The sup-norm vs. the norm of the coefficients

Martín I. Mansilla ${ }^{1}$
joint work with Daniel Galicer and Santiago Muro

${ }^{1}$ Universidad de Buenos Aires and CONICET
Workshop on Infinite Dimensional Analysis Valencia 2017

Organization of the talk

Organization of the talk

- The basics.

Organization of the talk

- The basics.
- Comparing the norms.

Organization of the talk

- The basics.
- Comparing the norms.
- Random polynomials.

Organization of the talk

- The basics.
- Comparing the norms.
- Random polynomials.
- Interpolation problem.

Organization of the talk

- The basics.
- Comparing the norms.
- Random polynomials.
- Interpolation problem.
- Mixed unconditionality.

The basics

Examples:

- $P_{1}\left(z_{1}, z_{2}, z_{3}\right)=3 z_{1}^{2}-2 z_{1} z_{2}+7 z_{2}^{2}-5 z_{3}^{2}+4 z_{1} z_{3}$.

The basics

Examples:

- $P_{1}\left(z_{1}, z_{2}, z_{3}\right)=3 z_{1}^{2}-2 z_{1} z_{2}+7 z_{2}^{2}-5 z_{3}^{2}+4 z_{1} z_{3}$.
- $P_{2}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=5 z_{1}^{5}+\frac{3}{2} z_{1} z_{2}^{4}-z_{2}^{3} z_{3} z_{4}+2 z_{3} z_{4}^{4}$.

The basics

Examples:

- $P_{1}\left(z_{1}, z_{2}, z_{3}\right)=3 z_{1}^{2}-2 z_{1} z_{2}+7 z_{2}^{2}-5 z_{3}^{2}+4 z_{1} z_{3}$.
- $P_{2}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=5 z_{1}^{5}+\frac{3}{2} z_{1} z_{2}^{4}-z_{2}^{3} z_{3} z_{4}+2 z_{3} z_{4}^{4}$.

In both cases, all the terms have the same degree (\equiv homogeneity degree).

The basics

Definition

An m-homogeneous polynomial in n complex variables is a function

$$
P: \mathbb{C}^{n} \longrightarrow \mathbb{C}
$$

that can be written as

$$
P(z)=\sum_{1 \leq j_{1} \leq \cdots \leq j_{m} \leq n} c_{\left(j_{1}, \ldots, j_{m}\right)}(P) z_{j_{1}} \cdots z_{j_{m}}
$$

The basics

Definition

An m-homogeneous polynomial in n complex variables is a function

$$
P: \mathbb{C}^{n} \longrightarrow \mathbb{C}
$$

that can be written as

$$
P(z)=\sum_{1 \leq j_{1} \leq \cdots \leq j_{m} \leq n} c_{\left(j_{1}, \ldots, j_{m}\right)}(P) z_{j_{1}} \cdots z_{j_{m}}=\sum_{\mathbf{j} \in \mathcal{J}(m, n)} c_{\mathbf{j}}(P) z_{\mathbf{j}}
$$

The basics

Definition

An m-homogeneous polynomial in n complex variables is a function

$$
P: \mathbb{C}^{n} \longrightarrow \mathbb{C}
$$

that can be written as

$$
P(z)=\sum_{1 \leq j_{1} \leq \cdots \leq j_{m} \leq n} c_{\left(j_{1}, \ldots, j_{m}\right)}(P) z_{j_{1}} \cdots z_{j_{m}}=\sum_{\mathbf{j} \in \mathcal{J}(m, n)} c_{\mathbf{j}}(P) z_{\mathbf{j}}
$$

- $c_{\mathbf{j}}(P)=c_{\left(j_{1}, \ldots, j_{m}\right)}(P) \in \mathbb{C}$.

The basics

Definition

An m-homogeneous polynomial in n complex variables is a function

$$
P: \mathbb{C}^{n} \longrightarrow \mathbb{C}
$$

that can be written as

$$
P(z)=\sum_{1 \leq j_{1} \leq \cdots \leq j_{m} \leq n} c_{\left(j_{1}, \ldots, j_{m}\right)}(P) z_{j_{1}} \cdots z_{j_{m}}=\sum_{\mathbf{j} \in \mathcal{J}(m, n)} c_{\mathbf{j}}(P) z_{\mathbf{j}}
$$

- $c_{\mathbf{j}}(P)=c_{\left(j_{1}, \ldots, j_{m}\right)}(P) \in \mathbb{C}$.
$\bullet z_{\mathbf{j}}=z_{j_{1}} \cdots z_{j_{m}} \rightsquigarrow$ monomials.

The basics

Definition

An m-homogeneous polynomial in n complex variables is a function

$$
P: \mathbb{C}^{n} \longrightarrow \mathbb{C},
$$

that can be written as

$$
P(z)=\sum_{1 \leq j_{1} \leq \cdots \leq j_{m} \leq n} c_{\left(j_{1}, \ldots, j_{m}\right)}(P) z_{j_{1}} \cdots z_{j_{m}}=\sum_{\mathbf{j} \in \mathcal{J}(m, n)} c_{\mathbf{j}}(P) z_{\mathbf{j}}
$$

- $c_{\mathbf{j}}(P)=c_{\left(j_{1}, \ldots, j_{m}\right)}(P) \in \mathbb{C}$.
- $z_{\mathbf{j}}=z_{j_{1}} \cdots z_{j_{m}} \rightsquigarrow$ monomials.
- $\mathcal{J}(m, n):=\left\{\mathbf{j}=\left(j_{1}, \ldots, j_{m}\right) \in\{1, \ldots, n\}^{m}: j_{1} \leq j_{2} \leq \cdots \leq j_{m}\right\}$.

