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Some questions around a Talagrand’ theorem.

The well known Talagrand theorem stating for a compact K that
C(K ) is weakly K -analytic iff Cp(K ) is K -analytic suggest the
following questions:

The topology of Cp(K ), may be replaced by a weaker
topology?
Have (C(K ),weak) and Cp(K ) the same K -analytic
mappings?
Talagrand theorem works for a pseudocompact space K ?

There exists a Lindelöf-Σ version of Talagrand theorem for
Gul’ko compacts?

In this talk we will present a positive answer of this questions
based in angelicity and in some sets known as Rainwater sets.
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Notations. Well known facts on βX .

X is a completely regular (Hausdorff) space.
Cb (X ), and C(X ) if X pseudocompact, are endowed with ‖·‖∞.
We identify

X 7−→ {δx : x ∈ X}

and

βX (Stone-Čech compactification of X ) 7−→ {δx : x ∈ X}weak*

f 7→ f β is a linear isometry from Cb (X ) onto C (βX ).

If X is compact then C (X )∗ = rca (B (X )) (Riesz theorem).
If X is normal, Cb (X )∗ = rba (B (X )) = rca (B (β(X ))).
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Elementary properties on υX .

Let x ∈ βX . Then x ∈ υX , the Hewitt realcompactification of X ,

iff each f ∈ C(X ) admits a continuous extension to X ∪{x},
iff V ∩ X 6= ∅ for each βX -zero V containing x ,
iff V ∩ X 6= ∅ for each Gδ-subset V of βX with x ∈ V .

Whence

X is Gδ-dense in υX and
f 7→ f ν is a bijection from C(X ) onto C(νX ).

X pseudocompact means

C (X ) = Cb (X )⇐⇒ υX = βX ⇐⇒ X is Gδ-dense in βX .
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A sequentially continuous map.

If Y ⊂ C (X )∗ separates points in C (X ), then σY is the Y point-
wise convergence topology on C (X ). Cp(X ) := (C(X ), σX ).

Claim
Let Y be a Gδ dense subset of X and let fn ∈ C(X ), for each
n ∈ N0.

(fn)n →σY f0 ⇐⇒ (fn)n →σX f0

f0 σY -adherent (fn)n ⇐⇒ f0 σX -adherent (fn)n.

Hence Cp(X ) is angelic iff (C(X ), σY ) is angelic.

In fact, fix x ∈ X and let Xn(x) := {u ∈ X : fn (u) = fn (x)}.
There exists yx ∈ Y ∩

⋂∞
n=0 Xn(x), hence fn (yx ) = fn (x),

n ∈ N0.
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Rainwater sets for a Banach space E .

Definition
A subset Y of the dual closed unit ball BE∗ is called a
Rainwater set for the Banach space E if for every bounded
sequence {xn}∞n=1 of E

xn →σY x =⇒ xn →weak x ,

equivalently, σY and the weak topology have the same
convergent sequences in BE .

Each Rainwater set Y separates the points of E , i.e. Y⊥ = {0},
because if x ∈ Y⊥ then

((xn = x)n →σY 0) =⇒ ((xn = x)n →weak 0) =⇒ x = 0.
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James boundaries and Rainwater theorem.

Definition
Let E be a Banach space. A subset J of BE∗ is a James
boundary for BE∗ if for each x ∈ E there exists x ′ ∈ J such that
x ′(x) = ‖x‖.

By Corollary 11 in 1972 Simons’ paper A convergence
theorem with boundary, each James boundary J for BE∗ is
a Rainwater set for E (trivially the converse is not true).
In particular, as Ext BE∗ is a James boundary for BE∗ , then
Ext BE∗ is a Rainwater set for E .

The fact that Ext BE∗ is a Rainwater set appears in 1963
Rainwater’s paper Weak convergence of bounded sequences.
It follows also from Choquet’s integral representation theorem.
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Grothendieck spaces and Rainwater sets

Definition
A Banach space E is a Grothendieck space if in E∗ the weak*
and the weak convergent sequences are the same.

A ring R of subsets of a set Ω has property G if `∞(R) is a
Grothendieck space.
This happens iff each bounded sequence of `∞(R)∗ = ba(R)
which converges pointwise on R converges weakly.
In other words and denoting by R the embedding of R in
ba(R)∗ we have:

Proposition

R has property G if and only if R is a Rainwater set for ba(R).
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Rainwater theorem for C (X ).

