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Introduction

Let P : Cn → C be an m-homogeneous polynomial of n variables given by

P(x) =
∑

1≤j1≤...≤jm≤n
cj1...jmxj1 . . . xjm .

Let L : (Cn)m → C be the unique symmetric m-linear form such that

L(x , . . . , x) = P(x) ∀x ∈ Cn.

It follows from the polarization formula (P.F.) that

sup∥∥x (k)
∥∥≤1

∣∣∣L (x (1), . . . , x (m)
)∣∣∣ ≤ em sup

‖x‖≤1
|P(x)|,

for any norm ‖ · ‖ on Cn.
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Introduction
Given an m-homogeneous polynomial

P(x) =
∑

1≤j1≤...≤jm≤n
cj1...jmxj1 . . . xjm ,

Defant and Schlüters defined a non-symmetric m-linear form
LP : (Cn)m → C given by

LP
(
x (1), . . . , x (m)

)
=

∑
1≤j1≤...≤jm≤n

cj1...jmx (1)
j1 . . . x (m)

jm .

Clearly, LP(x , . . . , x) = P(x) for all x ∈ Cn.

Main goal
Our main goal is to compare

sup∥∥x (k)
∥∥≤1

∣∣∣LP
(
x (1), . . . , x (m)

)∣∣∣ with sup
‖x‖≤1

|P(x)|.
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Introduction

Theorem (Defant-Schlüters 2017)
There exists a universal constant c1 ≥ 1 such that

sup∥∥x (k)
∥∥≤1

∣∣∣LP
(
x (1), . . . , x (m)

)∣∣∣ ≤ (c1 log n)m2 sup
‖x‖≤1

|P(x)|,

for every 1-unconditional norm ‖ · ‖ on Cn.
For ‖ · ‖p with 1 ≤ p < 2, there is a constant c2 = c2(p) ≥ 1 for which

sup∥∥x (k)
∥∥

p
≤1

∣∣∣LP
(
x (1), . . . , x (m)

)∣∣∣ ≤ cm2
2 sup
‖x‖p≤1

|P(x)|.

Recently, refining their original calculations, they obtained a
c(m)(log n)m estimate.
The log n term is due to norm bounds of the main triangle projection.
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Introduction

Idea of the proof
Define partial symmetrizations Sk for 1 ≤ k ≤ m such that

LP = S1LP , S2LP , . . . , Sm−1LP , SmLP = L P.F.
; P.

Identify each SkLP with its coefficents matrix and find a matrix Ak
such that

Sk−1LP = Ak ∗ SkLP ,

where ∗ denotes de coordinatewise product.
Break Ak down into simpler building blocks.
Estimate how these building blocks change the supremum norm when
applied to an m-form.
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Symmetrization

Probabilistic point of view
Let Σ be the permutation group of m elements endowed with the
equiprobability measure. We have

L
(
x (1), . . . , x (m)

)
= Eσ

 ∑
1≤j1≤...≤jm≤n

cj1...jmx (1)
jσ(1)

. . . x (m)
jσ(m)

 .
Thus, a card-shuffling algorithm applied to the subindices’ order will yield
a symmetrization procedure for LP by taking expectation.
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Fisher-Yates shuffle

Step k of the Fisher-Yates shuffle:

First  
k-1 cards

fixed

Choose 
random card
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Partial shuffles

For 1 ≤ k ≤ m − 1, let µk be the probability distribution on the
permutation group Σ associated to performing the first k steps of the
Fisher-Yates shuffle.
We define partial shuffles Sk by

SkLP
(
x (1), . . . , x (m)

)
= Eσ

 ∑
1≤j1≤...≤jm≤n

cj1...jmx (1)
jσ(1)

. . . x (m)
jσ(m)

 ,
where σ ∼ µk .
We get

LP = S0LP , S1LP , . . . , Sm−2LP , Sm−1LP = L.
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Upper bound

Theorem
There exists a universal constant c1 ≥ 1 such that

sup∥∥x (k)
∥∥≤1

∣∣∣LP
(
x (1), . . . , x (m)

