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The basics

Examples:

P1(z1, z2, z3) = 3z2
1 − 2z1z2 + 7z2

2 − 5z2
3 + 4z1z3.

P2(z1, z2, z3, z4) = 5z5
1 +

3
2 z1z4

2 − z3
2z3z4 + 2z3z4

4.

In both cases, all the terms have the same degree (≡ homogeneity
degree).
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The basics

Definition
An m-homogeneous polynomial in n complex variables is a function

P : Cn −→ C,

that can be written as

P(z) =
∑

1≤j1≤···≤jm≤n

c(j1,...,jm)(P) zj1 · · · zjm

=
∑

j∈J (m,n)

cj(P)zj,

• cj(P) = c(j1,...,jm)(P) ∈ C.
• zj = zj1 · · · zjm  monomials.
• J (m, n) := {j = (j1, . . . , jm) ∈ {1, . . . , n}m : j1 ≤ j2 ≤ · · · ≤ jm}.
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The basics

• P(mCn) ≡ the vector space of m-homogeneous polynomials in n
variables.

• The monomials (zj)j∈J (m,n) form a basis of the space P(mCn),
and therefore

dimP(mCn) = |J (m, n)| =
(

n + m− 1
m

)

When m ∈ N is fixed
(n+m−1

m

)
∼ nm, as n goes to infinity.
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Norms on P(mCn)

• `n
p stands for Cn endowed with the norm

‖z‖`n
p
:=
( n∑

j=1

|zj|p
)1/p

if p <∞,

and
‖z‖`n

∞ := max
j
|zj|.
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Norms on P(mCn)

Uniform/sup norm:
For 1 ≤ p ≤ ∞,

‖P‖P(m`n
p) := sup

z∈B`n
p

∣∣P(z)∣∣.

Coefficients norm:
For 1 ≤ r <∞,

|P|r :=
( ∑

j∈J (m,n)

|cj(P)|r
) 1

r
,

and

|P|∞ := max
j∈J (m,n)

|cj|.

Question
How do they relate each to other?
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The problem...

More precisely,

Let Am
p,r(n) and Bm

r,p(n) be the smallest constants that fulfill the
following inequalities: for every m-homogeneous polynomial P in n
complex variables,

|P|r ≤ Am
p,r(n) ‖P‖P(m`n

p), ‖P‖P(m`n
p) ≤ Bm

r,p(n) |P|r.

∥∥∥(P(mCn), ‖ · ‖P(m`n
p)

)
id→
(
P(mCn), | · |r

)∥∥∥ = Am
p,r(n),∥∥∥(P(mCn), | · |r

)
id→
(
P(mCn), ‖ · ‖P(m`n

p)

)∥∥∥ = Bm
p,r(n).
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How these constants behave in terms of the number of variables n?
Which is their exact asymptotic growth?

Essentially, we want to relate the summability of the coefficients of a
given homogeneous polynomial with its uniform norm for `p-spaces.
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The easy part... Bm
r,p(n)

If (an)n and (bn)n are two sequences of real numbers we write
an � bn if there exists a constant C > 0 (independent of n) such that
an ≤ Cbn for every n and we denote an ∼ bn if an � bn and bn � an.

• Bm
r,p(n) ≡ the smallest constant such that for every m-homogeneous

polynomial P in n complex variables,

‖P‖P(m`n
p) ≤ Bm

r,p(n) |P|r.

Proposition
We have

Bm
r,p(n) ∼

{
1 for r ≤ p′,

nm(1− 1
p−

1
r ) for r ≥ p′.
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The real job... Am
p,r(n)

• Am
p,r(n) ≡ the smallest constant such that for every m-homogeneous

polynomial P in n complex variables,

|P|r ≤ Am
p,r(n) ‖P‖P(m`n

p).

Some known inequalities... Bohnenblust and E. Hille (1931), Hardy
and J. Littlewood (1934), Praciano-Pereira (1981), Dimant-Sevilla
(2013).

(i) Am
p, 2m

m+1
(n) ∼ 1 for p =∞.

(ii) Am
p, 2mp

mp+p−2m
(n) ∼ 1 for 2m ≤ p <∞.

