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The Segre Cone X

Throughout the presentation n € N and Xi,..., X,, Y are Banach
spaces.

Consider the algebraic tensor product X; ® ... ® X,. Define

Yx.x, ={x'®...0ox"|xeX}.
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Linearization of Multilinear Operators

Let T be a multilinear operator and T its linearization

Xy % - x X, T X®..0X, — Y
\ e ox" = T xT)
14
A
X1®...0X,

The linear operator Tis unique.
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> -Operators

Let T be a multilinear operator. Define

X1X--'><Xn fT:le...Xn - Y
i \ e ox" = T x")
f-
Y Xy — =Y
X1®.. ®Xn

In this situation, f+ and T are called associated.
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> -Operators: Tensorial Representation

The collection of X-operators admits a tensorial representation as
follows: For every Banach spaces

(X1®...0X,®Y)" = L(Ix.x:Y")
o = f,
is a linear isomorphism, where

fl®...@x"):Y = K
y = o(x*®...0x"®y).
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Induced Topologies

Each reasonable-cross norm  on X1 ® ... ® X, defines two
topologies on > x,  x,:

@ Strong: Unique metric topology, no matter

@ Weak: It depends on each 3

The symbol Zf( x. denotes the metric space and recalls the
1.--Xn
isometry

Trox = (X1® .. @ X, B).
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Bounded X -Operators

The following are equivalent:

Xy % - x X,
1 | © 7 is bounded
J/ \ @ f7 is Lipschtz
f ~
2% X, T—; Y i
Xl ®7r e ®7r Xn

In this situation, || T|| = Lip™(fr) = || T|.
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Bounded X -Operators

The Z-operator fr : Xy — Y is called bounded if the
associated multilinear operator 7 : Xy x --- x X, = Y is
bounded.

The symbol £ (Zi X5 Y) denotes the collection of X -operators
1.--AAn
with the Lipschitz norm Lip®.
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Bounded Y-Operators: The Norm 7

Define 7° on X1®...0X,®Y by

7 (u) = inf {Z Bpi — i) Iyill [u=>>_(pi — i) ®y,-} :
Then
(e .exaey.r) - £(f . Y)

o = f,

holds linearly and isometrically.
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Factor through a Hilbert space: Linear Definition

The linear operator T : X — Y factors through a Hilbert space
if:

X

@ H Hilbert space

u Y
\ / @ A: X — H bounded
A B

H

©@ B: H— Y bounded

Define I'(T) := inf | Al || B||.
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Factor through a Hilbert Space: Sequence Characterization

Given (x;) and (y;) finite sequences in X, the symbol (x;) < (y;)
means
DO <Y X )P

holds for all x* € X*.
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Factor through a Hilbert Space: Sequence Characterization

The linear operator T : X — Y factors through a Hilbert space iff
there exist a constant C > 0 such that

() < 00) = 2 ITCAIP < 30>

In this case I'(T) = inf C.
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Factor through a Hilbert space: Tensorial Representation

Defineon X ® Y

72(u) = inf {II(Xi)IIz Iyi)ll2 | u= ZX; ® YI} :

Then

(X®4, Y)" = T2(X; YY)
e = T,

holds linearly and isometrically.
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Factor through a Hilbert Space: Factorization

The X-operators fr : Z)ﬁq...x,, — Y factors through a Hilbert

space if:
f
Sy, =Y
/ © H Hilbert space
N B @ fa:Ty x —H

M bounded

l © B: M —Y Lipschitz
H

We define [(f) := inf Lip®(f4) Lip(B)
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Factor through a Hilbert Space: Sequence Characterization

Given (p;), (gi), (ai), (b;) finite sequences in qul..x,,' we write
(pi,qi) <g (ai, bj) if

Z lp(pi — ai)* < Z lp(ai — bi)?

holds for all ¢ € (X1 ®...® X,, 8)".
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Factor through a Hilbert Space: Sequence Characterization

The Z-operator f : ¥y, — Y FTH iff there exist C > 0 such
that

(pi,qi) <p (ai, b :»Zuf pi) — f(ai) \\2<c225

Under these circumstanses '(f) = inf C.
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Factor through a Hilber Space: The Norm fyg

Define 75 on X1 @ ...® X, ® Y by v5(u)
fnf {H(aj — b))z | u =" "(pi — @) @ yi, (pirai) <p (3}, bj)} :
Then

(e exeyd) = (5% )
o = f,

holds linearly and isometrically.
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2-Dominated Operators: Definition by Factorization

The linear operator T : X — Y is 2-dominated if T factors as
follows:

© Z Banach space

Q@ A: X — Z, 2-summing
X\ % Q@ B:Z—Y,B*is

4 2-summing

Define Dy(T) = inf mp(A) ma(B*).
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2-Dominated Operators: Domination

The linear operator T : X — Y is 2-dominated iff there exists a
RBP measure p on K := Bx» X Byx+ and C > 0 such that

1
2 2

[ Te) | < C / 1x*(x) 2 / v () 2dp
K K

for all x € X and y* € Y*.

In this case Do(T) = inf C.
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2-Dominated Operators: Tensorial Representation

The tensor norm wy is defined by

wa(u) = fnf{H(Xf)HE” IolZ | u= ZX; ®y;}.

Then

(X ®uw, Y)*
(X ®u, Y)Y NL(X,Y)

holds linearly and isometrically.

Dy (X; YY)
Dy (X;Y)
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2-Dominated ¥X-Operators: The Norm w/‘;

Define wh on X1 ® ... ® X, ® Y by
wp (u) = rnf{ (= a) 157 10015 | u=>"(pr = a) @ 3 }

with .
2
sup (Z o(pi) — (i) )

where the supreme is taken over all p € (X1 ® ... ® X,, 3)" with
lells < 1.
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2-Dominated X-Operators: Functionals w/;—Continuous

The functional ¢ : (X1 @ ... ® X, @ Y, ) — K is bounded iff

there exists a RBP measure p on K := B(x,¢..gx,,3)* % By~ and
C > 0 such that

2

N[

le((p—q)®y)| < C /IC(p)—C(q)Izdu /Iy*(y)\Qdu
K K

for all p,q € z?ﬁ...x,, and y €Y.

In this case ||| = inf C.
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2-Dominated Y-Operators: Tensorial Definition

The -operator f : ¥y, — Y is called 2-dominated if the
associated functional

apf:(X1®...®Xn®Y*,w2ﬁ) - K
. ox"®y = y(f(xt®...2x")

is bounded. Define Dr(f) = ||¢¥||-
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2-Dominated Y -Operators: Factorization

The Y-operator fr : Zfﬁ...xn — Y is 2-dominated iff T factors as

follows:

Xp X -+ x Xp T Y
@ Z Banach space

i \ K Q@ fa:Ty x »McC2Z,
B 2. i
XX, . M summing |
Q@ B:M—=Y, B*is
2-summing
4

Under these circumstances Do(f) = inf ma(fa) m2(B*).
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2-Dominated X-Operators: Factorization (Ferndandez M.)

The Y-operator fy : qu...xn — Z is said to be 2-summing if there
exists a constant C > 0 such that for all finite sequences (p;), (g;)
N Zx .. X,

D7) = f(@IP < €l — a5

The 2-summing norm m(f) := inf C.
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Conclusions

© The theory of X-operators induces factorizations of the type

Xy % - x X, r y
i A %
8
ZXI Xn fA ,\f
Z

@ The theory of Y -operators provides a new approach for the
study of multilinear operators combining ideas of linear and
Lipchitz theory.

© It is possible to develop a theory of ideas of Y-operators.

© A new approximation of tensor norms arise (in two different
versions).
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