On groups of Hölder diffeomorphisms and their regularity

 Joint work with Armin RainerDavid Nenning

University of Vienna

Valencia, October 17, 2017

Diffeomorphism groups generated by time-dependent vector fields

Diffeomorphism groups generated by time-dependent vector fields

- $C_{0}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \ldots$ Space of continuously differentiable functions vanishing at infinity together with their first derivative.

Diffeomorphism groups generated by time-dependent vector fields

- $C_{0}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \ldots$ Space of continuously differentiable functions vanishing at infinity together with their first derivative.
- For $u: I \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that
- $u(\cdot, x)$ is measurable for all $x \in \mathbb{R}^{d}$,
- $u(t, \cdot) \in C_{0}^{1}$ for all $t \in I$,
- $\int_{0}^{1}\|u(t, \cdot)\|_{C^{1}} d t<\infty$,
the ODE

$$
\Phi(t)=x+\int_{s}^{t} u(r, \Phi(r)) d r
$$

admits a unique solution for each fixed $s \in I, x \in \mathbb{R}^{d}$; denoted as $\Phi_{u}(t, s, x)=x+\phi_{u}(t, s, x)$.

Diffeomorphism groups generated by time-dependent vector fields

- $C_{0}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \ldots$ Space of continuously differentiable functions vanishing at infinity together with their first derivative.
- For $u: I \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that
- $u(\cdot, x)$ is measurable for all $x \in \mathbb{R}^{d}$,
- $u(t, \cdot) \in C_{0}^{1}$ for all $t \in I$,
- $\int_{0}^{1}\|u(t, \cdot)\|_{C^{1}} d t<\infty$,
the ODE

$$
\Phi(t)=x+\int_{s}^{t} u(r, \Phi(r)) d r
$$

admits a unique solution for each fixed $s \in I, x \in \mathbb{R}^{d}$; denoted as $\Phi_{u}(t, s, x)=x+\phi_{u}(t, s, x)$.

- $\Phi_{u}(t, s, \cdot)$ is a C^{1}-diffeomorphism and $\phi_{u}(t, s, \cdot) \in C_{0}^{1}$.

Diffeomorphism groups generated by time-dependent vector fields

Diffeomorphism groups generated by time-dependent vector fields

For a locally convex space $E \hookrightarrow C_{0}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$, we set $\mathfrak{X}_{E} \ldots$ Space of pointwise time-dependent E-vector fields $u: I \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with

- $u(\cdot, x)$ is measurable for all $x \in \mathbb{R}^{d}$,
- $u(t, \cdot) \in E$ for all $t \in I$,
- $\int_{0}^{1} p(u(t, \cdot)) d t<\infty$ for all continuous seminorms p.

Diffeomorphism groups generated by time-dependent vector fields

For a locally convex space $E \hookrightarrow C_{0}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$, we set $\mathfrak{X}_{E} \ldots$ Space of pointwise time-dependent E-vector fields $u: I \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with

- $u(\cdot, x)$ is measurable for all $x \in \mathbb{R}^{d}$,
- $u(t, \cdot) \in E$ for all $t \in I$,
- $\int_{0}^{1} p(u(t, \cdot)) d t<\infty$ for all continuous seminorms p.

Definition (Trouvé group)

$\mathcal{G}_{E}:=\left\{\Phi_{u}(1,0, \cdot): u \in \mathfrak{X}_{E}\right\}$.

Diffeomorphism groups generated by time-dependent vector fields

For a locally convex space $E \hookrightarrow C_{0}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$, we set $\mathfrak{X}_{E} \ldots$ Space of pointwise time-dependent E-vector fields $u: I \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with

- $u(\cdot, x)$ is measurable for all $x \in \mathbb{R}^{d}$,
- $u(t, \cdot) \in E$ for all $t \in I$,
- $\int_{0}^{1} p(u(t, \cdot)) d t<\infty$ for all continuous seminorms p.

Definition (Trouvé group)

$\mathcal{G}_{E}:=\left\{\Phi_{u}(1,0, \cdot): u \in \mathfrak{X}_{E}\right\}$.

