Interpolating sequences for weighted spaces of analytic functions on the unit ball of a Hilbert space

> Alejandro Miralles joint work with O. Blasco, P. Galindo and M. Lindström Universitat Jaume I de Castelló

> Workshop on Infinite Dimensional Analysis Valencia 2017 20 de Octubre de 2017

Definitions in $\mathbb C$

 $\bullet~$ D denotes the open unit disk of $\mathbb{C}.$

Definitions in $\ensuremath{\mathbb{C}}$

- D denotes the open unit disk of \mathbb{C} .
- The space $A^{-p} = \{f : \mathbf{D} \to \mathbb{C} \text{ analytic} : \sup_{z \in \mathbf{D}} (1 |z|^2)^p |f(z)| < \infty \}.$
- A^{-p} is a Banach space endowed with the norm given by $\sup_{z \in \mathbf{D}} (1 |z|^2)^p |f(z)|$.

□ > < E > < E > E - のへで

Definitions in $\ensuremath{\mathbb{C}}$

- D denotes the open unit disk of C.
- The space $A^{-p} = \{f : \mathbf{D} \to \mathbb{C} \text{ analytic} : \sup_{z \in \mathbf{D}} (1 |z|^2)^p |f(z)| < \infty \}.$

• A^{-p} is a Banach space endowed with the norm given by $\sup_{z \in D} (1 - |z|^2)^p |f(z)|$.

• A sequence $(z_n) \subset \mathbf{D}$ is interpolating for A^{-p} if for any bounded sequence $(\alpha_n) \subset \mathbb{C}$, there exists $f \in A^{-p}$ such that $(1 - |z_n|)^p f(z_n) = \alpha_n$ for any $n \in \mathbb{N}$.

Background and results References

Definitions in $\ensuremath{\mathbb{C}}$

- D denotes the open unit disk of C.
- The space $A^{-p} = \{f : \mathbf{D} \to \mathbb{C} \text{ analytic} : \sup_{z \in \mathbf{D}} (1 |z|^2)^p |f(z)| < \infty \}.$
- A^{-p} is a Banach space endowed with the norm given by $\sup_{z \in \mathbf{D}} (1 |z|^2)^p |f(z)|$.
- A sequence $(z_n) \subset \mathbf{D}$ is interpolating for A^{-p} if for any bounded sequence $(\alpha_n) \subset \mathbb{C}$, there exists $f \in A^{-p}$ such that $(1 |z_n|)^p f(z_n) = \alpha_n$ for any $n \in \mathbb{N}$.

The pseudohyperbolic distance in D

• The pseudohyperbolic distance for $z, w \in \mathbf{D}$ is

$$\rho(z,w) = \left|\frac{z-w}{1-\bar{z}w}\right|$$

Background and results References

Definitions in $\ensuremath{\mathbb{C}}$

- D denotes the open unit disk of C.
- The space $A^{-p} = \{f : \mathbf{D} \to \mathbb{C} \text{ analytic} : \sup_{z \in \mathbf{D}} (1 |z|^2)^p |f(z)| < \infty \}.$
- A^{-p} is a Banach space endowed with the norm given by $\sup_{z \in \mathbf{D}} (1 |z|^2)^p |f(z)|$.
- A sequence $(z_n) \subset \mathbf{D}$ is interpolating for A^{-p} if for any bounded sequence $(\alpha_n) \subset \mathbb{C}$, there exists $f \in A^{-p}$ such that $(1 |z_n|)^p f(z_n) = \alpha_n$ for any $n \in \mathbb{N}$.

The pseudohyperbolic distance in D

• The pseudohyperbolic distance for $z, w \in \mathbf{D}$ is

$$\rho(z,w) = \left| \frac{z-w}{1-\bar{z}w} \right| = |\varphi_z(w)|.$$

Definitions in $\ensuremath{\mathbb{C}}$

- D denotes the open unit disk of C.
- The space $A^{-p} = \{f : \mathbf{D} \to \mathbb{C} \text{ analytic} : \sup_{z \in \mathbf{D}} (1 |z|^2)^p |f(z)| < \infty \}.$

• A^{-p} is a Banach space endowed with the norm given by $\sup_{z \in D} (1 - |z|^2)^p |f(z)|$.

• A sequence $(z_n) \subset \mathbf{D}$ is interpolating for A^{-p} if for any bounded sequence $(\alpha_n) \subset \mathbb{C}$, there exists $f \in A^{-p}$ such that $(1 - |z_n|)^p f(z_n) = \alpha_n$ for any $n \in \mathbb{N}$.

The pseudohyperbolic distance in D

• The pseudohyperbolic distance for $z, w \in \mathbf{D}$ is

$$\rho(z,w) = \left| \frac{z-w}{1-\bar{z}w} \right| = |\varphi_z(w)|.$$

• $(z_n) \subset \mathbf{D}$ is hyperbolically separated if $\exists R > 0$ such that $\rho(z_k, z_j) \ge R \quad \forall k, j$.

向下 イヨト イヨト ニヨ

Theorem [K. Seip'93]

A sequence $(z_n) \subset \mathbf{D}$ is interpolating for A^{-p} if and only if

- (z_n) is hyperbolically separated
- $\limsup_{r \to 1} \sup_{w \in \mathbf{D}} D(S_w, r) < p$.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q ()

Theorem [K. Seip'93]

A sequence $(z_n) \subset \mathbf{D}$ is interpolating for A^{-p} if and only if

- (z_n) is hyperbolically separated
- $\limsup_{r \to 1} \sup_{w \in \mathbf{D}} D(S_w, r) < p$.

$D(S_w, r)$

• For $\frac{1}{2} < r < 1$ and a sequence $(z_j) \subset \mathbf{D}$, the set $D((z_j), r)$ is given by

$$D((z_j), r) = rac{\sum_{\frac{1}{2} < |z_j| < r} \log rac{1}{|z_j|}}{\log rac{1}{1-r}}$$

▲ 글 ▶ ▲ 글 ▶ _ 글 _

Theorem [K. Seip'93]

A sequence $(z_n) \subset \mathbf{D}$ is interpolating for A^{-p} if and only if

- (z_n) is hyperbolically separated
- $\limsup_{r \to 1} \sup_{w \in \mathbf{D}} D(S_w, r) < p$.

$D(S_w, \overline{r})$

• For $\frac{1}{2} < r < 1$ and a sequence $(z_j) \subset \mathbf{D}$, the set $D((z_j), r)$ is given by

$$D((z_j), r) = \frac{\sum_{\frac{1}{2} < |z_j| < r} \log \frac{1}{|z_j|}}{\log \frac{1}{1-r}} \cdot$$

• $S_w := (\varphi_w(z_j))$ is the image of the sequence (z_j) under the automorphism $\varphi_w : \mathbf{D} \to \mathbf{D}$ given by

$$\varphi_w(z) = \frac{w-z}{1-\bar{w}z}$$

The space E will denote a complex Hilbert space of arbitrary dimension (finite or infinite dimensional) and B_E = {x ∈ E : ||x|| < 1} its open unit ball.

| ◆ □ ▶ | ◆ 三 ▶ | ◆ 三 ▶

э

- The space E will denote a complex Hilbert space of arbitrary dimension (finite or infinite dimensional) and B_E = {x ∈ E : ||x|| < 1} its open unit ball.
- Let $v: B_E \to (0,\infty)$ be a *weight*, that is, a continuous positive function.