Theorem (Rainwater’s theorem for C (X ))

Each compact X is a Rainwater set for C (X ).

Proof.
By Arens-Kelly theorem, Ext BC(X)∗ = {± δx : x ∈ X}.
Hence {± δx : x ∈ X}, and also X , is a C (X )-Rainwater set

Other proof.

Proof.
By Riesz representation theorem, C(X )∗ = rca(B(X )).
If {fn}∞n=1 is C(X )-bounded and fn →σX f , ∀x ∈ X ,
then, by Lebesgue dominated convergence theorem,∫

fndµ→
∫

fdµ for every µ ∈ C (X )∗, i.e., fn →weak f .
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Gδ-dense subsets of Rainwater sets.

Proposition

Let Y be Cb (X )-Rainwater set and let Z be a Gδ-dense subset
of a Y . Then Z is a Rainwater set for Cb (X ).

Proof.

Let {fn}∞n=1 be bounded in Cb (X ) with fn →σZ f .
By Gδ-density of Z in Y we get that fn →σY f
As Y is a Rainwater set for Cb (X ) then fn →weak f .
Therefore Z is a Rainwater set for Cb (X ).

(In brief: σZ and σY have the same convergent sequences)
If Z is a dense C-embedded subspace of Y then Y ⊂ υZ .
Hence Z is Gδ-dense in Y .
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C(X ) Rainwater subsets of a compact X .

Proposition
For a subset Y of a compact X are equivalent

1 Y is Gδ-dense in X.
2 Y is a James boundary for BC(X)∗ .
3 Y is a Rainwater set for C (X ) .

Proof.
1⇒ 2. If f ∈ C (X ) then {x ∈ X : |f (x)| = ‖f‖∞} is a nonempty
Gδ-subset of X , hence it meets Y . 2⇒ 3 (Simons’ corollary).
No 1⇒ No 3. If there exists a nonvoid Gδ-closed Z ⊂ X with
Z ∩ Y = ∅, then ∃ f ∈ C (X ), f (X ) = [0,1], Z = f−1 ({1}) and

{f n}∞n=1 →σY 0 and 〈f n, δz〉 → 1 if z ∈ Z , (3 fails)
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Cb (X ) Rainwater subsets of X .

Corollary

A subset Y of X is a Rainwater set for Cb (X ) if and only if
Y is Gδ-dense in X and X is pseudocompact.

Proof.

Y Rainwater set for Cb (X )⇐⇒
Y Rainwater set for C (βX )⇐⇒
Y is Gδ-dense in βX ⇐⇒
Y is Gδ-dense in X and X is Gδ-dense in βX .
Finally X is Gδ-dense in βX ⇐⇒ X is pseudocompact.

Example

An infinite discrete space I is not Rainwater set for `∞ (I).
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Proper Gδ-dense subsets in compacts.

Recall that if ℵ0 < κ the Σ-product ΣRκ is

ΣRκ := {x ∈ Rκ : |{i : xi 6= 0}| ≤ ℵ0} .

ΣRκ is Fréchet-Urysohn, i.e., if x ∈ A then x = limn an, an ∈ A.
Each compact K embeds in some [0,1]κ.
Y = K ∩ΣRκ is sequentially compact, hence Y is dense in K iff
Y is Gδ-dense in K , iff Y is a Rainwater set for C (K ).
Then K is a Valdivia compact.
K is Corson compact if K is homeomorphic to a subset of ΣRκ.

Example

Each Valdivia and non Corson compact K , for instance [0,1]κ,
with ℵ0 < κ, contains a proper Rainwater subset Y for C(K ).
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Examples: Rainwater sets non pseudocompact.

Example
Let X be the one-point compactification of an uncountable
discrete space Y .
The non pseudocompact Y is Gδ-dense in X .
Hence Y is a Rainwater set for C (X ).

Example
If G is pseudocompact then G ×G is Gδ-dense in the
pseudocompact G × βG (pseudocompact × compact).
Hence G ×G is a Rainwater set for C (G × βG).
Additionally G×G may be not pseudocompact (see Engelking).
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Norming and Rainwater sets for a Banach space E .