Lemma

\mathcal{G}_{E} is a group with respect to composition.

Diffeomorphism groups generated by time-dependent

 vector fieldsFor a locally convex space $E \hookrightarrow C_{0}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$, we set $\mathfrak{X}_{E} \ldots$ Space of pointwise time-dependent E-vector fields $u: I \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with

- $u(\cdot, x)$ is measurable for all $x \in \mathbb{R}^{d}$,
- $u(t, \cdot) \in E$ for all $t \in I$,
- $\int_{0}^{1} p(u(t, \cdot)) d t<\infty$ for all continuous seminorms p.

Definition (Trouvé group)
$\mathcal{G}_{E}:=\left\{\Phi_{u}(1,0, \cdot): u \in \mathfrak{X}_{E}\right\}$.

Lemma

\mathcal{G}_{E} is a group with respect to composition.
Definition (ODE-closedness)
E is called ODE-closed iff $\mathcal{G}_{E} \subseteq \mathrm{Id}+E$.

Hölder Diffeomorphism groups

Hölder Diffeomorphism groups

- $C_{0}^{n, \beta}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \ldots$ Space of n times continuously differentiable functions vanishing at infinity together with their derivatives up to order n and β-Hölder continuous n-th derivative with global Hölder constant, i.e. for $f \in C_{0}^{n, \beta}, f^{(k)}(x) \rightarrow 0$ as $x \rightarrow \infty$ for $0 \leq k \leq n$, and

$$
\begin{aligned}
& \|f\|_{n, \beta}:=\max \left\{\left\|f^{(k)}\right\|_{L^{\infty}\left(\mathbb{R}^{d}, L_{k}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)}: 0 \leq k \leq n ;\right. \\
& \left.\sup _{x, y \in \mathbb{R}^{d}} \frac{\left\|f^{(n)}(x)-f^{(n)}(y)\right\|_{L_{n}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}}{\|x-y\|^{\beta}}\right\}<\infty .
\end{aligned}
$$

Hölder Diffeomorphism groups

- $C_{0}^{n, \beta}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \ldots$ Space of n times continuously differentiable functions vanishing at infinity together with their derivatives up to order n and β-Hölder continuous n-th derivative with global Hölder constant, i.e. for $f \in C_{0}^{n, \beta}, f^{(k)}(x) \rightarrow 0$ as $x \rightarrow \infty$ for $0 \leq k \leq n$, and

$$
\begin{aligned}
& \|f\|_{n, \beta}:=\max \left\{\left\|f^{(k)}\right\|_{L^{\infty}\left(\mathbb{R}^{d}, L_{k}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)}: 0 \leq k \leq n ;\right. \\
& \left.\sup _{x, y \in \mathbb{R}^{d}} \frac{\left\|f^{(n)}(x)-f^{(n)}(y)\right\|_{L_{n}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}}{\|x-y\|^{\beta}}\right\}<\infty .
\end{aligned}
$$

- The set of orientation preserving diffeomorphisms that differ from the identity by a $C_{0}^{n, \beta}$-function is denoted as

$$
\text { Diff } C_{0}^{n, \beta}:=\left\{\Phi \in \operatorname{Id}+C_{0}^{n, \beta}: \operatorname{det} \Phi^{\prime}(x)>0 \forall x \in \mathbb{R}^{d}\right\}
$$

It is a Banach manifold modelled on $C_{0}^{n, \beta}$ with global chart $\Phi \mapsto \Phi-\mathrm{Id}$. (Diff $\left.C_{0}^{n, \beta}\right)_{0}$ shall denote the connected component of the identity.

Hölder Diffeomorphism groups

Hölder Diffeomorphism groups

Theorem 1
Diff $C_{0}^{n, \beta}$ is a group with respect to composition. Right translations are smooth, but left translations are in general discontinuous.

Hölder Diffeomorphism groups

Theorem 1

Diff $C_{0}^{n, \beta}$ is a group with respect to composition. Right translations are smooth, but left translations are in general discontinuous.