)∣∣∣ ≤ cm
1 mm(log n)m−1 sup

‖x‖≤1
|P(x)|,

for every 1-unconditional norm ‖ · ‖ on Cn.
For ‖ · ‖p with 1 ≤ p < 2, there is a constant c2 = c2(p) ≥ 1 for which

sup∥∥x (k)
∥∥

p
≤1

∣∣∣LP
(
x (1), . . . , x (m)

)∣∣∣ ≤ cm
2 mm sup

‖x‖p≤1
|P(x)|.
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Lower bounds

Let C(n,m) be the best constant such that

sup∥∥x (k)
∥∥≤1

∣∣∣LP
(
x (1), . . . , x (m)

)∣∣∣ ≤ C(n,m) sup
‖x‖≤1

|P(x)|,

for every 1-unconditional norm ‖ · ‖ on Cn.
Let Cp(n,m) be the best constant such that

sup∥∥x (k)
∥∥

p
≤1

∣∣∣LP
(
x (1), . . . , x (m)

)∣∣∣ ≤ Cp(n,m) sup
‖x‖p≤1

|P(x)|,

for ‖ · ‖p with 1 ≤ p < 2.

Lower bounds
We have that C(n,m) & (log n)m/2 if n� m.
On the other hand, we get Cp(n,m) ≥ mm/p for 1 ≤ p < 2 and n ≥ m.
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Lower bounds for Cp(n, m)

Taking P(x) = x1 . . . xm an easy computation gives

sup∥∥x (k)
∥∥

p
≤1

∣∣∣LP
(
x (1), . . . , x (m)

)∣∣∣ = 1 and

sup
‖x‖p≤1

|P(x)| = m−m/p.

So for 1 ≤ p < 2 and n ≥ m,

mm/p ≤ Cp(n,m) ≤ cm
2 mm.

Bad news: hypercontractivity cannot be achieved.
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Lower bounds for C(n, m)

We know that

sup
‖x‖∞≤1

|P(x)| ≤ sup
‖x (k)‖∞≤1

∣∣∣LP
(
x (1), . . . , x (m)

)∣∣∣ ≤ C(n,m) sup
‖x‖∞≤1

|P(x)|,

for every m-homogeneous polynomial P : Cn → C.
Equivalently, by the maximum modulus principle we get

‖P‖C(Tn) ≤ ‖LP‖C(Tnm) ≤ C(n,m)‖P‖C(Tn),

where T = {z ∈ C : |z | = 1}.
The monomials of P and LP are characters of the compact abelian groups
Tn and Tnm.
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Employing Banach space theory

Theorem (Pe lczyński)
Let (fj)j∈J and (gj)j∈J be sequences of characters on compact abelian
groups S and T . Suppose there are constants K1,K2 > 0 such that

1
K1

∥∥∥∑
j∈J

cj fj
∥∥∥

C(S)
≤
∥∥∥∑

j∈J
cjgj

∥∥∥
C(T )

≤ K2
∥∥∥∑

j∈J
cj fj
∥∥∥

C(S)
,

for every sequence of scalars (cj)j∈J ⊆ C.
Then, for every Banach space E and every sequence of vectors (vj)j∈J ⊆ E
we have

1
K1K2

∥∥∥∑
j∈J

vj fj
∥∥∥

L1(S,E)
≤
∥∥∥∑

j∈J
vjgj

∥∥∥
L1(T ,E)

≤ K1K2
∥∥∥∑

j∈J
vj fj
∥∥∥

L1(S,E)
.
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Employing Banach space theory

From the inequality

‖P‖C(Tn) ≤ ‖LP‖C(Tnm) ≤ C(n,m)‖P‖C(Tn),

and Pe lczyński’s theorem we get∥∥∥ ∑
1≤j1≤...≤jm≤n

vjx (1)
j1 . . . x (m)

jm

∥∥∥
L1(Tnm,E)

≤

≤ C(n,m)
∥∥∥ ∑

1≤j1≤...≤jm≤n
vjxj1 . . . xjm

∥∥∥
L1(Tn,E)

,

for every Banach space E and every sequence of vectors (vj)j∈J ⊆ E .
Equivalently, for every vector valued m-homogeneous polynomial
P : Cn → E we have that

‖LP‖L1(Tnm,E) ≤ C(n,m)‖P‖L1(Tn,E).
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The case m = 2

An example provided by Bourgain and included in a paper by McConnell
and Taqqu.