< ≥> < ≥>

A ►

- The space E will denote a complex Hilbert space of arbitrary dimension (finite or infinite dimensional) and B_E = {x ∈ E : ||x|| < 1} its open unit ball.
- Let $v: B_E \to (0, \infty)$ be a *weight*, that is, a continuous positive function. We consider the **weighted space** of analytic functions

 $H^\infty_\upsilon(B_E) := \{f: B_E \to \mathbb{C} : f \text{ is analytic and } \|f\|_\upsilon = \sup_{x \in B_E} \upsilon(x) |f(x)| < \infty \}$

注 ▶ ★ 注 ▶

- The space E will denote a complex Hilbert space of arbitrary dimension (finite or infinite dimensional) and B_E = {x ∈ E : ||x|| < 1} its open unit ball.
- Let v : B_E → (0,∞) be a weight, that is, a continuous positive function. We consider the weighted space of analytic functions

 $H^\infty_\upsilon(B_E):=\{f:B_E\to\mathbb{C}: f \text{ is analytic and } \|f\|_\upsilon=\sup_{x\in B_E}\upsilon(x)|f(x)|<\infty\}$

and it becomes a Banach space when endowed with the $\|\cdot\|_{v}$ norm.

- The space E will denote a complex Hilbert space of arbitrary dimension (finite or infinite dimensional) and B_E = {x ∈ E : ||x|| < 1} its open unit ball.
- Let v : B_E → (0,∞) be a weight, that is, a continuous positive function. We consider the weighted space of analytic functions

 $H^\infty_\upsilon(B_E):=\{f:B_E\to\mathbb{C}: f \text{ is analytic and } \|f\|_\upsilon=\sup_{x\in B_E}\upsilon(x)|f(x)|<\infty\}$

and it becomes a Banach space when endowed with the $\|\cdot\|_{v}$ norm.

• Standard weights are $v_{\alpha}(x) = (1 - \|x\|^2)^{\alpha}$, for $\alpha \ge 0$.

- The space E will denote a complex Hilbert space of arbitrary dimension (finite or infinite dimensional) and B_E = {x ∈ E : ||x|| < 1} its open unit ball.
- Let v : B_E → (0,∞) be a weight, that is, a continuous positive function. We consider the weighted space of analytic functions

 $H^\infty_\upsilon(B_E):=\{f:B_E\to\mathbb{C}: f \text{ is analytic and } \|f\|_\upsilon=\sup_{x\in B_E}\upsilon(x)|f(x)|<\infty\}$

and it becomes a Banach space when endowed with the $\|\cdot\|_{v}$ norm.

- Standard weights are $v_{\alpha}(x) = (1 \|x\|^2)^{\alpha}$, for $\alpha \ge 0$.
- When $\alpha = 0$ then we get $H^{\infty}(B_E)$.

- The space E will denote a complex Hilbert space of arbitrary dimension (finite or infinite dimensional) and B_E = {x ∈ E : ||x|| < 1} its open unit ball.
- Let v : B_E → (0,∞) be a weight, that is, a continuous positive function. We consider the weighted space of analytic functions

 $H^\infty_\upsilon(B_E):=\{f:B_E\to\mathbb{C}: f \text{ is analytic and } \|f\|_\upsilon=\sup_{x\in B_E}\upsilon(x)|f(x)|<\infty\}$

and it becomes a Banach space when endowed with the $\|\cdot\|_{v}$ norm.

- Standard weights are $v_{\alpha}(x) = (1 ||x||^2)^{\alpha}$, for $\alpha \ge 0$.
- When $\alpha = 0$ then we get $H^{\infty}(B_E)$.
- A sequence $(z_n) \subset B_E$ is interpolating for $H_v^{\infty}(B_E)$ if for any bounded sequence $(\alpha_n) \subset \mathbb{C}$ there exists $f \in H_v^{\infty}(B_E)$ such that $v(z_n)f(z_n) = \alpha_n$.

- The space E will denote a complex Hilbert space of arbitrary dimension (finite or infinite dimensional) and B_E = {x ∈ E : ||x|| < 1} its open unit ball.
- Let v : B_E → (0,∞) be a weight, that is, a continuous positive function. We consider the weighted space of analytic functions

 $H^\infty_\upsilon(B_E):=\{f:B_E\to\mathbb{C}: f \text{ is analytic and } \|f\|_\upsilon=\sup_{x\in B_E}\upsilon(x)|f(x)|<\infty\}$

and it becomes a Banach space when endowed with the $\|\cdot\|_{v}$ norm.

- Standard weights are $v_{\alpha}(x) = (1 \|x\|^2)^{\alpha}$, for $\alpha \ge 0$.
- When $\alpha = 0$ then we get $H^{\infty}(B_E)$.
- A sequence $(z_n) \subset B_E$ is interpolating for $H_v^{\infty}(B_E)$ if for any bounded sequence $(\alpha_n) \subset \mathbb{C}$ there exists $f \in H_v^{\infty}(B_E)$ such that $v(z_n)f(z_n) = \alpha_n$.
- Equivalently, (z_n) is interpolating if the mapping $S : H_{\upsilon}^{\infty}(B_E) \to \ell_{\infty}$ given by $S(f) = (v(z_n)f(z_n))$ is onto.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

___ ▶

- The space E will denote a complex Hilbert space of arbitrary dimension (finite or infinite dimensional) and B_E = {x ∈ E : ||x|| < 1} its open unit ball.
- Let v : B_E → (0,∞) be a weight, that is, a continuous positive function. We consider the weighted space of analytic functions

 $H^\infty_\upsilon(B_E):=\{f:B_E\to\mathbb{C}: f \text{ is analytic and } \|f\|_\upsilon=\sup_{x\in B_E}\upsilon(x)|f(x)|<\infty\}$

and it becomes a Banach space when endowed with the $\|\cdot\|_{v}$ norm.

- Standard weights are $v_{\alpha}(x) = (1 \|x\|^2)^{\alpha}$, for $\alpha \ge 0$.
- When $\alpha = 0$ then we get $H^{\infty}(B_E)$.
- A sequence $(z_n) \subset B_E$ is interpolating for $H_v^{\infty}(B_E)$ if for any bounded sequence $(\alpha_n) \subset \mathbb{C}$ there exists $f \in H_v^{\infty}(B_E)$ such that $v(z_n)f(z_n) = \alpha_n$.
- Equivalently, (z_n) is interpolating if the mapping $S : H_v^{\infty}(B_E) \to \ell_{\infty}$ given by $S(f) = (v(z_n)f(z_n))$ is onto.
- (z_n) is linear interpolating if the map S has a linear right inverse.

伺 と く ヨ と く ヨ と

• The pseudohyperbolic distance for $x, y \in B_E$:

$$\rho_E(x,y) = \|\varphi_x(y)\|$$

where φ_x is an automorphism of B_E such that $\varphi_x(x) = 0$.

(E) < E) </p>

A >

• The pseudohyperbolic distance for $x, y \in B_E$:

$$\rho_E(x,y) = \|\varphi_x(y)\|$$

where φ_x is an automorphism of B_E such that $\varphi_x(x) = 0$.

• The sequence $(z_n) \subset B_E$ is hyperbolically separated if $\exists R > 0$ such that $\rho(z_k, z_j) \ge R \quad \forall k, j.$

★ E ► ★ E ► E

• The pseudohyperbolic distance for $x, y \in B_E$:

$$\rho_E(x,y) = \|\varphi_x(y)\|$$

where φ_x is an automorphism of B_E such that $\varphi_x(x) = 0$.

• The sequence $(z_n) \subset B_E$ is hyperbolically separated if $\exists R > 0$ such that $\rho(z_k, z_j) \ge R \quad \forall k, j$.

