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Definitions in C

D denotes the open unit disk of C.

The space A−p = {f : D→ C analytic : supz∈D(1− |z|2)p |f (z)| <∞}.

A−p is a Banach space endowed with the norm given by supz∈D(1− |z|2)p |f (z)|.

A sequence (zn) ⊂ D is interpolating for A−p if for any bounded sequence
(αn) ⊂ C, there exists f ∈ A−p such that (1− |zn|)pf (zn) = αn for any n ∈ N.

The pseudohyperbolic distance in D

The pseudohyperbolic distance for z,w ∈ D is

ρ(z,w) =

∣∣∣∣ z − w

1− z̄w

∣∣∣∣ = |ϕz (w)|.

(zn) ⊂ D is hyperbolically separated if ∃R > 0 such that ρ(zk , zj ) ≥ R ∀k, j .
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Theorem [K. Seip’93]

A sequence (zn) ⊂ D is interpolating for A−p if and only if

(zn) is hyperbolically separated

lim supr→1 supw∈D D(Sw , r) < p.

D(Sw , r)

For 1
2
< r < 1 and a sequence (zj ) ⊂ D, the set D((zj ), r) is given by

D((zj ), r) =

∑
1
2
<|zj |<r log 1

|zj |

log 1
1−r

·

Sw := (ϕw (zj )) is the image of the sequence (zj ) under the automorphism
ϕw : D→ D given by

ϕw (z) =
w − z

1− w̄z
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The weighted space Hv (BE )

The space E will denote a complex Hilbert space of arbitrary dimension (finite or
infinite dimensional) and BE = {x ∈ E : ‖x‖ < 1} its open unit ball.

Let υ : BE → (0,∞) be a weight, that is, a continuous positive function. We
consider the weighted space of analytic functions

H∞υ (BE ) := {f : BE → C : f is analytic and ‖f ‖υ = sup
x∈BE

υ(x)|f (x)| <∞}

and it becomes a Banach space when endowed with the ‖ · ‖υ norm.

Standard weights are υα(x) = (1− ‖x‖2)α , for α ≥ 0.

When α = 0 then we get H∞(BE ).

A sequence (zn) ⊂ BE is interpolating for H∞υ (BE ) if for any bounded sequence
(αn) ⊂ C there exists f ∈ H∞υ (BE ) such that v(zn)f (zn) = αn.

Equivalently, (zn) is interpolating if the mapping S : H∞υ (BE )→ `∞ given by
S(f ) = (v(zn)f (zn)) is onto.

(zn) is linear interpolating if the map S has a linear right inverse.
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The pseudohyperbolic distance in BE

The pseudohyperbolic distance for x , y ∈ BE :

ρE (x , y) = ‖ϕx (y)‖

where ϕx is an automorphism of BE such that ϕx (x) = 0.

The sequence (zn) ⊂ BE is hyperbolically separated if ∃R > 0 such that
ρ(zk , zj ) ≥ R ∀k, j .

Necessary conditions for interpolation

Theorem. Let υ be a weight and F : [0, 1)→ R+ be a continuous non decreasing
function s.t.

υ(x)

υ(y)
≤ F (ρE (x , y)), x , y ∈ BE . (1.1)

Then any interpolating sequence (wn) for H∞υ (BE ) is hyperbolically separated.

Remark. The standard weights υα(x) = (1− ‖x‖2)α, for α ≥ 0, satisfy the

assumption with F (r) =
(

4
1−r2

)α
.
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Remarks

Notice that:

In the one-dimensional case:

Interpolating (zn) ⊂ D for A−p is hyperbolically separated.

Hence |zn| → 1 when
n→∞.

In the infinite dimensional case (for instance E=`2):

Consider u a bounded radial weight on D and v(x) = u(‖x‖) for x ∈ BE .
Consider an orthonormal sequence (en) ⊂ E and (zn) ⊂ D such that
(infn |zn|)(infn u(|zn|)) > 0.

