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Lipschitz free spaces Natural preduals Application to the Extremal Structure Uniformly discrete and bounded case

X real Banach space.

(M, d) complete pointed metric space with origin 0.
Lip0(M) = {f : M → R Lipschitz : f (0) = 0}

‖f ‖L = sup
x 6=y∈M

|f (x)− f (y)|
d(x , y)

(Best Lipschitz constant of f )

(Lip0(M), ‖ · ‖L) Banach space.

For x ∈ M, de�ne δ(x) ∈ Lip0(M)∗ by 〈δ(x), f 〉 = f (x).

De�nition

Lipschitz-free space over M :

F(M) := span {δ(x) : x ∈ M}‖·‖ ⊂ Lip0(M)∗.
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Proposition (Fundamental factorisation property)

∀X Banach, ∀ f : M → X Lipschitz, ∃! f : F(M)→ X with

‖f ‖ = ‖f ‖L and such that the following diagram commutes

M
f //� _

δM
��

X

F(M)
f

<<

The map f ∈ Lip0(M,X ) 7→ f ∈ L(F(M),X ) is an onto linear

isometry. We write Lip0(M,X ) = L(F(M),X ).

Remark :
i) For X = R we obtain : Lip0(M) ≡ F(M)∗.
ii) M ↪→

bi−Lip
N =⇒ F(N) ↪→

linear
F(M).
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De�nition

We de�ne the following closed subspace of Lip0(M) :

lip0(M) :=

{
f ∈ Lip0(M) : lim

ε→0

sup
0<d(x ,y)<ε

|f (x)− f (y)|
d(x , y)

= 0

}
.

(sup ∅ = 0)

Examples (Trivial)

i) lip0(R) = {0}, and also lip0(X ) = {0} for any Banach X .

ii) lip0(N) = Lip0(N), and also lip0(D) = Lip0(D) for any
uniformly discrete metric space D.
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De�nition

We say that a subspace lip0(M) 1-separates points uniformly
(1-S.P.U.) if ∀ε > 0 ∀x 6= y ∈ M, ∃f ∈ lip0(M) with ‖f ‖L ≤ 1+ ε
and |f (x)− f (y)| = d(x , y).

Examples

For M as follows, lip0(M) S.P.U. :

i) (Weaver) : M the middle-third Cantor set.

ii) (Godefroy/Ozawa) : M "small" Cantor set.

iii) (Dalet) : M countable proper.

iv) (Kalton) (M, ω ◦ d) where ω is a nontrivial gauge (typically
ω(t) = tp with 0 < p < 1).

v) (P) (X , ‖ · ‖p) where X is a p-Banach space which admits an
FDD.
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Proposition

For every complete metric space M, δ(M) is weakly closed.

Question

It is known that for some M, F(M) = X ∗ for some X . In that case,
does δ(M) is ω∗ = σ(F(M),X ) closed ?

De�nition

Let M be a bounded metric space. We say that a Banach space X
is a natural predual of F(M) if X ∗ = F(M) and δ(M) is
ω∗ = σ(F(M),X ) closed in F(M).

Example (Trivial)

If M is a compact metric space, then every predual (if it exists) is
natural.
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Proposition (Kalton)

Let M be a separable bounded pointed metric space.

Let τ be a topology on M so that (M, τ) is compact.

Assume that X = lip(M) ∩ Cτ (M) 1-S.P.U.
Then X is a natural predual of F(M).

Proof (GPPR).

i) X is closed,

ii) X separates the points of X ,

iii) X is composed of norm-attaining functionals.

Petun	�n-Pl	�£ko theorem : =⇒ F(M) = X ∗.
Now it is easy to check that τ and ω∗ coincides on δ(M). So δ(M)
is indeed ω∗ closed.
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Examples

1 There is a unif. discrete bounded and sep. metric space M
such that F(M) is isometric to a dual but does not admit any
natural predual.

2 There is a unif. discrete bounded and sep. metric space M
such that F(M) admits both a natural predual and a non
natural predual any natural predual.
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Lipschitz free spaces Natural preduals Application to the Extremal Structure Uniformly discrete and bounded case

We denote V := {mxy = δ(x)−δ(y)
d(x ,y) : x 6= y ∈ M} ⊂ SF(M).

Questions

1) ext(BF(M)) ⊂ V ?

2) [x , y ] = {x , y} =⇒ mxy ∈ ext(BF(M))

Weaver (1999) : ext(BF(M)∗∗) ∩ F(M) ⊂ V .