Theorem 2

$\mathcal{G}_{n, \beta}=\left(\text { Diff } C_{0}^{n, \beta}\right)_{0}$. In particular $C_{0}^{n, \beta}$ is ODE-closed.

Proof(sketch): Diff $C_{0}^{n, \beta}$ is a group

Proof(sketch): Diff $C_{0}^{n, \beta}$ is a group

- Composition closedness: Classical proofs for composition closedness of $C^{n, \beta}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ can be modified for $(\mathrm{Id}+\phi, \mathrm{Id}+\psi) \mapsto(\mathrm{Id}+\phi) \circ(\mathrm{Id}+\psi)$. Right translation (in chart representation) is affine and continuous and therefore smooth.

Proof(sketch): Diff $C_{0}^{n, \beta}$ is a group

- Composition closedness: Classical proofs for composition closedness of
 Right translation (in chart representation) is affine and continuous and therefore smooth.
- Inversion closedness: Let $\Phi=\mathrm{Id}+\phi, \Phi^{-1}=\Psi=\mathrm{Id}+\psi$. Then

$$
\psi \circ \Phi=-\phi \in C_{0}^{n, \beta}
$$

Apply Faà di Bruno's formula, i.e.

$$
(\psi \circ \Phi)^{(n)}(x)=\operatorname{sym} \sum_{l=1}^{n} \sum_{\gamma \in \Gamma(l, n)} c_{\gamma} \psi^{(I)}(\Phi(x)) \cdot\left(\Phi^{\left(\gamma_{1}\right)}(x), \cdots, \Phi^{\left(\gamma_{1}\right)}(x)\right)
$$

where $\Gamma(I, n):=\left\{\gamma \in \mathbb{N}_{>0}^{\prime}:|\gamma|=n\right\}, c_{\gamma}:=\frac{n!}{!!\gamma!}$, and sym denotes the symmetrization of multilinear mappings.

Proof(sketch): Diff $C_{0}^{n, \beta}$ is a group

Proof(sketch): Diff $C_{0}^{n, \beta}$ is a group

This yields

$$
\begin{aligned}
& \psi^{(n)}(\Phi(x))\left(\Phi^{\prime}(x), \cdots, \Phi^{\prime}(x)\right)-\psi^{(n)}(\Phi(y))\left(\Phi^{\prime}(y), \cdots, \Phi^{\prime}(y)\right) \\
& =\quad-\left(\phi^{(n)}(x)-\phi^{(n)}(y)\right) \\
& \quad-\operatorname{sym}\left(\sum_{I=1}^{n-1} \sum_{\gamma \in \Gamma(I, n)} c_{\gamma} \psi^{(I)}(\Phi(x)) \cdot\left(\Phi^{\left(\gamma_{1}\right)}(x), \cdots, \Phi^{\left(\gamma_{l}\right)}(x)\right)\right. \\
& \left.\quad-\sum_{I=1}^{n-1} \sum_{\gamma \in \Gamma(I, n)} c_{\gamma} \psi^{(I)}(\Phi(y)) \cdot\left(\Phi^{\left(\gamma_{1}\right)}(y), \cdots, \Phi^{\left(\gamma_{l}\right)}(y)\right)\right)
\end{aligned}
$$

which (after some manipulations) yields $\psi \in C_{0}^{n, \beta}$.

Proof(sketch): $\mathcal{G}_{n, \beta} \subseteq\left(\text { Diff } C_{0}^{n, \beta}\right)_{0}$

Proof(sketch): $\mathcal{G}_{n, \beta} \subseteq\left(\text { Diff } C_{0}^{n, \beta}\right)_{0}$

Let u be a pointwise time-dependent $C_{0}^{n, \beta}$-vector field.

Proof(sketch): $\mathcal{G}_{n, \beta} \subseteq\left(\operatorname{Diff} C_{0}^{n, \beta}\right)_{0}$

Let u be a pointwise time-dependent $C_{0}^{n, \beta}$-vector field. Recall: $u: I \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that

- $u(\cdot, x)$ is measurable for all $x \in \mathbb{R}^{d}$,
- $u(t, \cdot) \in C_{0}^{n, \beta}$ for all $t \in I$,
- $\int_{0}^{1}\|u(t, \cdot)\|_{n, \beta} d t<\infty$.