Necessary conditions for interpolation

Theorem. Let v be a weight and $F : [0, 1) \to \mathbb{R}^+$ be a continuous non decreasing function s.t.

$$\frac{v(x)}{v(y)} \le F(\rho_E(x, y)), \quad x, y \in B_E.$$
(1.1)

3

Then any interpolating sequence (w_n) for $H_v^{\infty}(B_E)$ is hyperbolically separated.

• The pseudohyperbolic distance for $x, y \in B_E$:

$$\rho_E(x,y) = \|\varphi_x(y)\|$$

where φ_x is an automorphism of B_E such that $\varphi_x(x) = 0$.

• The sequence $(z_n) \subset B_E$ is hyperbolically separated if $\exists R > 0$ such that $\rho(z_k, z_j) \ge R \quad \forall k, j$.

Necessary conditions for interpolation

Theorem. Let v be a weight and $F : [0, 1) \to \mathbb{R}^+$ be a continuous non decreasing function s.t.

$$\frac{v(x)}{v(y)} \le F(\rho_E(x, y)), \quad x, y \in B_E.$$
(1.1)

3

Then any interpolating sequence (w_n) for $H_v^{\infty}(B_E)$ is hyperbolically separated.

Remark. The standard weights $v_{\alpha}(x) = (1 - ||x||^2)^{\alpha}$, for $\alpha \ge 0$, satisfy the assumption with $F(r) = \left(\frac{4}{1-r^2}\right)^{\alpha}$.

Notice that:

• In the one-dimensional case:

Interpolating $(z_n) \subset \mathbf{D}$ for A^{-p} is hyperbolically separated.

Notice that:

• In the one-dimensional case:

Interpolating $(z_n) \subset \mathbf{D}$ for A^{-p} is hyperbolically separated. Hence $|z_n| \to 1$ when $n \to \infty$.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● の < ()

Notice that:

• In the one-dimensional case:

Interpolating $(z_n) \subset D$ for A^{-p} is hyperbolically separated. Hence $|z_n| \to 1$ when $n \to \infty$.

• In the infinite dimensional case (for instance $E=\ell_2$):

Consider *u* a bounded radial weight on **D** and v(x) = u(||x||) for $x \in B_E$. Consider an orthonormal sequence $(e_n) \subset E$ and $(z_n) \subset \mathbf{D}$ such that $(\inf_n |z_n|)(\inf_n u(|z_n|)) > 0$.

Then the sequence $(z_n e_n)$ is interpolating for for $H_{\upsilon}^{\infty}(B_E)$

Notice that:

• In the one-dimensional case:

Interpolating $(z_n) \subset D$ for A^{-p} is hyperbolically separated. Hence $|z_n| \to 1$ when $n \to \infty$.

• In the infinite dimensional case (for instance $E=\ell_2$):

Consider *u* a bounded radial weight on **D** and v(x) = u(||x||) for $x \in B_E$. Consider an orthonormal sequence $(e_n) \subset E$ and $(z_n) \subset \mathbf{D}$ such that $(\inf_n |z_n|)(\inf_n u(|z_n|)) > 0$.

Then the sequence $(z_n e_n)$ is interpolating for for $H_{\upsilon}^{\infty}(B_E)$ by the d-homogeneous polynomial

$$P_d(x) = \sum_{n=1}^{\infty} \frac{\alpha_n}{u(|z_n|)z_n^d} \langle x, e_n \rangle^d.$$

If $\sup_n |z_n| < 1$, then $\lim_n ||z_n e_n|| \neq 1$.

向下 イヨト イヨト ニヨ

(Easy) sufficient conditions for a sequence to be interpolating for $H_{\nu_{\alpha}}^{\infty}(B_E)$

Remark [Lindström, Galindo, M'09]. If the sequence $(w_n) \subset B_E$ is interpolating for $H^{\infty}(B_E)$, then it is also linear interpolating.

(< ≥) < ≥)</p>

< 17 ▶

(Easy) sufficient conditions for a sequence to be interpolating for $H^{\infty}_{\nu\alpha}(B_E)$

Remark [Lindström, Galindo, M'09]. If the sequence $(w_n) \subset B_E$ is interpolating for $H^{\infty}(B_E)$, then it is also linear interpolating.

Corollary. If $(w_n) \subset B_E$ is an interpolating sequence for $H^{\infty}(B_E)$, then it is linear interpolating for $H^{\infty}_{v\alpha}(B_E)$ for any $\alpha > 0$.

(E)

___ ▶

(Easy) sufficient conditions for a sequence to be interpolating for $H_{\nu_{\alpha}}^{\infty}(B_E)$

Remark [Lindström, Galindo, M'09]. If the sequence $(w_n) \subset B_E$ is interpolating for $H^{\infty}(B_E)$, then it is also linear interpolating.

Corollary. If $(w_n) \subset B_E$ is an interpolating sequence for $H^{\infty}(B_E)$, then it is linear interpolating for $H^{\infty}_{\upsilon_{\alpha}}(B_E)$ for any $\alpha > 0$.

Examples of linear interpolating sequences for $H^{\infty}_{v_{\alpha}}(B_E)$

1) A sequence $(w_n) \subset B_E$ such that

$$\prod_{m\neq n} \rho_E(w_m, w_n) \geq \delta \quad \text{for some } \delta > 0.$$

(E)

(Easy) sufficient conditions for a sequence to be interpolating for $H_{v_{\alpha}}^{\infty}(B_E)$

Remark [Lindström, Galindo, M'09]. If the sequence $(w_n) \subset B_E$ is interpolating for $H^{\infty}(B_E)$, then it is also linear interpolating.

Corollary. If $(w_n) \subset B_E$ is an interpolating sequence for $H^{\infty}(B_E)$, then it is linear interpolating for $H^{\infty}_{\upsilon_{\alpha}}(B_E)$ for any $\alpha > 0$.

Examples of linear interpolating sequences for $H^{\infty}_{v_{\alpha}}(B_E)$

1) A sequence $(w_n) \subset B_E$ such that

$$\prod_{m\neq n} \rho_E(w_m, w_n) \geq \delta \quad \text{for some } \delta > 0.$$

2) A sequence $(w_n) \subset B_E$ which grows exponentially to the unit sphere, that is,

$$\frac{1 - \|w_{n+1}\|}{1 - \|w_n\|} < c \ \text{ for some } c < 1.$$

∃ ► < ∃ ►</p>

(Easy) sufficient conditions for a sequence to be interpolating for $H_{\nu_{\alpha}}^{\infty}(B_E)$

Remark [Lindström, Galindo, M'09]. If the sequence $(w_n) \subset B_E$ is interpolating for $H^{\infty}(B_E)$, then it is also linear interpolating.

Corollary. If $(w_n) \subset B_E$ is an interpolating sequence for $H^{\infty}(B_E)$, then it is linear interpolating for $H^{\infty}_{\upsilon_{\alpha}}(B_E)$ for any $\alpha > 0$.

Examples of linear interpolating sequences for $H^{\infty}_{v_{\alpha}}(B_E)$

1) A sequence $(w_n) \subset B_E$ such that

$$\prod_{m\neq n} \rho_E(w_m, w_n) \geq \delta \quad \text{for some } \delta > 0.$$

2) A sequence $(w_n) \subset B_E$ which grows exponentially to the unit sphere, that is,

$$\frac{1 - \|w_{n+1}\|}{1 - \|w_n\|} < c \ \text{ for some } c < 1.$$

3) If $\lim_{n\to\infty} ||w_n|| = 1$, there exists a subsequence (w_{n_k}) which is linear interpolating.

