A remark on smooth images of Banach spaces

Petr Hájek, Michal Johanis

Petr Hájek, Michal Johanis A remark on smooth images of Banach spaces

Smooth surjections

Theorem 1

Let Y be a separable Banach space. Then there exists a bounded linear operator from ℓ_1 onto Y.

Smooth surjections

Theorem 1

Let Y be a separable Banach space. Then there exists a bounded linear operator from ℓ_1 onto Y.

Theorem 2 (Sean Michael Bates, 1997)

Let X be an infinite-dimensional Banach space and Y a separable Banach space. Then there exists a C^1 -smooth Lipschitz mapping from X onto Y.

Smooth surjections

Theorem 1

Let Y be a separable Banach space. Then there exists a bounded linear operator from ℓ_1 onto Y.

Theorem 2 (Sean Michael Bates, 1997)

Let X be an infinite-dimensional Banach space and Y a separable Banach space. Then there exists a C^1 -smooth Lipschitz mapping from X onto Y.

Theorem 3 (Sean Michael Bates, 1997)

If a Banach space X has property \mathcal{B} , then for any separable Banach space Y there exists a C^{∞} -smooth mapping from X onto Y.

Theorem 4 (Petr Hájek, 1999)

Let X be a Banach space such that there exists a non-compact operator $T \in \mathcal{L}(X; \ell_p)$, $1 \le p < \infty$. Then for any separable Banach space Y there exists a [p]-homogeneous polynomial surjection $P: X \to Y$.

Theorem 4 (Petr Hájek, 1999)

Let X be a Banach space such that there exists a non-compact operator $T \in \mathcal{L}(X; \ell_p)$, $1 \le p < \infty$. Then for any separable Banach space Y there exists a [p]-homogeneous polynomial surjection $P: X \to Y$.

Note that this is also a direct generalisation of Theorem 1.

Theorem 4 (Petr Hájek, 1999)

Let X be a Banach space such that there exists a non-compact operator $T \in \mathcal{L}(X; \ell_p)$, $1 \le p < \infty$. Then for any separable Banach space Y there exists a [p]-homogeneous polynomial surjection $P: X \to Y$.

Note that this is also a direct generalisation of Theorem 1.

P. Hájek (1998): There is no C^2 -smooth surjection $f: c_0 \rightarrow \ell_2$.

Smooth surjections: the non-separable case

The situation depends on axioms of set theory:

The situation depends on axioms of set theory:

CH: There is a C[∞]-smooth surjection from c₀(ω₁) onto ℓ₂. (easy)

The situation depends on axioms of set theory:

- CH: There is a C[∞]-smooth surjection from c₀(ω₁) onto ℓ₂. (easy)
- MA_{ω1}: There is no C²-smooth surjection from c₀(ω₁) onto ℓ₂ (follows from the results of P. Hájek (1998), formulated in [Guirao, Hájek, Montesinos, 2010]).

Smooth surjections: the non-separable case

Theorem 5 (Robert G. Bartle and Lawrence M. Graves, 1952)

Let X, Y be Banach spaces and let $T \in \mathcal{L}(X; Y)$ be onto. Then there is a subspace $Z \subset X$ with dens Z = dens Ysuch that $T \upharpoonright_Z$ is still surjective.

Smooth surjections: the non-separable case

Theorem 5 (Robert G. Bartle and Lawrence M. Graves, 1952)

Let X, Y be Banach spaces and let $T \in \mathcal{L}(X; Y)$ be onto. Then there is a subspace $Z \subset X$ with dens Z = dens Ysuch that $T \upharpoonright_Z$ is still surjective.

Theorem 6 (Richard M. Aron, Jesús A. Jaramillo, and Enrico Le Donne, 2017)

Let X, Y be Banach spaces and let $f \in C^1(X; Y)$ be onto and such that the set of critical values of f has cardinality at most dens Y. Then there is a subspace $Z \subset X$ with dens Z = dens Y such that $f \upharpoonright_Z$ is still surjective.

