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Introduction

Theorem (J. Hadamard, 1906; R. Plastock, 1974)

Let X ,Y be Banach spaces, and f : X → Y a C1 map. Assume
that:

1 f ′(x) is invertible for all x ∈ X , and

2 The following condition (Hadamard integral condition) holds:∫ ∞
0

inf
‖x‖≤t

1
‖f ′(x)−1‖

dt =∞.

Then f is a diffeomorphism.

Remark
The former integral condition is fulfilled if

sup
x∈X
‖f ′(x)−1‖ <∞ (Hadamard-Levy condition).
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Pseudo-Jacobians

Definition
Let X , Y be Banach spaces, f : U ⊂ X → Y a map, U open, and
x ∈ U. A set Jf (x) ⊂ L(X ,Y ) is a pseudo-Jacobian of f at x if

∀y∗ ∈ Y ∗, v ∈ X : (y∗◦f )′+(x ; v) ≤ sup{〈y∗,T (v)〉 : T ∈ Jf (x)},

where (y∗ ◦ f )′+(x ; v) = lim sup
t→0+

(y∗◦f )(x+tv)−(y∗◦f )(x)
t .

Remark
The former inequality is equivalent to:

(y∗ ◦ f )′−(x ; v) ≥ inf {〈y∗, T (v)〉 : T ∈ Jf (x)} ,

where (y∗ ◦ f )′−(x ; v) = lim inf
t→0+

(y∗◦f )(x+tv)−(y∗◦f )(x)
t .

Jf : U → 2L(X ,Y ) is a pseudo-Jacobian mapping for f on U if, for
all x ∈ U, Jf (x) is a pseudo-Jacobian of f at x .
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Some examples

Example (Weakly differentiable maps)

A map f : U ⊂ X → Y is weakly Gâteaux differentiable at x ∈ U if
there exists an operator f ′(x) ∈ L(X ,Y ) such that

lim
t→0

〈
y∗, f (x+tv)−f (x)

t

〉
= 〈y∗, f ′(x)(v)〉 , ∀v ∈ X , y∗ ∈ Y ∗.

f is weakly Gâteaux differentiable at x ⇒ the set Jf (x) := {f ′(x)}
is a pseudo-Jacobian of f at x .

Example (Gâteaux prederivatives, Ioffe)

Let f : U ⊂ X → Y be a map, x ∈ U. A set Jf (x) ⊂ L(X ,Y ) is a
Gâteaux prederivative of f at x if, for each ε > 0 and each v ∈ X ,
there is δ > 0 such that

f (x + tv)− f (x) ∈ Jf (x)(tv) + ε|t| · BY , whenever |t| < δ.

Jf (x) is a pseudo-Jacobian of f at x .
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Example (Locally Lipschitz maps)

A map f : U ⊂ X → Y is locally Lipschitz at x ∈ U if there exist
L, r > 0 s.t. B(x , r) ⊂ U and f is L-Lipschitz on B(x , r).
If f is locally Lipschitz at x , then the set

Jf (x) := Lip f (x) · BL(X ,Y )

is a pseudo-Jacobian of f at x , where

Lip f (x) = inf
r>0

sup
{
‖f (u)−f (v)‖
‖u−v‖ : u, v ∈ B(x , r) and u 6= v

}
.

Example (Clarke subdifferential)

Let ϕ : U ⊂ X → R be a function, locally Lipschitz at x ∈ U. The
Clarke subdifferential of ϕ at x is

∂ϕ(x) := {x∗ ∈ X ∗ : x∗(v) ≤ ϕ◦(x ; v), for all v ∈ X},
where

ϕ◦(x ; v) := lim sup
z→x
t→0+

ϕ(z+tv)−ϕ(z)
t .

∂ϕ(x) is a pseudo-Jacobian of ϕ at x .
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Mean value theorem

Theorem (Mean value property)

Let f : U ⊂ X → Y be continuous, where U is open and convex. If
Jf is a pseudo-Jacobian mapping for f on U, then

f (v)− f (u) ∈ co
(
Jf ([u, v ]

)
(v − u), for all u, v ∈ U.

Corollary
Let f : U ⊂ X → Y be continuous. Then, f is locally Lipschitz on
U iff f admits a pseudo-Jacobian mapping Jf : U → 2L(X ,Y ) which
is locally bounded on U, i.e., for all x ∈ U there is r > 0 such that

Jf
(
B(x , r)

)
= {T : T ∈ Jf (u), u ∈ B(x , r)}

is a bounded subset of L(X ,Y ).
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The chain rule

Notation
In the sequel consider continuous maps f : U ⊂ X → Y and
g : V ⊂ Y → Z such that f (U) ⊂ V , and a point x ∈ U.

Proposition

Let Jg : V → 2L(Y ,Z) be a pseudo-Jacobian for g on V . If
1 Jg is locally bounded at f (x), and

2 f is Gâteaux differentiable at x ,
then the set Jg (f (x)) ◦ f ′(x) is a pseudo-Jacobian of g ◦ f at x .

