Some remarks on non-symmetric polarization

Felipe Marceca

IMAS, UBA-CONICET

October 18, 2017

Conference on Non Linear Functional Analysis, Valencia 2017

Joint work with Daniel Carando
I M A S

Introduction

Let $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be an m-homogeneous polynomial of n variables given by

$$
P(x)=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{j_{1} \ldots j_{m}} x_{j_{1}} \ldots x_{j_{m}}
$$

Let $L:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ be the unique symmetric m-linear form such that

It follows from the polarization formula (P.F.) that

for any norm $\|\cdot\|$ on \mathbb{C}^{n}.

Introduction

Let $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be an m-homogeneous polynomial of n variables given by

$$
P(x)=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{j_{1} \ldots j_{m}} x_{j_{1}} \ldots x_{j_{m}}
$$

Let $L:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ be the unique symmetric m-linear form such that

$$
L(x, \ldots, x)=P(x) \quad \forall x \in \mathbb{C}^{n}
$$

It follows from the polarization formula (P.F.) that

Introduction

Let $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be an m-homogeneous polynomial of n variables given by

$$
P(x)=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{j_{1} \ldots j_{m}} x_{j_{1}} \ldots x_{j_{m}} .
$$

Let $L:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ be the unique symmetric m-linear form such that

$$
L(x, \ldots, x)=P(x) \quad \forall x \in \mathbb{C}^{n}
$$

It follows from the polarization formula (P.F.) that

$$
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq e^{m} \sup _{\|x\| \leq 1}|P(x)|
$$

for any norm $\|\cdot\|$ on \mathbb{C}^{n}.

Introduction

Given an m-homogeneous polynomial

$$
P(x)=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{j_{1} \ldots j_{m}} x_{j_{1}} \ldots x_{j_{m}}
$$

Defant and Schlüters defined a non-symmetric m-linear form $L_{P}:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ given by

Main goal

Our main goal is to compare

Introduction

Given an m-homogeneous polynomial

$$
P(x)=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{j_{1} \ldots j_{m}} x_{j_{1}} \ldots x_{j_{m}},
$$

Defant and Schlüters defined a non-symmetric m-linear form $L_{P}:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ given by

$$
L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{j_{1} \ldots j_{m}} x_{j_{1}}^{(1)} \ldots x_{j_{m}}^{(m)}
$$

Clearly, $L_{P}(x, \ldots, x)=P(x)$ for all $x \in \mathbb{C}^{n}$.

Main goal

Our main goal is to compare

Introduction

Given an m-homogeneous polynomial

$$
P(x)=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{j_{1} \ldots j_{m}} x_{j_{1}} \ldots x_{j_{m}},
$$

Defant and Schlüters defined a non-symmetric m-linear form $L_{P}:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ given by

$$
L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{j_{1} \ldots j_{m}} x_{j_{1}}^{(1)} \ldots x_{j_{m}}^{(m)}
$$

Clearly, $L_{P}(x, \ldots, x)=P(x)$ for all $x \in \mathbb{C}^{n}$.

Main goal

Our main goal is to compare

Introduction

Given an m-homogeneous polynomial

$$
P(x)=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{j_{1} \ldots j_{m}} x_{j_{1}} \ldots x_{j_{m}},
$$

Defant and Schlüters defined a non-symmetric m-linear form $L_{P}:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ given by

$$
L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{j_{1} \ldots j_{m}} x_{j_{1}}^{(1)} \ldots x_{j_{m}}^{(m)}
$$

Clearly, $L_{P}(x, \ldots, x)=P(x)$ for all $x \in \mathbb{C}^{n}$.

Main goal

Our main goal is to compare

$$
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \quad \text { with } \quad \sup _{\|x\| \leq 1}|P(x)| \text {. }
$$

Introduction

Theorem (Defant-Schlüters 2017)

There exists a universal constant $c_{1} \geq 1$ such that

$$
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq\left(c_{1} \log n\right)^{m^{2}} \sup _{\|x\| \leq 1}|P(x)|,
$$

for every 1-unconditional norm $\|\cdot\|$ on \mathbb{C}^{n}.
For $\|\cdot\|_{p}$ with $1 \leq p<2$, there is a constant $c_{2}=c_{2}(p) \geq 1$ for which

Introduction

Theorem (Defant-Schlüters 2017)

There exists a universal constant $c_{1} \geq 1$ such that

$$
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq\left(c_{1} \log n\right)^{m^{2}} \sup _{\|x\| \leq 1}|P(x)|,
$$

for every 1-unconditional norm $\|\cdot\|$ on \mathbb{C}^{n}.
For $\|\cdot\|_{p}$ with $1 \leq p<2$, there is a constant $c_{2}=c_{2}(p) \geq 1$ for which

$$
\sup _{\left\|x^{(k)}\right\|_{p} \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq c_{2}^{m^{2}} \sup _{\|x\|_{p} \leq 1}|P(x)| .
$$

