# The Radius of Analyticity for Real Analytic Functions 

Ray Ryan<br>(Joint work with Chris Boyd \& Nina Snigireva)

National University of Ireland Galway
NonLinear Functional Analysis
Valencia 17-20 October 2017

E: a real or complex Banach space.

Power series at the origin:

$$
f(x)=\sum_{n=0}^{\infty} P_{n}(x)
$$

where $\mathrm{P}_{\mathrm{n}}$ are bounded n -homogeneous polynomials:

$$
P_{n}(x)=A_{n}(x, x, \ldots, x)=A_{n}(x)^{n}
$$

where $A_{n}$ are bounded, symmetric $n$-linear forms on $E$.

Norms:

$$
\begin{gathered}
\left\|P_{n}\right\|=\sup \left\{\left|P_{n}(x)\right|:\|x\| \leqslant 1\right\} \\
\left\|A_{n}\right\|=\sup \left\{\left|A_{n}\left(x_{1}, \ldots, x_{n}\right)\right|:\left\|x_{j}\right\| \leqslant 1\right\}
\end{gathered}
$$

## The Radius of Uniform Convergence

$R=R(f, 0)$ : the largest $R \geqslant 0$ such that the power series

$$
f(x)=\sum_{n=0}^{\infty} P_{n}(x)
$$

converges uniformly in the ball $B_{\rho}(0)$ for every $\rho<R$.
The Cauchy-Hadamard formula:

$$
R=\left(\lim \sup \left\|P_{n}\right\|^{1 / n}\right)^{-1}
$$

The Taylor series of $f$ at a point $a \in B_{R}(0)$ :

$$
T_{a} f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} \hat{d}^{n} f(a)(x-a)
$$

## The complex case:

We have the Cauchy Inequalities:

$$
\left\|\frac{1}{n!} \hat{d}^{n} f(a)\right\| \leqslant \frac{\|f\|_{B_{\rho}(a)}}{\rho^{n}}
$$

and it follows that the radius of uniform convergence of the Taylor series $T_{a} f(x)$ is at least $R-\|a\|$.

The Taylor series of $f$ at a point $a \in B_{R}(0)$ :

$$
T_{a} f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} \hat{d}^{n} f(a)(x-a)
$$

## The complex case:

We have the Cauchy Inequalities:

$$
\left\|\frac{1}{n!} \hat{d}^{n} f(a)\right\| \leqslant \frac{\|f\|_{B_{\rho}(a)}}{\rho^{n}}
$$

and it follows that the radius of uniform convergence of the Taylor series $T_{a} f(x)$ is at least $R-\|a\|$.

The real case:
We no longer have the Cauchy Integral.

## Analytic and Fully Analytic Functions

Let E be a real Banach space and U an open subset. A function $\mathrm{f}: \mathrm{U} \rightarrow \mathbb{R}$ is

1. Analytic at $a \in U$ if there is a power series at $a$ with positive radius of uniform convergence that converges to $f$ within the ball of uniform convergence.
2. Analytic in U if f is analytic at every point in U .

## Analytic and Fully Analytic Functions

Let E be a real Banach space and U an open subset. A function $f: U \rightarrow \mathbb{R}$ is

1. Analytic at $a \in U$ if there is a power series at $a$ with positive radius of uniform convergence that converges to $f$ within the ball of uniform convergence.
2. Analytic in U if f is analytic at every point in U .
3. Fully analytic in $U$ if it is analytic in $U$ and for every $a \in U$, the Taylor series at a converges uniformly in every closed ball centered at a that is contained in U .

## The Radius of Analyticity

Let

$$
f(x)=\sum_{n=0}^{\infty} P_{n}(x)
$$

be a power series with radius of uniform convergence $R$.

The radius of analyticity $R_{A}$ is the largest $r>0$ such that $f$ is fully analytic in the ball $\mathrm{B}_{\mathrm{r}}(0)$.