The basics

- $\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right) \equiv$ the vector space of m-homogeneous polynomials in n variables.

The basics

- $\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right) \equiv$ the vector space of m-homogeneous polynomials in n variables.
- The monomials $\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}$ form a basis of the space $\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)$,

The basics

- $\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right) \equiv$ the vector space of m-homogeneous polynomials in n variables.
- The monomials $\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}$ form a basis of the space $\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)$, and therefore

$$
\operatorname{dim} \mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)=|\mathcal{J}(m, n)|=\binom{n+m-1}{m}
$$

The basics

- $\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right) \equiv$ the vector space of m-homogeneous polynomials in n variables.
- The monomials $\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}$ form a basis of the space $\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)$, and therefore

$$
\operatorname{dim} \mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)=|\mathcal{J}(m, n)|=\binom{n+m-1}{m}
$$

When $m \in \mathbb{N}$ is fixed $\binom{n+m-1}{m} \sim n^{m}$, as n goes to infinity.

Norms on $\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)$

- ℓ_{p}^{n} stands for \mathbb{C}^{n} endowed with the norm

$$
\|z\|_{\ell_{p}^{n}}:=\left(\sum_{j=1}^{n}\left|z_{j}\right|^{p}\right)^{1 / p} \text { if } p<\infty
$$

and

$$
\|z\|_{\ell_{\infty}^{n}}:=\max _{j}\left|z_{j}\right| .
$$

Norms on $\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)$

Uniform/sup norm:
For $1 \leq p \leq \infty$,

$$
\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)}:=\sup _{z \in B_{Q_{p}^{n}}}|P(z)| .
$$

Norms on $\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)$

Uniform/sup norm:
For $1 \leq p \leq \infty$,

$$
\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)}:=\sup _{z \in B_{\ell_{p}^{n}}}|P(z)| .
$$

Coefficients norm:

For $1 \leq r<\infty$,

$$
|P|_{r}:=\left(\sum_{\mathbf{j} \in \mathcal{J}(m, n)}\left|c_{\mathbf{j}}(P)\right|^{r}\right)^{\frac{1}{r}},
$$

and

$$
|P|_{\infty}:=\max _{\mathbf{j} \in \mathcal{J}(m, n)}\left|c_{\mathbf{j}}\right| .
$$

Norms on $\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)$

Uniform/sup norm:
For $1 \leq p \leq \infty$,

$$
\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)}:=\sup _{z \in B_{\ell_{p}^{n}}}|P(z)| .
$$

Coefficients norm:

For $1 \leq r<\infty$,

$$
|P|_{r}:=\left(\sum_{\mathbf{j} \in \mathcal{J}(m, n)}\left|c_{\mathbf{j}}(P)\right|^{r}\right)^{\frac{1}{r}},
$$

and

$$
|P|_{\infty}:=\max _{\mathbf{j} \in \mathcal{J}(m, n)}\left|c_{\mathbf{j}}\right| .
$$

Question

How do they relate each to other?

The problem...

More precisely,

Let $A_{p, r}^{m}(n)$ and $B_{r, p}^{m}(n)$ be the smallest constants that fulfill the following inequalities: for every m-homogeneous polynomial P in n complex variables,

$$
|P|_{r} \leq A_{p, r}^{m}(n)\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)}, \quad\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)} \leq B_{r, p}^{m}(n)|P|_{r} .
$$

The problem...

More precisely,

Let $A_{p, r}^{m}(n)$ and $B_{r, p}^{m}(n)$ be the smallest constants that fulfill the following inequalities: for every m-homogeneous polynomial P in n complex variables,

$$
|P|_{r} \leq A_{p, r}^{m}(n)\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)}, \quad\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)} \leq B_{r, p}^{m}(n)|P|_{r} .
$$

$$
\begin{aligned}
& \left\|\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right),\|\cdot\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)}\right) \xrightarrow{i d}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right),|\cdot|_{r}\right)\right\|=A_{p, r}^{m}(n), \\
& \left\|\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right),|\cdot|_{r}\right) \xrightarrow{i d}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right),\|\cdot\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)}\right)\right\|=B_{p, r}^{m}(n) .
\end{aligned}
$$

The problem...

More precisely,

Let $A_{p, r}^{m}(n)$ and $B_{r, p}^{m}(n)$ be the smallest constants that fulfill the following inequalities: for every m-homogeneous polynomial P in n complex variables,

$$
|P|_{r} \leq A_{p, r}^{m}(n)\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)}, \quad\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)} \leq B_{r, p}^{m}(n)|P|_{r} .
$$

How these constants behave in terms of the number of variables n ? Which is their exact asymptotic growth?

The problem...

More precisely,

Let $A_{p, r}^{m}(n)$ and $B_{r, p}^{m}(n)$ be the smallest constants that fulfill the following inequalities: for every m-homogeneous polynomial P in n complex variables,

$$
|P|_{r} \leq A_{p, r}^{m}(n)\|P\|_{\mathcal{P}\left(m \ell_{p}^{n}\right)}, \quad\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)} \leq B_{r, p}^{m}(n)|P|_{r} .
$$

How these constants behave in terms of the number of variables n ? Which is their exact asymptotic growth?

Essentially, we want to relate the summability of the coefficients of a given homogeneous polynomial with its uniform norm for ℓ_{p}-spaces.

The easy part... $B_{r, p}^{m}(n)$

If $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ are two sequences of real numbers we write $a_{n} \ll b_{n}$ if there exists a constant $C>0$ (independent of n) such that $a_{n} \leq C b_{n}$ for every n and we denote $a_{n} \sim b_{n}$ if $a_{n} \ll b_{n}$ and $b_{n} \ll a_{n}$.