Introduction

Theorem (Defant-Schlüters 2017)

There exists a universal constant $c_{1} \geq 1$ such that

$$
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq\left(c_{1} \log n\right)^{m^{2}} \sup _{\|x\| \leq 1}|P(x)|
$$

for every 1-unconditional norm $\|\cdot\|$ on \mathbb{C}^{n}.
For $\|\cdot\|_{p}$ with $1 \leq p<2$, there is a constant $c_{2}=c_{2}(p) \geq 1$ for which

$$
\sup _{\left\|x^{(k)}\right\|_{p} \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq c_{2}^{m^{2}} \sup _{\|x\|_{p} \leq 1}|P(x)| .
$$

- Recently, refining their original calculations, they obtained a $c(m)(\log n)^{m}$ estimate.

Introduction

Theorem (Defant-Schlüters 2017)

There exists a universal constant $c_{1} \geq 1$ such that

$$
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq\left(c_{1} \log n\right)^{m^{2}} \sup _{\|x\| \leq 1}|P(x)|
$$

for every 1-unconditional norm $\|\cdot\|$ on \mathbb{C}^{n}.
For $\|\cdot\|_{p}$ with $1 \leq p<2$, there is a constant $c_{2}=c_{2}(p) \geq 1$ for which

$$
\sup _{\left\|x^{(k)}\right\|_{p} \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq c_{2}^{m^{2}} \sup _{\|x\|_{p} \leq 1}|P(x)| .
$$

- Recently, refining their original calculations, they obtained a $c(m)(\log n)^{m}$ estimate.
- The $\log n$ term is due to norm bounds of the main triangle projection.

Introduction

Idea of the proof

- Define partial symmetrizations \mathcal{S}_{k} for $1 \leq k \leq m$ such that

$$
L_{P}=\mathcal{S}_{1} L_{P}, \quad \mathcal{S}_{2} L_{P}, \quad \ldots, \quad \mathcal{S}_{m-1} L_{P}, \quad \mathcal{S}_{m} L_{P}=L \stackrel{\text { P.F. }}{\sim} P .
$$

- Identify each $\mathcal{S}_{k} L_{p}$ with its coefficents matrix and find a matrix \mathfrak{A}_{k} such that

$$
\mathcal{S}_{k-1} L_{P}=\mathfrak{A}_{k} * \mathcal{S}_{k} L_{P},
$$

where $*$ denotes de coordinatewise product.

- Break \mathfrak{A}_{k} down into simpler building blocks.
- Estimate how these building blocks change the supremum norm when applied to an m-form.

Introduction

Idea of the proof

- Define partial symmetrizations \mathcal{S}_{k} for $1 \leq k \leq m$ such that

$$
L_{P}=\mathcal{S}_{1} L_{P}, \quad \mathcal{S}_{2} L_{P}, \quad \ldots, \quad \mathcal{S}_{m-1} L_{P}, \quad \mathcal{S}_{m} L_{P}=L \xrightarrow{\text { P.F. }} P .
$$

- Identify each $\mathcal{S}_{k} L_{P}$ with its coefficents matrix and find a matrix \mathfrak{A}_{k} such that

$$
\mathcal{S}_{k-1} L_{P}=\mathfrak{A}_{k} * \mathcal{S}_{k} L_{P}
$$

where $*$ denotes de coordinatewise product.

- Break \mathfrak{A}_{k} down into simpler building blocks.
- Estimate how these building blocks change the supremum norm when applied to an m-form.

Introduction

Idea of the proof

- Define partial symmetrizations \mathcal{S}_{k} for $1 \leq k \leq m$ such that

$$
L_{P}=\mathcal{S}_{1} L_{P}, \quad \mathcal{S}_{2} L_{P}, \quad \ldots, \quad \mathcal{S}_{m-1} L_{P}, \quad \mathcal{S}_{m} L_{P}=L \xrightarrow{\text { P.F. }} P .
$$

- Identify each $\mathcal{S}_{k} L_{P}$ with its coefficents matrix and find a matrix \mathfrak{A}_{k} such that

$$
\mathcal{S}_{k-1} L_{P}=\mathfrak{A}_{k} * \mathcal{S}_{k} L_{P}
$$

where $*$ denotes de coordinatewise product.

- Break \mathfrak{A}_{k} down into simpler building blocks.
- Estimate how these building blocks change the supremum norm when applied to an m-form.