Proof(sketch): $\mathcal{G}_{n, \beta} \subseteq\left(\operatorname{Diff} C_{0}^{n, \beta}\right)_{0}$

Let u be a pointwise time-dependent $C_{0}^{n, \beta}$-vector field. Recall: $u: I \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that

- $u(\cdot, x)$ is measurable for all $x \in \mathbb{R}^{d}$,
- $u(t, \cdot) \in C_{0}^{n, \beta}$ for all $t \in I$,
- $\int_{0}^{1}\|u(t, \cdot)\|_{n, \beta} d t<\infty$.

Show:

$$
t \mapsto \phi_{u}(t, \cdot) \in C\left(I, C_{0}^{n, \beta}\right)
$$

where

$$
\Phi_{u}(t, x)=x+\phi_{u}(t, x)=x+\int_{0}^{t} u\left(s, \Phi_{u}(s, x)\right) d s
$$

Proof(sketch): $\mathcal{G}_{n, \beta} \subseteq\left(\text { Diff } C_{0}^{n, \beta}\right)_{0}$

Proof(sketch): $\mathcal{G}_{n, \beta} \subseteq\left(\operatorname{Diff} C_{0}^{n, \beta}\right)_{0}$

It is well known that $\phi_{u}(t, \cdot) \in C^{n}$ and there are constants C_{1}, C_{2} such that for all $t \in I$

$$
\left\|\phi_{u}(t, \cdot)\right\|_{C^{n}} \leq C_{1} e^{C_{2} \int_{0}^{1}\|u(s, \cdot)\|_{c^{n}} d s}
$$

Proof(sketch): $\mathcal{G}_{n, \beta} \subseteq\left(\operatorname{Diff} C_{0}^{n, \beta}\right)_{0}$

It is well known that $\phi_{u}(t, \cdot) \in C^{n}$ and there are constants C_{1}, C_{2} such that for all $t \in I$

$$
\left\|\phi_{u}(t, \cdot)\right\|_{C^{n}} \leq C_{1} e^{C_{2} \int_{0}^{1}\|u(s, \cdot)\|_{c^{n}} d s}
$$

And $\partial_{x}^{n} \phi_{u}(t, x)$ fulfills

$$
\begin{equation*}
\partial_{x}^{n} \phi_{u}(t, x)=\int_{0}^{t} \partial_{x}^{n}\left(u\left(s, \Phi_{u}(s, x)\right) d s\right. \tag{1}
\end{equation*}
$$

Proof(sketch): $\mathcal{G}_{n, \beta} \subseteq\left(\operatorname{Diff} C_{0}^{n, \beta}\right)_{0}$

It is well known that $\phi_{u}(t, \cdot) \in C^{n}$ and there are constants C_{1}, C_{2} such that for all $t \in I$

$$
\left\|\phi_{u}(t, \cdot)\right\|_{C^{n}} \leq C_{1} e^{C_{2} \int_{0}^{1}\|u(s, \cdot)\|_{c^{n}} d s}
$$

And $\partial_{x}^{n} \phi_{u}(t, x)$ fulfills

$$
\begin{equation*}
\partial_{x}^{n} \phi_{u}(t, x)=\int_{0}^{t} \partial_{x}^{n}\left(u\left(s, \Phi_{u}(s, x)\right) d s\right. \tag{1}
\end{equation*}
$$

Consider

$$
V_{x, y}^{n}(t):=\frac{\partial_{x}^{n} \phi_{u}(t, x)-\partial_{x}^{n} \phi_{u}(t, y)}{\|x-y\|^{\beta}}
$$

Proof(sketch): $\mathcal{G}_{n, \beta} \subseteq\left(\operatorname{Diff} C_{0}^{n, \beta}\right)_{0}$

It is well known that $\phi_{u}(t, \cdot) \in C^{n}$ and there are constants C_{1}, C_{2} such that for all $t \in I$

$$
\left\|\phi_{u}(t, \cdot)\right\|_{C^{n}} \leq C_{1} e^{C_{2} \int_{0}^{1}\|u(s, \cdot)\|_{c^{n}} d s}
$$