Sufficient conditions

Carleson measures on the unit ball B_E (for E finite or infinite dimensional)

For any $\xi \in E$, $\|\xi\| = 1$ and 0 < h < 1 the Carleson window $S(\xi, h)$ is given by

 $S(\xi, h) = \{y \in B_E : |1 - \langle y, \xi \rangle| < 2h\}.$

□ > < E > < E > E - のへで

Sufficient conditions

Carleson measures on the unit ball B_E (for E finite or infinite dimensional)

For any $\xi \in E$, $\|\xi\| = 1$ and 0 < h < 1 the *Carleson window* $S(\xi, h)$ is given by

 $S(\xi,h) = \{y \in B_E : |1 - \langle y, \xi \rangle| < 2h\}.$

If $h \ge 1$, we write $S(\xi, h) = B_E$.

□ > < E > < E > E - のへで

Carleson measures on the unit ball B_E (for E finite or infinite dimensional)

For any $\xi \in E$, $\|\xi\| = 1$ and 0 < h < 1 the *Carleson window* $S(\xi, h)$ is given by

$$S(\xi,h) = \{y \in B_E : |1 - \langle y, \xi \rangle| < 2h\}.$$

If $h \ge 1$, we write $S(\xi, h) = B_E$.

Definition. Let η be a finite Borel measure on B_E and $\beta > 0$. We say that η is a β -Carleson measure whenever there exists C > 0 such that

 $\eta(S(\xi,h)) \leq Ch^{eta}, \quad ext{ for all } \|\xi\| = 1 ext{ and all } 0 < h < 1.$

We write $\|\eta\|_{eta} = \sup\left\{rac{\eta(S(\xi,h))}{h^{eta}}: \|\xi\| = 1, \ 0 < h < 1
ight\}.$

Carleson measures II

Lemma. Let η be a finite Borel measure on B_E and $\beta > 0$. Define for $\alpha > 0$

$$I_{\eta}(\alpha,\beta) = \sup_{\|x\| < 1} \frac{1}{(1 - \|x\|^2)^{\beta}} \int_{B_E} \left(\frac{|1 - \|x\|^2}{|1 - \langle w, x \rangle|} \right)^{\alpha} d\eta(w) \in [0,\infty].$$

(i) If $I_{\eta}(\alpha,\beta)<\infty$ for some $\alpha>0,$ then η is a β -Carleson measure.

(ii) If η is a β -Carleson measure, then $I_{\eta}(\alpha, \beta) < \infty$ for any $\alpha > \beta$.

(七日) (七日) (二

Carleson measures II

Lemma. Let η be a finite Borel measure on B_E and $\beta > 0$. Define for $\alpha > 0$

$$I_{\eta}(\alpha,\beta) = \sup_{\|x\| < 1} \frac{1}{(1 - \|x\|^2)^{\beta}} \int_{B_E} \left(\frac{|1 - \|x\|^2}{|1 - \langle w, x \rangle|} \right)^{\alpha} d\eta(w) \in [0,\infty].$$

(i) If $I_{\eta}(\alpha,\beta) < \infty$ for some $\alpha > 0$, then η is a β -Carleson measure.

(ii) If η is a β -Carleson measure, then $I_{\eta}(\alpha, \beta) < \infty$ for any $\alpha > \beta$.

Definition. Given $(w_n)_{n=1}^{\infty} \subset B_E$ and $\gamma > 0$ we define

$$\eta_{\gamma,(w_n)} = \sum_{n=1}^{\infty} (1 - \|w_n\|^2)^{\gamma} \delta_{w_n}.$$
 (1.2)

In particular $\eta_{\gamma,(w_n)}(B_E) < \infty$ if and only if $\sum_{n=1}^{\infty} (1 - \|w_n\|^2)^{\gamma} < \infty$.

Proposition [Massaneda'95] Let $E = \mathbb{C}^n$ and $\beta \ge n$. We have that

 $\eta_{\beta,(z_i)}$ is a β -Carleson measure if and only if $K(\{z_j\}, \alpha, \beta) < \infty$ for any $0 < \alpha \leq \beta$.

э.

Proposition [Massaneda'95] Let $E = \mathbb{C}^n$ and $\beta \ge n$. We have that

 $\eta_{\beta,(z_i)}$ is a β -Carleson measure if and only if $K(\{z_j\}, \alpha, \beta) < \infty$ for any $0 < \alpha \leq \beta$.

For $\alpha, \beta > 0$ and $(w_j) \subset B_E$, we denote

$$\mathcal{K}(\{w_j\}, \alpha, \beta) = \sup_{k \in \mathbb{N}} \sum_{j \neq k} \frac{(1 - \|w_k\|^2)^{\alpha} (1 - \|w_j\|^2)^{\beta}}{|1 - \langle w_k, w_j \rangle|^{\alpha + \beta}}$$

Proposition [Massaneda'95] Let $E = \mathbb{C}^n$ and $\beta \ge n$. We have that

 $\eta_{\beta,(z_i)}$ is a β -Carleson measure if and only if $\mathcal{K}(\{z_j\}, \alpha, \beta) < \infty$ for any $0 < \alpha \leq \beta$.

For $\alpha, \beta > 0$ and $(w_j) \subset B_E$, we denote

$$\mathcal{K}(\{w_j\}, \alpha, \beta) = \sup_{k \in \mathbb{N}} \sum_{j \neq k} \frac{(1 - \|w_k\|^2)^{\alpha} (1 - \|w_j\|^2)^{\beta}}{|1 - \langle w_k, w_j \rangle|^{\alpha + \beta}}$$

Remark. For any $x, y \in B_E$ we have

$$1 - \rho_E(x, y)^2 = \frac{(1 - \|x\|^2)(1 - \|y\|^2)}{|1 - \langle x, y \rangle|^2}$$

Theorem [Massaneda '95]. Let $\alpha > 0$ and $(z_n) \subset \mathbb{B}_n$.

- (i) If (z_n) is interpolating for $H^{\infty}_{v_{\alpha}}(\mathbb{B}_n)$, then
 - $K(\{z_j\}, \alpha, \beta) < \infty \ \forall \beta \ge \alpha \text{ with } \beta > n$
 - (and (z_n) is hyperbolically separated).

(ii) If $\exists \beta \geq \max\{n, \alpha\}$ with $K(\{z_i\}, \alpha, \beta) < 1$, then (z_i) is interpolating for $H^{\infty}_{v_{\alpha}}(\mathbb{B}_n)$.

Theorem [Massaneda '95]. Let $\alpha > 0$ and $(z_n) \subset \mathbb{B}_n$.

- (i) If (z_n) is interpolating for $H^{\infty}_{v_{\alpha}}(\mathbb{B}_n)$, then
 - $K(\{z_j\}, \alpha, \beta) < \infty \ \forall \beta \ge \alpha \text{ with } \beta > n$
 - (and (z_n) is hyperbolically separated).

(ii) If $\exists \beta \geq \max\{n, \alpha\}$ with $K(\{z_j\}, \alpha, \beta) < 1$, then (z_j) is interpolating for $H^{\infty}_{\nu_{\alpha}}(\mathbb{B}_n)$.

So...

- If (z_n) interpolating for H[∞]_{να}(B_n) → η_{β,(z_i)} is β-Carleson for β ≥ α, β > n.
- If $\exists \beta \geq n, \alpha$: $\begin{cases} \eta_{\beta,(z_j)} \text{ Carleson} \\ K(\{z_j\}, \alpha, \beta) < 1 \end{cases} \xrightarrow{} (z_n) \text{ is interpolating for } H^{\infty}_{v_{\alpha}}(\mathbb{B}_n).$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � � �

Remark. Replace \mathbb{B}_n by $B_E \longrightarrow$ there exist interpolating sequences in $H^{\infty}_{\nu_{\alpha}}(B_E)$ which may have $\mathcal{K}(\{w_j\}, \alpha, \beta) = \infty$ for any $\beta > 0$.

