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The basics

Examples:

® Pi(z1,22,23) = 3z% — 27122 + 7z% = 5z§ + 4z123.

5 3 4 3 4
® P3(21,22,23,24) = 521 + 52125 — 232324 + 2237},

In both cases, all the terms have the same degree (= homogeneity
degree).
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Definition

An m-homogeneous polynomial in #» complex variables is a function
P:.C"— C,
that can be written as

PR)= > i ®P g z= > ci(P)z,

1§i1§---§im§n jEJ(m,n)

° Cj(P) = c(/'1,--.,jm)(P) e C.
® 7j = Zj, -+ Zj,, ~» monomials.
oj(m,n) ::{j:(j],...,jm)6{1,...,n}m T 1 S]zgé]m}
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Starting up...

The basics

e P("MC") = the vector space of m-homogeneous polynomials in n
variables.

e The monomials (zj)je 7(m,») form a basis of the space P("C"),
and therefore

dim P("C") = |J (m, n)| = <n : . 1)

When m € Nis fixed ("7"~1) ~ 1™, as n goes to infinity.
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leley := (Y lal?) " i p < ox,
j=1

and

2l = max]3.
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Norms on P("C")

Uniform/sup norm:
For1 < p < o0,

|Pllpeg == sup |PE)]-
By

JS

Question

How do they relate each to other?

Coefficients norm:
Forl <r < oo,

> laP))

JET (m,n)

1P =

and

|P|loo := max |l

JET (m,n)

~ =

I
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The problem...

More precisely,

Let A}, (n) and B}, (n) be the smallest constants that fulfill the
following inequalities: for every m-homogeneous polynomial P in n
complex variables,

Pl < A% (n) IPlpeay,  IPlpeay < BlL() [P,

How these constants behave in terms of the number of variables n?
Which is their exact asymptotic growth?

Essentially, we want to relate the summability of the coefficients of a
given homogeneous polynomial with its uniform norm for ¢,-spaces.
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If (a,), and (b,), are two sequences of real numbers we write
a, < b, if there exists a constant C > 0 (independent of n) such that
a, < Cb,, for every n and we denote a, ~ b, if a, < b, and b, < a,.

e B (n) = the smallest constant such that for every m-homogeneous
polynomial P in n complex variables,

1Pllpney < By,p(n) [Py

Proposition
We have




Comparing the norms

The real job... A (n)

e A7, (n) = the smallest constant such that for every m-homogeneous
polynomial P in n complex variables,

1Pl < Apy(n) [[Pllperey)-




Compa the norms

The real job... A (n)

e A7, (n) = the smallest constant such that for every m-homogeneous
polynomial P in n complex variables,

1Pl < Apy(n) [[Pllperey)-

Some known inequalities... Bohnenblust and E. Hille (1931), Hardy
and J. Littlewood (1934), Praciano-Pereira (1981), Dimant-Sevilla

(2013).
(i) A" o, (n)~1  forp = oo.
p’m+l
(if) A": wp  (n) ~1  for2m < p < oc.
> mp+p—2m
(iii) A" , (n)~1 form<p<2m,
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The real job... A (n)

Galicer, M., Muro (2016)

AR (n) ~ 1 for (A): [ <3 <5 —dlor[; <53 AZ<1-1]
my1l_ .,
AP (n) ~nr T for B): [, 3 <, A —2+1<1],
o m(lyl_by—1 L mkl 1 11
AP (n) ~ P for (C): [5= <+ A ;Si}or
EE L & T
my 1
Al'ﬁ,(n)Nn'+l’ ! for (D) : [%S% A 1—%§%],
m—1
AR () <nr for (E): [3 <5 <1—3],
1 =1 1 1 1 1
AY (n) ~nr for (F): ['"p <1—5 A %gggm}
Moreover, the power of n in (E) cannot be improved.
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The real job... A (n)

Galicer, M., Muro (2016)
1 o1 11 1 o1
Ay (n) ~ 1 1 for(A)i[jﬁ;szJ,;—*]Or[;ﬁj/\%ﬁl—;h
A (n) ~pp el for (B): [& < ll < LA Sl E 1,
GAre=m)=% , TR B
A (n) ~ 0™ 272 for (C): [BEL <L A 5 < glor
11 4l 1 1 11
. [QS;S%SE*F;/\;SQL
A (n) ~n T for (D): [L<1iA1-1<ly
m—1
AR () <nr for (E): [3 <5 <1—3],
1 —1 1 1 1 1
AY (n) ~nr for (F): [’"p <1—5 A %gﬁgm}
Moreover, the power of n in (E) cannot be improved.

WHAT DOES THIS MEAN? )
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3=

Note that for m = 2 the square is filled.
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Comparing the norms

How to do this?

e Lower bounds ~~ Extreme polynomials
But... How?

Idea:
Use the probabilistic method to find polynomials with small norm and
many non-zero coefficients.
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Random polynomials

Randomness and polynomials

(¢j)jeg (mn) ~ independent Bernoulli random variables with
P(Ej: I)ZP(Ej:— ):%

Boas (2000) - Bayart (2010)

1—1 g

il if 1 <p<2,
E P mpgn B _
([1Pllpengy) < {nm(é,‘%é if2 <p<co.
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Random polynomials

Randomness and polynomials

Why the previous results are important to us? )

1
For 1 < p <2 we have E( HPHP(W;)) <n'r.
There must be (6;);c J(m,n) Such that the polynomial
P(2) := X je 7(m ) 0535 verifies:

_1
|Pllpegy < n'~7 and Pl = 7 (m,n)]'/" ~ n"/.