The easy part... $B_{r, p}^{m}(n)$

If $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ are two sequences of real numbers we write $a_{n} \ll b_{n}$ if there exists a constant $C>0$ (independent of n) such that $a_{n} \leq C b_{n}$ for every n and we denote $a_{n} \sim b_{n}$ if $a_{n} \ll b_{n}$ and $b_{n} \ll a_{n}$.

- $B_{r, p}^{m}(n) \equiv$ the smallest constant such that for every m-homogeneous polynomial P in n complex variables,

$$
\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)} \leq B_{r, p}^{m}(n)|P|_{r} .
$$

The easy part... $B_{r, p}^{m}(n)$

If $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ are two sequences of real numbers we write $a_{n} \ll b_{n}$ if there exists a constant $C>0$ (independent of n) such that $a_{n} \leq C b_{n}$ for every n and we denote $a_{n} \sim b_{n}$ if $a_{n} \ll b_{n}$ and $b_{n} \ll a_{n}$.

- $B_{r, p}^{m}(n) \equiv$ the smallest constant such that for every m-homogeneous polynomial P in n complex variables,

$$
\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)} \leq B_{r, p}^{m}(n)|P|_{r} .
$$

Proposition

We have

$$
B_{r, p}^{m}(n) \sim \begin{cases}1 & \text { for } r \leq p^{\prime} \\ n^{m\left(1-\frac{1}{p}-\frac{1}{r}\right)} & \text { for } r \geq p^{\prime}\end{cases}
$$

The real job... $A_{p, r}^{m}(n)$

- $A_{p, r}^{m}(n) \equiv$ the smallest constant such that for every m-homogeneous polynomial P in n complex variables,

$$
|P|_{r} \leq A_{p, r}^{m}(n)\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)} .
$$

The real job... $A_{p, r}^{m}(n)$

- $A_{p, r}^{m}(n) \equiv$ the smallest constant such that for every m-homogeneous polynomial P in n complex variables,

$$
|P|_{r} \leq A_{p, r}^{m}(n)\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)}
$$

Some known inequalities... Bohnenblust and E. Hille (1931), Hardy and J. Littlewood (1934), Praciano-Pereira (1981), Dimant-Sevilla (2013).

$$
\begin{equation*}
A_{p, \frac{2 m}{m+1}}^{m}(n) \sim 1 \quad \text { for } p=\infty \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{align*}
& A_{p, \frac{2 m p}{m p+p-2 m}}^{m}(n) \sim 1 \quad \text { for } 2 m \leq p<\infty \text {. } \\
& A_{p, \frac{p}{m-m}}^{m}(n) \sim 1 \quad \text { for } m \leq p \leq 2 m, \tag{iii}
\end{align*}
$$

The real job... $A_{p, r}^{m}(n)$

Galicer, M., Muro (2016)

$$
\left\{\begin{array}{l}
A_{p, r}^{m}(n) \sim 1 \\
A_{p, r}^{m}(n) \sim n^{\frac{m}{p}+\frac{1}{r}-1} \\
A_{p, r}^{m}(n) \sim n^{m\left(\frac{1}{p}+\frac{1}{r}-\frac{1}{2}\right)-\frac{1}{2}} \\
A_{p, r}^{m}(n) \sim n^{\frac{m}{r}+\frac{1}{p}-1} \\
A_{p, r}^{m}(n) \ll n^{\frac{m-1}{r}} \\
A_{p, r}^{m}(n) \sim n^{\frac{1}{r}}
\end{array}\right.
$$

$$
\text { for }(A):\left[\frac{1}{2} \leq \frac{1}{r} \leq \frac{m+1}{2 m}-\frac{1}{p}\right] \text { or }\left[\frac{1}{r} \leq \frac{1}{2} \wedge \frac{m}{p} \leq 1-\frac{1}{r}\right]
$$

$$
\text { for }(B):\left[\frac{1}{2 m} \leq \frac{1}{p} \leq \frac{1}{m} \wedge-\frac{m}{p}+1 \leq \frac{1}{r}\right]
$$

$$
\text { for }(C):\left[\frac{m+1}{2 m} \leq \frac{1}{r} \wedge \frac{1}{p} \leq \frac{1}{2}\right] \text { or }
$$

$$
\left[\frac{1}{2} \leq \frac{1}{r} \leq \frac{m+1}{2 m} \leq \frac{1}{p}+\frac{1}{r} \wedge \frac{1}{p} \leq \frac{1}{2}\right]
$$

$$
\text { for }(D):\left[\frac{1}{2} \leq \frac{1}{p} \wedge 1-\frac{1}{p} \leq \frac{1}{r}\right]
$$

$$
\text { for }(E):\left[\frac{1}{2} \leq \frac{1}{p} \leq 1-\frac{1}{r}\right]
$$

$$
\text { for }(F):\left[\frac{m-1}{p} \leq 1-\frac{1}{r} \wedge \frac{1}{m} \leq \frac{1}{p} \leq \frac{1}{m-1}\right]
$$

Moreover, the power of n in (E) cannot be improved.