Then the sequence (znen) is interpolating for for H∞υ (BE ) by the
d−homogeneous polynomial

Pd (x) =
∞∑
n=1

αn

u(|zn|)zdn
〈x , en〉d .

If supn |zn| < 1, then limn ‖znen‖ 6= 1.
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Interpolating sequences. Sufficient conditions

(Easy) sufficient conditions for a sequence to be interpolating for H∞υα (BE )

Remark [Lindström, Galindo, M’09]. If the sequence (wn) ⊂ BE is interpolating for
H∞(BE ), then it is also linear interpolating.

Corollary. If (wn) ⊂ BE is an interpolating sequence for H∞(BE ), then it is linear
interpolating for H∞υα (BE ) for any α > 0.

Examples of linear interpolating sequences for H∞υα (BE )

1) A sequence (wn) ⊂ BE such that∏
m 6=n

ρE (wm,wn) ≥ δ for some δ > 0.

2) A sequence (wn) ⊂ BE which grows exponentially to the unit sphere, that is,

1− ‖wn+1‖
1− ‖wn‖

< c for some c < 1.

3) If limn→∞ ‖wn‖ = 1, there exists a subsequence (wnk ) which is linear interpolating.
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Sufficient conditions

Carleson measures on the unit ball BE (for E finite or infinite dimensional)

For any ξ ∈ E , ‖ξ‖ = 1 and 0 < h < 1 the Carleson window S(ξ, h) is given by

S(ξ, h) = {y ∈ BE : |1− 〈y , ξ〉| < 2h}.

If h ≥ 1, we write S(ξ, h) = BE .

Definition. Let η be a finite Borel measure on BE and β > 0. We say that η is a
β-Carleson measure whenever there exists C > 0 such that

η(S(ξ, h)) ≤ Chβ , for all ‖ξ‖ = 1 and all 0 < h < 1.

We write ‖η‖β = sup
{
η(S(ξ,h))

hβ
: ‖ξ‖ = 1, 0 < h < 1

}
.
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Carleson measures II

Lemma. Let η be a finite Borel measure on BE and β > 0. Define for α > 0

Iη(α, β) = sup
‖x‖<1

1

(1− ‖x‖2)β

∫
BE

( |1− ‖x‖2

|1− 〈w , x〉|

)α
dη(w) ∈ [0,∞].

(i) If Iη(α, β) <∞ for some α > 0, then η is a β-Carleson measure.

(ii) If η is a β-Carleson measure, then Iη(α, β) <∞ for any α > β.

Definition. Given (wn)∞n=1 ⊂ BE and γ > 0 we define

ηγ,(wn) =
∞∑
n=1

(1− ‖wn‖2)γδwn . (1.2)

In particular ηγ,(wn)(BE ) <∞ if and only if
∑∞

n=1(1− ‖wn‖2)γ <∞.
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Interpolating sequences in Bn

Proposition [Massaneda’95] Let E = Cn and β ≥ n. We have that

ηβ,(zj ) is a β-Carleson measure if and only if K({zj}, α, β) <∞ for any 0 < α ≤ β.

For α, β > 0 and (wj ) ⊂ BE , we denote

K({wj}, α, β) = sup
k∈N

∑
j 6=k

(1− ‖wk‖2)α(1− ‖wj‖2)β

|1− 〈wk ,wj 〉|α+β
.

Remark. For any x , y ∈ BE we have

1− ρE (x , y)2 =
(1− ‖x‖2)(1− ‖y‖2)

|1− 〈x , y〉|2
.
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Interpolating sequences in Bn

Theorem [Massaneda ’95]. Let α > 0 and (zn) ⊂ Bn.

(i) If (zn) is interpolating for H∞vα (Bn), then

K({zj}, α, β) <∞ ∀β ≥ α with β > n

(and (zn) is hyperbolically separated).