Introduction

Idea of the proof

- Define partial symmetrizations \mathcal{S}_{k} for $1 \leq k \leq m$ such that

$$
L_{P}=\mathcal{S}_{1} L_{P}, \quad \mathcal{S}_{2} L_{P}, \quad \ldots, \quad \mathcal{S}_{m-1} L_{P}, \quad \mathcal{S}_{m} L_{P}=L \xrightarrow{\text { P.F. }} P .
$$

- Identify each $\mathcal{S}_{k} L_{P}$ with its coefficents matrix and find a matrix \mathfrak{A}_{k} such that

$$
\mathcal{S}_{k-1} L_{P}=\mathfrak{A}_{k} * \mathcal{S}_{k} L_{P}
$$

where $*$ denotes de coordinatewise product.

- Break \mathfrak{A}_{k} down into simpler building blocks.
- Estimate how these building blocks change the supremum norm when applied to an m-form.

Introduction

Idea of the proof

- Define partial symmetrizations \mathcal{S}_{k} for $1 \leq k \leq m$ such that

$$
L_{P}=\mathcal{S}_{1} L_{P}, \quad \mathcal{S}_{2} L_{P}, \quad \ldots, \quad \mathcal{S}_{m-1} L_{P}, \quad \mathcal{S}_{m} L_{P}=L \stackrel{\text { P.F. }}{\rightarrow} P .
$$

- Identify each $\mathcal{S}_{k} L_{P}$ with its coefficents matrix and find a matrix \mathfrak{A}_{k} such that

$$
\mathcal{S}_{k-1} L_{P}=\mathfrak{A}_{k} * \mathcal{S}_{k} L_{P}
$$

where $*$ denotes de coordinatewise product.

- Break \mathfrak{A}_{k} down into simpler building blocks.
- Estimate how these building blocks change the supremum norm when applied to an m-form.

Symmetrization

Probabilistic point of view

Let Σ be the permutation group of m elements endowed with the equiprobability measure. We have

> Thus, a card-shuffling algorithm applied to the subindices' order will yield a symmetrization procedure for L_{p} by taking expectation.

Symmetrization

Probabilistic point of view

Let Σ be the permutation group of m elements endowed with the equiprobability measure. We have

$$
L\left(x^{(1)}, \ldots, x^{(m)}\right)=E_{\sigma}\left[\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{j_{1} \ldots j_{m}} x_{j_{\sigma(1)}}^{(1)} \ldots x_{j_{\sigma(m)}}^{(m)}\right] .
$$

> Thus, a card-shuffling algorithm applied to the subindices' order will yield a symmetrization procedure for L_{p} by taking expectation.

Symmetrization

Probabilistic point of view

Let Σ be the permutation group of m elements endowed with the equiprobability measure. We have

$$
L\left(x^{(1)}, \ldots, x^{(m)}\right)=E_{\sigma}\left[\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{j_{1} \ldots j_{m}} x_{j_{\sigma(1)}}^{(1)} \ldots x_{j_{\sigma(m)}}^{(m)}\right]
$$

Thus, a card-shuffling algorithm applied to the subindices' order will yield a symmetrization procedure for L_{P} by taking expectation.

Fisher-Yates shuffle

Step k of the Fisher-Yates shuffle:

Partial shuffles

For $1 \leq k \leq m-1$, let μ_{k} be the probability distribution on the permutation group Σ associated to performing the first k steps of the Fisher-Yates shuffle.
We define partial shuffles \mathcal{S}_{k} by

where $\sigma \sim \mu_{k}$.
We get

$$
L_{P}=\mathcal{S}_{0} L_{P}, \quad \mathcal{S}_{1} L_{P}, \quad \ldots, \quad \mathcal{S}_{m-2} L_{P}, \quad \mathcal{S}_{m-1} L_{P}=L .
$$

Partial shuffles

For $1 \leq k \leq m-1$, let μ_{k} be the probability distribution on the permutation group Σ associated to performing the first k steps of the Fisher-Yates shuffle.
We define partial shuffles \mathcal{S}_{k} by

$$
\mathcal{S}_{k} L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)=E_{\sigma}\left[\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{j_{1} \ldots j_{m}} x_{j_{\sigma(1)}}^{(1)} \ldots x_{j_{\sigma(m)}}^{(m)}\right],
$$

where $\sigma \sim \mu_{k}$.
We get

$$
L_{P}=\mathcal{S}_{0} L_{P}, \quad \mathcal{S}_{1} L_{P}, \quad \ldots, \quad \mathcal{S}_{m-2} L_{P}, \quad \mathcal{S}_{m-1} L_{P}=L
$$