The real job... $A_{p, r}^{m}(n)$

Galicer, M., Muro (2016)

$$
\left\{\begin{array}{l}
A_{p, r}^{m}(n) \sim 1 \\
A_{p, r}^{m}(n) \sim n^{\frac{m}{p}}+\frac{1}{r}-1 \\
A_{p, r}^{m}(n) \sim n^{m\left(\frac{1}{p}+\frac{1}{r}-\frac{1}{2}\right)-\frac{1}{2}} \\
A_{p, r}^{m}(n) \sim n^{\frac{m}{r}}+\frac{1}{p}-1 \\
A_{p, r}^{m}(n) \ll n^{\frac{m-1}{r}} \\
A_{p, r}^{m}(n) \sim n^{\frac{1}{r}}
\end{array}\right.
$$

$$
\text { for }(A):\left[\frac{1}{2} \leq \frac{1}{r} \leq \frac{m+1}{2 m}-\frac{1}{p}\right] \text { or }\left[\frac{1}{r} \leq \frac{1}{2} \wedge \frac{m}{p} \leq 1-\frac{1}{r}\right] \text {, }
$$

$$
\text { for }(B):\left[\frac{1}{2 m} \leq \frac{1}{p} \leq \frac{1}{m} \wedge-\frac{m}{p}+1 \leq \frac{1}{r}\right] \text {, }
$$

$$
\text { for }(C):\left[\frac{m+1}{2 m} \leq \frac{1}{r} \wedge \frac{1}{p} \leq \frac{1}{2}\right] \text { or }
$$

$$
\left[\frac{1}{2} \leq \frac{1}{r} \leq \frac{m+1}{2 m} \leq \frac{1}{p}+\frac{1}{r} \wedge \frac{1}{p} \leq \frac{1}{2}\right]
$$

$$
\text { for }(D):\left[\frac{1}{2} \leq \frac{1}{p} \wedge 1-\frac{1}{p} \leq \frac{1}{r}\right],
$$

$$
\text { for }(E):\left[\frac{1}{2} \leq \frac{1}{p} \leq 1-\frac{1}{r}\right] \text {, }
$$

$$
\text { for }(F):\left[\frac{m-1}{p} \leq 1-\frac{1}{r} \wedge \frac{1}{m} \leq \frac{1}{p} \leq \frac{1}{m-1}\right]
$$

Moreover, the power of n in (E) cannot be improved.

WHAT DOES THIS MEAN?

The real job... $A_{p, r}^{m}(n)$

The real job... $A_{p, r}^{m}(n)$

Note that for $m=2$ the square is filled.

How to do this?

$$
|P|_{r} \leq A_{p, r}^{m}(n)\|P\|_{\mathcal{P}\left(m_{p}^{n}\right)} .
$$

How to do this?

$$
|P|_{r} \leq A_{p, r}^{m}(n)\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)} .
$$

- Upper bounds \rightsquigarrow Classical inequalities, multilinear interpolation, properties of the associated multilinear form.

How to do this?

$$
|P|_{r} \leq A_{p, r}^{m}(n)\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)} .
$$

- Upper bounds \rightsquigarrow Classical inequalities, multilinear interpolation, properties of the associated multilinear form.
- Lower bounds \rightsquigarrow Extreme polynomials

How to do this?

$$
|P|_{r} \leq A_{p, r}^{m}(n)\|P\|_{\mathcal{P}\left(m_{p}^{n}\right)} .
$$

- Upper bounds \rightsquigarrow Classical inequalities, multilinear interpolation, properties of the associated multilinear form.
- Lower bounds \rightsquigarrow Extreme polynomials

But... How?

How to do this?

- Lower bounds \rightsquigarrow Extreme polynomials But... How?

How to do this?

- Lower bounds \rightsquigarrow Extreme polynomials

But... How?

Idea:

Use the probabilistic method to find polynomials with small norm and many non-zero coefficients.

Randomness and polynomials

$\left(\varepsilon_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)} \rightsquigarrow$ independent Bernoulli random variables with $\mathbb{P}\left(\varepsilon_{\mathbf{j}}=1\right)=\mathbb{P}\left(\varepsilon_{\mathbf{j}}=-1\right)=\frac{1}{2}$.

Randomness and polynomials

$\left(\varepsilon_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)} \rightsquigarrow$ independent Bernoulli random variables with $\mathbb{P}\left(\varepsilon_{\mathbf{j}}=1\right)=\mathbb{P}\left(\varepsilon_{\mathbf{j}}=-1\right)=\frac{1}{2}$.

$$
P(z):=\sum_{\mathbf{j} \in \mathcal{J}(m, n)} \varepsilon_{\mathbf{j}}(\omega) z_{\mathbf{j}} .
$$

Randomness and polynomials

$\left(\varepsilon_{\mathbf{j}} \mathbf{j}_{\mathbf{j} \in \mathcal{J}(m, n)} \rightsquigarrow\right.$ independent Bernoulli random variables with $\mathbb{P}\left(\varepsilon_{\mathbf{j}}=1\right)=\mathbb{P}\left(\varepsilon_{\mathbf{j}}=-1\right)=\frac{1}{2}$.

$$
P(z):=\sum_{\mathbf{j} \in \mathcal{J}(m, n)} \varepsilon_{\mathbf{j}}(\omega) z_{\mathbf{j}}
$$

Boas (2000) - Bayart (2010)

$$
\mathbb{E}\left(\|P\|_{\mathcal{P}\left(m \ell_{p}^{n}\right)}\right) \ll \begin{cases}n^{1-\frac{1}{p}} & \text { if } 1 \leq p \leq 2 \\ n^{m\left(\frac{1}{2}-\frac{1}{p}\right)+\frac{1}{2}} & \text { if } 2 \leq p \leq \infty\end{cases}
$$

Randomness and polynomials

Why the previous results are important to us?

Randomness and polynomials

Why the previous results are important to us?

For $1 \leq p \leq 2$ we have $\mathbb{E}\left(\|P\|_{\mathcal{P}\left({ }^{\left(\ell_{p}^{n}\right)}\right.}\right) \ll n^{1-\frac{1}{p}}$.

Randomness and polynomials

Why the previous results are important to us?

