Growth Rates of Frequently Hypercyclic Harmonic Functions

Clifford Gilmore
University of Helsinki (With E. Saksman and H.-O. Tylli)

Workshop on Infinite Dimensional Analysis Valencia 2017

19 October 2017

Space of Harmonic Functions

Setting

- $\mathcal{H}\left(\mathbb{R}^{N}\right)$ space of harmonic functions on $\mathbb{R}^{N}, N \geq 2$.
- Partial differentiation operator

$1 \leq j \leq N$.

Question
What is the minimal growth of a harmonic function that is frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$?

Space of Harmonic Functions

Setting

- $\mathcal{H}\left(\mathbb{R}^{N}\right)$ space of harmonic functions on $\mathbb{R}^{N}, N \geq 2$.
- Partial differentiation operator

$$
\frac{\partial}{\partial x_{j}}: \mathcal{H}\left(\mathbb{R}^{N}\right) \rightarrow \mathcal{H}\left(\mathbb{R}^{N}\right)
$$

$$
1 \leq j \leq N
$$

Question
What is the minimal growth of a harmonic function that is frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$?

Space of Harmonic Functions

Setting

- $\mathcal{H}\left(\mathbb{R}^{N}\right)$ space of harmonic functions on $\mathbb{R}^{N}, N \geq 2$.
- Partial differentiation operator

$$
\frac{\partial}{\partial x_{j}}: \mathcal{H}\left(\mathbb{R}^{N}\right) \rightarrow \mathcal{H}\left(\mathbb{R}^{N}\right)
$$

$$
1 \leq j \leq N .
$$

Question

What is the minimal growth of a harmonic function that is frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$?

Hypercyclicity

- X separable Fréchet space.
- $T: X \rightarrow X$, continuous linear operator.

Definition
If there exists $x \in X$ such that

$$
\overline{\left\{x, T x, T^{2} x, T^{3} x, \ldots\right\}}=x
$$

then T is hypercyclic.

- Purely infinite dimensional phenomenon.

Hypercyclicity

- X separable Fréchet space.
- $T: X \rightarrow X$, continuous linear operator.

Definition
If there exists $x \in X$ such that

$$
\overline{\left\{x, T x, T^{2} x, T^{3} x, \ldots\right\}}=X
$$

then T is hypercyclic.

- Purely infinite dimensional phenomenon.

Hypercyclicity

- X separable Fréchet space.
- $T: X \rightarrow X$, continuous linear operator.

Definition
If there exists $x \in X$ such that

$$
\overline{\left\{x, T x, T^{2} x, T^{3} x, \ldots\right\}}=X
$$

then T is hypercyclic.

- Purely infinite dimensional phenomenon.

Many Natural Examples

- Birkhoff (1929): translation operator

$$
f(z) \mapsto f(z+a)
$$

for $a \neq 0$ on the space of entire functions $H(\mathbb{C})$.

- MacLane (1952): differentiation operator on $H(\mathbb{C})$

> Ansari and Bernal (Bonet and Peris):
> Every infinite-dimensional, separable Banach (Fréchet) space admits a hypercyclic operator.

Many Natural Examples

- Birkhoff (1929): translation operator

$$
f(z) \mapsto f(z+a)
$$

for $a \neq 0$ on the space of entire functions $H(\mathbb{C})$.

- MacLane (1952): differentiation operator on $H(\mathbb{C})$

$$
D: f \mapsto f^{\prime}
$$

> Ansari and Bernal (Bonet and Peris):
> Every infinite-dimensional, separable Banach (Fréchet) space admits a hypercyclic operator.

Many Natural Examples

- Birkhoff (1929): translation operator

$$
f(z) \mapsto f(z+a)
$$

for $a \neq 0$ on the space of entire functions $H(\mathbb{C})$.

- MacLane (1952): differentiation operator on $H(\mathbb{C})$

$$
D: f \mapsto f^{\prime}
$$

Ansari and Bernal (Bonet and Peris):
Every infinite-dimensional, separable Banach (Fréchet) space admits a hypercyclic operator.

Frequent Hypercyclicity

- X a separable Fréchet space.
- $T: X \rightarrow X$, continuous linear operator.

Definition

If there exists $x \in X$ such that for any nonempty, open $U \subset X$

$$
\left\{n: T^{n} x \in U, 1 \leq n \leq N\right\}
$$

Frequent Hypercyclicity

- X a separable Fréchet space.
- $T: X \rightarrow X$, continuous linear operator.

