Growth Rates of Frequently Hypercyclic Harmonic Functions

Clifford Gilmore University of Helsinki (With E. Saksman and H.-O. Tylli)

Workshop on Infinite Dimensional Analysis Valencia 2017

19 October 2017

Space of Harmonic Functions

Setting

• $\mathcal{H}(\mathbb{R}^N)$ space of harmonic functions on \mathbb{R}^N , $N \ge 2$.

• Partial differentiation operator

$$rac{\partial}{\partial x_j} \colon \mathcal{H}(\mathbb{R}^N) o \mathcal{H}(\mathbb{R}^N)$$

 $1 \le j \le N.$

Question

What is the *minimal growth* of a harmonic function that is *frequently hypercyclic* for $\frac{\partial}{\partial x_j}$?

Space of Harmonic Functions

Setting

- $\mathcal{H}(\mathbb{R}^N)$ space of harmonic functions on \mathbb{R}^N , $N \ge 2$.
- Partial differentiation operator

$$rac{\partial}{\partial x_j} \colon \mathcal{H}(\mathbb{R}^N) o \mathcal{H}(\mathbb{R}^N)$$

 $1 \leq j \leq N$.

Question

What is the *minimal growth* of a harmonic function that is *frequently hypercyclic* for $\frac{\partial}{\partial x_j}$?

Space of Harmonic Functions

Setting

- $\mathcal{H}(\mathbb{R}^N)$ space of harmonic functions on \mathbb{R}^N , $N \ge 2$.
- Partial differentiation operator

$$rac{\partial}{\partial \mathsf{x}_j} \colon \mathcal{H}(\mathbb{R}^N) o \mathcal{H}(\mathbb{R}^N)$$

$$1 \leq j \leq N$$
.

Question

What is the *minimal growth* of a harmonic function that is *frequently hypercyclic* for $\frac{\partial}{\partial x_j}$?

Hypercyclicity

- X separable Fréchet space.
- $T: X \to X$, continuous linear operator.

Definition If there exists $x \in X$ such that

$$\overline{\{x, Tx, T^2x, T^3x, \dots\}} = X$$

then T is hypercyclic.

• Purely infinite dimensional phenomenon.

Hypercyclicity

- X separable Fréchet space.
- $T: X \to X$, continuous linear operator.

Definition If there exists $x \in X$ such that

$$\overline{\{x, Tx, T^2x, T^3x, \dots\}} = X$$

then T is hypercyclic.

• Purely infinite dimensional phenomenon.

Hypercyclicity

- X separable Fréchet space.
- $T: X \to X$, continuous linear operator.

Definition If there exists $x \in X$ such that

$$\overline{\{x, Tx, T^2x, T^3x, \dots\}} = X$$

then T is *hypercyclic*.

• Purely infinite dimensional phenomenon.

Many Natural Examples

• Birkhoff (1929): translation operator

 $f(z) \mapsto f(z+a)$

for $a \neq 0$ on the space of entire functions $H(\mathbb{C})$.

• MacLane (1952): differentiation operator on $H(\mathbb{C})$

 $D\colon f\mapsto f'$

Ansari and Bernal (Bonet and Peris):

Every infinite-dimensional, separable Banach (Fréchet) space admits a hypercyclic operator.

Many Natural Examples

• Birkhoff (1929): translation operator

 $f(z) \mapsto f(z+a)$

for $a \neq 0$ on the space of entire functions $H(\mathbb{C})$.

• MacLane (1952): differentiation operator on $H(\mathbb{C})$

 $D\colon f\mapsto f'$

Ansari and Bernal (Bonet and Peris):

Every infinite-dimensional, separable Banach (Fréchet) space admits a hypercyclic operator.

Many Natural Examples

• Birkhoff (1929): translation operator

 $f(z) \mapsto f(z+a)$

for $a \neq 0$ on the space of entire functions $H(\mathbb{C})$.

• MacLane (1952): differentiation operator on $H(\mathbb{C})$

 $D: f \mapsto f'$

Ansari and Bernal (Bonet and Peris):

Every infinite-dimensional, separable Banach (Fréchet) space admits a hypercyclic operator.

