Banach spaces with weak*-sequential dual ball

Conference on Non-Linear Functional Analysis Valencia

Gonzalo Martínez Cervantes

University of Murcia, Spain

October 16th, 2017

This work was supported by Ministerio de Economía y Competitividad and FEDER (project MTM2014-54182-P) and by the research project 19275/PI/14 funded by Fundación Séneca - Agencia de Ciencia y Tecnología de la Región de Murcia within the framework of PCTIRM 2011-2014.

Let K be a Hausdorff compact space.

<ロ> <部> <部> <き> <き> <き> <き</p>

Let K be a Hausdorff compact space.

• *K* is said to be **sequentially compact** if every sequence in *K* contains a convergent subsequence.

3 x 3

Image: A mathematical states and a mathem

Let K be a Hausdorff compact space.

- *K* is said to be **sequentially compact** if every sequence in *K* contains a convergent subsequence.
- *K* is **Fréchet-Urysohn** (*FU* for short) if for every subspace *F* of *K*, every point in the closure of *F* is the limit of a sequence in *F*.

Let K be a Hausdorff compact space.

- *K* is said to be **sequentially compact** if every sequence in *K* contains a convergent subsequence.
- *K* is **Fréchet-Urysohn** (*FU* for short) if for every subspace *F* of *K*, every point in the closure of *F* is the limit of a sequence in *F*.
- *K* is said to be **sequential** if any sequentially closed subspace is closed.

Let K be a Hausdorff compact space.

- *K* is said to be **sequentially compact** if every sequence in *K* contains a convergent subsequence.
- *K* is **Fréchet-Urysohn** (*FU* for short) if for every subspace *F* of *K*, every point in the closure of *F* is the limit of a sequence in *F*.
- *K* is said to be **sequential** if any sequentially closed subspace is closed.
- *K* is said to have **countable tightness** if for every subspace *F* of *K*, every point in the closure of *F* is in the closure of a countable subspace of *F*.

- 3

<ロト <部 > < 注 > < 注 >

K is FU

・ロト ・回ト ・ヨト ・ヨト

æ

$K \text{ is FU} \Longrightarrow K \text{ is sequential}$

Image: A math a math

문 🛌 문

K is FU \Longrightarrow K is sequential \Longrightarrow K is sequentially compact

Image: A math a math

< ∃⇒

Ξ.

$K \text{ is FU} \Longrightarrow K \text{ is sequential} \Longrightarrow K \text{ is sequentially compact}$ $\downarrow \downarrow$ K has countable tightness

æ

⊒ >

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition

A Banach space with weak*-FU dual ball is said to have weak*-angelic dual.

Image: A mathematical states of the state

э

X has weak*angelic dual

イロト イロト イヨト イヨト 三日

 (B_{X^*}, w^*) has countable tigthness

∃ >

Image: Image:

э

Let X be a Banach space.

 X is said to have property E (of Efremov) if every point in the weak*-closure of any convex subset C ⊂ B_{X*} is the weak*-limit of a sequence in C.

Let X be a Banach space.

- X is said to have property E (of Efremov) if every point in the weak*-closure of any convex subset C ⊂ B_{X*} is the weak*-limit of a sequence in C.
- X is said to have **property** E' if every weak*-sequentially closed convex set in the dual ball is weak*-closed.

Let X be a Banach space.

- X is said to have property E (of Efremov) if every point in the weak*-closure of any convex subset C ⊂ B_{X*} is the weak*-limit of a sequence in C.
- X is said to have **property** E' if every weak*-sequentially closed convex set in the dual ball is weak*-closed.
- X has **property (C)** of Corson if and only if every point in the closure of C is in the weak*-closure of a countable subset of C for every convex set C in B_{X*} (Pol's characterization).

イロト イポト イヨト イヨト 二日

countable tigthness

◆□ > ◆□ > ◆豆 > ◆豆 > ● □ ● ● ● ●

Gonzalo Martínez Cervantes	Banach spaces with weak*-sequential dual ball	October 16th, 2017 7 /
----------------------------	---	------------------------

The dual ball of C([0, ω₁]) is weak*-sequentially compact but it is not weak*-sequential.

