
On groups of Hölder diffeomorphisms and their regularity
Joint work with Armin Rainer

David Nenning

University of Vienna

Valencia, October 17, 2017



Diffeomorphism groups generated by time-dependent
vector fields

C 1
0 (Rd ,Rd) . . . Space of continuously differentiable functions

vanishing at infinity together with their first derivative.

For u : I × Rd → Rd such that

u(·, x) is measurable for all x ∈ Rd ,
u(t, ·) ∈ C 1

0 for all t ∈ I ,∫ 1

0
‖u(t, ·)‖C 1 dt <∞,

the ODE

Φ(t) = x +

∫ t

s
u(r ,Φ(r)) dr

admits a unique solution for each fixed s ∈ I , x ∈ Rd ; denoted as
Φu(t, s, x) = x + φu(t, s, x).

Φu(t, s, ·) is a C 1-diffeomorphism and φu(t, s, ·) ∈ C 1
0 .
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Diffeomorphism groups generated by time-dependent
vector fields

For a locally convex space E ↪→ C 1
0 (Rd ,Rd), we set XE . . . Space of

pointwise time-dependent E -vector fields u : I × Rd → Rd with

u(·, x) is measurable for all x ∈ Rd ,

u(t, ·) ∈ E for all t ∈ I ,∫ 1
0 p(u(t, ·)) dt <∞ for all continuous seminorms p.

Definition (Trouvé group)

GE :=
{

Φu(1, 0, ·) : u ∈ XE

}
.

Lemma

GE is a group with respect to composition.

Definition (ODE-closedness)

E is called ODE-closed iff GE ⊆ Id +E .
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GE :=
{

Φu(1, 0, ·) : u ∈ XE

}
.

Lemma

GE is a group with respect to composition.

Definition (ODE-closedness)

E is called ODE-closed iff GE ⊆ Id +E .



Diffeomorphism groups generated by time-dependent
vector fields

For a locally convex space E ↪→ C 1
0 (Rd ,Rd), we set XE . . . Space of

pointwise time-dependent E -vector fields u : I × Rd → Rd with

u(·, x) is measurable for all x ∈ Rd ,

u(t, ·) ∈ E for all t ∈ I ,∫ 1
0 p(u(t, ·)) dt <∞ for all continuous seminorms p.

Definition (Trouvé group)
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Hölder Diffeomorphism groups

Cn,β
0 (Rd ,Rd) . . . Space of n times continuously differentiable

functions vanishing at infinity together with their derivatives up to
order n and β-Hölder continuous n-th derivative with global Hölder
constant, i.e. for f ∈ Cn,β

0 , f (k)(x)→ 0 as x →∞ for 0 ≤ k ≤ n, and

‖f ‖n,β := max{‖f (k)‖L∞(Rd ,Lk (Rd ,Rd )) : 0 ≤ k ≤ n;

sup
x ,y∈Rd

‖f (n)(x)− f (n)(y)‖Ln(Rd ,Rd )

‖x − y‖β
} <∞.

The set of orientation preserving diffeomorphisms that differ from the
identity by a Cn,β

0 -function is denoted as

Diff Cn,β
0 :=

{
Φ ∈ Id +Cn,β

0 : det Φ′(x) > 0 ∀x ∈ Rd
}
.

It is a Banach manifold modelled on Cn,β
0 with global chart

Φ 7→ Φ− Id. (Diff Cn,β
0 )0 shall denote the connected component of

the identity.
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Hölder Diffeomorphism groups

Theorem 1

Diff Cn,β
0 is a group with respect to composition. Right translations are

smooth, but left translations are in general discontinuous.

Theorem 2

Gn,β = (Diff Cn,β
0 )0. In particular Cn,β

0 is ODE-closed.
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Proof(sketch): Diff C n,β
0 is a group

Composition closedness: Classical proofs for composition closedness of

Cn,β(Rd ,Rd) can be modified for (Id +φ, Id +ψ) 7→ (Id +φ) ◦ (Id +ψ).
Right translation (in chart representation) is affine and continuous
and therefore smooth.

Inversion closedness: Let Φ = Id +φ, Φ−1 = Ψ = Id +ψ. Then

ψ ◦ Φ = −φ ∈ Cn,β
0 .