Proposition
Let Y be an E-norming subset of BE∗ . If Y ⊆ Z ⊆ BE∗ and Y is
a Rainwater set for Cb (Z ), then Y is a Rainwater set for E.

Proof.

As Y (norming) ⊆ Z ⊆ BE∗ , the restriction T : E → Cb (Z ),
Tu = u|Z , is an embedding (there exists 0 < k ≤ 1 such that

k ‖u‖ ≤ supy∈Y |u (y)| ≤ ‖Tu‖∞ = supx∈Z |u (x)| ≤ ‖u‖ ).

Let (un)∞n=1 E-bounded and un →σY 0. By Y -Rainwaterness
〈Tun, µ〉 → 0 for all µ ∈ Cb (Z )∗. Hence
〈un,T ∗µ〉 → 0, if T ∗µ ∈ T ∗

(
Cb (Z )∗

)
= E∗ (as T embeds),

i.e., un →weak 0.
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Cb (X ) Rainwater sets containing X .

Corollary

Let X ⊂ Y ⊂ BCb(X)∗ and (Y , weak∗|Y ) pseudocompact.
Then Y is a Rainwater set for Cb (X ).

Proof.

X ⊂ Y ⊂ BCb(X)∗ imply that Y is Cb(X )-norming
By pseudocompactnes, Y is a Cb ((Y , weak∗|Y ))-Rainwater.
Apply preceding Proposition with Z := Y .

Example

If D is a dense subset of βN \ N, then N ∪ D is pseudocompact,
hence Y = N ∪ D is a Rainwater set for `∞.
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Some definitions.

Definition
A topological space X is Lindelöf-Σ if it exists an onto uscc
T : Σ(⊂ NN)→ K(X ). If Σ = NN then X is K -analytic.

T is named a Lindelöf-Σ (resp. K -analytic) map.
Usc means [(αn)n →Σ α; (xn ∈ T (αn))n] =⇒ (xn)n  x ∈ T (α)
Hence, for X angelic, there exists (xnk )k → x ∈ T (α).

K -analytic⇒ Lindelöf-Σ and for a Banach space E ,

(E ,weak) Lindelöf-Σ⇒ (BE∗ , weak∗|BE∗ ) Corson compact

If (E ,weak) is Lindelöf-Σ it is said that the Banach space E is a
WCD space or a Vašák space.
E is WLD if

(
BE∗ , weak∗|BE∗

)
is Corson compact.
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WLD and pseudocompactness.

Recall that if xn ∈ βX , xm 6= xn when m 6= n ∈ N, then

lim
n→∞

xn = x =⇒ x ∈ υX

Lemma

If Cb(X ) is WLD then X is pseudocompact, so a Rainwater set.

Proof.

WLD ⇐⇒
(

BCb(X)∗ , weak∗|BCb(X)∗

)
is Corson compact.

=⇒ βX is Corson compact=⇒ βX is Fréchet-Urysohn.
Then for x ∈ βX\X we have:
x = limn xn, with xn ∈ X , xm 6= xn when m 6= n.
Hence x ∈ υX and then βX = υX .
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Lindelöf-Σ (K -analytic) equivalence.

Let τ1 and τ2 be two topologies on a space X . τ1(L-Σ) τ2 if τ1
and τ2 have the same nonvoid set of Lindelöf-Σ mappings.
Let τ1 Lindelöf-Σ. If τ1 and τ2 have the same compact subsets
and coincide in the separable subsets then τ1(L-Σ) τ2.
Hence if τ1 and τ2 are angelic with the same convergent
sequences then τ1(L-Σ) τ2.

Proposition

Let Y be a Rainwater set for the Banach space E. If (E , σY ) is
Lindelöf Σ-space and angelic, then weak |B(E)(L-Σ) σY |B(E).

Proof.
Both topologies are angelic with the same convergent
sequences in B(E).
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Cb(X ) weakly Lindelöf Σ.

Theorem
Let X be completely regular. The following are equivalent:

1 Cb (X ) is weakly Lindelöf Σ-space (= WCD).
2 There exists a Rainwater set Y for Cb (X ) such that(

Cb (X ) , σY
)

is both Lindelöf Σ-space and angelic.
3 σY |BCb(X)

(L-Σ)weak|BCb(X)
.