Partial shuffles

For $1 \leq k \leq m-1$, let μ_{k} be the probability distribution on the permutation group Σ associated to performing the first k steps of the Fisher-Yates shuffle.
We define partial shuffles \mathcal{S}_{k} by

$$
\mathcal{S}_{k} L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)=E_{\sigma}\left[\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{j_{1} \ldots j_{m}} x_{j_{\sigma(1)}}^{(1)} \ldots x_{j_{\sigma(m)}}^{(m)}\right],
$$

where $\sigma \sim \mu_{k}$.
We get

$$
L_{P}=\mathcal{S}_{0} L_{P}, \quad \mathcal{S}_{1} L_{P}, \quad \ldots, \quad \mathcal{S}_{m-2} L_{P}, \quad \mathcal{S}_{m-1} L_{P}=L
$$

Upper bound

Theorem

There exists a universal constant $c_{1} \geq 1$ such that

$$
\sup _{\left\|x^{(k)}\right\|_{\leq 1}}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq c_{1}^{m} m^{m}(\log n)^{m-1} \sup _{\|x\| \leq 1}|P(x)|
$$

for every 1 -unconditional norm $\|\cdot\|$ on \mathbb{C}^{n}.
For $\|\cdot\|_{p}$ with $1 \leq p<2$, there is a constant $c_{2}=c_{2}(p) \geq 1$ for which

Upper bound

Theorem

There exists a universal constant $c_{1} \geq 1$ such that

$$
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq c_{1}^{m} m^{m}(\log n)^{m-1} \sup _{\|x\| \leq 1}|P(x)|
$$

for every 1 -unconditional norm $\|\cdot\|$ on \mathbb{C}^{n}.
For $\|\cdot\|_{p}$ with $1 \leq p<2$, there is a constant $c_{2}=c_{2}(p) \geq 1$ for which

$$
\sup _{\left\|x^{(k)}\right\|_{p} \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq c_{2}^{m} m^{m} \sup _{\|x\|_{p} \leq 1}|P(x)|
$$

Lower bounds

Let $C(n, m)$ be the best constant such that

$$
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq C(n, m) \sup _{\|x\| \leq 1}|P(x)|
$$

for every 1 -unconditional norm $\|\cdot\|$ on \mathbb{C}^{n}.
Let $C_{p}(n, m)$ be the best constant such that

for $\|\cdot\|_{p}$ with $1 \leq p<2$.

Lower bounds

We have that $C(n, m) \gtrsim(\log n)^{m / 2}$ if $n \gg m$.
On the other hand, we get $C_{p}(n, m) \geq m^{m / p}$ for $1 \leq p<2$ and $n \geq m$.

Lower bounds

Let $C(n, m)$ be the best constant such that

$$
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq C(n, m) \sup _{\|x\| \leq 1}|P(x)|
$$

for every 1 -unconditional norm $\|\cdot\|$ on \mathbb{C}^{n}.
Let $C_{p}(n, m)$ be the best constant such that

$$
\sup _{\left\|x^{(k)}\right\|_{p} \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq C_{p}(n, m) \sup _{\|x\|_{p} \leq 1}|P(x)|
$$

for $\|\cdot\|_{p}$ with $1 \leq p<2$.
Lower bounds
We have that $C(n, m) \gtrsim(\log n)^{m / 2}$ if $n \gg m$.
On the other hand, we get $C_{p}(n, m) \geq m^{m / p}$ for $1 \leq p<2$ and $n \geq m$.

Lower bounds

Let $C(n, m)$ be the best constant such that

$$
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq C(n, m) \sup _{\|x\| \leq 1}|P(x)|
$$

for every 1 -unconditional norm $\|\cdot\|$ on \mathbb{C}^{n}.
Let $C_{p}(n, m)$ be the best constant such that

$$
\sup _{\|x(k)\|_{p} \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq C_{p}(n, m) \sup _{\|x\|_{p} \leq 1}|P(x)|
$$

for $\|\cdot\|_{p}$ with $1 \leq p<2$.

Lower bounds

We have that $C(n, m) \gtrsim(\log n)^{m / 2}$ if $n \gg m$.
On the other hand, we get $C_{p}(n, m) \geq m^{m / p}$ for $1 \leq p<2$ and $n \geq m$.

Lower bounds

Let $C(n, m)$ be the best constant such that

$$
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq C(n, m) \sup _{\|x\| \leq 1}|P(x)|
$$

for every 1 -unconditional norm $\|\cdot\|$ on \mathbb{C}^{n}.
Let $C_{p}(n, m)$ be the best constant such that

$$
\sup _{\|x(k)\|_{p} \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq C_{p}(n, m) \sup _{\|x\|_{p} \leq 1}|P(x)|
$$

for $\|\cdot\|_{p}$ with $1 \leq p<2$.