Apply Faà di Bruno’s formula, i.e.

(ψ ◦Φ)(n)(x) = sym
n∑

l=1

∑
γ∈Γ(l ,n)

cγψ
(l)(Φ(x)) · (Φ(γ1)(x), · · · ,Φ(γl )(x)),

where Γ(l , n) := {γ ∈ Nl
>0 : |γ| = n}, cγ := n!

l!γ! , and sym denotes the
symmetrization of multilinear mappings.
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Proof(sketch): Diff C n,β
0 is a group

This yields

ψ(n)(Φ(x))(Φ′(x), · · · ,Φ′(x))− ψ(n)(Φ(y))(Φ′(y), · · · ,Φ′(y))

= −(φ(n)(x)− φ(n)(y))

− sym

( n−1∑
l=1

∑
γ∈Γ(l ,n)

cγψ
(l)(Φ(x)) · (Φ(γ1)(x), · · · ,Φ(γl )(x))

−
n−1∑
l=1

∑
γ∈Γ(l ,n)

cγψ
(l)(Φ(y)) · (Φ(γ1)(y), · · · ,Φ(γl )(y))

)
,

which (after some manipulations) yields ψ ∈ Cn,β
0 .
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Proof(sketch): Gn,β ⊆ (Diff C n,β
0 )0

Let u be a pointwise time-dependent Cn,β
0 -vector field.

Recall: u : I × Rd → Rd such that

u(·, x) is measurable for all x ∈ Rd ,

u(t, ·) ∈ Cn,β
0 for all t ∈ I ,∫ 1

0 ‖u(t, ·)‖n,β dt <∞.

Show:
t 7→ φu(t, ·) ∈ C (I ,Cn,β

0 ),

where

Φu(t, x) = x + φu(t, x) = x +

∫ t

0
u(s,Φu(s, x)) ds.
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Proof(sketch): Gn,β ⊆ (Diff C n,β
0 )0

It is well known that φu(t, ·) ∈ Cn and there are constants C1,C2 such
that for all t ∈ I

‖φu(t, ·)‖Cn ≤ C1e
C2

∫ 1
0 ‖u(s,·)‖Cn ds .

And ∂nxφu(t, x) fulfills

∂nxφu(t, x) =

∫ t

0
∂nx (u(s,Φu(s, x)) ds. (1)

Consider

V n
x ,y (t) :=

∂nxφu(t, x)− ∂nxφu(t, y)

‖x − y‖β
.

Apply Faà di Bruno’s formula to the integrand in (1); yields linear
ODE for V n

x ,y .

Gronwall’s inequality together with integrability of t 7→ ‖u(t, ·)‖n,β
yields uniform boundedness w.r.t. x , y , t of V n

x ,y (t).

Integrability also gives continuity into Cn,β
0 .
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Proof(sketch): Gn,β ⊇ (Diff C n,β
0 )0

For Φ = Id +φ ∈ (Diff Cn,β
0 )0 there exists a polygon in (Diff Cn,β

0 )0

with vertices Id = Φ0,Φ1 = Id +φ1, · · · ,Φk = Id +φk = Φ.

Φ1 = Φu1(1, ·) with u1(t, x) = φ1 ◦ ((1− t) Id +tΦ1)−1(x); and u1 is
pointwise time-dependent Hölder vector field ⇒ Φ1 ∈ Gn,β.

Same argument gives Φ2 ◦ Φ−1
1 ∈ Gn,β. Since Gn,β is a group,

Φ2 ∈ Gn,β. Iterate argument another k − 2 times; yields
Φk = Φ ∈ Gn,β.
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Further results

Definition (Intermediate Hölder spaces)

Cn,β−
0 (Rd ,Rd) :=

⋂
α∈(0,β) C

n,α
0 (Rd ,Rd),

Cn,β+
0 (Rd ,Rd) :=

⋃
α∈(β,1) C

n,α
0 (Rd ,Rd),

endowed with natural projective and inductive locally convex topologies.

Theorem

Diff Cn,β−
0 is a topological group,

Diff Cn,β+
0 , group operations map smooth curves to continuous

curves,

Gn,β± = (Diff Cn,β±
0 )0.
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Thanks for your attention!


