examples
 - Factor through a Hilbert Space
 - 2-Dominated Σ -Operators

The Segre Cone Σ

Throughout the presentation $n \in \mathbb{N}$ and X_1, \dots, X_n , Y are Banach spaces.

Consider the algebraic tensor product $X_1 \otimes \ldots \otimes X_n$. Define

$$\Sigma_{X_1...X_n} := \left\{ x^1 \otimes \ldots \otimes x^n \mid x^i \in X_i \right\}.$$

Linearization of Multilinear Operators

Let T be a multilinear operator and \widetilde{T} its linearization

$$\widetilde{T}: X_1 \otimes \ldots \otimes X_n \rightarrow Y$$

 $x^1 \otimes \ldots \otimes x^n \mapsto T(x^1, \ldots, x^n)$

The linear operator \widetilde{T} is unique.

Σ -Operators

Let T be a multilinear operator. Define

$$X_{1} \times \cdots \times X_{n} \qquad f_{T} : \Sigma_{X_{1} \dots X_{n}} \rightarrow Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

In this situation, f_T and T are called associated.

Σ-Operators: Tensorial Representation

The collection of Σ -operators admits a tensorial representation as follows: For every Banach spaces

$$(X_1 \otimes \ldots \otimes X_n \otimes Y)^* \rightarrow L(\Sigma_{X_1 \ldots X_n}; Y^*)$$

$$\varphi \mapsto f_{\varphi}$$

is a linear isomorphism, where

$$f_{\varphi}(x^1 \otimes \ldots \otimes x^n) : Y \to \mathbb{K}$$

 $y \mapsto \varphi(x^1 \otimes \ldots \otimes x^n \otimes y).$

Induced Topologies

Each reasonable-cross norm β on $X_1 \otimes ... \otimes X_n$ defines two topologies on $\Sigma_{X_1...X_n}$:

- **①** Strong: Unique metric topology, no matter β
- 2 Weak: It depends on each β

The symbol $\Sigma_{X_1...X_n}^{\beta}$ denotes the metric space and recalls the isometry

$$\Sigma_{X_1...X_n}^{\beta} \to (X_1 \otimes \ldots \otimes X_n, \beta)$$
.

Bounded Σ -Operators

The following are equivalent:

T is bounded

 $oldsymbol{0}$ f_T is Lipschtz

 \widetilde{T} is bounded

In this situation, $||T|| = Lip^{\pi}(f_T) = ||\widetilde{T}||$.

Bounded Σ -Operators

The Σ -operator $f_T: \Sigma_{X_1...X_n}^{\beta} \to Y$ is called **bounded** if the associated multilinear operator $T: X_1 \times \cdots \times X_n \to Y$ is **bounded**.

The symbol $\mathcal{L}\left(\Sigma_{X_1...X_n}^{\beta},Y\right)$ denotes the collection of Σ -operators with the Lipschitz norm Lip^{β} .

Bounded Σ -Operators: The Norm π^{β}

Define π^{β} on $X_1 \otimes \ldots \otimes X_n \otimes Y$ by

$$\pi^{\beta}(u) = \inf \left\{ \sum_{i} \beta(p_i - q_i) \|y_i\| \mid u = \sum_{i} (p_i - q_i) \otimes y_i \right\}.$$

Then

$$\begin{pmatrix}
X_1 \otimes \ldots \otimes X_n \otimes Y, \pi^{\beta} \\
\varphi & \mapsto & f_{\varphi}
\end{pmatrix}^* \xrightarrow{} \mathcal{L} \left(\Sigma_{X_1 \ldots X_n}^{\beta}, Y^* \right)$$

holds linearly and isometrically.

Factor through a Hilbert space: Linear Definition

The linear operator $T: X \to Y$ factors through a Hilbert space if:

- H Hilbert space
- $\mathbf{Q} A: X \to H \text{ bounded}$

Define $\Gamma(T) := \inf ||A|| \, ||B||$.

Factor through a Hilbert Space: Sequence Characterization

Given (x_i) and (y_i) finite sequences in X, the symbol $(x_i) \leq (y_i)$ means

$$\sum_{i} |x^*(x_i)|^2 \le \sum_{i} |x^*(y_i)|^2$$

holds for all $x^* \in X^*$.