3 N 3

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- The dual ball of C([0, ω₁]) is weak*-sequentially compact but it is not weak*-sequential.
- It is consistent that every Hausdorff compact space with countable tightness is sequential (Balogh, 1989)

э

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- The dual ball of C([0, ω₁]) is weak*-sequentially compact but it is not weak*-sequential.
- It is consistent that every Hausdorff compact space with countable tightness is sequential (Balogh, 1989)
- It is consistent that property (C) ⇒ property E (J.T. Moore and C. Brech, 2008).

イロト 不得 とうせい かほとう ほ

- The dual ball of C([0, ω₁]) is weak*-sequentially compact but it is not weak*-sequential.
- It is consistent that every Hausdorff compact space with countable tightness is sequential (Balogh, 1989)
- It is consistent that property (C) ⇒ property E (J.T. Moore and C. Brech, 2008).
- property $\mathcal{E} \Rightarrow$ weak*-angelic dual (A. Plichko, 2014).

- The dual ball of C([0, ω₁]) is weak*-sequentially compact but it is not weak*-sequential.
- It is consistent that every Hausdorff compact space with countable tightness is sequential (Balogh, 1989)
- It is consistent that property (C) ⇒ property E (J.T. Moore and C. Brech, 2008).
- property $\mathcal{E} \Rightarrow$ weak*-angelic dual (A. Plichko, 2014).

Question (A. Plichko, 2014)

weak*-sequential dual ball \Rightarrow weak*-angelic dual?

Theorem

If X is a Banach space with weak*-sequentially compact dual ball and $Y \subset X$ is a subspace such that Y and X/Y have weak*-sequential dual ball, then X has weak*-sequential dual ball.

Let T be a topological space and F a subspace of T. For any $\alpha \leq \omega_1$ we define $S_{\alpha}(F)$ the α th sequential closure of F by induction on α :

<ロ> <四> <四> <四> <三</p>

Let T be a topological space and F a subspace of T. For any $\alpha \leq \omega_1$ we define $S_{\alpha}(F)$ the α th sequential closure of F by induction on α :

•
$$S_0(F) = F;$$

<ロ> <四> <四> <四> <三</p>

Let T be a topological space and F a subspace of T. For any $\alpha \leq \omega_1$ we define $S_{\alpha}(F)$ the α th sequential closure of F by induction on α :

- $S_0(F) = F;$
- S_{α+1}(F) is the sequential closure of S_α(F) for every α < ω₁,
 i.e. S_{α+1}(F) is the set of limits of sequences in S_α(F);

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Let T be a topological space and F a subspace of T. For any $\alpha \leq \omega_1$ we define $S_{\alpha}(F)$ the α th sequential closure of F by induction on α :

- $S_0(F) = F;$
- $S_{\alpha+1}(F)$ is the sequential closure of $S_{\alpha}(F)$ for every $\alpha < \omega_1$, i.e. $S_{\alpha+1}(F)$ is the set of limits of sequences in $S_{\alpha}(F)$;
- $S_{\alpha}(F) = \bigcup_{\beta < \alpha} S_{\beta}(F)$ if α is a limit ordinal.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●
Let T be a topological space and F a subspace of T. For any $\alpha \leq \omega_1$ we define $S_{\alpha}(F)$ the α th sequential closure of F by induction on α :

- $S_0(F) = F;$
- $S_{\alpha+1}(F)$ is the sequential closure of $S_{\alpha}(F)$ for every $\alpha < \omega_1$, i.e. $S_{\alpha+1}(F)$ is the set of limits of sequences in $S_{\alpha}(F)$;
- $S_{\alpha}(F) = \bigcup_{\beta < \alpha} S_{\beta}(F)$ if α is a limit ordinal.

Notice that $S_{\omega_1}(F)$ is sequentially closed for every subspace F.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Let T be a topological space and F a subspace of T. For any $\alpha \leq \omega_1$ we define $S_{\alpha}(F)$ the α th sequential closure of F by induction on α :

- $S_0(F) = F;$
- $S_{\alpha+1}(F)$ is the sequential closure of $S_{\alpha}(F)$ for every $\alpha < \omega_1$, i.e. $S_{\alpha+1}(F)$ is the set of limits of sequences in $S_{\alpha}(F)$;
- $S_{\alpha}(F) = \bigcup_{\beta < \alpha} S_{\beta}(F)$ if α is a limit ordinal.

Notice that $S_{\omega_1}(F)$ is sequentially closed for every subspace F. Thus, a topological space T is sequential if and only if $S_{\omega_1}(F) = \overline{F}$ for every subspace F of T.