Smooth surjections: density continuum

Theorem 7 (Richard M. Aron, Jesús A. Jaramillo, and Thomas Ransford, 2013)

Let Γ be a set of cardinality at least continuum and suppose there exists a bounded linear operator $T: X \to c_0(\Gamma)$ such that T(X) contains the canonical basis of $c_0(\Gamma)$. Then for any separable Banach space Y of dimension at least two there exists a C^{∞} -smooth surjective mapping $f: X \to Y$ such that the restriction of f onto any separable subspace of X fails to be surjective.

Theorem 7 (Richard M. Aron, Jesús A. Jaramillo, and Thomas Ransford, 2013)

Let Γ be a set of cardinality at least continuum and suppose there exists a bounded linear operator $T: X \to c_0(\Gamma)$ such that T(X) contains the canonical basis of $c_0(\Gamma)$. Then for any separable Banach space Y of dimension at least two there exists a C^{∞} -smooth surjective mapping $f: X \to Y$ such that the restriction of f onto any separable subspace of X fails to be surjective.

The theorem holds in particular for $X = \ell_p(\Gamma)$, card $\Gamma \ge \mathfrak{c}$. **Question:** Does it hold also for $X = \ell_p(\Gamma)$, card $\Gamma = \omega_1$? Does it involve axioms of set theory?

Theorem 8

Let X be a Banach space for which there is $T \in \mathcal{L}(X; \ell_p(\Gamma))$ for some uncountable Γ and $1 \le p < \infty$ such that $T(B_X)$ contains the canonical basis of $\ell_p(\Gamma)$.

Then for any separable Banach space Y with dim Y \geq 2 there is $f \in C^{\infty}(X; Y)$ such that f(X) = Y but $f(Z) \neq Y$ for any separable subset $Z \subset X$.

Theorem 8

Let X be a Banach space for which there is $T \in \mathcal{L}(X; \ell_p(\Gamma))$ for some uncountable Γ and $1 \le p < \infty$ such that $T(B_X)$ contains the canonical basis of $\ell_p(\Gamma)$. (This holds in particular if X is a non-separable super-reflexive space.) Then for any separable Banach space Y with dim $Y \ge 2$ there is $f \in C^{\infty}(X; Y)$ such that f(X) = Y but $f(Z) \ne Y$ for any separable subset $Z \subset X$.

Theorem 9 (Felix Hausdorff, 1936)

Every uncountable Polish space is a union of an increasing ω_1 -sequence of G_δ sets.

Theorem 9 (Felix Hausdorff, 1936)

Every uncountable Polish space is a union of an increasing ω_1 -sequence of G_δ sets.

Theorem 10

Let X be an infinite-dimensional Banach space that admits a C^k -smooth bump, $k \in \mathbb{N} \cup \{\infty\}$, with each derivative bounded on X. Let Y be a separable Banach space, let $C \subset Y$ be convex, $y_1 \in C$, and $C \subset A \subset \overline{C}$ an analytic set. Then there is $f \in C^k(X; Y)$ with $\operatorname{supp}_0 f \subset B_X$ such that $f(X) = [0, y_1] \cup A$.

Proposition 11

Let (X, ρ) be a separable metric space, $U \subset X$, $A \subset \overline{U}$ a non-empty Suslin set . Then there is an ω -branching tree T of height ω with a least element and a family $\{x_t\}_{t\in T} \subset U$ such that $A = \{\lim_{n\to\infty} x_{b_n}; b \in \mathcal{B}(T)\}$

Proposition 11

Let (X, ρ) be a separable metric space, $U \subset X$, $A \subset \overline{U}$ a non-empty Suslin set, and let $\{\varepsilon_n\}_{n=1}^{\infty} \subset (0, +\infty)$. Then there is an ω -branching tree T of height ω with a least element and a family $\{x_t\}_{t\in T} \subset U$ such that $A = \{\lim_{n\to\infty} x_{b_n}; b \in \mathcal{B}(T)\}$ and $\rho(x_u, x_t) < \varepsilon_n$ for each $u \in t^+, t \in T_n, n \in \mathbb{N}$.