Factor through a Hilbert Space: Sequence Characterization

The linear operator $T: X \to Y$ factors through a Hilbert space iff there exist a constant C > 0 such that

$$(x_i) \leq (y_i) \Rightarrow \sum_i ||T(x_i)||^2 \leq C^2 \sum_i ||(y_i)||^2.$$

In this case $\Gamma(T) = \inf C$.

Factor through a Hilbert space: Tensorial Representation

Define on $X \otimes Y$

$$\gamma_2(u) = \inf \left\{ \|(x_i)\|_2 \, \|(y_i)\|_2 \, \Big| \, u = \sum_i x_i \otimes y_i \right\}.$$

Then

$$\begin{array}{ccc} (X \otimes_{\gamma_2} Y)^* & \to & \Gamma_2(X; Y^*) \\ \varphi & \mapsto & \mathcal{T}_{\varphi} \end{array}$$

holds linearly and isometrically.

Examples

Factor through a Hilbert Space: Factorization

The Σ -operators $f_T: \Sigma_{X_1...X_n}^{\beta} \to Y$ factors through a Hilbert space if:

- H Hilbert space
- $f_A: \Sigma_{X_1...X_n}^{\beta} \to H$ bounded
- lacksquare B: M o Y Lipschitz

We define $\Gamma(f) := \inf Lip^{\beta}(f_A) Lip(B)$

Factor through a Hilbert Space: Sequence Characterization

Given (p_i) , (q_i) , (a_i) , (b_i) finite sequences in $\sum_{X_1...X_n}^{\beta}$, we write $(p_i, q_i) \leq_{\beta} (a_i, b_i)$ if

$$\sum_{i} |\varphi(p_i - q_i)|^2 \leq \sum_{i} |\varphi(a_i - b_i)|^2$$

holds for all $\varphi \in (X_1 \otimes \ldots \otimes X_n, \beta)^*$.

Factor through a Hilbert Space: Sequence Characterization

The Σ -operator $f: \Sigma_{X_1...X_n}^{\beta} \to Y$ FTH iff there exist C>0 such that

$$(p_i,q_i) \leq_{\beta} (a_i,b_i) \Rightarrow \sum_i \|f(p_i)-f(q_i)\|^2 \leq C^2 \sum_i \beta(a_i-b_i)^2.$$

Under these circumstanses $\Gamma(f) = \inf C$.

Factor through a Hilber Space: The Norm γ_2^{eta}

Define γ_2^β on $X_1 \otimes \ldots \otimes X_n \otimes Y$ by $\gamma_2^\beta(u)$

$$\inf \left\{ \|(a_j - b_j)\|_2 \, \|(y_i)\|_2 \; \big| \; u = \sum_i (p_i - q_i) \otimes y_i, \, (p_i, q_i) \leq_\beta (a_j, b_j) \right\}.$$

Then

$$\begin{pmatrix}
X_1 \otimes \ldots \otimes X_n \otimes Y, \gamma_2^{\beta} \end{pmatrix}^* \rightarrow \Gamma \left(\Sigma_{X_1 \ldots X_n}^{\beta}; Y^* \right) \\
\varphi \mapsto f_{\varphi}$$

holds linearly and isometrically.

2-Dominated Σ -operators

2-Dominated Operators: Definition by Factorization

The linear operator $T: X \to Y$ is **2-dominated** if T factors as follows:

- Z Banach space
- $A: X \to Z$, 2-summing

Define
$$D_2(T) = \inf \pi_2(A) \pi_2(B^*)$$
.

2-Dominated Operators: Domination

The linear operator $T:X\to Y$ is 2-dominated iff there exists a RBP measure μ on $K:=B_{X^*}\times B_{Y^{**}}$ and C>0 such that

$$|\langle y^*, T(x)\rangle| \leq C \left(\int\limits_{\mathcal{K}} |x^*(x)|^2 d\mu\right)^{\frac{1}{2}} \left(\int\limits_{\mathcal{K}} |y^{**}(y^*)|^2 d\mu\right)^{\frac{1}{2}}$$

for all $x \in X$ and $y^* \in Y^*$.