Aliaga and Guirao (2017) : Yes to 2) when M is compact, and yes
to 1) when M is compact and lip0(M) 1-S.P.U.
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Lipschitz free spaces Natural preduals Application to the Extremal Structure Uniformly discrete and bounded case

Theorem (GPPR)

Let M be bounded and separable. Assume that X ⊆ lip0(M) is a
natural predual of F(M). Then ext(BF(M)) ⊂ V .

Proof.

BF(M) = coω
∗
(V ). Milman theorem =⇒ ext(BF(M)) ⊂ V

ω∗
.

Take γ ∈ ext(BF(M)), and consider mxnyn
ω∗
−→ γ.

Passing to subsequences, we may assume that (natural condition) :

δ(xn)
ω∗
−→ δ(x)

δ(yn)
ω∗
−→ δ(y)

d(xn, yn) −→ C ≥ 0.
X ⊂ lip0(M) 1-S.P.U =⇒ C > 0.

Thus γ = δ(x)−δ(y)
C .

Since ‖γ‖ = 1, C = d(x , y).
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Lipschitz free spaces Natural preduals Application to the Extremal Structure Uniformly discrete and bounded case

Corollary (GPPR)

Let M be bounded and separable. Assume that X ⊆ lip0(M) is a
natural predual of F(M). Then, TFAE

i) µ ∈ ext(BF(M))

ii) µ ∈ exp(BF(M))

iii) µ = mxy with x 6= y ∈ M and [x , y ] = {x , y}

Proof.

iii) =⇒ ii) : Let x 6= y ∈ M such that [x , y ] = {x , y}.

Let fxy (t) :=
d(x , y)

2

d(t, y)− d(t, x)

d((t, y) + d(t, x)
(Ivakhno, Kadets, Werner).

Claim : ‖fxy‖L = 1 and 〈fxy ,muv 〉 = 1 =⇒ u, v ∈ [x , y ]= {x , y}.
Consider A = {µ ∈ BF(M) : 〈fxy , µ〉 = 1}.
µ ∈ ext(A) =⇒ µ ∈ ext(BF(M)) =⇒ µ ∈ A ∩ V =⇒ µ = mxy .
Thus A = co(ext(A)) = {mxy}, and so fxy exposes mxy .
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Lipschitz free spaces Natural preduals Application to the Extremal Structure Uniformly discrete and bounded case

Example

There is a unif. discrete bounded and sep. metric space M such
that F(M) does not have any predual.

If M be uniformly discrete, bounded and separable, then
F(M) ' `1. Indeed : 2

θ

∑
i |ai | ≤ ‖

∑
i aiδ(xi )‖ ≤ M

∑
i |ai |.

=⇒ F(M) has the (BAP).
(There exists C ≥ 1 such that for every compact set K ⊂ F(M)
and every ε > 0 there is an operator T : F(M)→ F(M) of �nite
rank so that ‖T‖ ≤ C and ‖Tγ − γ‖ ≤ ε for every γ ∈ K ).
Motivation : Does F(M) has (MAP) for every unif. discrete
bounded and separable metric space ?
→ If yes, then every sep. Banach space is approximable (Kalton).
→ If no, there is an equivalent `1 norm that fails the (MAP).

17/18



Lipschitz free spaces Natural preduals Application to the Extremal Structure Uniformly discrete and bounded case

Example

There is a unif. discrete bounded and sep. metric space M such
that F(M) does not have any predual.

If M be uniformly discrete, bounded and separable, then
F(M) ' `1.

Indeed : 2

θ

∑
i |ai | ≤ ‖

∑
i aiδ(xi )‖ ≤ M

∑
i |ai |.

=⇒ F(M) has the (BAP).
(There exists C ≥ 1 such that for every compact set K ⊂ F(M)
and every ε > 0 there is an operator T : F(M)→ F(M) of �nite
rank so that ‖T‖ ≤ C and ‖Tγ − γ‖ ≤ ε for every γ ∈ K ).
Motivation : Does F(M) has (MAP) for every unif. discrete
bounded and separable metric space ?
→ If yes, then every sep. Banach space is approximable (Kalton).
→ If no, there is an equivalent `1 norm that fails the (MAP).

17/18



Lipschitz free spaces Natural preduals Application to the Extremal Structure Uniformly discrete and bounded case

Example

There is a unif. discrete bounded and sep. metric space M such
that F(M) does not have any predual.

If M be uniformly discrete, bounded and separable, then
F(M) ' `1. Indeed : 2

θ

∑
i |ai | ≤ ‖

∑
i aiδ(xi )‖ ≤ M

∑
i |ai |.