Lower bounds

We have that $C(n, m) \gtrsim(\log n)^{m / 2}$ if $n \gg m$.
On the other hand, we get $C_{p}(n, m) \geq m^{m / p}$ for $1 \leq p<2$ and $n \geq m$.

Lower bounds for $C_{p}(n, m)$

Taking $P(x)=x_{1} \ldots x_{m}$ an easy computation gives

$$
\begin{gathered}
\sup _{\left\|x^{(k)}\right\|_{p} \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right|=1 \quad \text { and } \\
\sup _{\|x\|_{p} \leq 1}|P(x)|=m^{-m / p}
\end{gathered}
$$

So for $1 \leq p<2$ and $n \geq m$,

$$
m^{m / p} \leq C_{p}(n, m) \leq c_{2}^{m} m^{m}
$$

Bad news: hypercontractivity cannot be achieved.

Lower bounds for $C_{p}(n, m)$

Taking $P(x)=x_{1} \ldots x_{m}$ an easy computation gives

$$
\begin{gathered}
\sup _{\left\|x^{(k)}\right\|_{p} \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right|=1 \text { and } \\
\sup _{\|x\|_{p} \leq 1}|P(x)|=m^{-m / p}
\end{gathered}
$$

So for $1 \leq p<2$ and $n \geq m$,

$$
m^{m / p} \leq C_{p}(n, m) \leq c_{2}^{m} m^{m} .
$$

Bad news: hypercontractivity cannot be achieved.

Lower bounds for $C_{p}(n, m)$

Taking $P(x)=x_{1} \ldots x_{m}$ an easy computation gives

$$
\begin{gathered}
\sup _{\left\|x^{(k)}\right\|_{p} \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right|=1 \quad \text { and } \\
\sup _{\|x\|_{p} \leq 1}|P(x)|=m^{-m / p}
\end{gathered}
$$

So for $1 \leq p<2$ and $n \geq m$,

$$
m^{m / p} \leq C_{p}(n, m) \leq c_{2}^{m} m^{m} .
$$

Bad news: hypercontractivity cannot be achieved.

Lower bounds for $C(n, m)$

We know that
$\sup _{\|x\|_{\infty} \leq 1}|P(x)| \leq \sup _{\left\|x^{(k)}\right\|_{\infty} \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq C(n, m) \sup _{\|x\|_{\infty} \leq 1}|P(x)|$,
for every m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$.
Equivalently, by the maximum modulus principle we get

$$
\|P\|_{C\left(\mathbb{T}^{n}\right)} \leq\left\|L_{P}\right\|_{C\left(\mathbb{T}^{n m}\right)} \leq C(n, m)\|P\|_{C\left(\mathbb{T}^{n}\right)}
$$

where $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$.
The monomials of P and L_{P} are characters of the compact abelian groups \mathbb{T}^{n} and $\mathbb{T}^{n m}$

Lower bounds for $C(n, m)$

We know that

$$
\sup _{\|x\|_{\infty} \leq 1}|P(x)| \leq \sup _{\left\|x^{(k)}\right\|_{\infty} \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq C(n, m) \sup _{\|x\|_{\infty} \leq 1}|P(x)|
$$

for every m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$. Equivalently, by the maximum modulus principle we get

$$
\|P\|_{C\left(\mathbb{T}^{n}\right)} \leq\left\|L_{P}\right\|_{C\left(\mathbb{T}^{n m}\right)} \leq C(n, m)\|P\|_{C\left(\mathbb{T}^{n}\right)}
$$

where $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$.
The monomials of P and L_{P} are characters of the compact abelian groups \mathbb{T}^{n} and $\mathbb{T}^{n m}$.

Lower bounds for $C(n, m)$

We know that

$$
\sup _{\|x\|_{\infty} \leq 1}|P(x)| \leq \sup _{\left\|x^{(k)}\right\|_{\infty} \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq C(n, m) \sup _{\|x\|_{\infty} \leq 1}|P(x)|
$$

for every m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$.
Equivalently, by the maximum modulus principle we get

$$
\|P\|_{C\left(\mathbb{T}^{n}\right)} \leq\left\|L_{P}\right\|_{C\left(\mathbb{T}^{n m}\right)} \leq C(n, m)\|P\|_{C\left(\mathbb{T}^{n}\right)}
$$

where $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$.
The monomials of P and L_{P} are characters of the compact abelian groups \mathbb{T}^{n} and $\mathbb{T}^{n m}$.