Proposition

Let Jf : U → 2L(X ,Y ) be a pseudo-Jacobian for f on U. If
1 Jf is locally bounded at x , and
2 g ∈ C1(V ),

then the set g ′ (f (x)) ◦ Jf (x) is a pseudo-Jacobian of g ◦ f at x .
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The chain rule condition

Notation
Given a pseudo-Jacobian mapping Jf for a map f : U ⊂ X → Y
and two points x ∈ U and y ∈ Y with y 6= f (x) we write

Ax ,y (f ) = ∂dy (f (x)) ◦ co (Jf (x)) ,

where
dy (v) = ‖v − y‖, v ∈ Y .

Definition (The chain rule condition)

Let f : U ⊂ X → Y be continuous. A pseudo-Jacobian mapping Jf
for f on U satisfies the chain rule condition if for every x ∈ U and
every y ∈ Y with y 6= f (x):

1 Ax ,y (f ) is a w∗-closed and convex subset of X ∗, and
2 Ax ,y (f ) is a pseudo-Jacobian of dy ◦ f at x .
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Proposition
If f : U ⊂ X → Y is continuous and Gâteaux differentiable on all of
U, then the pseudo-Jacobian

Jf (x) = {f ′(x)}, x ∈ U

satisfies the chain rule condition.

Proposition

Let f : U ⊂ X → Y be continuous, and Jf : U → 2L(X ,Y ) be a
pseudo-Jacobian mapping for f on U. Assume that the norm of Y
is Fréchet smooth, and:

1 Jf is locally bounded on U, and
2 For each x ∈ U, Jf (x) is WOT-compact.

Then, Jf satisfies the chain rule condition.
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The regularity index

Definition
Let f : U ⊂ X → Y be a map, and let Jf be a pseudo-Jacobian
mapping for f . The regularity index of Jf at a point x ∈ U is

αJf (x) := inf{//T// : T ∈ co Jf (x)},

where //T// = inf {‖Tx‖ : ‖x‖ = 1} .

Jf is regular at x if each T ∈ co Jf (x) is an isomorphism and

αJf (x) > 0.

Example
If f : U ⊂ X → Y is weakly Gâteaux differentiable on all of U and

Jf = {f ′(x)}, x ∈ U,

then Jf is regular at x ∈ U if f ′(x) is an isomorphism. Moreover,

αJf (x) =
∥∥f ′(x)−1

∥∥−1
.
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An inverse mapping theorem

Theorem (Main result)

Let f : U ⊂ X → Y be a continuous map, U convex and open, and
Jf a pseudo-Jacobian mapping for f on U such that:

1 Jf satisfies the chain rule condition,

2 For every x ∈ U, Jf is regular at x , and

α := inf
x∈U

αJf (x) > 0.

Then, for each open ball B(x0, δ) ⊂ U we have

B(f (x0); δα) ⊂ f
(
B(x0; δ)

)
.

Furthermore, the set V := f (U) is open in Y , f : U → V is an
homeomorphism, whose inverse is α−1-Lipschitz on V .
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An inverse mapping theorem
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Corollary (I. Ekeland, 2011)

Let f : X → Y be a continuous and Gâteaux differentiable map.
Suppose that f ′(x) is an isomorphism for each x ∈ X , and

K := sup
x∈X

∥∥f ′(x)−1∥∥ <∞.
Then, f is a global homeomorphism from X onto Y , whose inverse
is K -Lipschitz on Y .
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The Hadamard integral condition

Theorem

Let f : X → Y be a continuous map and Jf be a pseudo-Jacobian
mapping for f on X . Assume that:

1 Jf satisfies the chain rule condition and is regular at every
x ∈ X , and

2 ∫ ∞
0

inf
‖x‖≤t

αJf (x) dt =∞.

Then:
1 f is a global homeomorphism from X onto Y , f −1 is Lipschitz

on each bounded subset of Y , and
2 For each x0 ∈ X and each δ > 0, we have

B
(
f (x0), ρ

)
⊂ f
(
B(x0, δ)

)
, where ρ =

∫ δ

0
inf

‖x−x0‖≤t
αJf (x) dt.
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Corollary

Let f : X → Y be a locally Lipschitz map between reflexive Banach
spaces and Jf be a locally bounded pseudo-Jacobian mapping for f
on X . Assume that:

1 For each x ∈ X , Jf (x) is convex and WOT-compact,

2 Jf is regular at every x ∈ X , and
3 The following Hadamard integral condition holds:∫ ∞

0
inf
‖x‖≤t

αJf (x) dt =∞.

Then, f is an homeomorphism and f −1 is Lipschitz on bounded
subsets of Y .
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Corollary (Lipschitz perturbations of smooth maps)

Let X ,Y be reflexive spaces endowed with a Fréchet-smooth norm.
Consider a map f : X → Y of the form f = g + h, where:

1 g is locally Lipschitz and Gâteaux differentiable, and g ′(x) is
an isomorphism for each x ∈ X .

2 h is locally Lipschitz, and Lip h(x) < ‖g ′(x)−1‖−1 for each
x ∈ X .

3 The following integral condition holds:∫ ∞
0

inf
‖x‖≤t

(
‖g ′(x)−1‖−1 − Lip h(x)

)
dt =∞.

Then, f is a global homeomorphism from X onto Y , whose inverse
is Lipschitz on each bounded subset of Y .
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