Clearly, we have $R_{A} \leqslant R$.

## The Radius of Analyticity

Let

$$
f(x)=\sum_{n=0}^{\infty} P_{n}(x)
$$

be a power series with radius of uniform convergence $R$.

The radius of analyticity $R_{A}$ is the largest $r>0$ such that $f$ is fully analytic in the ball $\mathrm{B}_{\mathrm{r}}(0)$.

Clearly, we have $R_{A} \leqslant R$.

Question:

$$
R_{A}=R ?
$$

## First Approach: Complexification

Given a power series

$$
f(x)=\sum_{n=0}^{\infty} P_{n}(x)
$$

with radius of uniform convergence $R$.
Complexify the space: $\mathrm{E}_{\mathbb{C}}=E+i E$ with a suitable norm.
Compexify the polynomials to get a power series in $z \in \mathrm{E}_{\mathbb{C}}$ :

$$
f(z)=\sum_{n=0}^{\infty}\left(P_{n}\right)_{\mathbb{C}}(z)
$$

Use the Cauchy estimates and restrict back to E .

The problem with this approach is that the norms of the polynomials are not preserved by complexification.

The problem with this approach is that the norms of the polynomials are not preserved by complexification.

## A E Taylor, 1938:

$$
R_{A} \geqslant \frac{R}{e \sqrt{2}}
$$

The problem with this approach is that the norms of the polynomials are not preserved by complexification.

A E Taylor, 1938:

$$
R_{A} \geqslant \frac{R}{e \sqrt{2}}
$$

Munoz-Sarantopoulos-Tonge, Kirwan 1999:
The best estimates for the norm of the complexified polynomials:

$$
\left\|\left(P_{n}\right)_{\mathbb{C}}\right\| \leqslant 2^{n-1}\left\|P_{n}\right\|
$$

The problem with this approach is that the norms of the polynomials are not preserved by complexification.

A E Taylor, 1938:

$$
R_{A} \geqslant \frac{R}{e \sqrt{2}}
$$

## Munoz-Sarantopoulos-Tonge, Kirwan 1999:

The best estimates for the norm of the complexified polynomials:

$$
\left\|\left(P_{n}\right)_{\mathbb{C}}\right\| \leqslant 2^{n-1}\left\|P_{n}\right\|
$$

This gives the estimate

$$
\mathrm{R}_{\mathrm{A}} \geqslant \frac{\mathrm{R}}{2}
$$

## Second Approach: Polarization

Expand around the point $a$ :

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} P_{n}(x)=\sum_{n=0}^{\infty} A_{n}(a+(x-a))^{n} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} A_{n}\left(a^{n-k}(x-a)^{k}\right) \\
& =\sum_{k=0}^{\infty} \sum_{n=k}^{\infty}\binom{n}{k} A_{n}(a)^{n-k}(x-a)^{k} \\
& =\sum_{k=0}^{n} \frac{1}{k!} \hat{d}^{k} f(a)(x-a)
\end{aligned}
$$

Absolute convergence will follow if

$$
\begin{aligned}
& \quad \sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k}\left|A_{n}\left(a^{n-k}(x-a)^{k}\right)\right| \\
& \left.\leqslant \sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k}\left\|A_{n}\right\|\|a\|^{n-k}\|x-a\|^{k}\right) \\
& \leqslant \\
& \sum_{n=0}^{\infty}\left\|A_{n}\right\|(\|a\|+\|x-a\|)^{n} \leqslant \sum_{n=0}^{\infty} e^{n}\left\|P_{n}\right\|(\|a\|+\|x-a\|)^{n}<\infty
\end{aligned}
$$

and this happens when

$$
\|a\|+\|x-a\|<\frac{R}{e}
$$

## The Curse of Polarization

The factor $e$ has appeared because of the Polarization Inequality:

$$
\left\|A_{n}\right\| \leqslant \frac{n^{n}}{n!}\left\|P_{n}\right\|
$$

## The Curse of Polarization

The factor $e$ has appeared because of the Polarization Inequality:

$$
\left\|A_{n}\right\| \leqslant \frac{n^{n}}{n!}\left\|P_{n}\right\|
$$

Banach (and others) showed that, in the case of a Hilbert space,

$$
\left\|A_{n}\right\|=\left\|P_{n}\right\|
$$

So, for power series on Hilbert spaces,

$$
\mathrm{R}_{\mathrm{A}}=\mathrm{R}
$$

In the general case, we can do a little better than $e$ - the full polarization inequality is not required. Instead of $\left\|A_{n}\right\|$, we only have to estimate

$$
\left\|A_{n}\right\|_{(2)}=\sup \left\{\left|A_{n}\left(u^{k} v^{n-k}\right)\right|: 0 \leqslant k \leqslant n,\|u\|,\|v\| \leqslant 1\right\}
$$

In the general case, we can do a little better than $e$ - the full polarization inequality is not required. Instead of $\left\|A_{n}\right\|$, we only have to estimate

$$
\left\|A_{n}\right\|_{(2)}=\sup \left\{\left|A_{n}\left(u^{k} v^{n-k}\right)\right|: 0 \leqslant k \leqslant n,\|u\|,\|v\| \leqslant 1\right\}
$$

T Nguyen 2009:

$$
\mathrm{R}_{\mathrm{A}} \geqslant \frac{\mathrm{R}}{\sqrt{e}}
$$

In the general case, we can do a little better than $e$ - the full polarization inequality is not required. Instead of $\left\|A_{n}\right\|$, we only have to estimate

$$
\left\|A_{n}\right\|_{(2)}=\sup \left\{\left|A_{n}\left(u^{k} v^{n-k}\right)\right|: 0 \leqslant k \leqslant n,\|u\|,\|v\| \leqslant 1\right\}
$$

T Nguyen 2009:

$$
R_{A} \geqslant \frac{R}{\sqrt{e}}
$$

L. Harris 1972, P. Hájek \& M. Johanis 2014:

$$
R_{A} \geqslant \frac{R}{\sqrt{2}}
$$

(P. Hájek \& M. Johanis, Smooth Analysis in Banach Spaces, 2014) Also proved by Papadiamantis \& Sarantopoulos 2016, using an improvement of Nguyen's techniques.

## The Constant of Analyticity for a Banach space

Let $E$ be a real Banach space.
We define the constant of analyticity of $E$, denoted $\mathcal{A}(E)$, to be the supremum of the set of positive real numbers $\rho$ for which every power series at the origin in $E$, with unit radius of uniform convergence, has radius of analyticity at least $\rho$.

## The Constant of Analyticity for a Banach space

Let E be a real Banach space.
We define the constant of analyticity of $E$, denoted $\mathcal{A}(E)$, to be the supremum of the set of positive real numbers $\rho$ for which every power series at the origin in $E$, with unit radius of uniform convergence, has radius of analyticity at least $\rho$.

In general,

$$
\frac{1}{\sqrt{2}} \leqslant \mathcal{A}(\mathrm{E}) \leqslant 1
$$

and when E is a Hilbert space, $\mathcal{A}(\mathrm{E})=1$

## $\ell_{1}$ is the worst (or best) case.

Theorem (C. Boyd, RR \& N. Snigireva)
Let $\mathrm{E}, \mathrm{F}$ be real Banach spaces such that E is a quotient space of F. Then $\mathcal{A}(\mathrm{E}) \geqslant \mathcal{A}(\mathrm{F})$.

Every Banach space is a quotient of $\ell_{1}$ (I) for a suitable indexing set I.