Let T be a topological space and F a subspace of T. For any $\alpha \leq \omega_1$ we define $S_{\alpha}(F)$ the α th sequential closure of F by induction on α :

- $S_0(F) = F;$
- $S_{\alpha+1}(F)$ is the sequential closure of $S_{\alpha}(F)$ for every $\alpha < \omega_1$, i.e. $S_{\alpha+1}(F)$ is the set of limits of sequences in $S_{\alpha}(F)$;
- $S_{\alpha}(F) = \bigcup_{\beta < \alpha} S_{\beta}(F)$ if α is a limit ordinal.

Notice that $S_{\omega_1}(F)$ is sequentially closed for every subspace F. Thus, a topological space T is sequential if and only if $S_{\omega_1}(F) = \overline{F}$ for every subspace F of T.

Definition

T has sequential order $\leq \alpha$ if $S_{\alpha}(F) = \overline{F}$ for every subspace F of T.

Let T be a topological space and F a subspace of T. For any $\alpha \leq \omega_1$ we define $S_{\alpha}(F)$ the α th sequential closure of F by induction on α :

- $S_0(F) = F;$
- $S_{\alpha+1}(F)$ is the sequential closure of $S_{\alpha}(F)$ for every $\alpha < \omega_1$, *i.e.* $S_{\alpha+1}(F)$ is the set of limits of sequences in $S_{\alpha}(F)$;
- $S_{\alpha}(F) = \bigcup_{\beta < \alpha} S_{\beta}(F)$ if α is a limit ordinal.

Notice that $S_{\omega_1}(F)$ is sequentially closed for every subspace F. Thus, a topological space T is sequential if and only if $S_{\omega_n}(F) = \overline{F}$ for every subspace F of T.

Definition

T has sequential order $\leq \alpha$ if $S_{\alpha}(F) = \overline{F}$ for every subspace F of Τ.

Therefore, a topological space T is sequential with sequential order \leq 1 if and only if it is FU. < ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gonzalo Martínez Cervantes

Banach spaces with weak*-sequential dual ball

October 16th, 2017

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Sketch of the proof. It is enough to prove that if $F \subset B_{X^*}$ and $0 \in \overline{F}^{\omega^*}$ then $0 \in S_{\gamma_1+\gamma_2}(F)$.

イロト 不得 とくほ とくほ とうほう

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Sketch of the proof. It is enough to prove that if $F \subset B_{X^*}$ and $0 \in \overline{F}^{\omega^*}$ then $0 \in S_{\gamma_1+\gamma_2}(F)$. For each finite set $A \subset X$ and each $\varepsilon > 0$, define $F_{A,\varepsilon} = \{x^* \in F : |x^*(x)| \le \varepsilon \text{ for all } x \in A\}$.

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Sketch of the proof. It is enough to prove that if $F \subset B_{X^*}$ and $0 \in \overline{F}^{\omega^*}$ then $0 \in S_{\gamma_1+\gamma_2}(F)$. For each finite set $A \subset X$ and each $\varepsilon > 0$, define $F_{A,\varepsilon} = \{x^* \in F : |x^*(x)| \le \varepsilon$ for all $x \in A\}$. Then, $0 \in \overline{R(F_{A,\varepsilon})}^{\omega^*} = S_{\gamma_1}(R(F_{A,\varepsilon})) = R(S_{\gamma_1}(F_{A,\varepsilon}))$, where $R : X^* \to Y^*$ is the restriction operator.

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Sketch of the proof. It is enough to prove that if $F \subset B_{X^*}$ and $0 \in \overline{F}^{\omega^*}$ then $0 \in S_{\gamma_1 + \gamma_2}(F)$. For each finite set $A \subset X$ and each $\varepsilon > 0$, define $F_{A,\varepsilon} = \{x^* \in F : |x^*(x)| \le \varepsilon$ for all $x \in A\}$. Then, $0 \in \overline{R(F_{A,\varepsilon})}^{\omega^*} = S_{\gamma_1}(R(F_{A,\varepsilon})) = R(S_{\gamma_1}(F_{A,\varepsilon}))$, where $R : X^* \to Y^*$ is the restriction operator. Thus, for every finite set $A \subset X$ and every $\varepsilon > 0$ we can take $x^*_{A,\varepsilon} \in S_{\gamma_1}(F_{A,\varepsilon})$ such that $R(x^*_{A,\varepsilon}) = 0$.

