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Space of Harmonic Functions

Setting
o H(RN) space of harmonic functions on RV, N > 2.

o Partial differentiation operator

i: HRN) — H(RN)
Oxj

I1<j< N

Question
What is the minimal growth of a harmonic function that is

0
frequently hypercyclic for — 7
Oxj
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Hypercyclicity

@ X separable Fréchet space.

e T: X — X, continuous linear operator.

Definition
If there exists x € X such that

{x, Tx, T2x, T3x,...}
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Hypercyclicity

@ X separable Fréchet space.

e T: X — X, continuous linear operator.

Definition
If there exists x € X such that

{x, Tx, T2x, T3x,...} =X

then T is hypercyclic.

@ Purely infinite dimensional phenomenon.
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Many Natural Examples

e Birkhoff (1929): translation operator
f(z)— f(z+ a)

for a # 0 on the space of entire functions H(C).
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Many Natural Examples

e Birkhoff (1929): translation operator
f(z)— f(z+a)
for a # 0 on the space of entire functions H(C).
e Maclane (1952): differentiation operator on H(C)
D:fsf

Ansari and Bernal (Bonet and Peris):

Every infinite-dimensional, separable Banach (Fréchet) space
admits a hypercyclic operator.

4/23



Frequent Hypercyclicity
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Definition
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Frequent Hypercyclicity

@ X a separable Fréchet space.

e T: X — X, continuous linear operator.

Definition
If there exists x € X such that for any nonempty, open U C X we
have T" U, 1<n<N

Iiminf#{n' Xe€Y, 220> }>0

N—o0 N

then T is frequently hypercyclic.

@ x € X a frequently hypercyclic vector for T.
e Bayart and Grivaux (2004).

@ Roots in ergodic theory.
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Examples of Frequently Hypercyclic Operators

@ Translation operator
f(z)— f(z+ a)
on H(C), a#0.
e Differentiation operator on H(C)

D: f—f.
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Examples of Frequently Hypercyclic Operators

@ Translation operator
f(z)— f(z+a)
on H(C), a#0.
e Differentiation operator on H(C)
D: frsf.

@ There exist hypercyclic operators that are not frequently
hypercyclic.

@ There exist separable Fréchet spaces with no frequently
hypercyclic operators.
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Growth of Harmonic Functions

L2-norm on spheres

o S(r) the sphere of radius r centred at the origin of RV,
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o S(r) the sphere of radius r centred at the origin of RV,
e For h € H(RN) and r >0
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Growth of Harmonic Functions

L2-norm on spheres

S(r) the sphere of radius r centred at the origin of RV.

For he€ H(RN) and r > 0

1/2
M(h, r) = (/5( )\h|2da,>

o, normalised (N — 1)-dimensional surface measure on 5(r).

Growth on S(r) as r — oo.
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Entire Function Case
D:fs f

@ Growth in LP-norm, 1 < p < co.

Hypercyclic case
o Initial estimates: MacLane (1952).

@ Sharp growth: Grosse-Erdmann (1990), Shkarin (1993).
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Entire Function Case
D:fs f

@ Growth in LP-norm, 1 < p < co.

Hypercyclic case
o Initial estimates: MacLane (1952).

@ Sharp growth: Grosse-Erdmann (1990), Shkarin (1993).

Frequently hypercyclic case

e Initial estimates: Blasco, Bonilla, Grosse-Erdmann (2010),
Bonet and Bonilla (2013).

e Minimal growth: Drasin and Saksman (2012).
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Growth of Hypercyclic Harmonic Functions
Aldred and Armitage (1998)

@ Forany ¢: Ry — R with ¢(r) — 0o as r — oo,
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Growth of Hypercyclic Harmonic Functions
Aldred and Armitage (1998)

© For any ¢: Ry — R4 with ¢(r) = oo as r — oo,

Jh € H(RN), hypercyclic for 8% such that
d

e
M(h, r) < o(r) w173

for r > 0 sufficiently large.
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Growth of Hypercyclic Harmonic Functions
Aldred and Armitage (1998)

© For any ¢: Ry — R4 with ¢(r) = oo as r — oo,

Jh € H(RN), hypercyclic for 8% such that
d

e
M(h, r) < o(r) w173

for r > 0 sufficiently large.