▲□→ ▲ 三→ ▲ 三→ ---

Remark. Replace \mathbb{B}_n by $B_E \longrightarrow$ there exist interpolating sequences in $H^{\infty}_{\nu_{\alpha}}(B_E)$ which may have $\mathcal{K}(\{w_i\}, \alpha, \beta) = \infty$ for any $\beta > 0$.

For instance, the sequence $(z_n e_n)$. Considering u a bounded radial weight on **D** and v(x) = u(||x||) for $x \in B_E$. Also an orthonormal sequence $(e_n) \subset E$ and $(z_n) \subset \mathbf{D}$ such that $(\inf_n |z_n|)(\inf_n u(|z_n|)) > 0$. Take (z_n) such that $\sup_{n \to \infty} |z_n| < 1$.

Remark. Replace \mathbb{B}_n by $B_E \longrightarrow$ there exist interpolating sequences in $H^{\infty}_{\nu_{\alpha}}(B_E)$ which may have $\mathcal{K}(\{w_i\}, \alpha, \beta) = \infty$ for any $\beta > 0$.

For instance, the sequence $(z_n e_n)$. Considering u a bounded radial weight on **D** and v(x) = u(||x||) for $x \in B_E$. Also an orthonormal sequence $(e_n) \subset E$ and $(z_n) \subset \mathbf{D}$ such that $(\inf_n |z_n|)(\inf_n u(|z_n|)) > 0$. Take (z_n) such that $\sup_n |z_n| < 1$.

Proposition. Let $\alpha, \beta > 0$ and $(w_j) \subset B_E$. If $\eta_{\beta,(w_j)}$ is a β -Carleson then $K(\{w_j\}, \alpha, \beta) < \infty$.

Remark. Replace \mathbb{B}_n by $B_E \longrightarrow$ there exist interpolating sequences in $H^{\infty}_{\nu_{\alpha}}(B_E)$ which may have $\mathcal{K}(\{w_i\}, \alpha, \beta) = \infty$ for any $\beta > 0$.

For instance, the sequence $(z_n e_n)$. Considering u a bounded radial weight on **D** and v(x) = u(||x||) for $x \in B_E$. Also an orthonormal sequence $(e_n) \subset E$ and $(z_n) \subset \mathbf{D}$ such that $(\inf_n |z_n|)(\inf_n u(|z_n|)) > 0$. Take (z_n) such that $\sup_n |z_n| < 1$.

Proposition. Let $\alpha, \beta > 0$ and $(w_j) \subset B_E$. If $\eta_{\beta,(w_j)}$ is a β -Carleson then $K(\{w_j\}, \alpha, \beta) < \infty$.

Proposition. If $(z_n) \subset B_n$ is hyperbolically separated, then $\eta_{\beta,(w_j)}$ is a β -Carleson measure for $\beta > 0$.

Remark. Replace \mathbb{B}_n by $B_E \longrightarrow$ there exist interpolating sequences in $H^{\infty}_{\nu_{\alpha}}(B_E)$ which may have $\mathcal{K}(\{w_i\}, \alpha, \beta) = \infty$ for any $\beta > 0$.

For instance, the sequence $(z_n e_n)$. Considering u a bounded radial weight on **D** and v(x) = u(||x||) for $x \in B_E$. Also an orthonormal sequence $(e_n) \subset E$ and $(z_n) \subset \mathbf{D}$ such that $(\inf_n |z_n|)(\inf_n u(|z_n|)) > 0$. Take (z_n) such that $\sup_n |z_n| < 1$.

Proposition. Let $\alpha, \beta > 0$ and $(w_j) \subset B_E$. If $\eta_{\beta,(w_j)}$ is a β -Carleson then $K(\{w_j\}, \alpha, \beta) < \infty$.

Proposition. If $(z_n) \subset B_n$ is hyperbolically separated, then $\eta_{\beta,(w_j)}$ is a β -Carleson measure for $\beta > 0$.

Remark. If *E* is infinite dimensional, $\exists (w_n) \subset B_E$ hyperbolically separated but $\eta_{\beta,(w_j)}$ is not a β -Carleson measure for any $\beta > 0$.

向下 イヨト イヨト

Remark. Replace \mathbb{B}_n by $B_E \longrightarrow$ there exist interpolating sequences in $H^{\infty}_{\nu_{\alpha}}(B_E)$ which may have $\mathcal{K}(\{w_i\}, \alpha, \beta) = \infty$ for any $\beta > 0$.

For instance, the sequence $(z_n e_n)$. Considering u a bounded radial weight on **D** and v(x) = u(||x||) for $x \in B_E$. Also an orthonormal sequence $(e_n) \subset E$ and $(z_n) \subset \mathbf{D}$ such that $(\inf_n |z_n|)(\inf_n u(|z_n|)) > 0$. Take (z_n) such that $\sup_n |z_n| < 1$.

Proposition. Let $\alpha, \beta > 0$ and $(w_j) \subset B_E$. If $\eta_{\beta,(w_j)}$ is a β -Carleson then $K(\{w_j\}, \alpha, \beta) < \infty$.

Proposition. If $(z_n) \subset B_n$ is hyperbolically separated, then $\eta_{\beta,(w_j)}$ is a β -Carleson measure for $\beta > 0$.

Remark. If *E* is infinite dimensional, $\exists (w_n) \subset B_E$ hyperbolically separated but $\eta_{\beta,(w_j)}$ is not a β -Carleson measure for any $\beta > 0$.

In
$$E = \ell_2$$
, use $w_j = \frac{1}{2}e_j$. Then $\rho_E(w_j, w_k) = \frac{\sqrt{7}}{4}$ for $k \neq j$ and $\sum_j (1 - ||w_j||^2)^\beta = \infty$.

Remark. Replace \mathbb{B}_n by $B_E \longrightarrow$ there exist interpolating sequences in $H^{\infty}_{\nu_{\alpha}}(B_E)$ which may have $\mathcal{K}(\{w_i\}, \alpha, \beta) = \infty$ for any $\beta > 0$.

For instance, the sequence $(z_n e_n)$. Considering u a bounded radial weight on **D** and v(x) = u(||x||) for $x \in B_E$. Also an orthonormal sequence $(e_n) \subset E$ and $(z_n) \subset \mathbf{D}$ such that $(\inf_n |z_n|)(\inf_n u(|z_n|)) > 0$. Take (z_n) such that $\sup_n |z_n| < 1$.

Proposition. Let $\alpha, \beta > 0$ and $(w_j) \subset B_E$. If $\eta_{\beta,(w_j)}$ is a β -Carleson then $K(\{w_j\}, \alpha, \beta) < \infty$.

Proposition. If $(z_n) \subset B_n$ is hyperbolically separated, then $\eta_{\beta,(w_j)}$ is a β -Carleson measure for $\beta > 0$.

Remark. If *E* is infinite dimensional, $\exists (w_n) \subset B_E$ hyperbolically separated but $\eta_{\beta,(w_j)}$ is not a β -Carleson measure for any $\beta > 0$.

In $E = \ell_2$, use $w_j = \frac{1}{2}e_j$. Then $\rho_E(w_j, w_k) = \frac{\sqrt{7}}{4}$ for $k \neq j$ and $\sum_j (1 - ||w_j||^2)^\beta = \infty$.

Proposition. Let $(w_j) \subset B_E$ such that $(||w_j||) \subset D$ is a hyperbolically separated sequence. Then $\eta_{\beta,(w_i)}$ is a β -Carleson measure for any $\beta > 1$.