=⇒ F(M) has the (BAP).
(There exists C ≥ 1 such that for every compact set K ⊂ F(M)
and every ε > 0 there is an operator T : F(M)→ F(M) of �nite
rank so that ‖T‖ ≤ C and ‖Tγ − γ‖ ≤ ε for every γ ∈ K ).
Motivation : Does F(M) has (MAP) for every unif. discrete
bounded and separable metric space ?
→ If yes, then every sep. Banach space is approximable (Kalton).
→ If no, there is an equivalent `1 norm that fails the (MAP).

17/18



Lipschitz free spaces Natural preduals Application to the Extremal Structure Uniformly discrete and bounded case

Example

There is a unif. discrete bounded and sep. metric space M such
that F(M) does not have any predual.

If M be uniformly discrete, bounded and separable, then
F(M) ' `1. Indeed : 2

θ

∑
i |ai | ≤ ‖

∑
i aiδ(xi )‖ ≤ M

∑
i |ai |.

=⇒ F(M) has the (BAP).
(There exists C ≥ 1 such that for every compact set K ⊂ F(M)
and every ε > 0 there is an operator T : F(M)→ F(M) of �nite
rank so that ‖T‖ ≤ C and ‖Tγ − γ‖ ≤ ε for every γ ∈ K ).
Motivation :

Does F(M) has (MAP) for every unif. discrete
bounded and separable metric space ?
→ If yes, then every sep. Banach space is approximable (Kalton).
→ If no, there is an equivalent `1 norm that fails the (MAP).

17/18



Lipschitz free spaces Natural preduals Application to the Extremal Structure Uniformly discrete and bounded case

Example

There is a unif. discrete bounded and sep. metric space M such
that F(M) does not have any predual.

If M be uniformly discrete, bounded and separable, then
F(M) ' `1. Indeed : 2

θ

∑
i |ai | ≤ ‖

∑
i aiδ(xi )‖ ≤ M

∑
i |ai |.

=⇒ F(M) has the (BAP).
(There exists C ≥ 1 such that for every compact set K ⊂ F(M)
and every ε > 0 there is an operator T : F(M)→ F(M) of �nite
rank so that ‖T‖ ≤ C and ‖Tγ − γ‖ ≤ ε for every γ ∈ K ).
Motivation : Does F(M) has (MAP) for every unif. discrete
bounded and separable metric space ?

→ If yes, then every sep. Banach space is approximable (Kalton).
→ If no, there is an equivalent `1 norm that fails the (MAP).

17/18



Lipschitz free spaces Natural preduals Application to the Extremal Structure Uniformly discrete and bounded case

Example

There is a unif. discrete bounded and sep. metric space M such
that F(M) does not have any predual.

If M be uniformly discrete, bounded and separable, then
F(M) ' `1. Indeed : 2

θ

∑
i |ai | ≤ ‖

∑
i aiδ(xi )‖ ≤ M

∑
i |ai |.

=⇒ F(M) has the (BAP).
(There exists C ≥ 1 such that for every compact set K ⊂ F(M)
and every ε > 0 there is an operator T : F(M)→ F(M) of �nite
rank so that ‖T‖ ≤ C and ‖Tγ − γ‖ ≤ ε for every γ ∈ K ).
Motivation : Does F(M) has (MAP) for every unif. discrete
bounded and separable metric space ?
→ If yes, then every sep. Banach space is approximable (Kalton).

→ If no, there is an equivalent `1 norm that fails the (MAP).

17/18



Lipschitz free spaces Natural preduals Application to the Extremal Structure Uniformly discrete and bounded case

Example

There is a unif. discrete bounded and sep. metric space M such
that F(M) does not have any predual.

If M be uniformly discrete, bounded and separable, then
F(M) ' `1. Indeed : 2

θ

∑
i |ai | ≤ ‖

∑
i aiδ(xi )‖ ≤ M

∑
i |ai |.

=⇒ F(M) has the (BAP).
(There exists C ≥ 1 such that for every compact set K ⊂ F(M)
and every ε > 0 there is an operator T : F(M)→ F(M) of �nite
rank so that ‖T‖ ≤ C and ‖Tγ − γ‖ ≤ ε for every γ ∈ K ).
Motivation : Does F(M) has (MAP) for every unif. discrete
bounded and separable metric space ?
→ If yes, then every sep. Banach space is approximable (Kalton).
→ If no, there is an equivalent `1 norm that fails the (MAP).

17/18



Lipschitz free spaces Natural preduals Application to the Extremal Structure Uniformly discrete and bounded case

Thank you very much !

Luis García-Lirola, Colin Petitjean, Antonin Procházka,
Abraham Rueda Zoca, Extremal structure and Duality of

Lipschitz free spaces, preprint, Available at :
https://arxiv.org/abs/1707.09307
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