- X a separable Fréchet space.
- $T: X \to X$, continuous linear operator.

Definition

If there exists $x \in X$ such that for any nonempty, open $U \subset X$ we have

$$\inf_{\infty} \frac{\# \{n : I'' x \in U, 1 \le n \le N\}}{N} >$$

then T is frequently hypercyclic.

• $x \in X$ a frequently hypercyclic vector for T.

• Bayart and Grivaux (2004).

• Roots in ergodic theory.

- X a separable Fréchet space.
- $T: X \to X$, continuous linear operator.

Definition

If there exists $x \in X$ such that for any nonempty, open $U \subset X$ we have

$$\liminf_{N\to\infty}\frac{\#\{n: T^n x \in U, 1 \le n \le N\}}{N} > 0$$

then T is *frequently hypercyclic*.

• $x \in X$ a frequently hypercyclic vector for T.

• Bayart and Grivaux (2004).

• Roots in ergodic theory.

- X a separable Fréchet space.
- $T: X \to X$, continuous linear operator.

Definition

If there exists $x \in X$ such that for any nonempty, open $U \subset X$ we have

$$\liminf_{N\to\infty}\frac{\#\left\{n:\ T^nx\in U,\ 1\leq n\leq N\right\}}{N}>0$$

then T is *frequently hypercyclic*.

• $x \in X$ a frequently hypercyclic vector for T.

• Bayart and Grivaux (2004).

• Roots in ergodic theory.

- X a separable Fréchet space.
- $T: X \to X$, continuous linear operator.

Definition

If there exists $x \in X$ such that for any nonempty, open $U \subset X$ we have

$$\liminf_{N\to\infty}\frac{\#\{n: T^n x\in U, 1\leq n\leq N\}}{N}>0$$

then T is *frequently hypercyclic*.

• $x \in X$ a frequently hypercyclic vector for T.

- Bayart and Grivaux (2004).
- Roots in ergodic theory.

- X a separable Fréchet space.
- $T: X \to X$, continuous linear operator.

Definition

If there exists $x \in X$ such that for any nonempty, open $U \subset X$ we have

$$\liminf_{N\to\infty}\frac{\#\{n: T^n x\in U, 1\leq n\leq N\}}{N}>0$$

then T is *frequently hypercyclic*.

• $x \in X$ a frequently hypercyclic vector for T.

- Bayart and Grivaux (2004).
- Roots in ergodic theory.

- X a separable Fréchet space.
- $T: X \to X$, continuous linear operator.

Definition

If there exists $x \in X$ such that for any nonempty, open $U \subset X$ we have

$$\liminf_{N\to\infty}\frac{\#\{n: T^n x\in U, 1\leq n\leq N\}}{N}>0$$

then T is *frequently hypercyclic*.

- $x \in X$ a frequently hypercyclic vector for T.
- Bayart and Grivaux (2004).
- Roots in ergodic theory.

Examples of Frequently Hypercyclic Operators

• Translation operator

 $f(z) \mapsto f(z+a)$

on $H(\mathbb{C})$, $a \neq 0$.

• Differentiation operator on $H(\mathbb{C})$

 $D\colon f\mapsto f'.$

- There exist hypercyclic operators that are not frequently hypercyclic.
- There exist separable Fréchet spaces with no frequently hypercyclic operators.

Examples of Frequently Hypercyclic Operators

Translation operator

 $f(z) \mapsto f(z+a)$

on $H(\mathbb{C})$, $a \neq 0$.

• Differentiation operator on $H(\mathbb{C})$

 $D: f \mapsto f'.$

- There exist hypercyclic operators that are not frequently hypercyclic.
- There exist separable Fréchet spaces with no frequently hypercyclic operators.

Growth of Harmonic Functions L^2 -norm on spheres

S(r) the sphere of radius r centred at the origin of ℝ^N.
For h ∈ H(ℝ^N) and r > 0

$$M_2(h, r) = \left(\int_{\mathcal{S}(r)} |h|^2 \,\mathrm{d}\sigma_r\right)^{1/2}$$

σ_r normalised (N − 1)-dimensional surface measure on S(r).
Growth on S(r) as r → ∞.