Theorem 12

Let *X* be a Banach space for which there is $T \in \mathcal{L}(X; \ell_p(\Gamma))$ for some infinite Γ and $1 \le p < \infty$ such that $T(B_X)$ contains the canonical basis of $\ell_p(\Gamma)$. Then for every Banach space *Y* of density at most card Γ there exists a $\lceil p \rceil$ -homogeneous polynomial surjection $P: X \to Y$.

Theorem 13

Let X be a Banach space, $\mu > \omega$ a regular cardinal, Γ a set, $1 , and <math>\frac{1}{p} + \frac{1}{q} = 1$. Consider the following statements:

- (i) X is WCG with dens $X \ge \mu$ and X^{*} is w^{*}- $\ell_q(\Gamma)$ -generated.
- (ii) X contains a non-zero weakly null net $\{x_{\alpha}\}_{\alpha \in [0,\mu)}$ and there is $T \in \mathcal{L}(X; \ell_{p}(\Gamma))$ such that dens ker $T < \mu$.
- (iii) There is $T \in \mathcal{L}(X; \ell_{\rho}([0, \mu)))$ such that $\{e_{\gamma}\}_{\gamma \in [0, \mu)} \subset T(B_X)$. Then (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iii).

Definition

We say that a Banach space X has property \mathcal{B} if X^* contains a normalised weakly null hereditarily Banach-Saks sequence.

Definition

We say that a Banach space X has property B if X^* contains a normalised weakly null hereditarily Banach-Saks sequence.

Note that a Banach space contains a normalised weakly null sequence if and only if it is not a Schur space. In particular, if X is an infinite-dimensional Banach space such that X^* has the Banach-Saks property (or more generally if X^* is not a Schur space and has the weak Banach-Saks property), then X has property \mathcal{B} .

Definition

We say that a Banach space X has property B if X^* contains a normalised weakly null hereditarily Banach-Saks sequence.

Note that a Banach space contains a normalised weakly null sequence if and only if it is not a Schur space. In particular, if X is an infinite-dimensional Banach space such that X^* has the Banach-Saks property (or more generally if X^* is not a Schur space and has the weak Banach-Saks property), then X has property \mathcal{B} .

Proposition 14

Let X be a Banach space with a sub-symmetric Schauder basis. Then X has property \mathcal{B} if and only if X is not isomorphic to c_0 .

A tree is a partially ordered set (T, \preceq) with the property that for every $t \in T$ the subset $\{s \in T; s \preceq t\}$ is well-ordered.

For $t \in T$ we denote by t^+ the set of all immediate successors of t, i.e.

 $t^+ = \{ u \in T; \ s \prec u \text{ if and only if } s \preceq t \}.$

The height of $t \in T$ is a unique ordinal ht(t) with the same order type as $\{s \in T; s \prec t\}$. The height of the tree *T* is defined by sup $\{ht(t) + 1; t \in T\}$.

A branch of *T* is a maximal linearly ordered subset and we denote by $\mathcal{B}(T)$ the set of all branches of *T*. For an ordinal α we denote by $T_{\alpha} = \{t \in T; ht(t) = \alpha\}$ the α th level of the tree *T*.

For a branch $b \in \mathcal{B}(T)$ we denote $b_{\alpha} = b \cap T_{\alpha}$. Let μ be a cardinal. We say that T is μ -branching if card $T_0 \leq \mu$ and card $t^+ \leq \mu$ for each $t \in T$.

Let μ be a cardinal. We say that a subset S of a topological space X is μ -Suslin in X if there is a μ -branching tree T of height ω and closed sets $F_t \subset X$, $t \in T$ such that $S = \bigcup_{b \in \mathcal{B}(T)} \bigcap_{n=1}^{\infty} F_{b_n}$. We remark that ω -Suslin sets are called simply Suslin in the classical terminology and that a classical result states that in Polish spaces Suslin sets (our ω -Suslin sets) are precisely the analytic sets.