And $\partial_{x}^{n} \phi_{u}(t, x)$ fulfills

$$
\begin{equation*}
\partial_{x}^{n} \phi_{u}(t, x)=\int_{0}^{t} \partial_{x}^{n}\left(u\left(s, \Phi_{u}(s, x)\right) d s\right. \tag{1}
\end{equation*}
$$

Consider

$$
V_{x, y}^{n}(t):=\frac{\partial_{x}^{n} \phi_{u}(t, x)-\partial_{x}^{n} \phi_{u}(t, y)}{\|x-y\|^{\beta}}
$$

- Apply Faà di Bruno's formula to the integrand in (1); yields linear ODE for $V_{x, y}^{n}$.

Proof(sketch): $\mathcal{G}_{n, \beta} \subseteq\left(\operatorname{Diff} C_{0}^{n, \beta}\right)_{0}$

It is well known that $\phi_{u}(t, \cdot) \in C^{n}$ and there are constants C_{1}, C_{2} such that for all $t \in I$

$$
\left\|\phi_{u}(t, \cdot)\right\|_{C^{n}} \leq C_{1} e^{C_{2} \int_{0}^{1}\|u(s, \cdot)\|_{c^{n}} d s}
$$

And $\partial_{x}^{n} \phi_{u}(t, x)$ fulfills

$$
\begin{equation*}
\partial_{x}^{n} \phi_{u}(t, x)=\int_{0}^{t} \partial_{x}^{n}\left(u\left(s, \Phi_{u}(s, x)\right) d s\right. \tag{1}
\end{equation*}
$$

Consider

$$
V_{x, y}^{n}(t):=\frac{\partial_{x}^{n} \phi_{u}(t, x)-\partial_{x}^{n} \phi_{u}(t, y)}{\|x-y\|^{\beta}}
$$

- Apply Faà di Bruno's formula to the integrand in (1); yields linear ODE for $V_{x, y}^{n}$.
- Gronwall's inequality together with integrability of $t \mapsto\|u(t, \cdot)\|_{n, \beta}$ yields uniform boundedness w.r.t. x, y, t of $V_{x, y}^{n}(t)$.

Proof(sketch): $\mathcal{G}_{n, \beta} \subseteq\left(\operatorname{Diff} C_{0}^{n, \beta}\right)_{0}$

It is well known that $\phi_{u}(t, \cdot) \in C^{n}$ and there are constants C_{1}, C_{2} such that for all $t \in I$

$$
\left\|\phi_{u}(t, \cdot)\right\|_{C^{n}} \leq C_{1} e^{C_{2} \int_{0}^{1}\|u(s, \cdot)\|_{c^{n}} d s}
$$

And $\partial_{x}^{n} \phi_{u}(t, x)$ fulfills

$$
\begin{equation*}
\partial_{x}^{n} \phi_{u}(t, x)=\int_{0}^{t} \partial_{x}^{n}\left(u\left(s, \Phi_{u}(s, x)\right) d s\right. \tag{1}
\end{equation*}
$$

Consider

$$
V_{x, y}^{n}(t):=\frac{\partial_{x}^{n} \phi_{u}(t, x)-\partial_{x}^{n} \phi_{u}(t, y)}{\|x-y\|^{\beta}}
$$

- Apply Faà di Bruno's formula to the integrand in (1); yields linear ODE for $V_{x, y}^{n}$.
- Gronwall's inequality together with integrability of $t \mapsto\|u(t, \cdot)\|_{n, \beta}$ yields uniform boundedness w.r.t. x, y, t of $V_{x, y}^{n}(t)$.
- Integrability also gives continuity into $C_{0}^{n, \beta}$.