Definition

If there exists $x \in X$ such that for any nonempty, open $U \subset X$ we have

$$
\liminf \#\left\{n: T^{n} x \in U, 1 \leq n \leq N\right\}
$$

then T is frequently hypercyclic.

- $x \in X$ a frequently hypercyclic vector for T.
- Bayart and Grivaux (2004).
- Roots in ergodic theory.

Frequent Hypercyclicity

- X a separable Fréchet space.
- $T: X \rightarrow X$, continuous linear operator.

Definition

If there exists $x \in X$ such that for any nonempty, open $U \subset X$ we have

$$
\frac{\#\left\{n: T^{n} x \in U, 1 \leq n \leq N\right\}}{N}
$$

then T is frequently hypercyclic.

- $x \in X$ a frequently hypercyclic vector for T.
- Bayart and Grivaux (2004)
- Roots in ergodic theory.

Frequent Hypercyclicity

- X a separable Fréchet space.
- $T: X \rightarrow X$, continuous linear operator.

Definition

If there exists $x \in X$ such that for any nonempty, open $U \subset X$ we have

$$
\liminf _{N \rightarrow \infty} \frac{\#\left\{n: T^{n} x \in U, 1 \leq n \leq N\right\}}{N}>0
$$

then T is frequently hypercyclic.

- $x \in X$ a frequently hypercyclic vector for T.
- Bayart and Grivaux (2004).
- Roots in ergodic theory.

Frequent Hypercyclicity

- X a separable Fréchet space.
- $T: X \rightarrow X$, continuous linear operator.

Definition

If there exists $x \in X$ such that for any nonempty, open $U \subset X$ we have

$$
\liminf _{N \rightarrow \infty} \frac{\#\left\{n: T^{n} x \in U, 1 \leq n \leq N\right\}}{N}>0
$$

then T is frequently hypercyclic.

- $x \in X$ a frequently hypercyclic vector for T.
- Bayart and Grivaux (2004).
- Roots in ergodic theory.

Frequent Hypercyclicity

- X a separable Fréchet space.
- $T: X \rightarrow X$, continuous linear operator.

Definition

If there exists $x \in X$ such that for any nonempty, open $U \subset X$ we have

$$
\liminf _{N \rightarrow \infty} \frac{\#\left\{n: T^{n} x \in U, 1 \leq n \leq N\right\}}{N}>0
$$

then T is frequently hypercyclic.

- $x \in X$ a frequently hypercyclic vector for T.
- Bayart and Grivaux (2004).
- Roots in ergodic theory.

Examples of Frequently Hypercyclic Operators

- Translation operator

$$
f(z) \mapsto f(z+a)
$$

on $H(\mathbb{C}), a \neq 0$.

- Differentiation operator on $H(\mathbb{C})$

$$
D: f \mapsto f^{\prime}
$$

- There exist hypercyclic operators that are not frequently hypercyclic.
- There exist separable Fréchet spaces with no frequently hypercyclic operators.

Examples of Frequently Hypercyclic Operators

- Translation operator

$$
f(z) \mapsto f(z+a)
$$

on $H(\mathbb{C}), a \neq 0$.

- Differentiation operator on $H(\mathbb{C})$

$$
D: f \mapsto f^{\prime} .
$$

- There exist hypercyclic operators that are not frequently hypercyclic.
- There exist separable Fréchet spaces with no frequently hypercyclic operators.

Growth of Harmonic Functions

L^{2}-norm on spheres

- $S(r)$ the sphere of radius r centred at the origin of \mathbb{R}^{N}.
- For $h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$ and $r>0$

- σ_{r} normalised $(N-1)$-dimensional surface measure on $S(r)$.
- Growth on $S(r)$ as $r \rightarrow \infty$.

Growth of Harmonic Functions

L^{2}-norm on spheres

- $S(r)$ the sphere of radius r centred at the origin of \mathbb{R}^{N}.
- For $h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$ and $r>0$

$$
M_{2}(h, r)=\left(\int_{S(r)}|h|^{2} \mathrm{~d} \sigma_{r}\right)^{1 / 2}
$$

- σ_{r} normalised ($N-1$)-dimensional surface measure on $S(r)$.
- Growth on $S(r)$ as $r \rightarrow \infty$.