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Sketch of the proof. It is enough to prove that if $F \subset B_{X^*}$ and $0 \in \overline{F}^{\omega^*}$ then $0 \in S_{\gamma_1 + \gamma_2}(F)$. For each finite set $A \subset X$ and each $\varepsilon > 0$, define $F_{A,\varepsilon} = \{x^* \in F : |x^*(x)| \le \varepsilon$ for all $x \in A\}$. Then, $0 \in \overline{R(F_{A,\varepsilon})}^{\omega^*} = S_{\gamma_1}(R(F_{A,\varepsilon})) = R(S_{\gamma_1}(F_{A,\varepsilon}))$, where $R : X^* \to Y^*$ is the restriction operator. Thus, for every finite set $A \subset X$ and every $\varepsilon > 0$ we can take $x^*_{A,\varepsilon} \in S_{\gamma_1}(F_{A,\varepsilon})$ such that $R(x^*_{A,\varepsilon}) = 0$. Set $G := \{x^*_{A,\varepsilon} : A \subset X \text{ finite, } \varepsilon > 0\} \subset Y^{\perp} \cap B_{X^*}$.

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Sketch of the proof. It is enough to prove that if $F \subset B_{X^*}$ and $0 \in \overline{F}^{\omega^*}$ then $0 \in S_{\gamma_1 + \gamma_2}(F)$. For each finite set $A \subset X$ and each $\varepsilon > 0$, define $F_{A,\varepsilon} = \{x^* \in F : |x^*(x)| \le \varepsilon$ for all $x \in A\}$. Then, $0 \in \overline{R(F_{A,\varepsilon})}^{\omega^*} = S_{\gamma_1}(R(F_{A,\varepsilon})) = R(S_{\gamma_1}(F_{A,\varepsilon}))$, where $R : X^* \to Y^*$ is the restriction operator. Thus, for every finite set $A \subset X$ and every $\varepsilon > 0$ we can take $x^*_{A,\varepsilon} \in S_{\gamma_1}(F_{A,\varepsilon})$ such that $R(x^*_{A,\varepsilon}) = 0$. Set $G := \{x^*_{A,\varepsilon} : A \subset X \text{ finite, } \varepsilon > 0\} \subset Y^{\perp} \cap B_{X^*}$. Since $Y^{\perp} \cap B_{X^*}$ is ω^* -homeomorphic to the dual ball of $(X/Y)^*$ and $0 \in \overline{G}^{\omega^*}$,

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Sketch of the proof. It is enough to prove that if $F \subset B_{X^*}$ and $0 \in \overline{F}^{\omega^*}$ then $0 \in S_{\gamma_1 + \gamma_2}(F)$. For each finite set $A \subset X$ and each $\varepsilon > 0$, define $F_{A,\varepsilon} = \{x^* \in F : |x^*(x)| \le \varepsilon$ for all $x \in A\}$. Then, $0 \in \overline{R(F_{A,\varepsilon})}^{\omega^*} = S_{\gamma_1}(R(F_{A,\varepsilon})) = R(S_{\gamma_1}(F_{A,\varepsilon}))$, where $R : X^* \to Y^*$ is the restriction operator. Thus, for every finite set $A \subset X$ and every $\varepsilon > 0$ we can take $x^*_{A,\varepsilon} \in S_{\gamma_1}(F_{A,\varepsilon})$ such that $R(x^*_{A,\varepsilon}) = 0$. Set $G := \{x^*_{A,\varepsilon} : A \subset X \text{ finite, } \varepsilon > 0\} \subset Y^{\perp} \cap B_{X^*}$. Since $Y^{\perp} \cap B_{X^*}$ is ω^* -homeomorphic to the dual ball of $(X/Y)^*$ and $0 \in \overline{G}^{\omega^*}$, we conclude $0 \in S_{\gamma_2}(G) \subset S_{\gamma_2}(S_{\gamma_1}(F)) = S_{\gamma_1 + \gamma_2}(F)$. \Box

э

(a)

• If $(x_n)_{n \in \mathbb{N}}$ is a sequence in a Banach space, we say that $(y_k)_{k \in \mathbb{N}}$ is a **convex block subsequence** of $(x_n)_{n \in \mathbb{N}}$ if there is a sequence $(I_k)_{k \in \mathbb{N}}$ of finite subsets of \mathbb{N} with $\max(I_k) < \min(I_{k+1})$ and a sequence $a_n \in [0, 1]$ with $\sum_{n \in I_k} a_n = 1$ for every $k \in \mathbb{N}$ such that $y_k = \sum_{n \in I_k} a_n x_n$.