Employing Banach space theory

Theorem (Pełczyński)

Let $\left(f_{j}\right)_{j \in J}$ and $\left(g_{j}\right)_{j \in J}$ be sequences of characters on compact abelian groups S and T. Suppose there are constants $K_{1}, K_{2}>0$ such that

$$
\frac{1}{K_{1}}\left\|\sum_{j \in J} c_{j} f_{j}\right\|_{C(S)} \leq\left\|\sum_{j \in J} c_{j} g_{j}\right\|_{C(T)} \leq K_{2}\left\|\sum_{j \in J} c_{j} f_{j}\right\|_{C(S)},
$$

for every sequence of scalars $\left(c_{j}\right)_{j \in J} \subseteq \mathbb{C}$.

Employing Banach space theory

Theorem (Pełczyński)

Let $\left(f_{j}\right)_{j \in J}$ and $\left(g_{j}\right)_{j \in J}$ be sequences of characters on compact abelian groups S and T. Suppose there are constants $K_{1}, K_{2}>0$ such that

$$
\frac{1}{K_{1}}\left\|\sum_{j \in J} c_{j} f_{j}\right\|_{C(S)} \leq\left\|\sum_{j \in J} c_{j} g_{j}\right\|_{C(T)} \leq K_{2}\left\|\sum_{j \in J} c_{j} f_{j}\right\|_{C(S)},
$$

for every sequence of scalars $\left(c_{j}\right)_{j \in J} \subseteq \mathbb{C}$.
Then, for every Banach space E and every sequence of vectors $\left(v_{j}\right)_{j \in J} \subseteq E$ we have

$$
\frac{1}{K_{1} K_{2}}\left\|\sum_{j \in J} v_{j} f_{j}\right\|_{L^{1}(S, E)} \leq\left\|\sum_{j \in J} v_{j} g_{j}\right\|_{L^{1}(T, E)} \leq K_{1} K_{2}\left\|\sum_{j \in J} v_{j} f_{j}\right\|_{L^{1}(S, E)}
$$

Employing Banach space theory

Theorem (Pełczyński)

Let $\left(f_{j}\right)_{j \in J}$ and $\left(g_{j}\right)_{j \in J}$ be sequences of characters on compact abelian groups S and T. Suppose there are constants $K_{1}, K_{2}>0$ such that

$$
\frac{1}{K_{1}}\left\|\sum_{j \in J} c_{j} f_{j}\right\|_{C(S)} \leq\left\|\sum_{j \in J} c_{j} g_{j}\right\|_{C(T)} \leq K_{2}\left\|\sum_{j \in J} c_{j} f_{j}\right\|_{C(S)},
$$

for every sequence of scalars $\left(c_{j}\right)_{j \in J} \subseteq \mathbb{C}$.
Then, for every Banach space E and every sequence of vectors $\left(v_{j}\right)_{j \in J} \subseteq E$ we have

$$
\frac{1}{K_{1} K_{2}}\left\|\sum_{j \in J} v_{j} f_{j}\right\|_{L^{1}(S, E)} \leq\left\|\sum_{j \in J} v_{j} g_{j}\right\|_{L^{1}(T, E)} \leq K_{1} K_{2}\left\|\sum_{j \in J} v_{j} f_{j}\right\|_{L^{1}(S, E)}
$$

Employing Banach space theory

From the inequality

$$
\|P\|_{C\left(\mathbb{T}^{n}\right)} \leq\left\|L_{P}\right\|_{C\left(\mathbb{T}^{n m}\right)} \leq C(n, m)\|P\|_{C\left(\mathbb{T}^{n}\right)}
$$

and Pełczyński's theorem we get

$$
\begin{aligned}
&\left\|\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} v_{j} x_{j_{1}}^{(1)} \ldots x_{j_{m}}^{(m)}\right\|_{L^{1}\left(\mathbb{T}^{n m}, E\right)} \leq \\
& \leq C(n, m)\left\|_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} v_{j} x_{j_{1}} \ldots x_{j_{m}}\right\|_{L^{1}\left(\mathbb{T}^{n}, E\right)},
\end{aligned}
$$

for every Banach space E and every sequence of vectors $\left(v_{j}\right)_{j \in J} \subseteq E$.
Equivalently, for every vector valued m-homogeneous polynomial
$P: \mathbb{C}^{n} \rightarrow E$ we have that

$$
\left\|L_{P}\right\|_{L^{1}\left(\mathbb{T}^{n m}, E\right)} \leq C(n, m)\|P\|_{L^{1}\left(\mathbb{T}^{n}, E\right)} .
$$