The value of the constant of analyticity of $\ell_{1}$ (I) is essentially determined by a countable set of points in the space. Each point in $\ell_{1}(\mathrm{I})$ is supported by a countable subset of $I$. Hence

Theorem (C. Boyd, RR \& N. Snigireva)
Let E be any real Banach space. Then

$$
\mathcal{A}(\mathrm{E}) \geqslant \mathcal{A}\left(\ell_{1}\right) .
$$

## Harmonic functions on $\mathbb{R}^{n}$

Let $f$ be a harmonic function on the open euclidean ball $\|x\|<R$ in $\mathbb{R}^{n}$. Then $f$ is real analytic in this ball and has a power series expansion

$$
f(x)=\sum_{n=0}^{\infty} P_{n}(x)
$$

(where $P_{n}$ are harmonic $n$-homogeneous polynomials) with radius of convergence at least equal to $R$.

What happens if we expand using monomials?

$$
f(x)=\sum_{n=0}^{\infty} \sum_{\substack{\alpha \in \mathbb{N}^{(N)} \\|\alpha|=n}} c_{\alpha} \chi^{\alpha}=\sum_{\alpha \in \mathbb{N}^{(N)}} c_{\alpha} x^{\alpha} ?
$$

## W.K. Hayman 1970:

1. Let f be a harmonic function on the open euclidean ball at the origin in $\mathbb{R}^{n}$ of radius R . Then the monomial expansion of f is absolutely uniformly convergent for $\|x\| \leqslant \rho$, where

$$
\rho<\frac{\mathrm{R}}{\sqrt{2}},
$$

but this expansion may diverge at some points on the sphere $\|x\|=R / \sqrt{2}$.

## W.K. Hayman 1970:

1. Let f be a harmonic function on the open euclidean ball at the origin in $\mathbb{R}^{n}$ of radius R . Then the monomial expansion of f is absolutely uniformly convergent for $\|x\| \leqslant \rho$, where

$$
\rho<\frac{R}{\sqrt{2}},
$$

but this expansion may diverge at some points on the sphere $\|x\|=R / \sqrt{2}$.
2. Suppose that f is harmonic in the open euclidean disc at the origin in $\mathbb{R}^{2}$ of radius $R$, but not in any larger open disc centered at the origin.
Then the monomial expansion of f is absolutely uniformly convergent on every compact subset of the open square $\|x\|_{1}<R$. It diverges at all points outside this square that do not lie on the coordinate axes.

## The Banach Lattice Viewpoint

Let $E, F$ be Banach lattices
An $n$-homogeneous polynomial $P_{n}=\hat{A}_{n}$ is positive if the unique symmetric $n$-linear form that generates $P_{n}$ is positive in each variable:

$$
A_{n}\left(x_{1}, \ldots, x_{n}\right) \geqslant 0 \quad \text { if } \quad x_{1}, \ldots, x_{n} \geqslant 0
$$

## The Banach Lattice Viewpoint

Let $E, F$ be Banach lattices
An $n$-homogeneous polynomial $P_{n}=\hat{A}_{n}$ is positive if the unique symmetric $n$-linear form that generates $P_{n}$ is positive in each variable:

$$
A_{n}\left(x_{1}, \ldots, x_{n}\right) \geqslant 0 \quad \text { if } \quad x_{1}, \ldots, x_{n} \geqslant 0
$$

An n-homogeneous polynomial $P_{n}$ is said to be regular if it is the difference of two positive $n$-homogeneous polynomials. If $F$ is
Dedekind complete, this condition is equivalent to the existence of the absolute value (modulus): this is the smallest positive n -homogeneous polynomial satisfying $\pm \mathrm{P}_{\mathrm{n}} \leqslant\left|\mathrm{P}_{\mathrm{n}}\right|$. In particular,

$$
\left|P_{n}(x)\right| \leqslant\left|P_{n}\right|(|x|) \quad \text { for every } x \in E
$$

