Distortion of Lipschitz Functions on $c_0(\Gamma)$

Matěj Novotný

Faculty of Eletrical Engineering Czech Technical University in Prague

17.10.2017

Matěj Novotný (CTU in Prague) Distortion of Lipschitz Functions on $c_0(\Gamma)$

Let X be a Banach space and $f: S_X \to \mathbb{R}$. We say f is oscillation stable if for every infinite dimensional subspace $Z \subset X$ and every $\varepsilon > 0$ there exists an infinite dimensional subspace $Y \subset Z$ such that $|f(x) - f(y)| \le \varepsilon$ for every $x, y \in S_Y$.

Let X be a Banach space and $f: S_X \to \mathbb{R}$. We say f is oscillation stable if for every infinite dimensional subspace $Z \subset X$ and every $\varepsilon > 0$ there exists an infinite dimensional subspace $Y \subset Z$ such that $|f(x) - f(y)| \le \varepsilon$ for every $x, y \in S_Y$.

Definition

A function $f: S_X \to \mathbb{R}$ is said to be **distorted** if there exists an $\varepsilon > 0$ such that for every infinite dimensional subspace Y of X there exist $x, y \in S_Y$ such that $|f(x) - f(y)| > \varepsilon$.

Distortion of Lipschitz mappings

Theorem (Gowers)

Every Lipschitz function $f: S_{c_0} \to \mathbb{R}$ is oscillation stable.

Theorem (Gowers)

Every Lipschitz function $f: S_{c_0} \to \mathbb{R}$ is oscillation stable.

Theorem (Odell, Schlumprecht)

There is a distorted Lipschitz function on ℓ_1 . For every $1 , there is a distorted equivalent norm on <math>\ell_p$.

Matěj Novotný (CTU in Prague) <u>Distortion</u> of Lipschitz Functions on $c_0(\Gamma)$ э

・ロト ・回ト ・ヨト

Let $(X, \|\cdot\|)$ be a Banach space with a symmetric (possibly uncountable) Schauder basis $\{e_{\gamma}\}_{\gamma\in\Gamma}$, where Γ is any nonempty set. We say that a function $f: X \to \mathbb{R}$ is **symmetric** if the value f(x) is preserved under any permutation of the coordinates of x.

Let $(X, \|\cdot\|)$ be a Banach space with a symmetric (possibly uncountable) Schauder basis $\{e_{\gamma}\}_{\gamma\in\Gamma}$, where Γ is any nonempty set. We say that a function $f: X \to \mathbb{R}$ is **symmetric** if the value f(x) is preserved under any permutation of the coordinates of x.

Theorem (Hájek, N.)

There is a 1-Lipschitz symmetric function $F: S_{c_0(\Gamma)} \to \mathbb{R}$, taking values in [0,1], such that for every nonseparable subspace $Y \subseteq c_0(\Gamma)$ there are points $x, y \in S_Y$ such that $|F(x) - F(y)| > \frac{1}{4}$.

Proof

Definition

On $c_{00}(\omega_1)$ define equivalence $x \sim y$ whenever $|\operatorname{supp} x| = |\operatorname{supp} y|$ and there exists a bijection $f : \operatorname{supp} x \to \operatorname{supp} y$ such that $x(\gamma) = y(f(\gamma))$. We call every equivalence class $[x] \in X := c_{00}(\omega_1)/\sim$ a shape.

・ロト ・ 同ト ・ ヨト ・ ヨ

Proof

Definition

On $c_{00}(\omega_1)$ define equivalence $x \sim y$ whenever $|\operatorname{supp} x| = |\operatorname{supp} y|$ and there exists a bijection $f : \operatorname{supp} x \to \operatorname{supp} y$ such that $x(\gamma) = y(f(\gamma))$. We call every equivalence class $[x] \in X := c_{00}(\omega_1)/\sim$ a shape.

Notation

Let us denote by $L = \{S_i\}_{i=1}^{\infty}$ the sequence of all shapes of norm one with finite support and rational coordinates.

Proof

Definition

On $c_{00}(\omega_1)$ define equivalence $x \sim y$ whenever $|\operatorname{supp} x| = |\operatorname{supp} y|$ and there exists a bijection $f : \operatorname{supp} x \to \operatorname{supp} y$ such that $x(\gamma) = y(f(\gamma))$. We call every equivalence class $[x] \in X := c_{00}(\omega_1)/\sim$ a shape.

Notation

Let us denote by $L = \{S_i\}_{i=1}^{\infty}$ the sequence of all shapes of norm one with finite support and rational coordinates.

Lemma (Modified extension formula)

Suppose (M,d) is a metric space and $g: S \to \mathbb{R}$ a K-Lipschitz function on some $S \subseteq M$, taking values only in the interval [0,1]. Then the following formula defines a K-Lipschitz function $\overline{g}: M \to \mathbb{R}$, taking values only in [0,1] such that $\overline{g}|_S = g$.

$$\overline{g}(x) = \min\left\{\inf_{y \in S} \left\{g(y) + Kd(x,y)\right\}, 1\right\}.$$
(1)

Thank you for your attention.