Growth of Harmonic Functions

L^{2}-norm on spheres

- $S(r)$ the sphere of radius r centred at the origin of \mathbb{R}^{N}.
- For $h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$ and $r>0$

$$
M_{2}(h, r)=\left(\int_{S(r)}|h|^{2} \mathrm{~d} \sigma_{r}\right)^{1 / 2}
$$

- σ_{r} normalised $(N-1)$-dimensional surface measure on $S(r)$.
- Growth on $S(r)$ as $r \rightarrow \infty$.

Entire Function Case

$D: f \mapsto f^{\prime}$

- Growth in L^{p}-norm, $1 \leq p \leq \infty$.

Hypercyclic case

- Initial estimates: MacLane (1952).
- Sharp growth: Grosse-Erdmann (1990), Shkarin (1993).

Frequently hypercyclic case

- Initial estimates: Blasco, Bonilla, Grosse-Erdmann (2010), Bonet and Bonilla (2013).
- Minimal growth: Drasin and Saksman (2012).

Entire Function Case

$D: f \mapsto f^{\prime}$

- Growth in L^{p}-norm, $1 \leq p \leq \infty$.

Hypercyclic case

- Initial estimates: MacLane (1952).
- Sharp growth: Grosse-Erdmann (1990), Shkarin (1993).

Frequently hypercyclic case

- Initial estimates: Blasco, Bonilla, Grosse-Erdmann (2010), Bonet and Bonilla (2013).
- Minimal growth: Drasin and Saksman (2012).

Growth of Hypercyclic Harmonic Functions

Aldred and Armitage (1998)
(1) For any $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\varphi(r) \rightarrow \infty$ as $r \rightarrow \infty$, $\exists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, hypercyclic for $\frac{\partial}{\partial x_{j}}$ such that for $r>0$ sufficiently large.
(3) $\ddagger h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, hypercyclic for $\frac{\partial}{\partial x_{j}}$, such that

$$
M_{2}(h, r) \leq C \frac{e^{r}}{r^{(N-1) / 2}}
$$

for $r>0$ and where $C>0$ is constant.

Growth of Hypercyclic Harmonic Functions

Aldred and Armitage (1998)
(1) For any $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\varphi(r) \rightarrow \infty$ as $r \rightarrow \infty$, $\exists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, hypercyclic for $\frac{\partial}{\partial x_{j}}$ such that
for $r>0$ sufficiently large.
(\ddagger. $h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, hypercyclic for $\frac{\partial}{\partial x_{j}}$, such that $M_{2}(h, r) \leq C \frac{e^{r}}{r^{(N-1) / 2}}$
for $r>0$ and where $C>0$ is constant.

Growth of Hypercyclic Harmonic Functions

Aldred and Armitage (1998)
(1) For any $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\varphi(r) \rightarrow \infty$ as $r \rightarrow \infty$, $\exists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, hypercyclic for $\frac{\partial}{\partial x_{j}}$ such that

$$
M_{2}(h, r) \leq \varphi(r) \frac{e^{r}}{r^{(N-1) / 2}}
$$

for $r>0$ sufficiently large.
(2) $\nexists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, hypercyclic for $\frac{\partial}{\partial x_{j}}$, such that $M_{2}(h, r) \leq C \frac{e^{r}}{r(N-1) / 2}$

Growth of Hypercyclic Harmonic Functions

Aldred and Armitage (1998)

(1) For any $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\varphi(r) \rightarrow \infty$ as $r \rightarrow \infty$, $\exists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, hypercyclic for $\frac{\partial}{\partial x_{j}}$ such that

$$
M_{2}(h, r) \leq \varphi(r) \frac{e^{r}}{r^{(N-1) / 2}}
$$

for $r>0$ sufficiently large.
(2) $\ddagger h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, hypercyclic for $\frac{\partial}{\partial x_{j}}$, such that

$$
M_{2}(h, r) \leq C \frac{e^{r}}{r^{(N-1) / 2}}
$$

for $r>0$ and where $C>0$ is constant.