Let $\alpha > 0$ and $(w_n) \subset B_E$ such that $\eta_{\beta,(w_n)}$ is a β -Carleson measure for some $\beta > 0$.

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● � � � �

Let $\alpha > 0$ and $(w_n) \subset B_E$ such that $\eta_{\beta,(w_n)}$ is a β -Carleson measure for some $\beta > 0$. (*i*) If (w_n) is hyperbolically *R*-separated for some R > 0 satisfying

$$(1-R^2)^{lpha/2} \|\eta_{eta,(w_j)}\|_eta < rac{2^{lpha/2}-1}{2^{lpha+eta}},$$

then it is linear interpolating for $H^{\infty}_{\nu_{\alpha}}(B_E)$.

(ii) If $K(\{w_n\}, \alpha, \beta) < 1$, then (w_n) is linear interpolating for $H^{\infty}_{\nu_{\alpha}}(B_E)$.

□ > < E > < E > E - のへで

Let $\alpha > 0$ and $(w_n) \subset B_E$ such that $\eta_{\beta,(w_n)}$ is a β -Carleson measure for some $\beta > 0$. (*i*) If (w_n) is hyperbolically *R*-separated for some R > 0 satisfying

$$(1-R^2)^{lpha/2} \|\eta_{eta,(w_j)}\|_eta < rac{2^{lpha/2}-1}{2^{lpha+eta}},$$

then it is linear interpolating for $H^{\infty}_{\nu_{\alpha}}(B_E)$.

(ii) If $K(\{w_n\}, \alpha, \beta) < 1$, then (w_n) is linear interpolating for $H^{\infty}_{\nu_{\alpha}}(B_E)$.

Corollaries

 Let α > 0. If (z_k) ⊂ B_n is hyperbolically *R*-separated for *R* close enough to 1, then it is linear interpolating for H[∞]_{v_α}(B_n).

Let $\alpha > 0$ and $(w_n) \subset B_E$ such that $\eta_{\beta,(w_n)}$ is a β -Carleson measure for some $\beta > 0$. (i) If (w_n) is hyperbolically *R*-separated for some R > 0 satisfying

$$(1-R^2)^{lpha/2} \|\eta_{eta,(w_j)}\|_eta < rac{2^{lpha/2}-1}{2^{lpha+eta}},$$

then it is linear interpolating for $H^{\infty}_{v_{\alpha}}(B_E)$.

(ii) If $K(\{w_n\}, \alpha, \beta) < 1$, then (w_n) is linear interpolating for $H^{\infty}_{\nu_{\alpha}}(B_E)$.

Corollaries

- Let α > 0. If (z_k) ⊂ B_n is hyperbolically *R*-separated for *R* close enough to 1, then it is linear interpolating for H[∞]_{v_α}(B_n).
- Let α > 0 and (w_k) ⊂ B_E. If the sequence (||w_k||) is hyperbolically R-separated for R close enough to 1, then (w_k) is linear interpolating for H[∞]_{vα}(B_E).

$$S(f) = ((1 - ||w_n||^2)^{\alpha} f(w_n))_n$$

We will find a linear bounded operator $\Phi : \ell_{\infty} \to H^{\infty}_{\nu_{\alpha}}(B_E)$ such that $\|Id - S \circ \Phi\| < 1$.

$$S(f) = \left((1 - \|w_n\|^2)^{\alpha} f(w_n) \right)_n$$

We will find a linear bounded operator $\Phi : \ell_{\infty} \to H^{\infty}_{v_{\alpha}}(B_E)$ such that $\|Id - S \circ \Phi\| < 1$.

Thus $S \circ \Phi$ will be invertible, hence S has a right linear inverse $(\Phi \circ (S \circ \Phi)^{-1}))$.

$$S(f) = \left((1 - ||w_n||^2)^{\alpha} f(w_n) \right)_n$$

We will find a linear bounded operator $\Phi : \ell_{\infty} \to H^{\infty}_{\nu_{\alpha}}(B_E)$ such that $\|Id - S \circ \Phi\| < 1$.

Thus $S \circ \Phi$ will be invertible, hence S has a right linear inverse $(\Phi \circ (S \circ \Phi)^{-1}))$.

$$\Phi((\alpha_n))(x) := \sum_{n=1}^{\infty} \alpha_n \frac{(1 - \|w_n\|^2)^{2p-\alpha}}{(1 - \langle x, w_n \rangle)^{2p}}$$

for $(\alpha_n) \in \ell_{\infty}$ and $x \in B_E$, where $p = \alpha + \beta - \rho/2$.

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● � � � �

$$S(f) = \left((1 - ||w_n||^2)^{\alpha} f(w_n) \right)_n$$

We will find a linear bounded operator $\Phi : \ell_{\infty} \to H^{\infty}_{\nu_{\alpha}}(B_E)$ such that $\|Id - S \circ \Phi\| < 1$.

Thus $S \circ \Phi$ will be invertible, hence S has a right linear inverse $(\Phi \circ (S \circ \Phi)^{-1}))$.

$$\Phi((\alpha_n))(x) := \sum_{n=1}^{\infty} \alpha_n \frac{(1 - \|w_n\|^2)^{2p-\alpha}}{(1 - \langle x, w_n \rangle)^{2p}}$$

for $(\alpha_n) \in \ell_{\infty}$ and $x \in B_E$, where $p = \alpha + \beta - \rho/2$.

i)
$$\|Id - S \circ \varphi\| \le (1 - R^2)^{\alpha/2} \|\eta_{\beta,(w_j)}\|_{\beta} \frac{2^{\alpha/2+\beta}}{1 - 2^{\beta-\rho}} < 1.$$

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● � � � �

$$S(f) = \left((1 - \|w_n\|^2)^{\alpha} f(w_n) \right)_n.$$

We will find a linear bounded operator $\Phi : \ell_{\infty} \to H^{\infty}_{\nu_{\alpha}}(B_E)$ such that $\|Id - S \circ \Phi\| < 1$.

Thus $S \circ \Phi$ will be invertible, hence S has a right linear inverse $(\Phi \circ (S \circ \Phi)^{-1}))$.

$$\Phi((\alpha_n))(x) := \sum_{n=1}^{\infty} \alpha_n \frac{(1 - \|w_n\|^2)^{2p-\alpha}}{(1 - \langle x, w_n \rangle)^{2p}}$$

for $(\alpha_n) \in \ell_{\infty}$ and $x \in B_E$, where $p = \alpha + \beta - \rho/2$.

i)
$$\| Id - S \circ \varphi \| \leq (1 - R^2)^{\alpha/2} \| \eta_{\beta,(w_j)} \|_{\beta} \frac{2^{\alpha/2+\beta}}{1 - 2^{\beta-\rho}} < 1.$$

ii) $\|Id - S \circ \Phi\| \le K(\{w_n\}, \alpha, \alpha + 2\beta - \rho) < 1$ if we choose $\beta < \rho \le \beta + \alpha$. Choose $\rho = \beta + \alpha$ and we are done.

• The Bloch space $\mathcal{B}(B_E)$ is the set of analytic functions $f: B_E \to \mathbb{C}$:

$$\|f\|_{\mathcal{B}(B_E)} := \sup_{x \in B_E} (1 - \|x\|^2) \|\nabla f(x)\| < \infty.$$

nac

• The Bloch space $\mathcal{B}(B_E)$ is the set of analytic functions $f: B_E \to \mathbb{C}$:

$$\|f\|_{\mathcal{B}(B_E)} := \sup_{x \in B_E} (1 - \|x\|^2) \|\nabla f(x)\| < \infty.$$

• $\mathcal{B}(B_E)$ with the norm $\|f\| := |f(0)| + \|f\|_{\mathcal{B}(B_E)}$ becomes a Banach space.