For $1 \leq p \leq 2$ we have $\mathbb{E}\left(\|P\|_{\mathcal{P}\left({ }^{\left(\ell_{p}^{n}\right)}\right.}\right) \ll n^{1-\frac{1}{p}}$.
There must be $\left(\theta_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}$ such that the polynomial $P(z):=\sum_{\mathbf{j} \in \mathcal{J}(m, n)} \theta_{\mathbf{j}} z_{\mathbf{j}}$ verifies:

$$
\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)} \ll n^{1-\frac{1}{p}}
$$

Randomness and polynomials

Why the previous results are important to us?

For $1 \leq p \leq 2$ we have $\mathbb{E}\left(\|P\|_{\mathcal{P}\left({ }^{\left(\ell_{p}^{n}\right)}\right.}\right) \ll n^{1-\frac{1}{p}}$.
There must be $\left(\theta_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}$ such that the polynomial $P(z):=\sum_{\mathbf{j} \in \mathcal{J}(m, n)} \theta_{\mathbf{j}} z_{\mathbf{j}}$ verifies:

$$
\|P\|_{\mathcal{P}\left(\ell_{p}^{n}\right)} \ll n^{1-\frac{1}{p}} \text { and }|P|_{r}=|\mathcal{J}(m, n)|^{1 / r} \sim n^{m / r} .
$$

Randomness and polynomials

Why the previous results are important to us?

For $1 \leq p \leq 2$ we have $\mathbb{E}\left(\|P\|_{\mathcal{P}\left({ }^{\left(\ell_{p}^{n}\right)}\right.}\right) \ll n^{1-\frac{1}{p}}$.
There must be $\left(\theta_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}$ such that the polynomial $P(z):=\sum_{\mathbf{j} \in \mathcal{J}(m, n)} \theta_{\mathbf{j}} z_{\mathbf{j}}$ verifies:

$$
\|P\|_{\mathcal{P}\left(\ell_{p}^{n}\right)} \ll n^{1-\frac{1}{p}} \text { and }|P|_{r}=|\mathcal{J}(m, n)|^{1 / r} \sim n^{m / r} .
$$

Thus,

$$
n^{m\left(\frac{1}{r}+\frac{1}{p}\right)-1}=\frac{n^{m / r}}{n^{1-\frac{1}{p}}} \ll \frac{|P|_{r}}{\|P\|_{\mathcal{P}\left(m \ell_{p}^{n}\right)}} \leq A_{p, r}^{m}(n)
$$

Steiner polynomials

- For $p \leq r^{\prime}\left(\frac{1}{r}+\frac{1}{r^{\prime}}=1\right)$ that lower bound matches the upper bound.

Steiner polynomials

- For $p \leq r^{\prime}\left(\frac{1}{r}+\frac{1}{r^{\prime}}=1\right)$ that lower bound matches the upper bound.
- For $p \geq r^{\prime}$ they don't match.

Steiner polynomials

- For $p \leq r^{\prime}\left(\frac{1}{r}+\frac{1}{r^{\prime}}=1\right)$ that lower bound matches the upper bound.
- For $p \geq r^{\prime}$ they don't match.

Galicer, Muro, Sevilla (2015)

Let $m \geq 2$ there is $\mathcal{S} \subset \mathcal{J}(m, n)$ with $|\mathcal{S}| \gg n^{m-1}$ and signs $\left(\theta_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{S}}$ such that the m-homogeneous polynomial $P=\sum_{\mathbf{j} \in \mathcal{S}} \theta_{\mathbf{j}} z_{\mathbf{j}}$ satisfies

$$
\|P\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)} \ll \begin{cases}\log ^{\frac{3 p-3}{p}}(n) & \text { for } 1 \leq p \leq 2 \\ \log ^{\frac{3}{p}}(n) n^{m\left(\frac{1}{2}-\frac{1}{p}\right)} & \text { for } 2 \leq p<\infty\end{cases}
$$

Interpolation Problem

Given a compatible couple (X, Y) of Banach spaces and $0<\theta<1$ we denote by $[X, Y]_{\theta}$ the intermediate space in the complex interpolation sense.

Interpolation Problem

Given a compatible couple (X, Y) of Banach spaces and $0<\theta<1$ we denote by $[X, Y]_{\theta}$ the intermediate space in the complex interpolation sense.

Remark

For $X=L^{p_{0}}(\mu), Y=L^{p_{1}}(\mu)$ and $\frac{1}{p}=\frac{\theta}{p_{0}}+\frac{1-\theta}{p_{1}}$ it holds $[X, Y]_{\theta}=L^{p}(\mu)$.

Interpolation Problem

Given a compatible couple (X, Y) of Banach spaces and $0<\theta<1$ we denote by $[X, Y]_{\theta}$ the intermediate space in the complex interpolation sense.

Remark

For $X=L^{p_{0}}(\mu), Y=L^{p_{1}}(\mu)$ and $\frac{1}{p}=\frac{\theta}{p_{0}}+\frac{1-\theta}{p_{1}}$ it holds $[X, Y]_{\theta}=L^{p}(\mu)$.

$$
\text { In particular }\left[\ell_{p_{0}}^{n}, \ell_{p_{1}}^{n}\right]_{\theta}=\ell_{p}^{n} .
$$

Interpolation Problem

Let $2 \leq p_{0}, p_{1} \leq \infty, 0<\theta<1$ and $n, m \in \mathbb{N}$.

Interpolation Problem

Let $2 \leq p_{0}, p_{1} \leq \infty, 0<\theta<1$ and $n, m \in \mathbb{N}$. we can think of...