Frequently Hypercyclic Case

Blasco, Bonilla and Grosse-Erdmann (2010)
(1) For any $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\varphi(r) \rightarrow \infty$ as $r \rightarrow \infty$, $\exists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$ with

$$
M_{2}(h, r) \leq \varphi(r) \frac{e^{r}}{r^{N / 2-3 / 4}}
$$

for $r>0$ sufficiently large.
(2) Let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\psi(r) \rightarrow 0$ as $r \rightarrow \infty$.
$\nexists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$ with

$$
M_{2}(h, r) \leq \psi(r) \frac{e^{r}}{r^{N / 2-3 / 4}}
$$

Frequently Hypercyclic Case

Blasco, Bonilla and Grosse-Erdmann (2010)
(1) For any $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\varphi(r) \rightarrow \infty$ as $r \rightarrow \infty$, $\exists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$ with

$$
M_{2}(h, r) \leq \varphi(r) \frac{e^{r}}{r^{N / 2-3 / 4}}
$$

for $r>0$ sufficiently large.

$\nexists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$ with

$$
M_{2}(h, r) \leq \psi(r) \frac{e^{r}}{r^{N / 2-3 / 4}}
$$

Frequently Hypercyclic Case

Blasco, Bonilla and Grosse-Erdmann (2010)

(1) For any $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\varphi(r) \rightarrow \infty$ as $r \rightarrow \infty$, $\exists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$ with

$$
M_{2}(h, r) \leq \varphi(r) \frac{e^{r}}{r^{N / 2-3 / 4}}
$$

for $r>0$ sufficiently large.

Frequently Hypercyclic Case

Blasco, Bonilla and Grosse-Erdmann (2010)

(1) For any $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\varphi(r) \rightarrow \infty$ as $r \rightarrow \infty$, $\exists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$ with

$$
M_{2}(h, r) \leq \varphi(r) \frac{e^{r}}{r^{N / 2-3 / 4}}
$$

for $r>0$ sufficiently large.
(2) Let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\psi(r) \rightarrow 0$ as $r \rightarrow \infty$.
$\nexists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial x_{j}}{\partial \text { with }}$

Frequently Hypercyclic Case

Blasco, Bonilla and Grosse-Erdmann (2010)

(1) For any $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\varphi(r) \rightarrow \infty$ as $r \rightarrow \infty$, $\exists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$ with

$$
M_{2}(h, r) \leq \varphi(r) \frac{e^{r}}{r^{N / 2-3 / 4}}
$$

for $r>0$ sufficiently large.
(2) Let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\psi(r) \rightarrow 0$ as $r \rightarrow \infty$. $\nexists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$ with

$$
M_{2}(h, r) \leq \psi(r) \frac{e^{r}}{r^{N / 2-3 / 4}}
$$

Frequently Hypercyclic Case

Blasco, Bonilla and Grosse-Erdmann (2010)

(1) For any $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\varphi(r) \rightarrow \infty$ as $r \rightarrow \infty$, $\exists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$ with

$$
M_{2}(h, r) \leq \varphi(r) \frac{e^{r}}{r^{N / 2-3 / 4}}
$$

for $r>0$ sufficiently large.
(2) Let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\psi(r) \rightarrow 0$ as $r \rightarrow \infty$. $\nexists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$ with

$$
M_{2}(h, r) \leq \psi(r) \frac{e^{r}}{r^{N / 2-3 / 4}}
$$

for $r>0$ sufficiently large.

Question

Blasco, Bonilla and Grosse-Erdmann (2010):

- Can φ be replaced with a constant in the growth rate?

Theorem (G., Saksman, Tylli)
Let $N \geq 2$ and $1 \leq i \leq N$. For any $C>0$, there exists $h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$,
frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$ with

$$
M_{2}(h, r) \leq C \frac{e^{r}}{r^{N / 2-3 / 4}}
$$

for all $r>0$.
Strategy
Explicitly construct a harmonic function h satisfying the theorem.

Question

Blasco, Bonilla and Grosse-Erdmann (2010):

- Can φ be replaced with a constant in the growth rate?

Theorem (G., Saksman, Tylli)
Let $N \geq 2$ and $1 \leq j \leq N$. For any $C>0$, there exists $h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$ with

$$
M_{2}(h, r) \leq C \frac{e^{r}}{r^{N / 2-3 / 4}}
$$

for all $r>0$.
Strategy
Explicitly construct a harmonic function h satisfying the theorem.

Question

Blasco, Bonilla and Grosse-Erdmann (2010):

- Can φ be replaced with a constant in the growth rate?

