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E: a real or complex Banach space.

Power series at the origin:

fx) = ) Pn(x)
n=0

where P,, are bounded n-homogeneous polynomials:

Pn(x) = An(X,X,...,X) = An(x)n

where A}, are bounded, symmetric n-linear forms on E.

Norms:

[P = sup{IPn(x)] : || < 1}

| An]] :sup{lAn(xh...,Xn)\ x| < 1}

N
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The Radius of Uniform Convergence

R = R(f,0): the largest R > 0 such that the power series

f(x) = 3 Pulx)
n=0

converges uniformly in the ball B, (0) for every p < R.
The Cauchy-Hadamard formula:

R = (limsup[|Pn]"/™) "
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The Taylor series of f at a point a € Bg(0):

The complex case:
We have the Cauchy Inequalities:

Ifll8,(a)

o<

n!

and it follows that the radius of uniform convergence of the Taylor
series Tof(x) is at least R — ||a].
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The Taylor series of f at a point a € Bg(0):

The complex case:
We have the Cauchy Inequalities:

Ifll8,(a)

H 1 pm

— ™)<
nl

and it follows that the radius of uniform convergence of the Taylor
series Tof(x) is at least R — ||a].

The real case:
We no longer have the Cauchy Integral.
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Analytic and Fully Analytic Functions

Let E be a real Banach space and U an open subset. A function
f:-U—Ris

1. Analytic at a € U if there is a power series at a with positive
radius of uniform convergence that converges to f within the
ball of uniform convergence.

2. Analytic in U if f is analytic at every point in U.



Analytic and Fully Analytic Functions

Let E be a real Banach space and U an open subset. A function
f:-U—Ris

1. Analytic at a € U if there is a power series at a with positive
radius of uniform convergence that converges to f within the
ball of uniform convergence.

2. Analytic in U if f is analytic at every point in U.
3. Fully analytic in U if it is analytic in U and for every a € U,

the Taylor series at a converges uniformly in every closed ball
centered at a that is contained in U.
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The Radius of Analyticity

Let o
f(x) =) Pnlx)
n=0

be a power series with radius of uniform convergence R.

The radius of analyticity R is the largest v > 0 such that f is
fully analytic in the ball B..(0).

Clearly, we have Ra < R.

6
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The Radius of Analyticity

Let
o
f(x) =) Pul(x)
n=0
be a power series with radius of uniform convergence R.

The radius of analyticity R is the largest v > 0 such that f is
fully analytic in the ball B..(0).

Clearly, we have Ra < R.

Question:
Ra=R7?

6
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First Approach: Complexification

Given a power series

f(x) = ) Pn(x)
n=0

with radius of uniform convergence R.

Complexify the space: Ec = E + iE with a suitable norm.

Compexify the polynomials to get a power series in z € E¢:

f(z) =) (Pn)c(2).
n=0

Use the Cauchy estimates and restrict back to E.

~
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The problem with this approach is that the norms of the
polynomials are not preserved by complexification.
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The problem with this approach is that the norms of the
polynomials are not preserved by complexification.

A E Taylor, 1938:

Munoz—-Sarantopoulos—Tonge, Kirwan 1999:

The best estimates for the norm of the complexified polynomials:

I(Prell < 277 1|Pu
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The problem with this approach is that the norms of the
polynomials are not preserved by complexification.

A E Taylor, 1938:

Munoz—-Sarantopoulos—Tonge, Kirwan 1999:
The best estimates for the norm of the complexified polynomials:

I(Prell < 277 1|Pu

This gives the estimate

N[
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Second Approach: Polarization

Expand around the point a:

n=0 n=0
:ZZ( )An K(x —a)k)
SPID Nty AN IE
22%:1 f(a)(x — a)
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Absolute convergence will follow if

> Y (})Anta - a)
n=0k=
<§:Z:<>WAHMW‘WX al¥

o0 [oe]
<D ARl +Hx—al)™ < D e™[Pall(lal+[x—al)™ < oo
n=0 n=0

and this happens when

R
Jall + b= all < <
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The Curse of Polarization

The factor e has appeared because of the Polarization Inequality:

nn
Anll < SHIPall
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The Curse of Polarization

The factor e has appeared because of the Polarization Inequality:

nn
Anll < SHIPall

Banach (and others) showed that, in the case of a Hilbert space,

HATLH = Hpn” .

So, for power series on Hilbert spaces,

Ra =R.
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In the general case, we can do a little better than e — the full
polarization inequality is not required. Instead of ||Ay ||, we only
have to estimate

ARl (2) = sup{|An (V™ )0 <k <y fJull, V]| < 1}
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In the general case, we can do a little better than e — the full
polarization inequality is not required. Instead of ||Ay ||, we only
have to estimate

ARl (2) = sup{|An (V™ )0 <k <y fJull, V]| < 1}

T Nguyen 2009:
Ra
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In the general case, we can do a little better than e — the full
polarization inequality is not required. Instead of ||Ay ||, we only
have to estimate

AR (2) = sup{JAn (W™ )20 <k <my fJu), V]| < 1}

T Nguyen 2009:

R
RA > —=

Ve

L. Harris 1972, P. Hajek & M. Johanis 2014:

R
Ra =2 —=

V2
(P. Hajek & M. Johanis, Smooth Analysis in Banach Spaces, 2014)

Also proved by Papadiamantis & Sarantopoulos 2016, using an
improvement of Nguyen's techniques.
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The Constant of Analyticity for a Banach space
Let E be a real Banach space.