Growth of Harmonic Functions L^2 -norm on spheres

- S(r) the sphere of radius r centred at the origin of \mathbb{R}^N .
- For $h \in \mathcal{H}(\mathbb{R}^N)$ and r > 0

$$M_2(h, r) = \left(\int_{\mathcal{S}(r)} |h|^2 \, \mathrm{d}\sigma_r\right)^{1/2}$$

σ_r normalised (N − 1)-dimensional surface measure on S(r).
Growth on S(r) as r → ∞.

Growth of Harmonic Functions L^2 -norm on spheres

- S(r) the sphere of radius r centred at the origin of \mathbb{R}^N .
- For $h \in \mathcal{H}(\mathbb{R}^N)$ and r > 0

$$M_2(h, r) = \left(\int_{\mathcal{S}(r)} |h|^2 \, \mathrm{d}\sigma_r\right)^{1/2}$$

- σ_r normalised (N-1)-dimensional surface measure on S(r).
- Growth on S(r) as $r \to \infty$.

Entire Function Case $D: f \mapsto f'$

• Growth in L^p -norm, $1 \le p \le \infty$.

Hypercyclic case

- Initial estimates: MacLane (1952).
- Sharp growth: Grosse-Erdmann (1990), Shkarin (1993).

Frequently hypercyclic case

- Initial estimates: Blasco, Bonilla, Grosse-Erdmann (2010), Bonet and Bonilla (2013).
- Minimal growth: Drasin and Saksman (2012).

Entire Function Case $D: f \mapsto f'$

• Growth in L^p -norm, $1 \le p \le \infty$.

Hypercyclic case

- Initial estimates: MacLane (1952).
- Sharp growth: Grosse-Erdmann (1990), Shkarin (1993).

Frequently hypercyclic case

- Initial estimates: Blasco, Bonilla, Grosse-Erdmann (2010), Bonet and Bonilla (2013).
- Minimal growth: Drasin and Saksman (2012).

9 For any
$$\varphi$$
: ℝ₊ → ℝ₊ with $\varphi(r) \to \infty$ as $r \to \infty$,
∃h ∈ H(ℝ^N), hypercyclic for $\frac{\partial}{\partial x_j}$ such that

$$M_2(h, r) \le \varphi(r) \frac{e^r}{r^{(N-1)/2}}$$

for r > 0 sufficiently large.

$$M_2(h, r) \leq C \frac{e^r}{r^{(N-1)/2}}$$

• For any
$$\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$$
 with $\varphi(r) \to \infty$ as $r \to \infty$,
 $\exists h \in \mathcal{H}(\mathbb{R}^N)$, hypercyclic for $\frac{\partial}{\partial x_j}$ such that

$$M_2(h, r) \leq \varphi(r) rac{e^r}{r^{(N-1)/2}}$$

for r > 0 sufficiently large.

② $∃h \in \mathcal{H}(\mathbb{R}^N)$, hypercyclic for $\frac{\partial}{\partial x_j}$, such that

$$M_2(h, r) \leq C \frac{e^r}{r^{(N-1)/2}}$$

• For any
$$\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$$
 with $\varphi(r) \to \infty$ as $r \to \infty$,
 $\exists h \in \mathcal{H}(\mathbb{R}^N)$, hypercyclic for $\frac{\partial}{\partial x_j}$ such that

$$M_2(h, r) \leq \varphi(r) \frac{e^r}{r^{(N-1)/2}}$$

for r > 0 sufficiently large.

$$M_2(h, r) \leq C \frac{e^r}{r^{(N-1)/2}}$$

• For any
$$\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$$
 with $\varphi(r) \to \infty$ as $r \to \infty$,
 $\exists h \in \mathcal{H}(\mathbb{R}^N)$, hypercyclic for $\frac{\partial}{\partial x_j}$ such that

$$M_2(h, r) \leq \varphi(r) \frac{e^r}{r^{(N-1)/2}}$$

for r > 0 sufficiently large.