Theorem (G., Saksman, Tylli)
Let $N \geq 2$ and $1 \leq j \leq N$. For any $C>0$, there exists $h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$ with

$$
M_{2}(h, r) \leq C \frac{e^{r}}{r^{N / 2-3 / 4}}
$$

for all $r>0$.

Strategy

Explicitly construct a harmonic function h satisfying the theorem.

Initial Observations

Hypercyclic (Aldred and Armitage)
$\nexists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, hypercyclic for $\frac{\partial}{\partial x_{j}}$, with

$$
M_{2}(h, r) \leq C \frac{e^{r}}{r^{(N-1) / 2}}
$$

for $C>0$.
Frequently Hypercyclic
For any $C>0, \exists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$, with

$$
M_{2}(h, r) \leq C \frac{e^{r}}{r^{N / 2-3 / 4}} .
$$

Dimension
$N=2$ contained in Drasin-Saksman. Interested in $N \geq 3$.

Initial Observations

Hypercyclic (Aldred and Armitage)
$\nexists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, hypercyclic for $\frac{\partial}{\partial x_{j}}$, with

$$
M_{2}(h, r) \leq C \frac{e^{r}}{r^{(N-1) / 2}}
$$

for $C>0$.
Frequently Hypercyclic
For any $C>0, \exists h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$, frequently hypercyclic for $\frac{\partial}{\partial x_{j}}$, with

$$
M_{2}(h, r) \leq C \frac{e^{r}}{r^{N / 2-3 / 4}} .
$$

Dimension
$N=2$ contained in Drasin-Saksman. Interested in $N \geq 3$.

Antiderivative

Aldred and Armitage (1998)

- For a harmonic polynomial H and $n \in \mathbb{N}$, define the $n^{\text {th }}$ primitive of H

$$
H \mapsto P_{n}(H)
$$

- $P_{n}(H)$ a harmonic polynomial with

$$
\frac{\partial^{n}}{\partial x_{j}^{n}} P_{n}(H)=H
$$

- Suitable upper bounds for calculating growth.
- Brelot and Choquet 1950s.
- Kuran (1971): Particular orthogonal representation of harmonic polynomials.

Antiderivative

Aldred and Armitage (1998)

- For a harmonic polynomial H and $n \in \mathbb{N}$, define the $n^{\text {th }}$ primitive of H

$$
H \mapsto P_{n}(H)
$$

- $P_{n}(H)$ a harmonic polynomial with

$$
\frac{\partial^{n}}{\partial x_{j}^{n}} P_{n}(H)=H
$$

- Suitable upper bounds for calculating growth.
- Brelot and Choquet 1950s.
- Kuran (1971): Particular orthogonal representation of harmonic polynomials.

Antiderivative

Aldred and Armitage (1998)

- For a harmonic polynomial H and $n \in \mathbb{N}$, define the $n^{\text {th }}$ primitive of H

$$
H \mapsto P_{n}(H)
$$

- $P_{n}(H)$ a harmonic polynomial with

$$
\frac{\partial^{n}}{\partial x_{j}^{n}} P_{n}(H)=H
$$

- Suitable upper bounds for calculating growth.
- Brelot and Choquet 1950s.
- Kuran (1971): Particular orthogonal representation of harmonic polynomials.

Construction of h

- $\mathcal{H}\left(\mathbb{R}^{N}\right)$ separable under topology of local uniform convergence.
- Fix a countably dense sequence of harmonic polynomials

$$
\left(F_{k}\right) \subset \mathcal{H}\left(\mathbb{R}^{N}\right)
$$

- Aim: construct $h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$ to frequently approximate each F_{k}.
- Associate with each F_{k} an $l_{k} \in \mathbb{N}$.
- Sequence (ℓ_{k}) strictly increasing.
- Final choice for $\left(\ell_{k}\right)$ later.

Construction of h

- $\mathcal{H}\left(\mathbb{R}^{N}\right)$ separable under topology of local uniform convergence.
- Fix a countably dense sequence of harmonic polynomials

$$
\left(F_{k}\right) \subset \mathcal{H}\left(\mathbb{R}^{N}\right)
$$

- Aim: construct $h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$ to frequently approximate each F_{k}.
- Associate with each F_{k} an $\ell_{k} \in \mathbb{N}$.
- Sequence $\left(\ell_{k}\right)$ strictly increasing.
- Final choice for $\left(\ell_{k}\right)$ later.

