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o C}(RY,RY)...Space of continuously differentiable functions
vanishing at infinity together with their first derivative.
e For u: | xR — RY such that
o u(-,x) is measurable for all x € R9,
o u(t,") € G} foralltel,
o follu(t,)crdt < oo,

the ODE .
d(t) = x —l—/s u(r,®(r)) dr

admits a unique solution for each fixed s € I, x € RY; denoted as
o,(t,s,x) = x + ou(t, s, x).
o ®,(t,s,)is a Cl-diffeomorphism and ¢,(t,s,-) € C}.
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For a locally convex space E — Col(Rd,Rd), we set Xg...Space of
pointwise time-dependent E-vector fields v : | x R? — RY with

o u(-,x) is measurable for all x € RY,
e u(t, )eEforaIItel

° fo )) dt < oo for all continuous seminorms p.

Definition (Trouvé group)
Ge = {®,(1,0,-) s u € Xg}.

GE is a group with respect to composition.

Definition (ODE-closedness)

E is called ODE-closed iff Ge C Id +E.
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Holder Diffeomorphism groups

o CP(RY,RY)...Space of n times continuously differentiable
functions vanishing at infinity together with their derivatives up to
order n and -Holder continuous n-th derivative with global Holder
constant, i.e. for f € C(;”ﬂ, f(k)(x) —0asx —oofor0< k <n, and

1fllns == maX{Hf(k)”Loo(Rd,Lk(Rd,Rd)) 0<k<n

”f(n)(x) - f(n)(y)”L,,(Rd,Rd)
sup 5 } < oo.
x,yeRd ||X - )/H

The set of orientation preserving diffeomorphisms that differ from the
identity by a C(;"'B—function is denoted as

Diff g7 := {® € Id +C5"" : det ®'(x) > 0 ¥x € RY}.

It is a Banach manifold modelled on Cg’ﬁ with global chart

& — & — Id. (Diff Cé"ﬁ)o shall denote the connected component of
the identity.
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Holder Diffeomorphism groups

Diff Cg Bisa group with respect to composition. Right translations are
smooth, but left translations are in general discontinuous.

Gnp = (Diff C"P)o. In particular CJ'® is ODE-closed.
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Right translation (in chart representation) is affine and continuous
and therefore smooth.




Proof(sketch): Diff ¢’ is a group

@ Composition closedness: Classical proofs for composition closedness of
C™P(R?,R¥) can be modified for (Id +¢, Id +1) + (Id +¢) o (Id +1).
Right translation (in chart representation) is affine and continuous
and therefore smooth.

o Inversion closedness: Let ® = Id +¢, ®~1 = W = |d +4). Then

1/)0¢=—¢€C67”8.

Apply Faa di Bruno’s formula, i.e.

(o0) () = 5m>" T e u(O(x)- (60, - o),

I=1 ~el(l,n)

where [(I,n) :={y e NLy: || =n}, ¢, := ,— and sym denotes the
symmetrization of muItiIinear mappings.
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This yields
Y@@ (x), -+, D(x)) = (S (P (y), -+, ¥ (y))
= —(¢"(x) = ¢"(y))

_sym<z T e u(@() - (60D (x), -, 61 (x))

I=1 ~el(l,n)

—Z T e (®(y)) - (o0 )(y),...7¢(7/)(y))>7

I=1 ~el(I,n)

which (after some manipulations) yields 1) € C(;”ﬂ.
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Let u be a pointwise time-dependent Cé”ﬁ—vector field.
Recall: u: [ x R? — R? such that

o u(-,x) is measurable for all x € R,
o ult, )GC""BforaII tel,
o fo lu(t,)llns dt < 0.
Show:
t du(t,) € C(1,C5P),

where

¢u(t,X) =X+ Qbu(t,x) =X+ /0 U(S, q)u(S,X)) ds.
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(. Ylen < CreCe s e len e

And 07¢,(t, x) fulfills

O bu(t, x) = /0 " 00(u(s, u(5. %)) ds.

Consider Bu(t.x) — Du(t.y)
4 u t7X -0y u t).y
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e Apply Faa di Bruno's formula to the integrand in (1); yields linear
ODE for V(7.
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It is well known that ¢,(t,-) € C" and there are constants C;, C; such
that for all t € /

6u(t, Ylcn < CueCelo loteslence
And 07¢,(t, x) fulfills

ooutx) = [ COn(u(s, Du(s,x)) ds. 1)

Consider

8n¢u(t,X) - an¢u(t)y)
V7o(t) == X .
o Ix = y[I?
e Apply Faa di Bruno's formula to the integrand in (1); yields linear
ODE for V(7.

e Gronwall's inequality together with integrability of t — |lu(t,-)|» s
yields uniform boundedness w.r.t. x,y, t of V! (t).

@ Integrability also gives continuity into C(;"’B.
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Proof(sketch): G5 2 (Diff G*")o

o For & = Id+¢ € (Diff CJ'”)o there exists a polygon in (Diff CJ"%)o
with vertices Id = &g, ®; = Id +¢1, - , Py = Id+¢k = P.

o &1 =, (1,) with ur(t,x) = ¢1 0 ((1 — t)Id +td1)~1(x); and vy is
pointwise time-dependent Holder vector field = &1 € G, 3.

o Same argument gives ®; 0 &' € G, 5. Since G, 5 is a group,
®; € G, 5. Iterate argument another k — 2 times; yields
q)k =dc g,,”g.
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Further results

Definition (Intermediate Holder spaces)
o 7 (RYR) = Macop) G0 (RY R,
o 7R RY) = Ung(pa) G0 (RS RY),

endowed with natural projective and inductive locally convex topologies.

e Diff Cj P~ s a topological group,

o Diff Gy s group operations map smooth curves to continuous
curves,

o Gy ps = (Diff CJ7%)q.




Thanks for your attention!



