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Space of Harmonic Functions

Setting

H(RN) space of harmonic functions on RN , N ≥ 2.

Partial differentiation operator

∂

∂xj
: H(RN)→ H(RN)

1 ≤ j ≤ N.

Question
What is the minimal growth of a harmonic function that is

frequently hypercyclic for
∂

∂xj
?
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Hypercyclicity

X separable Fréchet space.
T : X → X , continuous linear operator.

Definition
If there exists x ∈ X such that

{x ,Tx ,T 2x ,T 3x , . . . } = X

then T is hypercyclic.

Purely infinite dimensional phenomenon.
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Many Natural Examples

Birkhoff (1929): translation operator

f (z) 7→ f (z + a)

for a 6= 0 on the space of entire functions H(C).

MacLane (1952): differentiation operator on H(C)

D : f 7→ f ′

Ansari and Bernal (Bonet and Peris):
Every infinite-dimensional, separable Banach (Fréchet) space
admits a hypercyclic operator.
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Frequent Hypercyclicity

X a separable Fréchet space.
T : X → X , continuous linear operator.

Definition
If there exists x ∈ X such that for any nonempty, open U ⊂ X we
have

lim inf
N→∞

# {n : T nx ∈ U, 1 ≤ n ≤ N}
N

> 0

then T is frequently hypercyclic.

x ∈ X a frequently hypercyclic vector for T .

Bayart and Grivaux (2004).

Roots in ergodic theory.
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Examples of Frequently Hypercyclic Operators

Translation operator

f (z) 7→ f (z + a)

on H(C), a 6= 0.

Differentiation operator on H(C)

D : f 7→ f ′.

There exist hypercyclic operators that are not frequently
hypercyclic.
There exist separable Fréchet spaces with no frequently
hypercyclic operators.
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Growth of Harmonic Functions
L2-norm on spheres

S(r) the sphere of radius r centred at the origin of RN .

For h ∈ H(RN) and r > 0

M2(h, r) =

(∫
S(r)
|h|2 dσr

)1/2

σr normalised (N − 1)-dimensional surface measure on S(r).
Growth on S(r) as r →∞.
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Entire Function Case
D : f 7→ f ′

Growth in Lp-norm, 1 ≤ p ≤ ∞.

Hypercyclic case

Initial estimates: MacLane (1952).

Sharp growth: Grosse-Erdmann (1990), Shkarin (1993).

Frequently hypercyclic case

Initial estimates: Blasco, Bonilla, Grosse-Erdmann (2010),
Bonet and Bonilla (2013).

Minimal growth: Drasin and Saksman (2012).
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Growth of Hypercyclic Harmonic Functions
Aldred and Armitage (1998)

1 For any ϕ : R+ → R+ with ϕ(r)→∞ as r →∞,

∃h ∈ H(RN), hypercyclic for
∂

∂xj
such that

M2(h, r) ≤ ϕ(r)
er

r (N−1)/2

for r > 0 sufficiently large.

2 @h ∈ H(RN), hypercyclic for
∂

∂xj
, such that

M2(h, r) ≤ C
er

r (N−1)/2

for r > 0 and where C > 0 is constant.
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Frequently Hypercyclic Case
Blasco, Bonilla and Grosse-Erdmann (2010)

1 For any ϕ : R+ → R+ with ϕ(r)→∞ as r →∞,

∃h ∈ H(RN), frequently hypercyclic for
∂

∂xj
with

M2(h, r) ≤ ϕ(r)
er

rN/2−3/4

for r > 0 sufficiently large.
2 Let ψ : R+ → R+ with ψ(r)→ 0 as r →∞.

@h ∈ H(RN), frequently hypercyclic for
∂

∂xj
with

M2(h, r) ≤ ψ(r)
er

rN/2−3/4

for r > 0 sufficiently large.
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Question

Blasco, Bonilla and Grosse-Erdmann (2010):
Can ϕ be replaced with a constant in the growth rate?

Theorem (G., Saksman, Tylli)
Let N ≥ 2 and 1 ≤ j ≤ N. For any C > 0, there exists h ∈ H(RN),

frequently hypercyclic for
∂

∂xj
with

M2(h, r) ≤ C
er

rN/2−3/4

for all r > 0.

Strategy
Explicitly construct a harmonic function h satisfying the theorem.
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Initial Observations
Hypercyclic (Aldred and Armitage)

@h ∈ H(RN), hypercyclic for
∂

∂xj
, with

M2(h, r) ≤ C
er

r (N−1)/2

for C > 0.

Frequently Hypercyclic
For any C > 0, ∃h ∈ H(RN), frequently hypercyclic for

∂

∂xj
, with

M2(h, r) ≤ C
er

rN/2−3/4 .

Dimension
N = 2 contained in Drasin-Saksman. Interested in N ≥ 3.

12 / 23



Initial Observations
Hypercyclic (Aldred and Armitage)

@h ∈ H(RN), hypercyclic for
∂

∂xj
, with

M2(h, r) ≤ C
er

r (N−1)/2

for C > 0.