Construction of h

- $\mathcal{H}\left(\mathbb{R}^{N}\right)$ separable under topology of local uniform convergence.
- Fix a countably dense sequence of harmonic polynomials

$$
\left(F_{k}\right) \subset \mathcal{H}\left(\mathbb{R}^{N}\right)
$$

- Aim: construct $h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$ to frequently approximate each F_{k}.
- Associate with each F_{k} an $\ell_{k} \in \mathbb{N}$.
- Sequence (ℓ_{k}) strictly increasing.
- Final choice for $\left(\ell_{k}\right)$ later.

Construction of h

- $\mathcal{H}\left(\mathbb{R}^{N}\right)$ separable under topology of local uniform convergence.
- Fix a countably dense sequence of harmonic polynomials

$$
\left(F_{k}\right) \subset \mathcal{H}\left(\mathbb{R}^{N}\right)
$$

- Aim: construct $h \in \mathcal{H}\left(\mathbb{R}^{N}\right)$ to frequently approximate each F_{k}.
- Associate with each F_{k} an $\ell_{k} \in \mathbb{N}$.
- Sequence $\left(\ell_{k}\right)$ strictly increasing.
- Final choice for $\left(\ell_{k}\right)$ later.

Construction of h

Construct polynomials Q_{n}

- For n odd and $n=0: Q_{n} \equiv 0$.
- If n even: associate a fixed F_{k}.
- If $n<10 \ell_{k}: Q_{n} \equiv 0$.
- If $n>10 \ell_{k}$:

$$
Q_{n}=P_{n^{2}+\ell_{k}}\left(F_{k}\right)+P_{n^{2}+2 \ell_{k}}\left(F_{k}\right)+\cdots+P_{n^{2}+n}\left(F_{k}\right)
$$

- Degrees of the primitives disjointly supported:

Construction of h

Construct polynomials Q_{n}

- For n odd and $n=0: Q_{n} \equiv 0$.
- If n even: associate a fixed F_{k}.
- If $n<10 \ell_{k}: Q_{n} \equiv 0$.
- If $n \geq 10 \ell_{k}$:

$$
Q_{n}=P_{n^{2}+l_{k}}\left(F_{k}\right)+P_{n^{2}+2 e_{k}}\left(F_{k}\right)+\cdots+P_{n^{2}+n}\left(F_{k}\right)
$$

- Degrees of the primitives disjointly supported:

Construction of h

Construct polynomials Q_{n}

- For n odd and $n=0: Q_{n} \equiv 0$.
- If n even: associate a fixed F_{k}.
- If $n<10 \ell_{k}: Q_{n} \equiv 0$.
- If $n \geq 10 \ell_{k}$:

$Q_{n}=P_{n^{2}+\ell_{k}}\left(F_{k}\right)+P_{n^{2}+2 \ell_{k}}\left(F_{k}\right)+\cdots+P_{n^{2}+n}\left(F_{k}\right)$

- Degrees of the primitives disjointly supported:

Construction of h

Construct polynomials Q_{n}

- For n odd and $n=0: Q_{n} \equiv 0$.
- If n even: associate a fixed F_{k}.
- If $n<10 \ell_{k}: Q_{n} \equiv 0$.
- If $n \geq 10 \ell_{k}$:

$$
Q_{n}=P_{n^{2}+\ell_{k}}\left(F_{k}\right)+P_{n^{2}+2 \ell_{k}}\left(F_{k}\right)+\cdots+P_{n^{2}+n}\left(F_{k}\right)
$$

- Degrees of the primitives disjointly supported:

Construction of h

Construct polynomials Q_{n}

- For n odd and $n=0: Q_{n} \equiv 0$.
- If n even: associate a fixed F_{k}.
- If $n<10 \ell_{k}: Q_{n} \equiv 0$.
- If $n \geq 10 \ell_{k}$:

$$
Q_{n}=P_{n^{2}+\ell_{k}}\left(F_{k}\right)+P_{n^{2}+2 \ell_{k}}\left(F_{k}\right)+\cdots+P_{n^{2}+n}\left(F_{k}\right)
$$

- Degrees of the primitives disjointly supported:

Construction of h

The blocks Q_{n}

- The Q_{n} are disjointly supported.
- Scope of the degrees of the polynomials:
n^{2}

Construction of h

The blocks Q_{n}

- The Q_{n} are disjointly supported.
- Scope of the degrees of the polynomials:

The function h

- For fixed F_{k}, repeat corresponding Q_{n} 's often enough to give frequent hypercyclicity.
- Do this for every $k \geq 1$.
- Define h as

- Frequently hypercyclic by construction.
- Growth: for $r>0$

by orthogonality.