②
$$ightarrow h\in \mathcal{H}(\mathbb{R}^N)$$
, hypercyclic for $rac{\partial}{\partial x_j}$, such that

$$M_2(h, r) \leq C \frac{e^r}{r^{(N-1)/2}}$$

1 For any $\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$ with $\varphi(r) \to \infty$ as $r \to \infty$,

 $\exists h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_j}$ with

$$M_2(h, r) \le \varphi(r) \frac{e^r}{r^{N/2-3/4}}$$

for r > 0 sufficiently large.

② Let ψ : ℝ₊ → ℝ₊ with $\psi(r) \to 0$ as $r \to \infty$. $\nexists h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_i}$ with

$$M_2(h, r) \leq \psi(r) \frac{e^r}{r^{N/2-3/4}}$$

• For any
$$\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$$
 with $\varphi(r) \to \infty$ as $r \to \infty$,
 $\exists h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_j}$ with

$$M_2(h, r) \le \varphi(r) \frac{e^r}{r^{N/2-3/4}}$$

for r > 0 sufficiently large.

② Let ψ : ℝ₊ → ℝ₊ with $\psi(r) \to 0$ as $r \to \infty$. $\nexists h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_i}$ with

$$M_2(h, r) \leq \psi(r) \frac{e^r}{r^{N/2-3/4}}$$

• For any
$$\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$$
 with $\varphi(r) \to \infty$ as $r \to \infty$,
 $\exists h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_j}$ with
 $M_2(h, r) \le \varphi(r) \frac{e^r}{r^{N/2-3/4}}$

for r > 0 sufficiently large.

② Let ψ : ℝ₊ → ℝ₊ with $\psi(r) \to 0$ as $r \to \infty$. $\nexists h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_i}$ with

$$M_2(h, r) \leq \psi(r) \frac{e^r}{r^{N/2-3/4}}$$

• For any
$$\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$$
 with $\varphi(r) \to \infty$ as $r \to \infty$,
 $\exists h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_j}$ with

$$M_2(h, r) \leq \varphi(r) \frac{e^r}{r^{N/2-3/4}}$$

for r > 0 sufficiently large.

② Let ψ : ℝ₊ → ℝ₊ with $\psi(r) \to 0$ as $r \to \infty$. $\nexists h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_j}$ with

$$M_2(h, r) \leq \psi(r) \frac{e^r}{r^{N/2-3/4}}$$

• For any
$$\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$$
 with $\varphi(r) \to \infty$ as $r \to \infty$,
 $\exists h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_j}$ with

$$M_2(h, r) \leq \varphi(r) \frac{e^r}{r^{N/2-3/4}}$$

for r > 0 sufficiently large.

$$M_2(h, r) \le \psi(r) \frac{e^r}{r^{N/2-3/4}}$$

• For any
$$\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$$
 with $\varphi(r) \to \infty$ as $r \to \infty$,
 $\exists h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_j}$ with

$$M_2(h, r) \leq \varphi(r) \frac{e^r}{r^{N/2-3/4}}$$

for r > 0 sufficiently large.

② Let ψ : \mathbb{R}_+ → \mathbb{R}_+ with $\psi(r)$ → 0 as r → ∞. $\nexists h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_j}$ with

$$M_2(h, r) \leq \psi(r) \frac{e^r}{r^{N/2-3/4}}$$

Question

Blasco, Bonilla and Grosse-Erdmann (2010):

• Can φ be replaced with a constant in the growth rate?

Theorem (G., Saksman, Tylli) Let $N \ge 2$ and $1 \le j \le N$. For any C > 0, there exists $h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_j}$ with

$$M_2(h, r) \le C \frac{e^r}{r^{N/2-3/4}}$$

for all r > 0.

Strategy

Explicitly construct a harmonic function h satisfying the theorem.

Question

Blasco, Bonilla and Grosse-Erdmann (2010):

• Can φ be replaced with a constant in the growth rate?

Theorem (G., Saksman, Tylli) Let $N \ge 2$ and $1 \le j \le N$. For any C > 0, there exists $h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_j}$ with $M_2(h, r) \le C \frac{e^r}{r^{N/2-3/4}}$

for all r > 0.

Strategy

Explicitly construct a harmonic function h satisfying the theorem.

Question

Blasco, Bonilla and Grosse-Erdmann (2010):

• Can φ be replaced with a constant in the growth rate?