Proof.
1⇒ 2 Take Y := X .
2⇒ 3 Apply Proposition.
3⇒ 1 From 3 and Cb (X ) =

⋃∞
n=1 nBCb(X) follows that

(Cb (X ) ,weak) is Lindelöf Σ-space.
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A particular case.

Corollary

If Y is a Rainwater set for Cb(X ) and (Y ,weak∗) is
pseudocompact then the following are equivalent:

1 Cb (X ) is weakly K -analytic (resp. WCD).

2
(
Cb (X ) , σY

)
is K -analytic (resp. Lindelöf Σ-space).

3 σY |BCb(X)
(K-analytic) (resp. (L-Σ)) weak|BCb(X)

.

In particular, this corollary applies when X is pseudocompact.

Proof.
Pseudocompactness imply that Cp ((Y ,weak∗)) is angelic.
Then apply last theorem.
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Example.

Example

The Banach spaces C([0, ω1]) and C([0, ω1[) are not WLD,
hence Cp([0, ω1]) and Cp([0, ω1[) are not Lindelöf Σ-space.

Proof.
[0, ω1] is not Fréchet-Urysohn, because the non closed
[0, ω1[ is sequentially closed.
Hence C([0, ω1]), and by isometry C([0, ω1[), are not WLD.
Therefore C([0, ω1]) and C([0, ω1[) are not WCD.
[0, ω1[ is pseudocompact.
By Corollary Cp([0, ω1]) and Cp([0, ω1[) are not Lindelöf
Σ-space.
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Talagrand and Gul’ko compact sets.

For a compact space K we have

1

K is Talagrand compact if Cp(K ) is K -analytic.

2

K is Gul’ko compact if Cp(K ) is Lindelöf-Σ,

then

Cp(K ) Lindelöf-Σ =⇒ K Corson compact ( 8 Sokolov )

and remind that

K Corson compact =⇒ Cp(K ) Lindelöf ( 8 Gul’ko, Alster, Pol )
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Gδ density and analytic properties.

Theorem
Let Y be a Gδ-dense subset of a pseudocompact X .

1 C (X ) is weakly K -analytic (resp. WCD)⇔
2 Cp(X ) is K -analytic (resp. Lindelöf Σ-space)⇔
3 (C (X ) , σY ) is K -analytic (resp. Lindelöf Σ-space)⇔
4 σY |BC(X)

(K-analytic) (resp. (L-Σ)) weak|BC(X)
.

Proof.
3⇒ 4 Apply Claim to get angelicity of (C (X ) , σY ).
As Y is Rainwater the topologies σY and weak have the same
convergent sequences in BC(X).
4⇒ 1 C (X ) =

⋃∞
n=1 nBC(X). The rest is obvious.
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A remark on Talagrand and Gul’ko compact sets.

Corollary
Let Y be a Gδ-dense subset of a compact space K . The
following are equivalent:

1 C (K ) is weakly K -analytic (resp. WCD).
2 K Talagrand compact (Gul’ko compact).
3 (C (K ) , σY ) is K -analytic (resp. Lindelöf Σ-space).
4 σY |BC(K )

(K-analytic) (resp. (L-Σ)) weak|BC(K )
.

Proof.
Apply directly the preceding theorem because

K is Talagrand compact if Cp(K ) is K -analytic and
K is Gul’ko compact if Cp(K ) is Lindelöf-Σ.
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Example.

Let {x0} be a non Gδ-subset of a pseudocompact set X .
As Y := X\{x0} is Gδ-dense in X , the last theorem implies:

Remark
1 C (X ) is weakly K -analytic (resp. WCD)⇔
2 Cp (X ) is K -analytic (resp. Lindelöf Σ-space)⇔
3 (C (X ) , σY ) is K -analytic (resp. Lindelöf Σ-space)⇔
4 σY |BC(X)

(K-analytic) (resp. (L-Σ)) weak|BC(X)
.

Example

Let X := [0, ω1] and x0 = ω1.(
C ([0, ω1]) , σ[0,ω1[

)
is not Lindelöf Σ-space, by remark and the

non WCD of C ([0, ω1]).
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