The function h

- For fixed F_{k}, repeat corresponding Q_{n} 's often enough to give frequent hypercyclicity.
- Do this for every $k \geq 1$.
- Define h as

$$
h=\sum_{n=1}^{\infty} Q_{n}
$$

- Frequently hypercyclic by construction.
- Growth: for $r>0$

by orthogonality.

The function h

- For fixed F_{k}, repeat corresponding Q_{n} 's often enough to give frequent hypercyclicity.
- Do this for every $k \geq 1$.
- Define h as

$$
h=\sum_{n=1}^{\infty} Q_{n}
$$

- Frequently hypercyclic by construction.
- Growth: for $r>0$

by orthogonality.

The function h

- For fixed F_{k}, repeat corresponding Q_{n} 's often enough to give frequent hypercyclicity.
- Do this for every $k \geq 1$.
- Define h as

$$
h=\sum_{n=1}^{\infty} Q_{n}
$$

- Frequently hypercyclic by construction.
- Growth: for $r>0$

$$
M_{2}^{2}(h, r)=\sum_{n=1}^{\infty} M_{2}^{2}\left(Q_{n}, r\right)
$$

by orthogonality.

Estimates for the Primitives

Aldred and Armitage (1998)

- H a homogeneous, harmonic polynomial, $\operatorname{deg} H=m$.
- For $P_{n}(H)$

$$
\left.M_{2}^{2}\left(P_{n}(H), 1\right)\right) \leq c_{n, m, N} \cdot M_{2}^{2}(H, 1)
$$

- For fixed m

$$
\left(c_{n, m, N}\right)^{1 / 2} \leq \frac{c_{m}}{(n+m)!(n+m+1)^{N / 2-1}}
$$

where c_{m} depends on m.

Estimates for the Primitives

Aldred and Armitage (1998)

- H a homogeneous, harmonic polynomial, $\operatorname{deg} H=m$.
- For $P_{n}(H)$

$$
\left.M_{2}^{2}\left(P_{n}(H), 1\right)\right) \leq c_{n, m, N} \cdot M_{2}^{2}(H, 1)
$$

- For fixed m

$$
\left(c_{n, m, N}\right)^{1 / 2} \leq \frac{c_{m}}{(n+m)!(n+m+1)^{N / 2-1}}
$$

where c_{m} depends on m.

Illustration of the Growth

- For each $k \geq 1$, require suitable upper bounds for sums of the form

$$
\sum_{j=2 \ell_{k}}^{\infty} \frac{r^{2 j \ell_{k}}}{\left(j \ell_{k}\right)!^{2}\left(j \ell_{k}+1\right)^{N-2}}
$$

and of course

- Consider the function

Illustration of the Growth

- For each $k \geq 1$, require suitable upper bounds for sums of the form

$$
\sum_{j=2 \ell_{k}}^{\infty} \frac{r^{2 j \ell_{k}}}{\left(j \ell_{k}\right)!^{2}\left(j \ell_{k}+1\right)^{N-2}}
$$

and of course

$$
\leq \sum_{j=0}^{\infty} \frac{r^{2 j}}{j!^{2}(j+1)^{N-2}}
$$

- Consider the function

Illustration of the Growth

- For each $k \geq 1$, require suitable upper bounds for sums of the form

$$
\sum_{j=2 \ell_{k}}^{\infty} \frac{r^{2 j \ell_{k}}}{\left(j \ell_{k}\right)!^{2}\left(j \ell_{k}+1\right)^{N-2}}
$$

and of course

$$
\leq \sum_{j=0}^{\infty} \frac{r^{2 j}}{j!^{2}(j+1)^{N-2}}
$$

- Consider the function

$$
p(x)=\frac{r^{2 x}}{x!^{2}(x+1)^{N-2}}
$$

for $x \in \mathbb{R}_{+}$

Illustration of the Growth

Maximum attained close to the point $x=r$

$$
p(x)=\frac{r^{2 x}}{x!^{2}(x+1)^{N-2}}
$$

Growth of h

Barnes (1906)
$\exists C>0$ such that $\forall r>0$

$$
\sum_{j=0}^{\infty} \frac{r^{2 j}}{j!^{2}(j+1)^{N-2}}<C \frac{e^{2 r}}{r^{N-3 / 2}}
$$