Theorem (G., Saksman, Tylli) Let $N \ge 2$ and $1 \le j \le N$. For any C > 0, there exists $h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_j}$ with $M_2(h, r) \le C \frac{e^r}{r^{N/2-3/4}}$

for all r > 0.

Strategy

Explicitly construct a harmonic function h satisfying the theorem.

Initial Observations

Hypercyclic (Aldred and Armitage) $\nexists h \in \mathcal{H}(\mathbb{R}^N)$, hypercyclic for $\frac{\partial}{\partial x_j}$, with

$$M_2(h, r) \leq C \frac{e^r}{r^{(N-1)/2}}$$

for C > 0.

Frequently Hypercyclic For any C > 0, $\exists h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_j}$, with

$$M_2(h, r) \leq C \frac{e^r}{r^{N/2-3/4}}$$

Dimension N = 2 contained in Drasin-Saksman. Interested in $N \ge 3$

Initial Observations

Hypercyclic (Aldred and Armitage) $\nexists h \in \mathcal{H}(\mathbb{R}^N)$, hypercyclic for $\frac{\partial}{\partial x_j}$, with

$$M_2(h, r) \leq C \frac{e^r}{r^{(N-1)/2}}$$

for C > 0.

Frequently Hypercyclic For any C > 0, $\exists h \in \mathcal{H}(\mathbb{R}^N)$, frequently hypercyclic for $\frac{\partial}{\partial x_j}$, with

$$M_2(h, r) \leq C \frac{e^r}{r^{N/2-3/4}}$$

Dimension N = 2 contained in Drasin-Saksman. Interested in $N \ge 3$.

Antiderivative

Aldred and Armitage (1998)

• For a harmonic polynomial H and $n \in \mathbb{N}$, define the n^{th} primitive of H

$H \mapsto P_n(H)$

• $P_n(H)$ a harmonic polynomial with

$$\frac{\partial^n}{\partial x_j^n} P_n(H) = H$$

- Suitable upper bounds for calculating growth.
- Brelot and Choquet 1950s.
- Kuran (1971): Particular orthogonal representation of harmonic polynomials.

Antiderivative

Aldred and Armitage (1998)

• For a harmonic polynomial H and $n \in \mathbb{N}$, define the n^{th} primitive of H

$$H \mapsto P_n(H)$$

• $P_n(H)$ a harmonic polynomial with

$$\frac{\partial^n}{\partial x_j^n} P_n(H) = H$$

- Suitable upper bounds for calculating growth.
- Brelot and Choquet 1950s.
- Kuran (1971): Particular orthogonal representation of harmonic polynomials.

Antiderivative

Aldred and Armitage (1998)

• For a harmonic polynomial H and $n \in \mathbb{N}$, define the n^{th} primitive of H

$$H \mapsto P_n(H)$$

• $P_n(H)$ a harmonic polynomial with

$$\frac{\partial^n}{\partial x_j^n} P_n(H) = H$$

- Suitable upper bounds for calculating growth.
- Brelot and Choquet 1950s.
- Kuran (1971): Particular orthogonal representation of harmonic polynomials.

- $\mathcal{H}(\mathbb{R}^N)$ separable under topology of local uniform convergence.
- Fix a countably dense sequence of harmonic polynomials

$(F_k) \subset \mathcal{H}(\mathbb{R}^N)$

- Aim: construct $h \in \mathcal{H}(\mathbb{R}^N)$ to frequently approximate each F_k .
- Associate with each F_k an $\ell_k \in \mathbb{N}$.
- Sequence (ℓ_k) strictly increasing.
- Final choice for (ℓ_k) later.

- $\mathcal{H}(\mathbb{R}^N)$ separable under topology of local uniform convergence.
- Fix a countably dense sequence of harmonic polynomials

 $(F_k)\subset \mathcal{H}(\mathbb{R}^N)$

- Aim: construct $h \in \mathcal{H}(\mathbb{R}^N)$ to frequently approximate each F_k .
- Associate with each F_k an $\ell_k \in \mathbb{N}$.
- Sequence (ℓ_k) strictly increasing.
- Final choice for (ℓ_k) later.