Interpolation Problem

Let $2 \leq p_{0}, p_{1} \leq \infty, 0<\theta<1$ and $n, m \in \mathbb{N}$. we can think of...

$$
\mathcal{P}\left({ }^{m}\left[\ell_{p_{0}}^{n}, \ell_{p_{1}}^{n}\right]_{\theta}\right)
$$

Interpolation Problem

Let $2 \leq p_{0}, p_{1} \leq \infty, 0<\theta<1$ and $n, m \in \mathbb{N}$. we can think of...

$$
\mathcal{P}\left({ }^{m}\left[\ell_{p_{0}}^{n}, \ell_{p_{1}}^{n}\right]_{\theta}\right) \text { and }
$$

Interpolation Problem

Let $2 \leq p_{0}, p_{1} \leq \infty, 0<\theta<1$ and $n, m \in \mathbb{N}$. we can think of...

$$
\mathcal{P}\left({ }^{m}\left[\ell_{p_{0}}^{n}, \ell_{p_{1}}^{n}\right]_{\theta}\right) \text { and }\left[\mathcal{P}\left({ }^{m} \ell_{p_{0}}^{n}\right), \mathcal{P}\left({ }^{m} \ell_{p_{1}}^{n}\right)\right]_{\theta} .
$$

Interpolation Problem

Let $2 \leq p_{0}, p_{1} \leq \infty, 0<\theta<1$ and $n, m \in \mathbb{N}$.
we can think of...

$$
\mathcal{P}\left({ }^{m}\left[\ell_{p_{0}}^{n}, \ell_{p_{1}}^{n}\right]_{\theta}\right) \text { and }\left[\mathcal{P}\left({ }^{m} \ell_{p_{0}}^{n}\right), \mathcal{P}\left({ }^{m} \ell_{p_{1}}^{n}\right)\right]_{\theta} .
$$

Polynomial interpolation problem (PIP)

Is the norm of the natural identity

$$
\mathcal{P}\left({ }^{m}\left[\ell_{p_{0}}^{n}, \ell_{p_{1}}^{n}\right]_{\theta}\right) \simeq\left[\mathcal{P}\left({ }^{m} \ell_{p_{0}}^{n}\right), \mathcal{P}\left({ }^{m} \ell_{p_{1}}^{n}\right)\right]_{\theta},
$$

independent of n ?

Interpolation Problem

Let $2 \leq p_{0}, p_{1} \leq \infty, 0<\theta<1$ and $n, m \in \mathbb{N}$.
we can think of...

$$
\mathcal{P}\left({ }^{m}\left[\ell_{p_{0}}^{n}, \ell_{p_{1}}^{n}\right]_{\theta}\right) \text { and }\left[\mathcal{P}\left({ }^{m} \ell_{p_{0}}^{n}\right), \mathcal{P}\left({ }^{m} \ell_{p_{1}}^{n}\right)\right]_{\theta} .
$$

Polynomial interpolation problem (PIP)

Is the norm of the natural identity

$$
\mathcal{P}\left({ }^{m}\left[\ell_{p_{0}}^{n}, \ell_{p_{1}}^{n}\right]_{\theta}\right) \simeq\left[\mathcal{P}\left({ }^{m} \ell_{p_{0}}^{n}\right), \mathcal{P}\left({ }^{m} \ell_{p_{1}}^{n}\right)\right]_{\theta},
$$

independent of n ?

For $m=2$ the answer is affirmative [Defant, Michels (2000); Kouba (2004)].

Let's go back to the graphic...

Remember: $\left\|\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right),\|\cdot\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)}\right) \xrightarrow{i d}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right),|\cdot|_{r}\right)\right\|=A_{p, r}^{m}(n)$.

Let's go back to the graphic...

Remember: $\left\|\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right),\|\cdot\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)}\right) \xrightarrow{i d}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right),|\cdot|_{r}\right)\right\|=A_{p, r}^{m}(n)$.

Let's go back to the graphic...

Remember: $\left\|\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right),\|\cdot\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)}\right) \xrightarrow{i d}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right),|\cdot|_{r}\right)\right\|=A_{p, r}^{m}(n)$.

Let's go back to the graphic...

Remember: $\left\|\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right),\|\cdot\|_{\mathcal{P}\left({ }^{m} n_{p}^{n}\right)}\right) \xrightarrow{i d}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right),|\cdot| r\right)\right\|=A_{p, r}^{m}(n)$.

- $A_{p, r}^{m}(n) \sim n^{\frac{1}{r}}$ for $(p, r) \in(F)$.
- Assuming a positive answer to the PIP we have,

$$
\begin{aligned}
& A_{p, r}^{m}(n) \ll n^{\frac{\theta}{r}} \quad \text { for }(p, r) \in(F), \\
& \text { with } \theta<1 .
\end{aligned}
$$

Let's go back to the graphic...

Remember: $\left\|\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right),\|\cdot\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)}\right) \xrightarrow{i d}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right),|\cdot|_{r}\right)\right\|=A_{p, r}^{m}(n)$.

- $A_{p, r}^{m}(n) \sim n^{\frac{1}{r}} \quad$ for $(p, r) \in(F)$.
- Assuming a positive answer to the PIP we have,

$$
\begin{aligned}
& A_{p, r}^{m}(n) \ll n^{\frac{\theta}{r}} \quad \text { for }(p, r) \in(F), \\
& \text { with } \theta<1
\end{aligned}
$$

CONTRADICTION.

Mixed unconditionality in polynomial spaces

Let $\left(P_{i}\right)_{i \in \Lambda}$ be a Schauder basis of $\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)$. For $1 \leq p, q \leq \infty$ let $\chi_{p, q}\left(\left(P_{i}\right)_{i \in \Lambda}\right)$ be the best constant $C>0$ such that

$$
\left\|\sum_{i \in \Lambda} \theta_{i} c_{i} P_{i}\right\|_{\mathcal{P}\left({ }^{m} \ell_{q}^{n}\right)} \leq C\left\|\sum_{i \in \Lambda} c_{i} P_{i}\right\|_{\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)},
$$

for every $\left(c_{i}\right)_{i \in \Lambda} \subset \mathbb{C}$ and every choice of complex numbers $\left(\theta_{i}\right)_{i \in \Lambda}$ of modulus one.