(iii) Am
p, p

p−m
(n) ∼ 1 for m ≤ p ≤ 2m,
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The real job... Am
p,r(n)

Galicer, M., Muro (2016)



Am
p,r(n) ∼ 1 for (A) : [ 1

2 ≤
1
r ≤

m+1
2m −

1
p ] or [ 1

r ≤
1
2 ∧

m
p ≤ 1− 1

r ],

Am
p,r(n) ∼ n

m
p + 1

r−1 for (B) : [ 1
2m ≤

1
p ≤

1
m ∧ −

m
p + 1 ≤ 1

r ],

Am
p,r(n) ∼ nm( 1

p +
1
r−

1
2 )−

1
2 for (C) : [ m+1

2m ≤
1
r ∧

1
p ≤

1
2 ] or

[ 1
2 ≤

1
r ≤

m+1
2m ≤

1
p + 1

r ∧
1
p ≤

1
2 ],

Am
p,r(n) ∼ n

m
r +

1
p−1 for (D) : [ 1

2 ≤
1
p ∧ 1− 1

p ≤
1
r ],

Am
p,r(n)� n

m−1
r for (E) : [ 1

2 ≤
1
p ≤ 1− 1

r ],

Am
p,r(n) ∼ n

1
r for (F) : [ m−1

p ≤ 1− 1
r ∧

1
m ≤

1
p ≤

1
m−1 ].

Moreover, the power of n in (E) cannot be improved.

WHAT DOES THIS MEAN?
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The real job... Am
p,r(n)

(A)

(C)

(D)

(E)

(B)

(F)

1
2

1
2

1
m−1

1
m

1
m

1
2m

m+1
2m

1
p

1
r

Note that for m = 2 the square is filled.
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How to do this?

|P|r ≤ Am
p,r(n) ‖P‖P(m`n

p).

• Upper bounds Classical inequalities, multilinear interpolation,
properties of the associated multilinear form.

• Lower bounds Extreme polynomials
But... How?
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Idea:
Use the probabilistic method to find polynomials with small norm and
many non-zero coefficients.
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Randomness and polynomials

(εj)j∈J (m,n) independent Bernoulli random variables with
P(εj = 1) = P(εj = −1) = 1

2 .

P(z) :=
∑

j∈J (m,n)

εj(ω)zj.

Boas (2000) - Bayart (2010)

E
(
‖P‖P(m`n

p)

)
�

{
n1− 1

p if 1 ≤ p ≤ 2,

nm( 1
2−

1
p )+ 1

2 if 2 ≤ p ≤ ∞.
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Randomness and polynomials

Why the previous results are important to us?

For 1 ≤ p ≤ 2 we have E
(
‖P‖P(m`n

p)

)
� n1− 1

p .
There must be (θj)j∈J (m,n) such that the polynomial
P(z) :=

∑
j∈J (m,n) θjzj verifies:

‖P‖P(m`n
p) � n1− 1

p and |P|r = |J (m, n)|1/r ∼ nm/r.

Thus,

nm( 1
r + 1

p )−1
=

nm/r

n1− 1
p

� |P|r
‖P‖P(m`n

p)
≤ Am

p,r(n)
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Steiner polynomials

• For p ≤ r′ ( 1
r +

1
r′ = 1) that lower bound matches the upper bound.

• For p ≥ r′ they don’t match.

Galicer, Muro, Sevilla (2015)

Let m ≥ 2 there is S ⊂ J (m, n) with |S| � nm−1 and signs (θj)j∈S
such that the m-homogeneous polynomial P =

∑
j∈S θjzj satisfies

‖P‖P(m`n
p) �

{
log

3p−3
p (n) for 1 ≤ p ≤ 2,

log
3
p (n)nm( 1

2−
1
p ) for 2 ≤ p <∞.
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Interpolation Problem

Given a compatible couple (X,Y) of Banach spaces and 0 < θ < 1
we denote by [X,Y]θ the intermediate space in the complex
interpolation sense.

Remark

For X = Lp0(µ), Y = Lp1(µ) and 1
p = θ

p0
+ 1−θ

p1
it holds

[X,Y]θ = Lp(µ).

In particular [`n
p0
, `n

p1
]θ = `n

p.
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Interpolation Problem

Let 2 ≤ p0, p1 ≤ ∞, 0 < θ < 1 and n,m ∈ N.

we can think of...

P(m[`n
p0
, `n

p1
]θ) and [P(m`n

p0
),P(m`n

p1
)]θ.

Polynomial interpolation problem (PIP)
Is the norm of the natural identity

P(m[`n
p0
, `n

p1
]θ) ' [P(m`n

p0
),P(m`n

p1
)]θ,

independent of n?

For m = 2 the answer is affirmative [Defant, Michels (2000); Kouba
(2004)].
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Let’s go back to the graphic...

Remember:
∥∥∥(P(mCn), ‖ · ‖P(m`n

p)

)
id→
(
P(mCn), | · |r

)∥∥∥ = Am
p,r(n).