Can do better

$\exists C^{\prime}>0$ (independent of l_{k}) such that $\forall r>0$

Growth of h

Barnes (1906)
$\exists C>0$ such that $\forall r>0$

$$
\sum_{j=0}^{\infty} \frac{r^{2 j}}{j!^{2}(j+1)^{N-2}}<C \frac{e^{2 r}}{r^{N-3 / 2}}
$$

Can do better
$\exists C^{\prime}>0$ (independent of ℓ_{k}) such that $\forall r>0$

$$
\sum_{j=2 \ell_{k}}^{\infty} \frac{r^{2 j \ell_{k}}}{\left(j \ell_{k}\right)!^{2}\left(j \ell_{k}+1\right)^{N-2}} \leq \frac{C^{\prime}}{\ell_{k}} \cdot \frac{e^{2 r}}{r^{N-3 / 2}}
$$

Growth of h

Summing up for every $k \geq 1$

$$
\begin{aligned}
M_{2}^{2}(h, r) & =\sum_{n=1}^{\infty} M_{2}^{2}\left(Q_{n}, r\right) \\
& \leq \frac{e^{2 r}}{r^{N-3 / 2}}\left(C^{\prime} \sum_{k=1}^{\infty} \frac{c_{m_{k}} M_{2}^{2}\left(F_{k}, 1\right)}{\ell_{k}}\right)
\end{aligned}
$$

- Choose integers in $\left(\ell_{k}\right)$ sufficiently large to give

Growth of h

Summing up for every $k \geq 1$

$$
\begin{aligned}
M_{2}^{2}(h, r) & =\sum_{n=1}^{\infty} M_{2}^{2}\left(Q_{n}, r\right) \\
& \leq \frac{e^{2 r}}{r^{N-3 / 2}}\left(C^{\prime} \sum_{k=1}^{\infty} \frac{c_{m_{k}} M_{2}^{2}\left(F_{k}, 1\right)}{\ell_{k}}\right)
\end{aligned}
$$

- Choose integers in $\left(\ell_{k}\right)$ sufficiently large to give

$$
C^{\prime} \sum_{k=1}^{\infty} \frac{c_{m_{k}} M_{2}^{2}\left(F_{k}, 1\right)}{\ell_{k}} \leq C^{2}
$$

Growth of h

Summing up for every $k \geq 1$

$$
\begin{aligned}
M_{2}^{2}(h, r) & =\sum_{n=1}^{\infty} M_{2}^{2}\left(Q_{n}, r\right) \\
& \leq \frac{e^{2 r}}{r^{N-3 / 2}}\left(C^{\prime} \sum_{k=1}^{\infty} \frac{c_{m_{k}} M_{2}^{2}\left(F_{k}, 1\right)}{\ell_{k}}\right)
\end{aligned}
$$

- Choose integers in $\left(\ell_{k}\right)$ sufficiently large to give

$$
\begin{aligned}
& C^{\prime} \sum_{k=1}^{\infty} \frac{c_{m_{k}} M_{2}^{2}\left(F_{k}, 1\right)}{\ell_{k}} \leq C^{2} \\
& \Longrightarrow M_{2}(h, r) \leq C \frac{e^{r}}{r^{N / 2-3 / 4}}
\end{aligned}
$$

Thank you for your attention $)^{-}$

围 M. P. Aldred and D. H. Armitage. Harmonic analogues of G. R. MacLane's universal functions. J. London Math. Soc. (2), 57(1):148-156, 1998.
O. Blasco, A. Bonilla and K.-G. Grosse-Erdmann.

Rate of growth of frequently hypercyclic functions.
Proc. Edinb. Math. Soc. (2), 53(1):39-59, 2010.
D. Drasin and E. Saksman.

Optimal growth of entire functions frequently hypercyclic for the differentiation operator.
J. Funct. Anal., 263(11):3674-3688, 2012.
R. Gilmore, E. Saksman and H.-O. Tylli.

Optimal growth of harmonic functions frequently hypercyclic for the partial differentiation operator.
Proc. Roy. Soc. Edinburgh Sect. A, accepted, last Monday © . ArXiv:1708.08764.