Mixed unconditionality in polynomial spaces

Let $\left(P_{i}\right)_{i \in \Lambda}$ be a Schauder basis of $\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)$. For $1 \leq p, q \leq \infty$ let $\chi_{p, q}\left(\left(P_{i}\right)_{i \in \Lambda}\right)$ be the best constant $C>0$ such that

$$
\left\|\sum_{i \in \Lambda} \theta_{i} c_{i} P_{i}\right\|_{\mathcal{P}\left(\ell_{q}^{n}\right)} \leq C\left\|\sum_{i \in \Lambda} c_{i} P_{i}\right\|_{\mathcal{P}\left(\ell_{p}^{m}\right)},
$$

for every $\left(c_{i}\right)_{i \in \Lambda} \subset \mathbb{C}$ and every choice of complex numbers $\left(\theta_{i}\right)_{i \in \Lambda}$ of modulus one.

The (p, q)-mixed unconditional constant of $\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)$ is defined as

$$
\chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right):=\inf \left\{\chi_{p, q}\left(\left(P_{i}\right)_{i \in \Lambda}\right):\left(P_{i}\right)_{i \in \Lambda} \text { basis for } \mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right\}
$$

Mixed unconditionality in polynomial spaces

Galicer, M., Muro (2016)

$$
\begin{cases}\chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \sim 1 & \text { for }(I), \\ \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \sim n^{m\left(\frac{1}{p}-\frac{1}{q}+\frac{1}{2}\right)-\frac{1}{2}} & \text { for }(I I), \\ \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \sim n^{(m-1)\left(1-\frac{1}{q}\right)+\frac{1}{p}-\frac{1}{q}} & \text { for }(I I I), \\ \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \sim_{\varepsilon} n^{(m-1)\left(1-\frac{1}{q}\right)+\frac{1}{p}-\frac{1}{q}} & \text { for }\left(I I I^{\prime}\right) .\end{cases}
$$

where $\chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \sim_{\varepsilon} n^{(m-1)\left(1-\frac{1}{q}\right)+\frac{1}{p}-\frac{1}{q}}$ means that

$$
n^{(m-1)\left(1-\frac{1}{q}\right)+\frac{1}{p}-\frac{1}{q}} \ll \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \ll n^{(m-1)\left(1-\frac{1}{q}\right)+\frac{1}{p}-\frac{1}{q}+\varepsilon},
$$

for every $\varepsilon>0$.

Mixed unconditionality in polynomial spaces

Galicer, M., Muro (2016)

$$
\begin{cases}\chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \sim 1 & \text { for }(I), \\ \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \sim n^{m\left(\frac{1}{p}-\frac{1}{q}+\frac{1}{2}\right)-\frac{1}{2}} & \text { for }(I I), \\ \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \sim n^{(m-1)\left(1-\frac{1}{q}\right)+\frac{1}{p}-\frac{1}{q}} & \text { for }(I I I), \\ \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \sim_{\varepsilon} n^{(m-1)\left(1-\frac{1}{q}\right)+\frac{1}{p}-\frac{1}{q}} & \text { for }\left(I I I^{\prime}\right) .\end{cases}
$$

where $\chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \sim_{\varepsilon} n^{(m-1)\left(1-\frac{1}{q}\right)+\frac{1}{p}-\frac{1}{q}}$ means that

$$
n^{(m-1)\left(1-\frac{1}{q}\right)+\frac{1}{p}-\frac{1}{q}} \ll \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \ll n^{(m-1)\left(1-\frac{1}{q}\right)+\frac{1}{p}-\frac{1}{q}+\varepsilon},
$$

for every $\varepsilon>0$.

Mixed unconditionality in polynomial spaces

Ideas of the Proof

We have the following relation:

$$
\chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \leq \chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right) \leq 2^{m} \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right)
$$

Ideas of the Proof

We have the following relation:

$$
\chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \leq \chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right) \leq 2^{m} \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right)
$$

Now we can focus on $\chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right)$.

Ideas of the Proof

We have the following relation:

$$
\chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \leq \chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right) \leq 2^{m} \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right)
$$

Now we can focus on $\chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right)$.

- Upper bounds:

Ideas of the Proof

We have the following relation:

$$
\chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \leq \chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right) \leq 2^{m} \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right)
$$

Now we can focus on $\chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right)$.

- Upper bounds:
- $\chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right) \leq B_{q, r}^{m}(n) A_{p, r}^{m}(n)$ for every $1 \leq r \leq \infty$.

Ideas of the Proof

We have the following relation:

$$
\chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \leq \chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right) \leq 2^{m} \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right)
$$

Now we can focus on $\chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right)$.

- Upper bounds:
- $\chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right) \leq B_{q, r}^{m}(n) A_{p, r}^{m}(n)$ for every $1 \leq r \leq \infty$. Minimize on r.

Ideas of the Proof

We have the following relation:

$$
\chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \leq \chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right) \leq 2^{m} \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right)
$$

Now we can focus on $\chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right)$.

- Upper bounds:
- $\chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right) \leq B_{q, r}^{m}(n) A_{p, r}^{m}(n)$ for every $1 \leq r \leq \infty$. Minimize on r.
- Sets of monomial convergence for $\mathcal{P}\left({ }^{m} \ell_{p}\right)$.

Ideas of the Proof

We have the following relation:

$$
\chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \leq \chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right) \leq 2^{m} \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right)
$$

Now we can focus on $\chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right)$.