@ 7h e H(RN), hypercyclic for £< such that
j

er

Ma(h, r) < CW

for r > 0 and where C > 0 is constant.
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Frequently Hypercyclic Case
Blasco, Bonilla and Grosse-Erdmann (2010)

@ Forany ¢: Ry — R with ¢(r) = 0o as r — oo,
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@ Forany ¢: Ry — R with ¢(r) = 0o as r — oo,

Jh € H(RN), frequently hypercyclic for 88 with
Xj

r

e
Mz(h, r) S @(r)m

for r > 0 sufficiently large.
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9
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Frequently Hypercyclic Case
Blasco, Bonilla and Grosse-Erdmann (2010)

@ Forany ¢: Ry — R with ¢(r) = 0o as r — oo,

Jh € H(RN), frequently hypercyclic for 88 with
Xj

r

e
Mz(h, r) S @(r)m

for r > 0 sufficiently large.
@ Let ¢: Ry — Ry with ¢(r) - 0 as r — oo.

Bh € H(RVN), frequently hypercyclic for e with
9

el‘

Ma(h, r) < T/J(r)m

for r > 0 sufficiently large.
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Question

Blasco, Bonilla and Grosse-Erdmann (2010):

e Can ¢ be replaced with a constant in the growth rate?
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Theorem (G., Saksman, Tylli)
Let N>2and1<j<N. Forany C > 0, there exists h € ’H(RN),
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Question

Blasco, Bonilla and Grosse-Erdmann (2010):

e Can ¢ be replaced with a constant in the growth rate?

Theorem (G., Saksman, Tylli)
Let N>2and1<j<N. Forany C > 0, there exists h € ’H(RN),

0

frequently hypercyclic for — with
Oxj

er

Ma(h, r) < Cm

for all r > 0.

Strategy

Explicitly construct a harmonic function h satisfying the theorem.

11/23



Initial Observations

Hypercyclic (Aldred and Armitage)

Bh € H(RVN), hypercyclic for —, with
Oxj

I’

Ma(h, r) < Ci(N e

for C > 0.

Frequently Hypercyclic

For any C > 0, 3h € H(RN), frequently hypercyclic for 88 with
Xj

er

M2(h, r) < Cm
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Initial Observations

Hypercyclic (Aldred and Armitage)

Bh € H(RVN), hypercyclic for —, with
Oxj

f'

Ma(h, r) < Ci(N e

for C > 0.

Frequently Hypercyclic

For any C > 0, 3h € H(RN), frequently hypercyclic for 68 with
Xj

er

M2(h, r) < Cm
Dimension
N = 2 contained in Drasin-Saksman. Interested in N > 3.
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Antiderivative
Aldred and Armitage (1998)

@ For a harmonic polynomial H and n € N, define the n'"
primitive of H
H +— P,(H)
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Antiderivative
Aldred and Armitage (1998)

@ For a harmonic polynomial H and n € N, define the n'"
primitive of H
H +— P,(H)

e Pp(H) a harmonic polynomial with

@Pn(H) =H

J

@ Suitable upper bounds for calculating growth.
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Antiderivative
Aldred and Armitage (1998)

@ For a harmonic polynomial H and n € N, define the n'"
primitive of H
H +— P,(H)

P,(H) a harmonic polynomial with

@Pn(H) =H

J

Suitable upper bounds for calculating growth.

Brelot and Choquet 1950s.

Kuran (1971): Particular orthogonal representation of
harmonic polynomials.

13/23



Construction of h

o H(RM) separable under topology of local uniform convergence.

@ Fix a countably dense sequence of harmonic polynomials

(Fk) € H(RY)
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Construction of h

H(RN) separable under topology of local uniform convergence.

Fix a countably dense sequence of harmonic polynomials

(Fk) € H(RY)

e Aim: construct h € H(RN) to frequently approximate each F.

Associate with each F, an ¢, € N.

Sequence (¢y) strictly increasing.

Final choice for (¢x) later.