In this case $D_2(T) = \inf C$.

Examples

2-Dominated Operators: Tensorial Representation

The tensor norm ω_2 is defined by

$$\omega_2(u) = \inf \left\{ \|(x_i)\|_2^w \|(y_i)\|_2^w \mid u = \sum_i x_i \otimes y_i \right\}.$$

Then

$$(X \otimes_{\omega_2} Y)^* = \mathcal{D}_2(X; Y^*)$$
$$(X \otimes_{\omega_2} Y^*)^* \cap \mathcal{L}(X, Y) = \mathcal{D}_2(X; Y)$$

holds linearly and isometrically.

2-Dominated Σ-Operators: The Norm ω_2^{β}

Define ω_2^{β} on $X_1 \otimes \ldots \otimes X_n \otimes Y$ by

$$\omega_{2}^{\beta}(u) := \inf \left\{ \|(p_{i} - q_{i})\|_{2}^{w\beta} \|(y_{i})\|_{2}^{w} \mid u = \sum_{i} (p_{i} - q_{i}) \otimes y_{i} \right\}$$

with

$$\sup \left(\sum_i |arphi(p_i) - arphi(q_i)|^2\right)^{\frac{1}{2}}$$

where the supreme is taken over all $\varphi \in (X_1 \otimes \ldots \otimes X_n, \beta)^*$ with $\|\varphi\|_{\beta} \leq 1$.

2-Dominated Σ -Operators: Functionals ω_2^{β} -Continuous

The functional $\varphi: \left(X_1 \otimes \ldots \otimes X_n \otimes Y, \omega_2^{\beta}\right) \to \mathbb{K}$ is bounded iff there exists a RBP measure μ on $K:=B_{(X_1 \otimes \ldots \otimes X_n,\beta)^*} \times B_{Y^*}$ and C>0 such that

$$|arphi((p-q)\otimes y)|\leq C\left(\int\limits_K|\zeta(p)-\zeta(q)|^2d\mu
ight)^{\frac{1}{2}}\left(\int\limits_K|y^*(y)|^2d\mu
ight)^{\frac{1}{2}}$$

for all $p, q \in \Sigma_{X_1...X_n}^{\beta}$ and $y \in Y$.

In this case $\|\varphi\| = \inf C$.

2-Dominated Σ-Operators: Tensorial Definition

The Σ -operator $f: \Sigma_{X_1...X_n}^{\beta} \to Y$ is called 2-**dominated** if the associated functional

$$\varphi_f: (X_1 \otimes \ldots \otimes X_n \otimes Y^*, \omega_2^{\beta}) \to \mathbb{K}$$
$$x^1 \otimes \ldots \otimes x^n \otimes y^* \mapsto y^*(f(x^1 \otimes \ldots \otimes x^n))$$

is bounded. Define $D_2(f) = \|\varphi_f\|$.

2-Dominated Σ -Operators: Factorization

The Σ -operator $f_T: \Sigma_{X_1...X_n}^{\beta} \to Y$ is 2-dominated iff T factors as follows:

- Z Banach space
- $f_A: \Sigma_{X_1...X_n}^{\beta} \to M \subset Z,$ 2-summing

Under these circumstances $D_2(f) = \inf \pi_2(f_A) \pi_2(B^*)$.

2-Dominated Σ -Operators: Factorization (Fernández M.)

The Σ -operator $f_A: \Sigma_{X_1...X_n}^{\beta} \to Z$ is said to be 2-summing if there exists a constant C>0 such that for all finite sequences (p_i) , (q_i) in $\Sigma_{X_1...X_n}^{\beta}$

$$\sum_{i} \|f(p_i) - f(q_i)\|^2 \le C^2 \|(p_i - q_i)\|_2^{w\beta}$$

The 2-summing norm $\pi_2(f) := \inf C$.

Conclusions

lacktriangle The theory of Σ -operators induces factorizations of the type

- ② The theory of Σ -operators provides a new approach for the study of multilinear operators combining ideas of linear and Lipchitz theory.
- **1** It is possible to develop a theory of ideas of Σ -operators.
- 4 A new approximation of tensor norms arise (in two different versions).