- $\mathcal{H}(\mathbb{R}^N)$ separable under topology of local uniform convergence.
- Fix a countably dense sequence of harmonic polynomials

 $(F_k) \subset \mathcal{H}(\mathbb{R}^N)$

- Aim: construct $h \in \mathcal{H}(\mathbb{R}^N)$ to frequently approximate each F_k .
- Associate with each F_k an $\ell_k \in \mathbb{N}$.
- Sequence (ℓ_k) strictly increasing.
- Final choice for (ℓ_k) later.

- $\mathcal{H}(\mathbb{R}^N)$ separable under topology of local uniform convergence.
- Fix a countably dense sequence of harmonic polynomials

 $(F_k) \subset \mathcal{H}(\mathbb{R}^N)$

- Aim: construct $h \in \mathcal{H}(\mathbb{R}^N)$ to frequently approximate each F_k .
- Associate with each F_k an $\ell_k \in \mathbb{N}$.
- Sequence (ℓ_k) strictly increasing.
- Final choice for (ℓ_k) later.

Construction of hConstruct polynomials Q_n

- For *n* odd and n = 0: $Q_n \equiv 0$.
- If *n* even: associate a fixed F_k .
- If $n < 10\ell_k$: $Q_n \equiv 0$.
- If $n \geq 10\ell_k$:

 $Q_n = P_{n^2 + \ell_k}(F_k) + P_{n^2 + 2\ell_k}(F_k) + \dots + P_{n^2 + n}(F_k)$

Construct polynomials Q_n

- For *n* odd and n = 0: $Q_n \equiv 0$.
- If *n* even: associate a fixed F_k .
- If $n < 10\ell_k$: $Q_n \equiv 0$.
- If $n \geq 10\ell_k$:

 $Q_n = P_{n^2 + \ell_k}(F_k) + P_{n^2 + 2\ell_k}(F_k) + \dots + P_{n^2 + n}(F_k)$

Construct polynomials Q_n

- For *n* odd and n = 0: $Q_n \equiv 0$.
- If *n* even: associate a fixed F_k .
- If $n < 10\ell_k$: $Q_n \equiv 0$.
- If $n \geq 10\ell_k$:

 $Q_n = P_{n^2 + \ell_k}(F_k) + P_{n^2 + 2\ell_k}(F_k) + \dots + P_{n^2 + n}(F_k)$

Construct polynomials Q_n

- For *n* odd and n = 0: $Q_n \equiv 0$.
- If *n* even: associate a fixed F_k .
- If $n < 10\ell_k$: $Q_n \equiv 0$.
- If $n \ge 10\ell_k$:

$Q_n = P_{n^2 + \ell_k}(F_k) + P_{n^2 + 2\ell_k}(F_k) + \dots + P_{n^2 + n}(F_k)$

Construct polynomials Q_n

- For *n* odd and n = 0: $Q_n \equiv 0$.
- If *n* even: associate a fixed F_k .
- If $n < 10\ell_k$: $Q_n \equiv 0$.
- If $n \ge 10\ell_k$:

 $Q_n = P_{n^2 + \ell_k}(F_k) + P_{n^2 + 2\ell_k}(F_k) + \dots + P_{n^2 + n}(F_k)$

$$P_{n^{2}+\ell_{k}}(F_{k}) \qquad P_{n^{2}+2\ell_{k}}(F_{k}) \qquad P_{n^{2}+n}(F_{k})$$

$$n^{2} \qquad n^{2}+\ell_{k} \qquad n^{2}+2\ell_{k} \qquad n^{2}+n \qquad (n+1)^{2}$$

Construction of hThe blocks Q_n

• The Q_n are disjointly supported.