Thus,

11y m/r P
Gt I WPl )
e Pl
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Random polynomials

Steiner polynomials

e Forp </ ( % + % = 1) that lower bound matches the upper bound.

e For p > 7/ they don’t match.

Galicer, Muro, Sevilla (2015)

Letm > 2 there is S C J (m,n) with |S| > n™~! and signs (6;)jes
such that the m-homogeneous polynomial P = Zje s Ujzj satisfies

-3
log 7 (n) for1 <p<2,

1Pl peneny <
(p) log? (m)n" 277 for2 < p < oo.
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Interpolation Problem

Given a compatible couple (X, ¥) of Banach spaces and 0 < 6 < 1
we denote by [X, Y]y the intermediate space in the complex
interpolation sense.

Remark
For X = [P°(u), Y = [P () and 11) = p% + 111;19 it holds
[X7 Y]9 = LP(N)

In particular [¢; , €} |o = €.

pPo?
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Interpolation Problem

Let2 < pg,p1 <00,0< 0 < landn,me N.
we can think of...

P("[lyy: Ly, l0) and [P("€,), P(",,)o-

Po’ " P1

Polynomial interpolation problem (PIP)

Is the norm of the natural identity

P("€pys £p,10) = [P("lpy), P("p,)]o;

Po’ "P1

independent of n?

For m = 2 the answer is affirmative [Defant, Michels (2000); Kouba
(2004)].
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Let’s go back to the graphic...

Interpolation Problem

~ =

==

o A7 (n) ~ nr for (p,r) € (F).

e Assuming a positive answer to
the PIP we have,

AT (n) < n* for (p,r) € (F),

with 6 < 1.

CONTRADICTION.
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Mixed unconditionality in polynomial spaces

Let (P;);c be a Schauder basis of P("C"). For 1 < p,q < oo let
Xp,q((Pi)ica) be the best constant C > 0 such that

1D biciPillpneyy < CI Y eiPillpenay,s
ieEA icA

for every (c¢;)ien C C and every choice of complex numbers (6;);c
of modulus one.

The (p, g)-mixed unconditional constant of P("C") is defined as

Xp,g(P("C")) == inf{xp 4 ((Pi)ica) : (Pi)iea basis for P("C")}.
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Mixed unconditionality in polynomial spaces

Galicer, M., Muro (2016)
Xpg(P("C")) ~ 1 for (1),
1 1,1 1
Xpg(P("C")) ~n (G=at2)=z for (11),
Xpg(P(CM)) ~ ™ D=4 5=0 for (11m),
Xpg(P("C")) ~e n"D=D4=3  for (r).
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1 1,1 1
Xpg(P("C")) ~n (G=at2)=z for (11),
Xpg(P(CM)) ~ ™ D=4 5=0 for (11m),
Xpg(P("C")) ~e n"D=D4=3  for (r).

where x, (P ("C")) ~. A D=5 means that

n(m—l)(l—é)+%—% < Xp,q(P(an)) < n(mfl)(lfé)JF%*é*g’

for every € > 0.
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Mixed unconditionality in polynomial spaces

1
q /
2m—1 o
T umy -
1 /’
2
m=—1
2m
1) (1)
0 1 1
2 14
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Ideas of the Proof

We have the following relation:

vaq(P(an)) = XP#((Zj)jEJ(m,n)) < 2mXp,q(P(an))~

Now we can focus on X 4 ((zj)je7(mn))-
e Upper bounds:

® Xp.q((z)jermm) < B, (m)A (n) forevery 1<r< oo.
Minimize on r.

e Sets of monomial convergence for P("¢,).

o Multilinear interpolation.

e Lower bounds ~~ Extreme polynomials: Boas - Bayart
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Monomial Unconditionality

For n,m € Nlet xp(P("Y,), P("X,)) be the best constant C > 0
such that

sup Z Oicjzj| < C sup Z CiZjl 5
B e (mon) B fied ma)

for every (cj)je7(mn) C C and every choice of complex numbers
(65)je7(m,ny of modulus one.

Remark

When X, = £; and Y, = £} we recover the notion of (p, g)-mixed
unconditional constant for the monomial basis

xu(P("Y,), P("Xy,)) = Xp,q((zj)jej(m,n))-
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Monomial Convergence

The following is usually called the domain of monomial convergence
for P("¢,),

dom(P("l,)) := {z €l Z |cj(P)z;] < oo for every P € 73(’”61,)},
jeJ (m)

where J (m) = U,>1J (m, n)

Defant, Maestre, Prengel (2009)

Given Y a Banach sequence spaces, the following are equivalent
i) Y C dom(P("Ly)),
i) xm(P("65), P("Yn)) ~ 1.
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Monomial Convergence

Defant, Maestre, Prengel (2009)
¢, C dom(P("(,)) where

Bayart, Defant, Schliiters (2015) .
Forp < 2,4, . C mon(P("L,)) m=1
for every € > 0 where (1)

1 _ m—1 1
qm ~ m +mp'

(1)

Galicer, M., Muro (2016) 0
d(wx, qm) C mon(P("Ep)).

09—
=




Mixed unconditi

Thanks!!! )
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