An example for m = 2 taking E = L(`2)
There is a vector valued 2-homogeneous polynomial P : Cn → L(`2) such
that

‖P‖L1(Tn,L(`2)) ≤ π and ‖LP‖L1(Tnm,L(`2)) ≥ log n − π.

Therefore,
log n
π
− 1 ≤ C(n, 2) ≤ c log n.

The log n estimate from the example arises from the norm of the main
triangle projection.

F. Marceca (IMAS) Remarks on non-symmetric polarization October 18, 2017 15 / 17



The case m = 2

An example provided by Bourgain and included in a paper by McConnell
and Taqqu.

An example for m = 2 taking E = L(`2)
There is a vector valued 2-homogeneous polynomial P : Cn → L(`2) such
that

‖P‖L1(Tn,L(`2)) ≤ π and ‖LP‖L1(Tnm,L(`2)) ≥ log n − π.

Therefore,
log n
π
− 1 ≤ C(n, 2) ≤ c log n.

The log n estimate from the example arises from the norm of the main
triangle projection.

F. Marceca (IMAS) Remarks on non-symmetric polarization October 18, 2017 15 / 17



The case m = 2

An example provided by Bourgain and included in a paper by McConnell
and Taqqu.

An example for m = 2 taking E = L(`2)
There is a vector valued 2-homogeneous polynomial P : Cn → L(`2) such
that

‖P‖L1(Tn,L(`2)) ≤ π and ‖LP‖L1(Tnm,L(`2)) ≥ log n − π.

Therefore,
log n
π
− 1 ≤ C(n, 2) ≤ c log n.

The log n estimate from the example arises from the norm of the main
triangle projection.

F. Marceca (IMAS) Remarks on non-symmetric polarization October 18, 2017 15 / 17



The case m = 2

An example provided by Bourgain and included in a paper by McConnell
and Taqqu.

An example for m = 2 taking E = L(`2)
There is a vector valued 2-homogeneous polynomial P : Cn → L(`2) such
that

‖P‖L1(Tn,L(`2)) ≤ π and ‖LP‖L1(Tnm,L(`2)) ≥ log n − π.

Therefore,
log n
π
− 1 ≤ C(n, 2) ≤ c log n.

The log n estimate from the example arises from the norm of the main
triangle projection.

F. Marceca (IMAS) Remarks on non-symmetric polarization October 18, 2017 15 / 17



The case m = 2

An example provided by Bourgain and included in a paper by McConnell
and Taqqu.

An example for m = 2 taking E = L(`2)
There is a vector valued 2-homogeneous polynomial P : Cn → L(`2) such
that

‖P‖L1(Tn,L(`2)) ≤ π and ‖LP‖L1(Tnm,L(`2)) ≥ log n − π.

Therefore,
log n
π
− 1 ≤ C(n, 2) ≤ c log n.

The log n estimate from the example arises from the norm of the main
triangle projection.

F. Marceca (IMAS) Remarks on non-symmetric polarization October 18, 2017 15 / 17



Extending the example for m > 2

Let E =
⊗m/2

k=1 L(`2) be the projective tensor product of m/2 copies of
L(`2).
One may define a vector valued m-homogeneous polynomial P : Cn → E
given by taking the tensor product of m/2 copies of the 2-homogeneous
polynomial in the previous example.
We can obtain

‖P‖L1(Tn,E) ≤ πm/2 and ‖LP‖L1(Tnm,E) & (log n)m/2 if n� m.

Finally, for n� m we get

(log n)m/2 . C(n,m) ≤ cm
1 mm(log n)m−1.
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Thank You!
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