イロト イポト イヨト イヨト 二日

- If $(x_n)_{n \in \mathbb{N}}$ is a sequence in a Banach space, we say that $(y_k)_{k \in \mathbb{N}}$ is a **convex block subsequence** of $(x_n)_{n \in \mathbb{N}}$ if there is a sequence $(I_k)_{k \in \mathbb{N}}$ of finite subsets of \mathbb{N} with $\max(I_k) < \min(I_{k+1})$ and a sequence $a_n \in [0, 1]$ with $\sum_{n \in I_k} a_n = 1$ for every $k \in \mathbb{N}$ such that $y_k = \sum_{n \in I_k} a_n x_n$.
- A Banach space X is said to have weak*-convex block compact dual ball if every bounded sequence in X* has a weak*-convergent convex block subsequence.

イロト イポト イヨト イヨト 二日

- If $(x_n)_{n \in \mathbb{N}}$ is a sequence in a Banach space, we say that $(y_k)_{k \in \mathbb{N}}$ is a **convex block subsequence** of $(x_n)_{n \in \mathbb{N}}$ if there is a sequence $(I_k)_{k \in \mathbb{N}}$ of finite subsets of \mathbb{N} with $\max(I_k) < \min(I_{k+1})$ and a sequence $a_n \in [0, 1]$ with $\sum_{n \in I_k} a_n = 1$ for every $k \in \mathbb{N}$ such that $y_k = \sum_{n \in I_k} a_n x_n$.
- A Banach space X is said to have weak*-convex block compact dual ball if every bounded sequence in X* has a weak*-convergent convex block subsequence.

イロト 不得 とくほ とくほ とうほう

Every Banach space containing no isomorphic copies of ℓ_1 has weak*-convex block compact dual ball (Bourgain, 1979).

- If $(x_n)_{n \in \mathbb{N}}$ is a sequence in a Banach space, we say that $(y_k)_{k \in \mathbb{N}}$ is a **convex block subsequence** of $(x_n)_{n \in \mathbb{N}}$ if there is a sequence $(I_k)_{k \in \mathbb{N}}$ of finite subsets of \mathbb{N} with $\max(I_k) < \min(I_{k+1})$ and a sequence $a_n \in [0, 1]$ with $\sum_{n \in I_k} a_n = 1$ for every $k \in \mathbb{N}$ such that $y_k = \sum_{n \in I_k} a_n x_n$.
- A Banach space X is said to have weak*-convex block compact dual ball if every bounded sequence in X* has a weak*-convergent convex block subsequence.

Every Banach space containing no isomorphic copies of ℓ_1 has weak*-convex block compact dual ball (Bourgain, 1979). Therefore, every WPG Banach space (i.e. every Banach space with a linearly dense weakly precompact set) also has weak*-convex block compact dual ball.

イロト 不得 とうせい かほとう ほ

For any ordinal $\alpha \leq \omega_1$, we say that X has property $\mathcal{E}(\alpha)$ if $S_{\alpha}(C) = \overline{C}^{\omega^*}$ for every convex subset C in (B_{X^*}, ω^*) .

イロト 不得 とうせい かほとう ほ

For any ordinal $\alpha \leq \omega_1$, we say that X has property $\mathcal{E}(\alpha)$ if $S_{\alpha}(C) = \overline{C}^{\omega^*}$ for every convex subset C in (B_{X^*}, ω^*) .

Thus, property \mathcal{E} is property $\mathcal{E}(1)$ and property \mathcal{E}' is property $\mathcal{E}(\omega_1)$.

For any ordinal $\alpha \leq \omega_1$, we say that X has property $\mathcal{E}(\alpha)$ if $S_{\alpha}(C) = \overline{C}^{\omega^*}$ for every convex subset C in (B_{X^*}, ω^*) .

Thus, property \mathcal{E} is property $\mathcal{E}(1)$ and property \mathcal{E}' is property $\mathcal{E}(\omega_1)$.