We define the constant of analyticity of E, denoted A(E), to be
the supremum of the set of positive real numbers p for which every
power series at the origin in E, with unit radius of uniform
convergence, has radius of analyticity at least p.

13/21



The Constant of Analyticity for a Banach space
Let E be a real Banach space.

We define the constant of analyticity of E, denoted A(E), to be
the supremum of the set of positive real numbers p for which every
power series at the origin in E, with unit radius of uniform
convergence, has radius of analyticity at least p.

In general,

ﬁéﬂ(E)<1

and when E is a Hilbert space, A(E) =1
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¢; is the worst (or best) case.

Theorem (C. Boyd, RR & N. Snigireva)

Let E, F be real Banach spaces such that E is a quotient space of
F. Then A(E) > A(F).

Every Banach space is a quotient of {;(I) for a suitable indexing
set 1.

The value of the constant of analyticity of £;(I) is essentially
determined by a countable set of points in the space. Each point
in £1(I) is supported by a countable subset of I. Hence

Theorem (C. Boyd, RR & N. Snigireva)
Let E be any real Banach space. Then

A(E) = Allr).
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Harmonic functions on R™

Let f be a harmonic function on the open euclidean ball ||x| < R
in R™. Then f is real analytic in this ball and has a power series

expansion
o0
=3 i
n=0

(where Py, are harmonic n-homogeneous polynomials)
with radius of convergence at least equal to R.

What happens if we expand using monomials?

f(x) Z Z cox% Z cox%

n=0 oceN( aeNM)
lo|=
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W.K. Hayman 1970:

1. Let f be a harmonic function on the open euclidean ball at the
origin in R™ of radius R. Then the monomial expansion of f is
absolutely uniformly convergent for ||x|| < p, where

- R

p<—%=

V2’

but this expansion may diverge at some points on the sphere

x| =R/vV2.
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W.K. Hayman 1970:

1. Let f be a harmonic function on the open euclidean ball at the
origin in R™ of radius R. Then the monomial expansion of f is
absolutely uniformly convergent for ||x|| < p, where

p< R
V2’
but this expansion may diverge at some points on the sphere

x| =R/vV2.

2. Suppose that f is harmonic in the open euclidean disc at the
origin in R? of radius R, but not in any larger open disc
centered at the origin.

Then the monomial expansion of f is absolutely uniformly
convergent on every compact subset of the open square

Ix|[1 < R. It diverges at all points outside this square that do
not lie on the coordinate axes.
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The Banach Lattice Viewpoint

Let E, F be Banach lattices

An n-homogeneous polynomial P, = Ay is positive if the unique
symmetric n-linear form that generates Py, is positive in each
variable:

An(X1yeeiyxn) 20 if x7,...,xn =2 0.
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The Banach Lattice Viewpoint

Let E, F be Banach lattices

An n-homogeneous polynomial P, = Ay is positive if the unique
symmetric n-linear form that generates Py, is positive in each
variable:

An(X1yeeiyxn) 20 if x7,...,xn =2 0.

An n-homogeneous polynomial P,, is said to be regular if it is the
difference of two positive n-homogeneous polynomials. If F is
Dedekind complete, this condition is equivalent to the existence of
the absolute value (modulus): this is the smallest positive
n-homogeneous polynomial satisfying +P;, < |Pn|. In particular,

[Prn(x)] < [Pnl(lx])  for every x € E.
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B. Grecu & RR 2005:
Let E be a Banach space with a 1-unconditional Schauder basis.
A bounded n-homogeneous polynomial on E is regular if and only

if its monomial expansion is unconditionally convergent at every
point in E. And if

is regular, then |Py,| is given by

Palx) = Y lealx®
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B. Grecu & RR 2005:
Let E be a Banach space with a 1-unconditional Schauder basis.
A bounded n-homogeneous polynomial on E is regular if and only

if its monomial expansion is unconditionally convergent at every
point in E. And if

is regular, then |Py,| is given by

Palx) = Y lealx®

Hayman’s result:

If Z Pn(x) has radius of convergence R,

then IPnI ) has radius of convergence at least R/v/2.
g
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Power series on Banach lattices

Every Banach lattice E can be complexified: on the algebraic
complexification Ec = E 4+ iE, a modulus is defined by

|z| =[x + iy| = sup{xcos 0 +ysin0:0 < 0 < 27}.
It can be shown that this supremum always exists. We also have
lz| = Vx% +y?

where this expression is defined using the Krivine functional
calculus.
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Power series on Banach lattices

Every Banach lattice E can be complexified: on the algebraic
complexification Ec = E 4+ iE, a modulus is defined by

|z| =[x + iy| = sup{xcos 0 +ysin0:0 < 0 < 27}.
It can be shown that this supremum always exists. We also have
lz| = Vx% +y?

where this expression is defined using the Krivine functional
calculus.

A complex Banach lattice is a complex Banach space of the
form E¢, where E is a Banach lattice and the norm is given by

2]l = [[1zH]] -
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Proposition (C. Boyd, RR & N. Snigireva)

Let B, F be Banach lattices, with F Dedekind complete and let
Pn : E — F be a regular n-homogeneous polynomial.

(a) The complexification of Py, satisfies

[(Pn)c(2)] < [Prl(lz])

for every z € Ec.

(b) In particular, if Py, is positive, then

[(Pr)c(2)] < Pnlzl)

and so ||(Pn)c| = ||Pnl|-
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Theorem (C. Boyd, RR & N. Snigireva)
Let E be a real Banach lattice and let

f(x) = ) Pn(x)
n=0

be a power series with positive terms. Then the radius of

analyticity and the radius of uniform convergence are equal.
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