## B. Grecu \& RR 2005:

Let E be a Banach space with a 1-unconditional Schauder basis. A bounded $n$-homogeneous polynomial on $E$ is regular if and only if its monomial expansion is unconditionally convergent at every point in $E$. And if

$$
P_{n}(x)=\sum_{|\alpha|=n} c_{\alpha} x^{\alpha}
$$

is regular, then $\left|P_{n}\right|$ is given by

$$
\left|P_{n}\right|(x)=\sum_{|\alpha|=n}\left|c_{\alpha}\right| x^{\alpha}
$$

## B. Grecu \& RR 2005:

Let E be a Banach space with a 1-unconditional Schauder basis.
A bounded $n$-homogeneous polynomial on $E$ is regular if and only if its monomial expansion is unconditionally convergent at every point in $E$. And if

$$
P_{n}(x)=\sum_{|\alpha|=n} c_{\alpha} x^{\alpha}
$$

is regular, then $\left|P_{n}\right|$ is given by

$$
\left|P_{n}\right|(x)=\sum_{|\alpha|=n}\left|c_{\alpha}\right| x^{\alpha}
$$

Hayman's result:
If $\sum_{n=0}^{\infty} P_{n}(x)$ has radius of convergence $R$,
then $\sum_{n=0}\left|P_{n}\right|(x)$ has radius of convergence at least $R / \sqrt{2}$.

## Power series on Banach lattices

Every Banach lattice $E$ can be complexified: on the algebraic complexification $\mathrm{E}_{\mathbb{C}}=\mathrm{E}+\mathrm{iE}$, a modulus is defined by

$$
|z|=|x+i y|=\sup \{x \cos \theta+y \sin \theta: 0 \leqslant \theta \leqslant 2 \pi\}
$$

It can be shown that this supremum always exists. We also have

$$
|z|=\sqrt{x^{2}+y^{2}}
$$

where this expression is defined using the Krivine functional calculus.

## Power series on Banach lattices

Every Banach lattice $E$ can be complexified: on the algebraic complexification $\mathrm{E}_{\mathbb{C}}=\mathrm{E}+\mathrm{iE}$, a modulus is defined by

$$
|z|=|x+i y|=\sup \{x \cos \theta+y \sin \theta: 0 \leqslant \theta \leqslant 2 \pi\} .
$$

It can be shown that this supremum always exists. We also have

$$
|z|=\sqrt{x^{2}+y^{2}}
$$

where this expression is defined using the Krivine functional calculus.

A complex Banach lattice is a complex Banach space of the form $E_{\mathbb{C}}$, where $E$ is a Banach lattice and the norm is given by

$$
\|z\|=\||z|\| .
$$

Proposition (C. Boyd, RR \& N. Snigireva)
Let E, F be Banach lattices, with F Dedekind complete and let $\mathrm{P}_{\mathrm{n}}: \mathrm{E} \rightarrow \mathrm{F}$ be a regular n -homogeneous polynomial.
(a) The complexification of $\mathrm{P}_{\mathrm{n}}$ satisfies

$$
\left|\left(\mathrm{P}_{\mathrm{n}}\right)_{\mathbb{C}}(z)\right| \leqslant\left|\mathrm{P}_{\mathrm{n}}\right|(|z|)
$$

for every $z \in \mathrm{E}_{\mathbb{C}}$.
(b) In particular, if $\mathrm{P}_{\mathrm{n}}$ is positive, then

$$
\left|\left(P_{n}\right)_{\mathbb{C}}(z)\right| \leqslant P_{n}(|z|)
$$

$$
\text { and so }\left\|\left(\mathrm{P}_{\mathrm{n}}\right)_{\mathbb{C}}\right\|=\left\|\mathrm{P}_{\mathrm{n}}\right\|
$$

Theorem (C. Boyd, RR \& N. Snigireva)
Let E be a real Banach lattice and let

$$
f(x)=\sum_{n=0}^{\infty} P_{n}(x)
$$

be a power series with positive terms. Then the radius of analyticity and the radius of uniform convergence are equal.