- Upper bounds:
- $\chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right) \leq B_{q, r}^{m}(n) A_{p, r}^{m}(n)$ for every $1 \leq r \leq \infty$. Minimize on r.
- Sets of monomial convergence for $\mathcal{P}\left({ }^{m} \ell_{p}\right)$.
- Multilinear interpolation.

Ideas of the Proof

We have the following relation:

$$
\chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right) \leq \chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right) \leq 2^{m} \chi_{p, q}\left(\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)\right)
$$

Now we can focus on $\chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right)$.

- Upper bounds:
- $\chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right) \leq B_{q, r}^{m}(n) A_{p, r}^{m}(n)$ for every $1 \leq r \leq \infty$. Minimize on r.
- Sets of monomial convergence for $\mathcal{P}\left({ }^{m} \ell_{p}\right)$.
- Multilinear interpolation.
- Lower bounds \rightsquigarrow Extreme polynomials: Boas - Bayart

Monomial Unconditionality

For $n, m \in \mathbb{N}$ let $\chi_{M}\left(\mathcal{P}\left({ }^{m} Y_{n}\right), \mathcal{P}\left({ }^{m} X_{n}\right)\right)$ be the best constant $C>0$ such that

$$
\sup _{z \in B X_{n}}\left|\sum_{\mathbf{j} \in \mathcal{J}(m, n)} \theta_{\mathbf{j}} c_{\mathbf{j}} z_{\mathbf{j}}\right| \leq C \sup _{z \in B Y_{n}}\left|\sum_{\mathbf{j} \in \mathcal{J}(m, n)} c_{\mathbf{j}} z_{\mathbf{j}}\right|,
$$

for every $\left(c_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)} \subset \mathbb{C}$ and every choice of complex numbers $\left(\theta_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}$ of modulus one.

Monomial Unconditionality

For $n, m \in \mathbb{N}$ let $\chi_{M}\left(\mathcal{P}\left({ }^{m} Y_{n}\right), \mathcal{P}\left({ }^{m} X_{n}\right)\right)$ be the best constant $C>0$ such that

$$
\sup _{z \in B_{X_{n}}}\left|\sum_{\mathbf{j} \in \mathcal{J}(m, n)} \theta_{\mathbf{j}} c_{\mathbf{j}} z_{\mathbf{j}}\right| \leq C \sup _{z \in B_{Y_{n}}}\left|\sum_{\mathbf{j} \in \mathcal{J}(m, n)} c_{\mathbf{j}} z_{\mathbf{j}}\right|
$$

for every $\left(c_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)} \subset \mathbb{C}$ and every choice of complex numbers $\left(\theta_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}$ of modulus one.

Remark

When $X_{n}=\ell_{q}^{n}$ and $Y_{n}=\ell_{p}^{n}$ we recover the notion of (p, q)-mixed unconditional constant for the monomial basis

$$
\chi_{M}\left(\mathcal{P}\left({ }^{m} Y_{n}\right), \mathcal{P}\left({ }^{m} X_{n}\right)\right)=\chi_{p, q}\left(\left(z_{\mathbf{j}}\right)_{\mathbf{j} \in \mathcal{J}(m, n)}\right) .
$$

Monomial Convergence

The following is usually called the domain of monomial convergence for $\mathcal{P}\left({ }^{m} \ell_{p}\right)$,
$\operatorname{dom}\left(\mathcal{P}\left({ }^{m} \ell_{p}\right)\right):=\left\{z \in \ell_{\infty}: \sum_{\mathbf{j} \in \mathcal{J}(m)}\left|c_{\mathbf{j}}(P) z_{\mathbf{j}}\right|<\infty\right.$ for every $\left.P \in \mathcal{P}\left({ }^{m} \ell_{p}\right)\right\}$,
where $\mathcal{J}(m)=\cup_{n \geq 1} \mathcal{J}(m, n)$

Monomial Convergence

The following is usually called the domain of monomial convergence for $\mathcal{P}\left({ }^{m} \ell_{p}\right)$,
$\operatorname{dom}\left(\mathcal{P}\left({ }^{m} \ell_{p}\right)\right):=\left\{z \in \ell_{\infty}: \sum_{\mathbf{j} \in \mathcal{J}(m)}\left|c_{\mathbf{j}}(P) z_{\mathbf{j}}\right|<\infty\right.$ for every $\left.P \in \mathcal{P}\left({ }^{m} \ell_{p}\right)\right\}$,
where $\mathcal{J}(m)=\cup_{n \geq 1} \mathcal{J}(m, n)$
Defant, Maestre, Prengel (2009)
Given Y a Banach sequence spaces, the following are equivalent
i) $Y \subset \operatorname{dom}\left(\mathcal{P}\left({ }^{m} \ell_{p}\right)\right)$,
ii) $\chi_{M}\left(\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right), \mathcal{P}\left({ }^{m} Y_{n}\right)\right) \sim 1$.

Monomial Convergence

Defant, Maestre, Prengel (2009)
$\ell_{q_{m}} \subset \operatorname{dom}\left(\mathcal{P}\left({ }^{m} \ell_{p}\right)\right)$ where

$$
\frac{1}{q_{m}}=\frac{1}{p}+\frac{m-1}{2 m} .
$$

Bayart, Defant, Schlüters (2015)
For $p \leq 2, \ell_{q_{m}-\varepsilon} \subset \operatorname{mon}\left(\mathcal{P}\left({ }^{m} \ell_{p}\right)\right)$ for every $\varepsilon>0$ where $\frac{1}{q_{m}}=\frac{m-1}{m}+\frac{1}{m p}$.

Galicer, M., Muro (2016)
$d\left(w_{\lambda}, q_{m}\right) \subset \operatorname{mon}\left(\mathcal{P}\left({ }^{m} \ell_{p}\right)\right)$.

Thanks!!!