Employing Banach space theory

From the inequality

$$
\|P\|_{C\left(\mathbb{T}^{n}\right)} \leq\left\|L_{P}\right\|_{C\left(\mathbb{T}^{n m}\right)} \leq C(n, m)\|P\|_{C\left(\mathbb{T}^{n}\right)}
$$

and Pełczyński's theorem we get

$$
\begin{aligned}
&\left\|\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} v_{j} x_{j_{1}}^{(1)} \ldots x_{j_{m}}^{(m)}\right\|_{L^{1}\left(\mathbb{T}^{n m}, E\right)} \leq \\
& \leq C(n, m)\left\|_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} v_{j} x_{j_{1}} \ldots x_{j_{m}}\right\|_{L^{1}\left(\mathbb{T}^{n}, E\right)},
\end{aligned}
$$

for every Banach space E and every sequence of vectors $\left(v_{j}\right)_{j \in J} \subseteq E$. Equivalently, for every vector valued m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow E$ we have that

$$
\left\|L_{P}\right\|_{L^{1}\left(\mathbb{T}^{n m}, E\right)} \leq C(n, m)\|P\|_{L^{1}\left(\mathbb{T}^{n}, E\right)}
$$

The case $m=2$

An example provided by Bourgain and included in a paper by McConnell and Taqqu.

An example for $m=2$ taking $E=\mathcal{L}\left(l_{2}\right)$
There is a vector valued 2-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathcal{L}\left(\ell_{2}\right)$ such that

$$
\|P\|_{L^{1}\left(\mathbb{T}^{n}, \mathcal{L}\left(\ell_{2}\right)\right)} \leq \pi \quad \text { and } \quad\left\|L_{P}\right\|_{L^{1}\left(\mathbb{T}^{n m}, \mathcal{L}\left(\ell_{2}\right)\right)} \geq \log n-\pi .
$$

Therefore,

$$
\frac{\log n}{\pi}-1 \leq C(n, 2) \leq c \log n .
$$

The $\log n$ estimate from the example arises from the norm of the main triangle projection

The case $m=2$

An example provided by Bourgain and included in a paper by McConnell and Taqqu.

An example for $m=2$ taking $E=\mathcal{L}\left(\ell_{2}\right)$

There is a vector valued 2-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathcal{L}\left(\ell_{2}\right)$ such that

$$
\|P\|_{L^{1}\left(\mathbb{T}^{n}, \mathcal{L}\left(\ell_{2}\right)\right)} \leq \pi \quad \text { and } \quad\left\|L_{P}\right\|_{L^{1}\left(\mathbb{T}^{n m}, \mathcal{L}\left(\ell_{2}\right)\right)} \geq \log n-\pi
$$

Therefore,

The log n estimate from the example arises from the norm of the main triangle nrojection

The case $m=2$

An example provided by Bourgain and included in a paper by McConnell and Taqqu.

An example for $m=2$ taking $E=\mathcal{L}\left(\ell_{2}\right)$

There is a vector valued 2-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathcal{L}\left(\ell_{2}\right)$ such that

$$
\|P\|_{L^{1}\left(\mathbb{T}^{n}, \mathcal{L}\left(\ell_{2}\right)\right)} \leq \pi \quad \text { and } \quad\left\|L_{P}\right\|_{L^{1}\left(\mathbb{T}^{n m}, \mathcal{L}\left(\ell_{2}\right)\right)} \geq \log n-\pi
$$

Therefore,

$$
\frac{\log n}{\pi}-1 \leq C(n, 2)
$$

The $\log n$ estimate from the example arises from the norm of the main triangle projection

The case $m=2$

An example provided by Bourgain and included in a paper by McConnell and Taqqu.

An example for $m=2$ taking $E=\mathcal{L}\left(\ell_{2}\right)$

There is a vector valued 2-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathcal{L}\left(\ell_{2}\right)$ such that

$$
\|P\|_{L^{1}\left(\mathbb{T}^{n}, \mathcal{L}\left(\ell_{2}\right)\right)} \leq \pi \quad \text { and } \quad\left\|L_{P}\right\|_{L^{1}\left(\mathbb{T}^{n m}, \mathcal{L}\left(\ell_{2}\right)\right)} \geq \log n-\pi
$$

Therefore,

$$
\frac{\log n}{\pi}-1 \leq C(n, 2) \leq c \log n .
$$

The $\log n$ estimate from the example arises from the norm of the main triangle projection.

The case $m=2$

An example provided by Bourgain and included in a paper by McConnell and Taqqu.

An example for $m=2$ taking $E=\mathcal{L}\left(\ell_{2}\right)$

There is a vector valued 2-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathcal{L}\left(\ell_{2}\right)$ such that

$$
\|P\|_{L^{1}\left(\mathbb{T}^{n}, \mathcal{L}\left(\ell_{2}\right)\right)} \leq \pi \quad \text { and } \quad\left\|L_{P}\right\|_{L^{1}\left(\mathbb{T}^{n m}, \mathcal{L}\left(\ell_{2}\right)\right)} \geq \log n-\pi
$$

Therefore,

$$
\frac{\log n}{\pi}-1 \leq C(n, 2) \leq c \log n
$$

The $\log n$ estimate from the example arises from the norm of the main triangle projection.