(A)

(C)

(D)

(E)

(B)

(F)

1
2

1
2

1
m−1

1
m

1
m

1
2m

m+1
2m

1
p

1
r

• Am
p,r(n) ∼ n

1
r for (p, r) ∈ (F).

• Assuming a positive answer to
the PIP we have,

Am
p,r(n)� n

θ
r for (p, r) ∈ (F),

with θ < 1.

CONTRADICTION.
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Mixed unconditionality in polynomial spaces

Let (Pi)i∈Λ be a Schauder basis of P(mCn). For 1 ≤ p, q ≤ ∞ let
χp,q((Pi)i∈Λ) be the best constant C > 0 such that

‖
∑
i∈Λ

θiciPi‖P(m`n
q) ≤ C‖

∑
i∈Λ

ciPi‖P(m`n
p),

for every (ci)i∈Λ ⊂ C and every choice of complex numbers (θi)i∈Λ

of modulus one.

The (p, q)-mixed unconditional constant of P(mCn) is defined as

χp,q(P(mCn)) := inf{χp,q((Pi)i∈Λ) : (Pi)i∈Λ basis for P(mCn)}.
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Mixed unconditionality in polynomial spaces

Galicer, M., Muro (2016)
χp,q(P(mCn)) ∼ 1 for (I),

χp,q(P(mCn)) ∼ nm( 1
p−

1
q + 1

2 )− 1
2 for (II),

χp,q(P(mCn)) ∼ n(m−1)(1− 1
q )+ 1

p−
1
q for (III),

χp,q(P(mCn)) ∼ε n(m−1)(1− 1
q )+ 1

p−
1
q for (III′).

where χp,q(P(mCn)) ∼ε n(m−1)(1− 1
q )+ 1

p−
1
q means that

n(m−1)(1− 1
q )+ 1

p−
1
q � χp,q(P(mCn))� n(m−1)(1− 1

q )+ 1
p−

1
q +ε

,

for every ε > 0.
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Mixed unconditionality in polynomial spaces
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Ideas of the Proof

We have the following relation:

χp,q(P(mCn)) ≤ χp,q
(
(zj)j∈J (m,n)

)
≤ 2mχp,q(P(mCn)).

Now we can focus on χp,q
(
(zj)j∈J (m,n)

)
.

• Upper bounds:

χp,q
(
(zj)j∈J (m,n)

)
≤ Bm

q,r(n)A
m
p,r(n) for every 1 ≤ r ≤ ∞.

Minimize on r.

Sets of monomial convergence for P(m`p).

Multilinear interpolation.

• Lower bounds Extreme polynomials: Boas - Bayart
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Monomial Unconditionality

For n,m ∈ N let χM(P(mYn),P(mXn)) be the best constant C > 0
such that

sup
z∈BXn

∣∣∣∣∣∣
∑

j∈J (m,n)

θjcjzj

∣∣∣∣∣∣ ≤ C sup
z∈BYn

∣∣∣∣∣∣
∑

j∈J (m,n)

cjzj

∣∣∣∣∣∣ ,
for every (cj)j∈J (m,n) ⊂ C and every choice of complex numbers
(θj)j∈J (m,n) of modulus one.

Remark
When Xn = `n

q and Yn = `n
p we recover the notion of (p, q)-mixed

unconditional constant for the monomial basis

χM(P(mYn),P(mXn)) = χp,q((zj)j∈J (m,n)).
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Monomial Convergence

The following is usually called the domain of monomial convergence
for P(m`p),

dom(P(m`p)) :=
{

z ∈ `∞ :
∑

j∈J (m)

|cj(P)zj| <∞ for every P ∈ P(m`p)
}
,

where J (m) = ∪n≥1J (m, n)

Defant, Maestre, Prengel (2009)
Given Y a Banach sequence spaces, the following are equivalent

i) Y ⊂ dom(P(m`p)),

ii) χM(P(m`n
p),P(mYn)) ∼ 1.
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Monomial Convergence

Defant, Maestre, Prengel (2009)

`qm ⊂ dom(P(m`p)) where

1
qm

=
1
p
+

m− 1
2m

.

Bayart, Defant, Schlüters (2015)

For p ≤ 2, `qm−ε ⊂ mon(P(m`p))
for every ε > 0 where
1

qm
= m−1

m + 1
mp .

Galicer, M., Muro (2016)

d(wλ, qm) ⊂ mon(P(m`p)).

(I)

(II)
(III)

(III′)

1
2

1
2

2m−1
2m

m−1
2m

0 1
p

1
q



Starting up... Comparing the norms Random polynomials Interpolation Problem Mixed unconditionality

Thanks!!!
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