14 /23
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@ Fornodd and n=10: Q, =0.
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Construction of h

Construct polynomials @,

@ Fornodd and n=10: Q, =0.
@ If n even: associate a fixed Fy.
o If n<104,: Q,=0.

o If n > 104,:

Qn = Pn2+€k(Fk) + Pn2+2€k(Fk) +oet Pn2+n(F/<)



Construction of h

Construct polynomials Q,

For nodd and n=0: Q, =0.
If n even: associate a fixed Fy.
If n <104: Q,=0.

If n > 100:

Qn = Pn2+€k(Fk) + 'Dn2+2€k(Fk) +oet Pn2+n(Fk)

Degrees of the primitives disjointly supported:

P,,sz(Fk) Pn2+2ék(Fk) Pn2+n(Fk)
—— —— ——

n2 n? + 4 n? + 20 n?+n (n+ 1)2



Construction of h
The blocks @,

@ The Q) are disjointly supported.



Construction of h
The blocks @,

@ The Q) are disjointly supported.

@ Scope of the degrees of the polynomials:




The function h

@ For fixed Fy, repeat corresponding Q,’s often enough to give
frequent hypercyclicity.

@ Do this for every k > 1.
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The function h

@ For fixed Fy, repeat corresponding Q,’s often enough to give
frequent hypercyclicity.

@ Do this for every k > 1.
@ Define h as
(oo}
h=2_ G
n=1
@ Frequently hypercyclic by construction.

o Growth: for r > 0

/\/722 (Qn, r)

Nk

M3 (h,r) =

Il
N

n

by orthogonality.
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Estimates for the Primitives
Aldred and Armitage (1998)

@ H a homogeneous, harmonic polynomial, deg H = m.

e For P,(H)
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Estimates for the Primitives
Aldred and Armitage (1998)

@ H a homogeneous, harmonic polynomial, deg H = m.

e For P,(H)

M3 (Pa(H), 1)) < Cpmn - M3 (H, 1)

@ For fixed m

C
1/2 < m

(Cn,m7N) = (n+m)!(n—|—m—|—1)N/2*1

where ¢, depends on m.
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[llustration of the Growth

@ For each k > 1, require suitable upper bounds for sums of the
form

o 20

2 ()12 (jle + 1)N72

J=26
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[llustration of the Growth

@ For each k > 1, require suitable upper bounds for sums of the
form

o 20

D

S ()P (e + 1)V

and of course

<Y

(j+ 1
@ Consider the function
r2x
px) = x12(x + 1)N-2

for x € Ry 1923



[llustration of the Growth

Maximum attained close to the point x = r
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Growth of h

Barnes (1906)
3C > 0 such that Vr > 0

> r2j e2r

C
z%j!2(j+ 1)N—2 < FN=3/2
J:
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Growth of h

Barnes (1906)
3C > 0 such that Vr > 0
o 2j 2r

r C e
.Z%j!2(j+ 1)N—2 < FN=3/2
J:

Can do better
3C’ > 0 (independent of ¢) such that Vr > 0

o0 25t C e

< - .=

j% Gl + 1)N=2 = ¢, rN=3/2
=2()
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Growth of h

Summing up for every k > 1

[e.e]

M2 (h, r) ZM22 (Qn, 1)

e2r / Cm M22 (Fk,1)
< N3 <C > B

k=1
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Growth of h

Summing up for every k > 1

[e.e]

M3 (hyr) = M3 (Qnr)
n=1

e? / > Cm M22 (Fk,1)
< N3 (C > B

k=1
@ Choose integers in (¢x) sufficiently large to give

0 2
/ kaM2(Fkvl) 2
¢ ZT =¢
k=1
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Growth of h

Summing up for every k > 1

[e.e]

M3 (hyr) = M3 (Qnr)
n=1

e? / > Cm M22 (Fk,1)
< N3 (C > B

k=1
@ Choose integers in (¢x) sufficiently large to give

0 2
/ kaM2(Fkvl) 2
¢ ZT =¢
k=1

er

:>M2(h,r)§ Cm
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Thank you for your attention ©
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