• The Bloch space $\mathcal{B}(B_E)$ is the set of analytic functions $f: B_E \to \mathbb{C}$:

$$\|f\|_{\mathcal{B}(B_E)} := \sup_{x \in B_E} (1 - \|x\|^2) \|\nabla f(x)\| < \infty.$$

- $\mathcal{B}(B_E)$ with the norm $||f|| := |f(0)| + ||f||_{\mathcal{B}(B_E)}$ becomes a Banach space.
- Prop [Blasco, Galindo, M.'14]. we have

 $H^{\infty}(B_E) \subset \mathcal{B}(B_E)$ and $\|f\|_{\mathcal{B}(B_E)} \leq \|f\|_{\infty}$.

• The Bloch space $\mathcal{B}(B_E)$ is the set of analytic functions $f: B_E \to \mathbb{C}$:

$$\|f\|_{\mathcal{B}(B_E)} := \sup_{x \in B_E} (1 - \|x\|^2) \|\nabla f(x)\| < \infty.$$

- $\mathcal{B}(B_E)$ with the norm $\|f\| := |f(0)| + \|f\|_{\mathcal{B}(B_F)}$ becomes a Banach space.
- Prop [Blasco, Galindo, M.'14]. we have

$$H^{\infty}(B_E) \subset \mathcal{B}(B_E)$$
 and $\|f\|_{\mathcal{B}(B_F)} \leq \|f\|_{\infty}$.

• **Theo**[Blasco, Galindo, M.'14]. We consider equivalent norms- modulo the constant functions- in $\mathcal{B}(B_E)$:

1) $||f||_{inv} = \sup_{\varphi \in Aut(B_E)} ||f \circ \varphi||$

• The Bloch space $\mathcal{B}(B_E)$ is the set of analytic functions $f: B_E \to \mathbb{C}$:

$$\|f\|_{\mathcal{B}(B_E)} := \sup_{x \in B_E} (1 - \|x\|^2) \|\nabla f(x)\| < \infty.$$

- $\mathcal{B}(B_E)$ with the norm $||f|| := |f(0)| + ||f||_{\mathcal{B}(B_E)}$ becomes a Banach space.
- Prop [Blasco, Galindo, M.'14]. we have

$$H^{\infty}(B_E) \subset \mathcal{B}(B_E)$$
 and $\|f\|_{\mathcal{B}(B_E)} \leq \|f\|_{\infty}$.

• Theo[Blasco, Galindo, M.'14]. We consider equivalent norms- modulo the constant functions- in $\mathcal{B}(B_E)$:

1)
$$||f||_{inv} = \sup_{\varphi \in Aut(B_F)} ||f \circ \varphi||$$

$$\|f \circ \varphi\|_{inv} = \|f\|_{inv}$$
 for any $f \in \mathcal{B}(B_E)$ and $\varphi \in Aut(B_E)$.

• The Bloch space $\mathcal{B}(B_E)$ is the set of analytic functions $f: B_E \to \mathbb{C}$:

$$\|f\|_{\mathcal{B}(B_E)} := \sup_{x \in B_E} (1 - \|x\|^2) \|\nabla f(x)\| < \infty.$$

- $\mathcal{B}(B_E)$ with the norm $||f|| := |f(0)| + ||f||_{\mathcal{B}(B_F)}$ becomes a Banach space.
- Prop [Blasco, Galindo, M.'14]. we have

$$H^{\infty}(B_E) \subset \mathcal{B}(B_E)$$
 and $\|f\|_{\mathcal{B}(B_E)} \leq \|f\|_{\infty}$.

• Theo[Blasco, Galindo, M.'14]. We consider equivalent norms- modulo the constant functions- in $\mathcal{B}(B_E)$:

1)
$$||f||_{inv} = \sup_{\varphi \in Aut(B_E)} ||f \circ \varphi||$$

 $\|f \circ \varphi\|_{inv} = \|f\|_{inv}$ for any $f \in \mathcal{B}(B_E)$ and $\varphi \in Aut(B_E)$.

2) Using the radial derivative of f at x, $Rf(x) = \langle x, \overline{\nabla f(x)} \rangle$:

$$||f||_{R} = \sup_{x \in B_{E}} (1 - ||x||^{2}) |Rf(x)| < \infty$$

Interpolating sequences for $\mathcal{B}(B_E)$

• Bearing in mind the radial derivative of f at x, $Rf(x) = \langle x, \overline{\nabla f(x)} \rangle$:

$$||f||_R = \sup_{x \in B_E} (1 - ||x||^2) |Rf(x)| < \infty$$

• A sequence $(x_n) \subset B_E \setminus \{0\}$ is interpolating for $\mathcal{B}(B_E)$ if:

For any
$$\alpha = (\alpha_n) \in \ell_{\infty} \longrightarrow \exists f \in \mathcal{B}(B_E) : (1 - \|x_n\|^2)Rf(x_n) = \alpha_n$$
.

• $\mathcal{B}^{\alpha}(B_E)$ for any $\alpha > 0$ if we change the weight $(1 - \|z\|^2)$ by $(1 - \|z\|^2)^{\alpha}$.

$\mathcal{B}^{lpha}(B_E)_0$ and $H^{\infty}_v(B_E)_0$

 $\mathcal{B}^{\alpha}(B_E)_0 := \{ f \in \mathcal{B}^{\alpha}(B_E) : f(0) = 0 \} \text{ and } H^{\infty}_{\upsilon}(B_E)_0 := \{ f \in H^{\infty}_{\upsilon}(B_E) : f(0) = 0 \}.$

◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙

 $\mathcal{B}^{\alpha}(B_E)_0 := \{ f \in \mathcal{B}^{\alpha}(B_E) : f(0) = 0 \} \text{ and } H^{\infty}_{\upsilon}(B_E)_0 := \{ f \in H^{\infty}_{\upsilon}(B_E) : f(0) = 0 \}.$

Theorem

Let $\alpha > 0$. The radial derivative mapping $f \in \mathcal{B}^{\alpha}(B_E)_0 \mapsto Rf \in H^{\infty}_{\upsilon_{\alpha}}(B_E)_0$ is an onto isometric isomorphism.

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● � � � �

 $\mathcal{B}^{\alpha}(B_E)_0 := \{ f \in \mathcal{B}^{\alpha}(B_E) : f(0) = 0 \} \text{ and } H^{\infty}_{\upsilon}(B_E)_0 := \{ f \in H^{\infty}_{\upsilon}(B_E) : f(0) = 0 \}.$

Theorem

Let $\alpha > 0$. The radial derivative mapping $f \in \mathcal{B}^{\alpha}(B_E)_0 \mapsto Rf \in H^{\infty}_{\upsilon_{\alpha}}(B_E)_0$ is an onto isometric isomorphism.

Corollary

Let $\alpha > 0$. The sequence $(w_n) \subset B_E \setminus \{0\}$ is interpolating for $\mathcal{B}^{\alpha}(B_E)$ if and only if it is interpolating for $\mathcal{H}^{\alpha}_{v_{\alpha}}(B_E)_0$.

 $\mathcal{B}^{\alpha}(B_E)_0 := \{ f \in \mathcal{B}^{\alpha}(B_E) : f(0) = 0 \} \text{ and } H^{\infty}_{\upsilon}(B_E)_0 := \{ f \in H^{\infty}_{\upsilon}(B_E) : f(0) = 0 \}.$

Theorem

Let $\alpha > 0$. The radial derivative mapping $f \in \mathcal{B}^{\alpha}(B_E)_0 \mapsto Rf \in H^{\infty}_{\upsilon_{\alpha}}(B_E)_0$ is an onto isometric isomorphism.