Proof(sketch): $\mathcal{G}_{n, \beta} \supseteq\left(\text { Diff } C_{0}^{n, \beta}\right)_{0}$

Proof(sketch): $\mathcal{G}_{n, \beta} \supseteq\left(\operatorname{Diff} C_{0}^{n, \beta}\right)_{0}$

- For $\Phi=\mathrm{Id}+\phi \in\left(\operatorname{Diff} C_{0}^{n, \beta}\right)_{0}$ there exists a polygon in (Diff $\left.C_{0}^{n, \beta}\right)_{0}$ with vertices $\mathrm{Id}=\Phi_{0}, \Phi_{1}=\mathrm{Id}+\phi_{1}, \cdots, \Phi_{k}=\mathrm{Id}+\phi_{k}=\Phi$.

Proof(sketch): $\mathcal{G}_{n, \beta} \supseteq\left(\text { Diff } C_{0}^{n, \beta}\right)_{0}$

- For $\Phi=\mathrm{Id}+\phi \in\left(\operatorname{Diff} C_{0}^{n, \beta}\right)_{0}$ there exists a polygon in (Diff $\left.C_{0}^{n, \beta}\right)_{0}$ with vertices $\mathrm{Id}=\Phi_{0}, \Phi_{1}=\mathrm{Id}+\phi_{1}, \cdots, \Phi_{k}=\mathrm{Id}+\phi_{k}=\Phi$.
- $\Phi_{1}=\Phi_{u_{1}}(1, \cdot)$ with $u_{1}(t, x)=\phi_{1} \circ\left((1-t) \operatorname{ld}+t \Phi_{1}\right)^{-1}(x)$; and u_{1} is pointwise time-dependent Hölder vector field $\Rightarrow \Phi_{1} \in \mathcal{G}_{n, \beta}$.

Proof(sketch): $\mathcal{G}_{n, \beta} \supseteq\left(\text { Diff } C_{0}^{n, \beta}\right)_{0}$

- For $\Phi=\mathrm{Id}+\phi \in\left(\operatorname{Diff} C_{0}^{n, \beta}\right)_{0}$ there exists a polygon in (Diff $\left.C_{0}^{n, \beta}\right)_{0}$ with vertices $\mathrm{Id}=\Phi_{0}, \Phi_{1}=\mathrm{Id}+\phi_{1}, \cdots, \Phi_{k}=\mathrm{Id}+\phi_{k}=\Phi$.
- $\Phi_{1}=\Phi_{u_{1}}(1, \cdot)$ with $u_{1}(t, x)=\phi_{1} \circ\left((1-t) \mathrm{Id}+t \Phi_{1}\right)^{-1}(x)$; and u_{1} is pointwise time-dependent Hölder vector field $\Rightarrow \Phi_{1} \in \mathcal{G}_{n, \beta}$.
- Same argument gives $\Phi_{2} \circ \Phi_{1}^{-1} \in \mathcal{G}_{n, \beta}$. Since $\mathcal{G}_{n, \beta}$ is a group, $\Phi_{2} \in \mathcal{G}_{n, \beta}$. Iterate argument another $k-2$ times; yields $\Phi_{k}=\Phi \in \mathcal{G}_{n, \beta}$.

Further results

Further results

Definition (Intermediate Hölder spaces)

- $C_{0}^{n, \beta-}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right):=\bigcap_{\alpha \in(0, \beta)} C_{0}^{n, \alpha}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$,
- $C_{0}^{n, \beta+}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right):=\bigcup_{\alpha \in(\beta, 1)} C_{0}^{n, \alpha}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$,
endowed with natural projective and inductive locally convex topologies.

Further results

Definition (Intermediate Hölder spaces)

- $C_{0}^{n, \beta-}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right):=\bigcap_{\alpha \in(0, \beta)} C_{0}^{n, \alpha}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$,
- $C_{0}^{n, \beta+}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right):=\bigcup_{\alpha \in(\beta, 1)} C_{0}^{n, \alpha}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$,
endowed with natural projective and inductive locally convex topologies.

Theorem

- Diff $C_{0}^{n, \beta-}$ is a topological group,
- Diff $C_{0}^{n, \beta+}$, group operations map smooth curves to continuous curves,
- $\mathcal{G}_{n, \beta \pm}=\left(\operatorname{Diff} C_{0}^{n, \beta \pm}\right)_{0}$.

Thanks for your attention!