(ii) If ∃β ≥ max{n, α} with K({zj}, α, β) < 1, then (zj ) is interpolating for H∞vα (Bn).

So...

If (zn) interpolating for H∞vα (Bn) −→ ηβ,(zj ) is β−Carleson for β ≥ α, β > n.

If ∃β ≥ n, α :
ηβ,(zj ) Carleson

K({zj}, α, β) < 1

}
−→ (zn) is interpolating for H∞vα (Bn).
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Results

Remark. Replace Bn by BE −→ there exist interpolating sequences in H∞vα (BE ) which
may have K({wj}, α, β) =∞ for any β > 0.

For instance, the sequence (znen). Considering u a bounded radial weight on D and
v(x) = u(‖x‖) for x ∈ BE . Also an orthonormal sequence (en) ⊂ E and (zn) ⊂ D
such that (infn |zn|)(infn u(|zn|)) > 0. Take (zn) such that sup |zn| < 1.

Proposition. Let α, β > 0 and (wj ) ⊂ BE . If ηβ,(wj )
is a β-Carleson then

K({wj}, α, β) <∞.

Proposition. If (zn) ⊂ Bn is hyperbolically separated, then ηβ,(wj )
is a β−Carleson

measure for β > 0.

Remark. If E is infinite dimensional, ∃(wn) ⊂ BE hyperbolically separated but ηβ,(wj )

is not a β-Carleson measure for any β > 0.

In E = `2, use wj = 1
2
ej . Then ρE (wj ,wk ) =

√
7

4
for k 6= j and

∑
j (1− ‖wj‖2)β =∞.

Proposition. Let (wj ) ⊂ BE such that (‖wj‖) ⊂ D is a hyperbolically separated
sequence. Then ηβ,(wj )

is a β-Carleson measure for any β > 1.
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Main Theorem

Let α > 0 and (wn) ⊂ BE such that ηβ,(wn) is a β-Carleson measure for some β > 0.

(i) If (wn) is hyperbolically R-separated for some R > 0 satisfying

(1− R2)α/2‖ηβ,(wj )
‖β <

2α/2 − 1

2α+β
,

then it is linear interpolating for H∞vα (BE ).

(ii) If K({wn}, α, β) < 1, then (wn) is linear interpolating for H∞vα (BE ).

Corollaries

1) Let α > 0. If (zk ) ⊂ Bn is hyperbolically R-separated for R close enough to 1,
then it is linear interpolating for H∞vα (Bn).

2) Let α > 0 and (wk ) ⊂ BE . If the sequence (‖wk‖) is hyperbolically R-separated
for R close enough to 1, then (wk ) is linear interpolating for H∞vα (BE ).
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1) Let α > 0. If (zk ) ⊂ Bn is hyperbolically R-separated for R close enough to 1,
then it is linear interpolating for H∞vα (Bn).

2) Let α > 0 and (wk ) ⊂ BE . If the sequence (‖wk‖) is hyperbolically R-separated
for R close enough to 1, then (wk ) is linear interpolating for H∞vα (BE ).
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Sketch of the proof. Consider the linear operator S : H∞vα (BE )→ `∞ given by

S(f ) =
(

(1− ‖wn‖2)αf (wn)
)
n
.

We will find a linear bounded operator Φ : `∞ → H∞vα (BE ) such that
‖Id − S ◦ Φ‖ < 1.

Thus S ◦ Φ will be invertible, hence S has a right linear inverse (Φ ◦ (S ◦ Φ)−1)).

Φ
(
(αn)

)
(x) :=

∞∑
n=1

αn
(1− ‖wn‖2)2p−α

(1− 〈x ,wn〉)2p

for (αn) ∈ `∞ and x ∈ BE , where p = α+ β − ρ/2.

i) ‖Id − S ◦ ϕ‖ ≤ (1− R2)α/2‖ηβ,(wj )
‖β 2α/2+β

1−2β−ρ
< 1.

ii) ‖Id − S ◦ Φ‖ ≤ K({wn}, α, α+ 2β − ρ) < 1 if we choose β < ρ ≤ β + α. Choose
ρ = β + α and we are done.
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The Bloch space on the unit ball BE

The Bloch space B(BE ) is the set of analytic functions f : BE → C:

‖f ‖B(BE ) := sup
x∈BE

(1− ‖x‖2)‖∇f (x)‖ <∞.