Corollary

Let $\alpha > 0$. The sequence $(w_n) \subset B_E \setminus \{0\}$ is interpolating for $\mathcal{B}^{\alpha}(B_E)$ if and only if it is interpolating for $\mathcal{H}^{\infty}_{v_{\alpha}}(B_E)_0$.

Theorem

Let $(w_n) \subset B_E \setminus \{0\}$.

(i) If (w_n) is interpolating for $H^{\infty}(B_E)$, then it is also linear interpolating for $\mathcal{B}^{\alpha}(B_E)$.

 $\mathcal{B}^{\alpha}(B_E)_0 := \{ f \in \mathcal{B}^{\alpha}(B_E) : f(0) = 0 \} \text{ and } H^{\infty}_{\upsilon}(B_E)_0 := \{ f \in H^{\infty}_{\upsilon}(B_E) : f(0) = 0 \}.$

Theorem

Let $\alpha > 0$. The radial derivative mapping $f \in \mathcal{B}^{\alpha}(B_E)_0 \mapsto Rf \in H^{\infty}_{\upsilon_{\alpha}}(B_E)_0$ is an onto isometric isomorphism.

Corollary

Let $\alpha > 0$. The sequence $(w_n) \subset B_E \setminus \{0\}$ is interpolating for $\mathcal{B}^{\alpha}(B_E)$ if and only if it is interpolating for $\mathcal{H}^{\alpha}_{v_{\alpha}}(B_E)_0$.

Theorem

Let $(w_n) \subset B_E \setminus \{0\}$.

(i) If (w_n) is interpolating for $H^{\infty}(B_E)$, then it is also linear interpolating for $\mathcal{B}^{\alpha}(B_E)$.

(ii) If (w_n) is interpolating for $\mathcal{B}^{\alpha}(B_E)$, it is hyperb. separated for some R > 0.

 $\mathcal{B}^{\alpha}(B_E)_0 := \{ f \in \mathcal{B}^{\alpha}(B_E) : f(0) = 0 \} \text{ and } H^{\infty}_{\upsilon}(B_E)_0 := \{ f \in H^{\infty}_{\upsilon}(B_E) : f(0) = 0 \}.$

Theorem

Let $\alpha > 0$. The radial derivative mapping $f \in \mathcal{B}^{\alpha}(B_E)_0 \mapsto Rf \in H^{\infty}_{\upsilon_{\alpha}}(B_E)_0$ is an onto isometric isomorphism.

Corollary

Let $\alpha > 0$. The sequence $(w_n) \subset B_E \setminus \{0\}$ is interpolating for $\mathcal{B}^{\alpha}(B_E)$ if and only if it is interpolating for $\mathcal{H}^{\alpha}_{v_{\alpha}}(B_E)_0$.

Theorem

Let $(w_n) \subset B_E \setminus \{0\}$.

(i) If (w_n) is interpolating for $H^{\infty}(B_E)$, then it is also linear interpolating for $\mathcal{B}^{\alpha}(B_E)$.

(ii) If (w_n) is interpolating for $\mathcal{B}^{\alpha}(B_E)$, it is hyperb. separated for some R > 0.

(iii) If $\sum_{n=1}^{\infty} (1 - ||w_n||^2)^2 \delta_{w_n}$ is a 2-Carleson measure and (w_n) is hyperb. separated for some $R > \sqrt{1 - (\frac{2^{\alpha/2} - 1}{2^{\alpha+2} ||\eta_{2,(w_n)}||_2})^{2/\alpha}}$, it is linear interpolating for $\mathcal{B}^{\alpha}(B_E)$.

There exist sequences $(x_n) \subset B_E$ which are interpolating for $\mathcal{B}(B_E)$ but not interpolating for $\mathcal{H}^{\infty}(B_E)$.

◆母 → < E → < E → E → QQC</p>

There exist sequences $(x_n) \subset B_E$ which are interpolating for $\mathcal{B}(B_E)$ but not interpolating for $\mathcal{H}^{\infty}(B_E)$.

Sketch of the proof. There exists sequences which are hyperbolically separated for R so close to 1 as we want but $\sum_{z} (1 - ||z||^2) = \infty$.

□ > < E > < E > _ E

There exist sequences $(x_n) \subset B_E$ which are interpolating for $\mathcal{B}(B_E)$ but not interpolating for $\mathcal{H}^{\infty}(B_E)$.

Sketch of the proof. There exists sequences which are hyperbolically separated for R so close to 1 as we want but $\sum_{z} (1 - ||z||^2) = \infty$.

Consider k an even number, $k \ge 2$ and circles C_n centered at 0 and radius $r_n = 1 - \frac{1}{k^n}$ for any $n \ge 1$. In each circle C_n , we take $z_{n,j} = r_n e^{\frac{2\pi i j}{k^{n-1}}}$ for any $0 \le j < k^{n-1}$.

There exist sequences $(x_n) \subset B_E$ which are interpolating for $\mathcal{B}(B_E)$ but not interpolating for $\mathcal{H}^{\infty}(B_E)$.

Sketch of the proof. There exists sequences which are hyperbolically separated for R so close to 1 as we want but $\sum_{z} (1 - ||z||^2) = \infty$.

Consider k an even number, $k \ge 2$ and circles C_n centered at 0 and radius $r_n = 1 - \frac{1}{k^n}$ for any $n \ge 1$. In each circle C_n , we take $z_{n,j} = r_n e^{\frac{2\pi i j}{k^{n-1}}}$ for any $0 \le j < k^{n-1}$.

For z, w in the sequence,

$$\rho(z,w) \ge \min\left\{\frac{k-1}{k+1}, \frac{1}{\sqrt{1+\left(\frac{2k^n-1}{4k(k^n-1)}\right)^2}}\right\} \to 1 \text{ when } k \to \infty.$$

$$\sum_{n=1}^{\infty} (1-|z_n|) = \sum_{k=1}^{\infty} k^{n-1} (1-r_n) = \sum_{k=1}^{\infty} k^{n-1} \frac{1}{k^n} = \sum_{k=1}^{\infty} \frac{1}{k} = \infty.$$

K. R. M. Attele, Interpolating sequences for the derivatives of the Bloch functions, Glasgow Math. J. **34** (1992), 35–41.

O. Blasco P. Galindo, M. Lindström and A. Miralles, Interpolating sequences for weighted spaces of analytic functions on the unit ball of a Hilbert space, Preprint.

O. Blasco, P. Galindo and A. Miralles, *Bloch functions on the unit ball of an infinite dimensional Hilbert space*, J. Func. Anal. **267** (2014), 1188–1204.

P. Duren, A. Schuster and D. Vukotić, *On uniformly discrete sequences in the disk*, Oper. Theory Adv. Appl. **156** Birkhäuser, Basel, 2005.

P. Galindo and A. Miralles, *Interpolating sequences for bounded analytic functions*, Proc. Am. Math. Soc. **135** (10) (2007), 3225–3231.

P. Galindo, A. Miralles and M. Lindström, *Interpolating Sequences on Uniform Algebras*, Topology **48** (2009), 111-118.

K. Madigan and A. Matheson, *Compact composition operators on the Bloch space*, Trans. Amer. Math. Soc. **347** (1995) 2679–2687.

- X. Massaneda, A^{-p} interpolation in the unit ball, J. London. Math. Soc. 52 (2) (1995) 391-401.
- K. Seip, Interpolation and sampling in spaces of analytic functions, University Lecture Series, 33. American Mathematical Society, Providence, RI, 2004.

< 回 > < 三 > < 三 >

Thanks for your attention!