Theorem

Let X be a Banach space with weak*-convex block compact dual ball. Let $Y \subset X$ be a subspace with property $\mathcal{E}(\gamma_1)$ such that X/Y has property $\mathcal{E}(\gamma_2)$. Then X has property $\mathcal{E}(\gamma_1 + \gamma_2)$.

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

イロト イポト イヨト イヨト 二日

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Let $\{N_r : r \in \Gamma\}$ be an uncountable maximal almost disjoint family in \mathbb{N} .

イロト 不得 とうせい かほとう ほ

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Let $\{N_r : r \in \Gamma\}$ be an uncountable maximal almost disjoint family in \mathbb{N} . The Johnson-Lindenstrauss space JL_2 is defined as the completion of span $(c_0 \cup \{\chi_{N_r} : r \in \Gamma\}) \subset \ell_{\infty}$ with respect to the norm:

$$\left\|x+\sum_{1\leq i\leq k}a_{i}\chi_{N_{r_{i}}}\right\|=\max\bigg\{\left\|x+\sum_{1\leq i\leq k}a_{i}\chi_{N_{r_{i}}}\right\|_{\infty},\left(\sum_{1\leq i\leq k}|a_{i}|^{2}\right)^{\frac{1}{2}}\bigg\}.$$

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Let $\{N_r : r \in \Gamma\}$ be an uncountable maximal almost disjoint family in \mathbb{N} . The Johnson-Lindenstrauss space JL_2 is defined as the completion of span $(c_0 \cup \{\chi_{N_r} : r \in \Gamma\}) \subset \ell_{\infty}$ with respect to the norm:

$$\left\|x+\sum_{1\leq i\leq k}a_{i}\chi_{N_{r_{i}}}\right\|=\max\left\{\left\|x+\sum_{1\leq i\leq k}a_{i}\chi_{N_{r_{i}}}\right\|_{\infty},\left(\sum_{1\leq i\leq k}|a_{i}|^{2}\right)^{\frac{1}{2}}\right\}.$$

If we just consider the supremum norm in the definition then we obtain the space JL_0 .

October 16th, 2017 14 / 18

イロト 不得 とうせい かほとう ほ

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

イロト 不得 とくほ とくほ とうほう

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Corollary

Since JL_2/c_0 is isomorphic to $\ell_2(\Gamma)$ and JL_2 has weak*-sequentially compact dual ball,

イロト イポト イヨト イヨト 二日

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Corollary

Since JL_2/c_0 is isomorphic to $\ell_2(\Gamma)$ and JL_2 has weak*-sequentially compact dual ball, JL_2 has weak*-sequential dual ball with sequential order ≤ 2 .

イロト イポト イヨト イヨト 二日

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Corollary

Since JL_2/c_0 is isomorphic to $\ell_2(\Gamma)$ and JL_2 has weak*-sequentially compact dual ball, JL_2 has weak*-sequential dual ball with sequential order ≤ 2 . Since JL_2 does not have weak*-angelic dual, we conclude that

weak*-sequential dual ball ⇒ weak*-angelic dual

イロト 不得 とくほ とくほ とうほう

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let X be a Banach space with weak*-sequentially compact dual ball. Let $Y \subset X$ be a subspace with weak*-sequential dual ball with sequential order $\leq \gamma_1$ and such that X/Y has weak*-sequential dual ball with sequential order $\leq \gamma_2$. Then X has weak*-sequential dual ball with sequential order $\leq \gamma_1 + \gamma_2$.

Theorem

Let γ be a countable ordinal, X_{γ} a Banach space and $(X_{\alpha})_{\alpha \leq \gamma}$ an increasing sequence of subspaces of X_{γ} such that:

- **1** X_0 has weak*-sequential dual ball with sequential order $\leq \theta$;
- **2** each quotient $X_{\alpha+1}/X_{\alpha}$ has weak*-angelic dual;

3
$$X_{\alpha} = \overline{\bigcup_{\beta < \alpha} X_{\beta}}$$
 if α is a limit ordinal;

4 X_{γ} has weak*-sequentially compact dual ball.

Then each X_{α} has weak*-sequential dual ball with sequential order $\leq \theta + \alpha$ if $\alpha < \omega$ and sequential order $\leq \theta + \alpha + 1$ if $\alpha \geq \omega$.

3

If K is an infinite scattered compact space with $ht(K) < \omega_1$, then C(K) has weak*-sequential dual ball with sequential order $\leq ht(K)$ if $ht(K) < \omega$ and with sequential order $\leq ht(K) + 1$ if $ht(K) \geq \omega$.