• Scope of the degrees of the polynomials:

Construction of hThe blocks Q_n

- The Q_n are disjointly supported.
- Scope of the degrees of the polynomials:

- For fixed F_k , repeat corresponding Q_n 's often enough to give frequent hypercyclicity.
- Do this for every $k \ge 1$.
- Define *h* as

- Frequently hypercyclic by construction.
- Growth: for r > 0

$$M_{2}^{2}(h,r) = \sum_{n=1}^{\infty} M_{2}^{2}(Q_{n}, r)$$

- For fixed F_k , repeat corresponding Q_n 's often enough to give frequent hypercyclicity.
- Do this for every $k \ge 1$.
- Define *h* as

$$h=\sum_{n=1}^{\infty}Q_n$$

- Frequently hypercyclic by construction.
- Growth: for r > 0

$$M_{2}^{2}(h,r) = \sum_{n=1}^{\infty} M_{2}^{2}(Q_{n}, r)$$

- For fixed F_k , repeat corresponding Q_n 's often enough to give frequent hypercyclicity.
- Do this for every $k \ge 1$.
- Define *h* as

$$h=\sum_{n=1}^{\infty}Q_n$$

- Frequently hypercyclic by construction.
- Growth: for r > 0

$$M_{2}^{2}(h,r) = \sum_{n=1}^{\infty} M_{2}^{2}(Q_{n}, r)$$

- For fixed F_k , repeat corresponding Q_n 's often enough to give frequent hypercyclicity.
- Do this for every $k \ge 1$.
- Define *h* as

$$h=\sum_{n=1}^{\infty}Q_n$$

- Frequently hypercyclic by construction.
- Growth: for r > 0

$$M_{2}^{2}(h,r) = \sum_{n=1}^{\infty} M_{2}^{2}(Q_{n}, r)$$

Estimates for the Primitives Aldred and Armitage (1998)

- *H* a homogeneous, harmonic polynomial, deg H = m.
- For $P_n(H)$

$$M_{2}^{2}\left(P_{n}(H),\,1
ight) \leq c_{n,m,N}\cdot M_{2}^{2}\left(H,\,1
ight)$$

• For fixed *m*

$$(c_{n,m,N})^{1/2} \leq \frac{c_m}{(n+m)!(n+m+1)^{N/2-1}}$$

where c_m depends on m.

Estimates for the Primitives Aldred and Armitage (1998)

- *H* a homogeneous, harmonic polynomial, deg H = m.
- For $P_n(H)$

$$M_{2}^{2}(P_{n}(H), 1)) \leq c_{n,m,N} \cdot M_{2}^{2}(H, 1)$$

• For fixed *m*

$$(c_{n,m,N})^{1/2} \leq \frac{c_m}{(n+m)!(n+m+1)^{N/2-1}}$$

where c_m depends on m.

For each k ≥ 1, require suitable upper bounds for sums of the form

$$\sum_{j=2\ell_k}^{\infty} \frac{r^{2j\ell_k}}{(j\ell_k)!^2 (j\ell_k+1)^{N-2}}$$

and of course

$$\leq \sum_{j=0}^{\infty} \frac{r^{2j}}{j!^2 (j+1)^{N-2}}$$

• Consider the function

$$p(x) = \frac{r^{2x}}{x!^2(x+1)^{N-2}}$$

for $x \in \mathbb{R}_+$

For each k ≥ 1, require suitable upper bounds for sums of the form

$$\sum_{j=2\ell_k}^{\infty} \frac{r^{2j\ell_k}}{(j\ell_k)!^2 (j\ell_k+1)^{N-2}}$$

and of course

$$\leq \sum_{j=0}^{\infty} \frac{r^{2j}}{j!^2 (j+1)^{N-2}}$$

• Consider the function

$$p(x) = \frac{r^{2x}}{x!^2(x+1)^{N-2}}$$

for $x \in \mathbb{R}_+$

For each k ≥ 1, require suitable upper bounds for sums of the form

$$\sum_{j=2\ell_k}^{\infty} \frac{r^{2j\ell_k}}{(j\ell_k)!^2 (j\ell_k+1)^{N-2}}$$

and of course

$$\leq \sum_{j=0}^{\infty} \frac{r^{2j}}{j!^2 (j+1)^{N-2}}$$

• Consider the function

$$p(x) = \frac{r^{2x}}{x!^2(x+1)^{N-2}}$$

for $x \in \mathbb{R}_+$

Maximum attained close to the point x = r

Barnes (1906) $\exists C > 0$ such that $\forall r > 0$

$$\sum_{j=0}^{\infty} \frac{r^{2j}}{j!^2(j+1)^{N-2}} < C \frac{e^{2r}}{r^{N-3/2}}$$