B(BE ) with the norm ‖f ‖ := |f (0)|+ ‖f ‖B(BE ) becomes a Banach space.

Prop [Blasco, Galindo, M.’14]. we have

H∞(BE ) ⊂ B(BE ) and ‖f ‖B(BE ) ≤ ‖f ‖∞.

Theo[Blasco, Galindo, M.’14]. We consider equivalent norms- modulo the
constant functions- in B(BE ):

1) ‖f ‖inv = supϕ∈Aut(BE ) ‖f ◦ ϕ‖

‖f ◦ ϕ‖inv = ‖f ‖inv for any f ∈ B(BE ) and ϕ ∈ Aut(BE ).

2) Using the radial derivative of f at x , Rf (x) = 〈x ,∇f (x)〉:

‖f ‖R = sup
x∈BE

(1− ‖x‖2)|Rf (x)| <∞
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Interpolating sequences for B(BE )

Bearing in mind the radial derivative of f at x , Rf (x) = 〈x ,∇f (x)〉:

‖f ‖R = sup
x∈BE

(1− ‖x‖2)|Rf (x)| <∞

A sequence (xn) ⊂ BE \ {0} is interpolating for B(BE ) if:

For any α = (αn) ∈ `∞ −→ ∃f ∈ B(BE ) : (1− ‖xn‖2)Rf (xn) = αn.

Bα(BE ) for any α > 0 if we change the weight (1− ‖z‖2) by (1− ‖z‖2)α.
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Bα(BE )0 and H∞υ (BE )0

Bα(BE )0 := {f ∈ Bα(BE ) : f (0) = 0} and H∞υ (BE )0 := {f ∈ H∞υ (BE ) : f (0) = 0}.

Theorem

Let α > 0. The radial derivative mapping f ∈ Bα(BE )0 7→ Rf ∈ H∞υα (BE )0 is an onto
isometric isomorphism.

Corollary

Let α > 0. The sequence (wn) ⊂ BE \ {0} is interpolating for Bα(BE ) if and only if it
is interpolating for H∞υα (BE )0.

Theorem

Let (wn) ⊂ BE \ {0}.

(i) If (wn) is interpolating for H∞(BE ), then it is also linear interpolating for Bα(BE ).

(ii) If (wn) is interpolating for Bα(BE ), it is hyperb. separated for some R > 0.

(iii) If
∑∞

n=1(1− ‖wn‖2)2δwn is a 2-Carleson measure and (wn) is hyperb. separated

for some R >

√
1−

(
2α/2−1

2α+2‖η2,(wn)‖2

)2/α
, it is linear interpolating for Bα(BE ).
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Example

There exist sequences (xn) ⊂ BE which are interpolating for B(BE ) but not
interpolating for H∞(BE ).

Sketch of the proof. There exists sequences which are hyperbolically separated for R
so close to 1 as we want but

∑
z (1− ‖z‖2) =∞.

Consider k an even number, k ≥ 2 and circles Cn centered at 0 and radius rn = 1− 1
kn

for any n ≥ 1. In each circle Cn, we take zn,j = rne
2πij

kn−1 for any 0 ≤ j < kn−1.

For z,w in the sequence,

ρ(z,w) ≥ min


k − 1

k + 1
,

1√
1 +

(
2kn−1

4k(kn−1)

)2

→ 1 when k →∞.

∞∑
n=1

(1− |zn|) =
∞∑
k=1

kn−1(1− rn) =
∞∑
k=1

kn−1 1

kn
=
∞∑
k=1

1

k
=∞.
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