If K is an infinite scattered compact space with $ht(K) < \omega_1$, then C(K) has weak*-sequential dual ball with sequential order $\leq ht(K)$ if $ht(K) < \omega$ and with sequential order $\leq ht(K) + 1$ if $ht(K) \geq \omega$.

Sketch of the proof. For every $\alpha \leq \gamma$, take $X_{\alpha} = \{f \in C(K) : f(t) = 0 \text{ for every } t \in K^{(\alpha)}\}$, where $\{K^{(\alpha)} : \alpha \leq \gamma\}$ are the Cantor-Bendixson derivatives of K and $\gamma = ht(K)$.

If K is an infinite scattered compact space with $ht(K) < \omega_1$, then C(K) has weak*-sequential dual ball with sequential order $\leq ht(K)$ if $ht(K) < \omega$ and with sequential order $\leq ht(K) + 1$ if $ht(K) \geq \omega$.

Sketch of the proof. For every $\alpha \leq \gamma$, take $X_{\alpha} = \{f \in \mathcal{C}(K) : f(t) = 0 \text{ for every } t \in K^{(\alpha)}\}$, where $\{K^{(\alpha)} : \alpha \leq \gamma\}$ are the Cantor-Bendixson derivatives of K and $\gamma = ht(K)$. Then $X_{\alpha+1}/X_{\alpha}$ is isomorphic to $c_0(K^{(\alpha)} \setminus K^{(\alpha+1)})$.

If K is an infinite scattered compact space with $ht(K) < \omega_1$, then C(K) has weak*-sequential dual ball with sequential order $\leq ht(K)$ if $ht(K) < \omega$ and with sequential order $\leq ht(K) + 1$ if $ht(K) \geq \omega$.

Sketch of the proof. For every $\alpha \leq \gamma$, take $X_{\alpha} = \{f \in \mathcal{C}(K) : f(t) = 0 \text{ for every } t \in K^{(\alpha)}\}$, where $\{K^{(\alpha)} : \alpha \leq \gamma\}$ are the Cantor-Bendixson derivatives of K and $\gamma = ht(K)$. Then $X_{\alpha+1}/X_{\alpha}$ is isomorphic to $c_0(K^{(\alpha)} \setminus K^{(\alpha+1)})$.

Theorem (A.I. Baškirov)

Under CH there exist scattered compact spaces of any sequential order and such that the sequential order and the scattering height coincide whenever the sequential order is a successor ordinal.

イロト 不得 とくほ とくほ とうほう

If K is an infinite scattered compact space with $ht(K) < \omega_1$, then C(K) has weak*-sequential dual ball with sequential order $\leq ht(K)$ if $ht(K) < \omega$ and with sequential order $\leq ht(K) + 1$ if $ht(K) \geq \omega$.

Sketch of the proof. For every $\alpha \leq \gamma$, take $X_{\alpha} = \{f \in \mathcal{C}(K) : f(t) = 0 \text{ for every } t \in K^{(\alpha)}\}$, where $\{K^{(\alpha)} : \alpha \leq \gamma\}$ are the Cantor-Bendixson derivatives of K and $\gamma = ht(K)$. Then $X_{\alpha+1}/X_{\alpha}$ is isomorphic to $c_0(K^{(\alpha)} \setminus K^{(\alpha+1)})$.

Theorem (A.I. Baškirov)

Under CH there exist scattered compact spaces of any sequential order and such that the sequential order and the scattering height coincide whenever the sequential order is a successor ordinal.

Corollary

Under CH there are Banach spaces with weak*-sequential dual balls of any sequential order $< \omega$ and Banach spaces with arbitrarily large countable sequential order.

Gonzalo Martínez Cervantes

Banach spaces with weak*-sequential dual ball

October 16th, 2017 17 / 18
References

G. Martínez-Cervantes,

Banach spaces with weak*-sequential dual ball. *Accepted in Proc. Amer. Math. Soc.*

A. Plichko,

Three sequential properties of dual Banach spaces in the weak* topology. *Top. Appl.*, 190 (2015), 93–98.

W.B. Johnson, J. Lindenstrauss,

Some remarks on weakly compactly generated Banach spaces. *Israel J. Math.*, 17 (1974), 219–230.

3

< 17 > <