Extending the example for $m>2$

Let $E=\bigotimes_{k=1}^{m / 2} \mathcal{L}\left(\ell_{2}\right)$ be the projective tensor product of $m / 2$ copies of $\mathcal{L}\left(\ell_{2}\right)$.
One may define a vector valued m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow E$ given by taking the tensor product of $m / 2$ copies of the 2-homogeneous polynomial in the previous example.
We can obtain

$$
\|P\|_{L^{1}\left(\mathbb{T}^{n}, E\right)} \leq \pi^{m / 2} \quad \text { and } \quad\left\|L_{P}\right\|_{L^{1}\left(\mathbb{T}^{n m}, E\right)} \gtrsim(\log n)^{m / 2} \quad \text { if } n \gg m
$$

Finally, for $n \gg m$ we get

$$
(\log n)^{m / 2} \lesssim C(n, m) \leq c_{1}^{m} m^{m}(\log n)^{m-1} .
$$

Extending the example for $m>2$

Let $E=\bigotimes_{k=1}^{m / 2} \mathcal{L}\left(\ell_{2}\right)$ be the projective tensor product of $m / 2$ copies of $\mathcal{L}\left(\ell_{2}\right)$.
One may define a vector valued m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow E$ given by taking the tensor product of $m / 2$ copies of the 2-homogeneous polynomial in the previous example.
We can obtain

Finally, for $n \gg m$ we get

$$
(\log n)^{m / 2} \lesssim C(n, m) \leq c_{1}^{m} m^{m}(\log n)^{m-1}
$$

Extending the example for $m>2$

Let $E=\bigotimes_{k=1}^{m / 2} \mathcal{L}\left(\ell_{2}\right)$ be the projective tensor product of $m / 2$ copies of $\mathcal{L}\left(\ell_{2}\right)$.
One may define a vector valued m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow E$ given by taking the tensor product of $m / 2$ copies of the 2-homogeneous polynomial in the previous example.
We can obtain

$$
\|P\|_{L^{1}\left(\mathbb{T}^{n}, E\right)} \leq \pi^{m / 2} \quad \text { and } \quad\left\|L_{P}\right\|_{L^{1}\left(\mathbb{T}^{n m}, E\right)} \gtrsim(\log n)^{m / 2} \quad \text { if } n \gg m
$$

Finally, for $n \gg m$ we get

$$
(\log n)^{m / 2} \lesssim C(n, m) \leq c_{1}^{m} m^{m}(\log n)^{m-1} .
$$

Extending the example for $m>2$

Let $E=\bigotimes_{k=1}^{m / 2} \mathcal{L}\left(\ell_{2}\right)$ be the projective tensor product of $m / 2$ copies of $\mathcal{L}\left(\ell_{2}\right)$.
One may define a vector valued m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow E$ given by taking the tensor product of $m / 2$ copies of the 2-homogeneous polynomial in the previous example.
We can obtain

$$
\|P\|_{L^{1}\left(\mathbb{T}^{n}, E\right)} \leq \pi^{m / 2} \quad \text { and } \quad\left\|L_{P}\right\|_{L^{1}\left(\mathbb{T}^{n m}, E\right)} \gtrsim(\log n)^{m / 2} \quad \text { if } n \gg m
$$

Finally, for $n \gg m$ we get

$$
(\log n)^{m / 2} \lesssim C(n, m) \leq c_{1}^{m} m^{m}(\log n)^{m-1} .
$$

Extending the example for $m>2$

Let $E=\bigotimes_{k=1}^{m / 2} \mathcal{L}\left(\ell_{2}\right)$ be the projective tensor product of $m / 2$ copies of $\mathcal{L}\left(\ell_{2}\right)$.
One may define a vector valued m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow E$ given by taking the tensor product of $m / 2$ copies of the 2-homogeneous polynomial in the previous example.
We can obtain

$$
\|P\|_{L^{1}\left(\mathbb{T}^{n}, E\right)} \leq \pi^{m / 2} \quad \text { and } \quad\left\|L_{P}\right\|_{L^{1}\left(\mathbb{T}^{n m}, E\right)} \gtrsim(\log n)^{m / 2} \quad \text { if } n \gg m
$$

Finally, for $n \gg m$ we get

$$
(\log n)^{m / 2} \lesssim C(n, m) \leq c_{1}^{m} m^{m}(\log n)^{m-1}
$$

Thank You!