Frequently Hypercyclic
For any C > 0, ∃h ∈ H(RN), frequently hypercyclic for

∂

∂xj
, with

M2(h, r) ≤ C
er

rN/2−3/4 .

Dimension
N = 2 contained in Drasin-Saksman. Interested in N ≥ 3.

12 / 23



Antiderivative
Aldred and Armitage (1998)

For a harmonic polynomial H and n ∈ N, define the nth

primitive of H
H 7→ Pn(H)

Pn(H) a harmonic polynomial with

∂n

∂xnj
Pn(H) = H

Suitable upper bounds for calculating growth.

Brelot and Choquet 1950s.

Kuran (1971): Particular orthogonal representation of
harmonic polynomials.
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Construction of h

H(RN) separable under topology of local uniform convergence.

Fix a countably dense sequence of harmonic polynomials

(Fk) ⊂ H(RN)

Aim: construct h ∈ H(RN) to frequently approximate each Fk .

Associate with each Fk an `k ∈ N.

Sequence (`k) strictly increasing.

Final choice for (`k) later.

14 / 23



Construction of h

H(RN) separable under topology of local uniform convergence.

Fix a countably dense sequence of harmonic polynomials

(Fk) ⊂ H(RN)

Aim: construct h ∈ H(RN) to frequently approximate each Fk .

Associate with each Fk an `k ∈ N.

Sequence (`k) strictly increasing.

Final choice for (`k) later.

14 / 23



Construction of h

H(RN) separable under topology of local uniform convergence.

Fix a countably dense sequence of harmonic polynomials

(Fk) ⊂ H(RN)

Aim: construct h ∈ H(RN) to frequently approximate each Fk .

Associate with each Fk an `k ∈ N.

Sequence (`k) strictly increasing.

Final choice for (`k) later.

14 / 23



Construction of h

H(RN) separable under topology of local uniform convergence.

Fix a countably dense sequence of harmonic polynomials

(Fk) ⊂ H(RN)

Aim: construct h ∈ H(RN) to frequently approximate each Fk .

Associate with each Fk an `k ∈ N.

Sequence (`k) strictly increasing.

Final choice for (`k) later.

14 / 23



Construction of h
Construct polynomials Qn

For n odd and n = 0: Qn ≡ 0.
If n even: associate a fixed Fk .
If n < 10`k : Qn ≡ 0.
If n ≥ 10`k :

Qn = Pn2+`k (Fk) + Pn2+2`k (Fk) + · · ·+ Pn2+n(Fk)

Degrees of the primitives disjointly supported:

n2 n2 + `k n2 + 2`k n2 + n (n + 1)2

Pn2+`k
(Fk) Pn2+2`k (Fk) Pn2+n(Fk)
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Construction of h
The blocks Qn

The Qn are disjointly supported.

Scope of the degrees of the polynomials:

(n − 1)2 n2 n2 + n (n + 1)2 (n + 2)2

Qn−1 ≡ 0 Qn

≡ 0

Qn+1 ≡ 0
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The function h

For fixed Fk , repeat corresponding Qn’s often enough to give
frequent hypercyclicity.

Do this for every k ≥ 1.

Define h as

h =
∞∑
n=1

Qn

Frequently hypercyclic by construction.

Growth: for r > 0

M2
2 (h, r) =

∞∑
n=1

M2
2 (Qn, r)

by orthogonality.
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Estimates for the Primitives
Aldred and Armitage (1998)

H a homogeneous, harmonic polynomial, degH = m.

For Pn(H)

M2
2 (Pn(H), 1)) ≤ cn,m,N ·M2

2 (H, 1)

For fixed m

(cn,m,N)
1/2 ≤ cm

(n +m)!(n +m + 1)N/2−1

where cm depends on m.
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Illustration of the Growth

For each k ≥ 1, require suitable upper bounds for sums of the
form

∞∑
j=2`k

r2j`k

( j`k)!2 ( j`k + 1)N−2

and of course

≤
∞∑
j=0

r2j

j!2 ( j + 1)N−2

Consider the function

p(x) =
r2x

x!2(x + 1)N−2

for x ∈ R+ 19 / 23
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Illustration of the Growth
Maximum attained close to the point x = r

r

1

x

p
(x
)

p(x) =
r2x

x!2(x + 1)N−2
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Growth of h

Barnes (1906)
∃C > 0 such that ∀r > 0

∞∑
j=0

r2j

j!2(j + 1)N−2
< C

e2r

rN−3/2

Can do better

∃C ′ > 0 (independent of `k) such that ∀r > 0

∞∑
j=2`k

r2j`k

(j`k)!2(j`k + 1)N−2
≤ C ′

`k
· e2r

rN−3/2
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Growth of h

Summing up for every k ≥ 1

M2
2 (h, r) =

∞∑
n=1

M2
2 (Qn, r)

≤ e2r

rN−3/2

(
C ′
∞∑
k=1

cmk
M2

2 (Fk , 1)
`k

)

Choose integers in (`k) sufficiently large to give

C ′
∞∑
k=1

cmk
M2

2 (Fk , 1)
`k

≤ C 2

=⇒ M2 (h, r) ≤ C
er

rN/2−3/4
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