Can do better

 $\exists C' > 0$ (independent of ℓ_k) such that $\forall r > 0$

$$\sum_{j=2\ell_k}^{\infty} \frac{r^{2j\ell_k}}{(j\ell_k)!^2 (j\ell_k+1)^{N-2}} \le \frac{C'}{\ell_k} \cdot \frac{e^{2r}}{r^{N-3/2}}$$

Barnes (1906) $\exists C > 0$ such that $\forall r > 0$

$$\sum_{j=0}^{\infty} \frac{r^{2j}}{j!^2(j+1)^{N-2}} < C \frac{e^{2r}}{r^{N-3/2}}$$

Can do better

 $\exists C' > 0$ (independent of ℓ_k) such that $\forall r > 0$

$$\sum_{j=2\ell_k}^{\infty} \frac{r^{2j\ell_k}}{(j\ell_k)!^2 (j\ell_k+1)^{N-2}} \le \frac{C'}{\ell_k} \cdot \frac{e^{2r}}{r^{N-3/2}}$$

Summing up for every $k \ge 1$

$$\begin{split} M_{2}^{2}(h,r) &= \sum_{n=1}^{\infty} M_{2}^{2}(Q_{n},r) \\ &\leq \frac{e^{2r}}{r^{N-3/2}} \left(C' \sum_{k=1}^{\infty} \frac{c_{m_{k}} M_{2}^{2}(F_{k},1)}{\ell_{k}} \right) \end{split}$$

• Choose integers in (ℓ_k) sufficiently large to give

$$C' \sum_{k=1}^{\infty} \frac{c_{m_k} M_2^2 \left(F_k, 1\right)}{\ell_k} \leq C^2$$

$$\implies M_2(h,r) \leq C \frac{e^r}{r^{N/2-3/4}}$$

Summing up for every $k \ge 1$

$$\begin{split} M_{2}^{2}(h,r) &= \sum_{n=1}^{\infty} M_{2}^{2}(Q_{n},r) \\ &\leq \frac{e^{2r}}{r^{N-3/2}} \left(C' \sum_{k=1}^{\infty} \frac{c_{m_{k}} M_{2}^{2}(F_{k},1)}{\ell_{k}} \right) \end{split}$$

• Choose integers in (ℓ_k) sufficiently large to give

$$C' \sum_{k=1}^{\infty} rac{c_{m_k} M_2^2 \left(F_k,1
ight)}{\ell_k} \leq C^2$$

$$\implies M_2(h,r) \leq C \frac{e^r}{r^{N/2-3/4}}$$

Summing up for every $k \ge 1$

$$\begin{aligned} M_{2}^{2}(h,r) &= \sum_{n=1}^{\infty} M_{2}^{2}(Q_{n},r) \\ &\leq \frac{e^{2r}}{r^{N-3/2}} \left(C' \sum_{k=1}^{\infty} \frac{c_{m_{k}} M_{2}^{2}(F_{k},1)}{\ell_{k}} \right) \end{aligned}$$

• Choose integers in (ℓ_k) sufficiently large to give

$$C' \sum_{k=1}^{\infty} rac{c_{m_k} M_2^2 \left(F_k, 1
ight)}{\ell_k} \leq C^2$$

$$\implies M_2(h,r) \leq C rac{e^r}{r^{N/2-3/4}}$$

Thank you for your attention \circledast

- M. P. Aldred and D. H. Armitage.
 Harmonic analogues of G. R. MacLane's universal functions.
 J. London Math. Soc. (2), 57(1):148–156, 1998.
 - O. Blasco, A. Bonilla and K.-G. Grosse-Erdmann. Rate of growth of frequently hypercyclic functions. *Proc. Edinb. Math. Soc. (2)*, 53(1):39–59, 2010.
 - D. Drasin and E. Saksman.

Optimal growth of entire functions frequently hypercyclic for the differentiation operator.

J. Funct. Anal., 263(11):3674-3688, 2012.

C. Gilmore, E. Saksman and H.-O. Tylli. Optimal growth of harmonic functions frequently hypercyclic for the partial differentiation operator.

Proc. Roy. Soc. Edinburgh Sect. A, accepted, last Monday ©. ArXiv:1708.08764.