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E: a real or complex Banach space.

Power series at the origin:

f(x) =

∞∑
n=0

Pn(x)

where Pn are bounded n-homogeneous polynomials:

Pn(x) = An(x, x, . . . , x) = An(x)
n

where An are bounded, symmetric n-linear forms on E.

Norms:

‖Pn‖ = sup
{
|Pn(x)| : ‖x‖ 6 1

}
‖An‖ = sup

{
|An(x1, . . . , xn)| : ‖xj‖ 6 1

}
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The Radius of Uniform Convergence

R = R(f, 0): the largest R > 0 such that the power series

f(x) =

∞∑
n=0

Pn(x)

converges uniformly in the ball Bρ(0) for every ρ < R.

The Cauchy-Hadamard formula:

R =
(
lim sup ‖Pn‖1/n

)−1
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The Taylor series of f at a point a ∈ BR(0):

Taf(x) =

∞∑
n=0

1

n!
d̂nf(a)(x− a)

The complex case:
We have the Cauchy Inequalities:∥∥∥ 1

n!
d̂nf(a)

∥∥∥6 ‖f‖Bρ(a)
ρn

and it follows that the radius of uniform convergence of the Taylor
series Taf(x) is at least R− ‖a‖.

The real case:
We no longer have the Cauchy Integral.

4 / 21



The Taylor series of f at a point a ∈ BR(0):

Taf(x) =

∞∑
n=0

1

n!
d̂nf(a)(x− a)

The complex case:
We have the Cauchy Inequalities:∥∥∥ 1

n!
d̂nf(a)

∥∥∥6 ‖f‖Bρ(a)
ρn

and it follows that the radius of uniform convergence of the Taylor
series Taf(x) is at least R− ‖a‖.

The real case:
We no longer have the Cauchy Integral.

4 / 21



Analytic and Fully Analytic Functions

Let E be a real Banach space and U an open subset. A function
f : U→ R is

1. Analytic at a ∈ U if there is a power series at a with positive
radius of uniform convergence that converges to f within the
ball of uniform convergence.

2. Analytic in U if f is analytic at every point in U.

3. Fully analytic in U if it is analytic in U and for every a ∈ U,
the Taylor series at a converges uniformly in every closed ball
centered at a that is contained in U.
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The Radius of Analyticity

Let

f(x) =

∞∑
n=0

Pn(x)

be a power series with radius of uniform convergence R.

The radius of analyticity RA is the largest r > 0 such that f is
fully analytic in the ball Br(0).

Clearly, we have RA 6 R.

Question:
RA = R ?
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First Approach: Complexification

Given a power series

f(x) =

∞∑
n=0

Pn(x)

with radius of uniform convergence R.

Complexify the space: EC = E+ iE with a suitable norm.

Compexify the polynomials to get a power series in z ∈ EC:

f(z) =

∞∑
n=0

(
Pn
)
C(z) .

Use the Cauchy estimates and restrict back to E.
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The problem with this approach is that the norms of the
polynomials are not preserved by complexification.

A E Taylor, 1938:

RA >
R

e
√
2

Munoz–Sarantopoulos–Tonge, Kirwan 1999:
The best estimates for the norm of the complexified polynomials:

‖(Pn)C‖ 6 2n−1‖Pn‖

This gives the estimate

RA >
R

2
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Second Approach: Polarization

Expand around the point a:

f(x) =

∞∑
n=0

Pn(x) =

∞∑
n=0

An(a+ (x− a))n

=

∞∑
n=0

n∑
k=0

(
n

k

)
An(a

n−k(x− a)k)

=

∞∑
k=0

∞∑
n=k

(
n

k

)
An(a)

n−k(x− a)k

=

n∑
k=0

1

k!
d̂kf(a)(x− a)
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Absolute convergence will follow if

∞∑
n=0

n∑
k=0

(
n

k

)
|An(a

n−k(x− a)k)|

6
∞∑
n=0

n∑
k=0

(
n

k

)
‖An‖‖a‖n−k‖x− a‖k)

6
∞∑
n=0

‖An‖(‖a‖+‖x−a‖)n 6
∞∑
n=0

en‖Pn‖(‖a‖+‖x−a‖)n <∞
and this happens when

‖a‖+ ‖x− a‖ < R

e
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The Curse of Polarization

The factor e has appeared because of the Polarization Inequality:

‖An‖ 6
nn

n!
‖Pn‖ .

Banach (and others) showed that, in the case of a Hilbert space,

‖An‖ = ‖Pn‖ .

So, for power series on Hilbert spaces,

RA = R .
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In the general case, we can do a little better than e — the full
polarization inequality is not required. Instead of ‖An‖, we only
have to estimate

‖An‖(2) = sup
{
|An(u

kvn−k)| : 0 6 k 6 n, ‖u‖, ‖v‖ 6 1
}

T Nguyen 2009:

RA >
R√
e

L. Harris 1972, P. Hájek & M. Johanis 2014:

RA >
R√
2

(P. Hájek & M. Johanis, Smooth Analysis in Banach Spaces, 2014)

Also proved by Papadiamantis & Sarantopoulos 2016, using an
improvement of Nguyen’s techniques.
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The Constant of Analyticity for a Banach space

Let E be a real Banach space.

We define the constant of analyticity of E, denoted A(E), to be
the supremum of the set of positive real numbers ρ for which every
power series at the origin in E, with unit radius of uniform
convergence, has radius of analyticity at least ρ.

In general,
1√
2
6 A(E) 6 1

and when E is a Hilbert space, A(E) = 1
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`1 is the worst (or best) case.

Theorem (C. Boyd, RR & N. Snigireva)

Let E, F be real Banach spaces such that E is a quotient space of
F. Then A(E) > A(F).

Every Banach space is a quotient of `1(I) for a suitable indexing
set I.

The value of the constant of analyticity of `1(I) is essentially
determined by a countable set of points in the space. Each point
in `1(I) is supported by a countable subset of I. Hence

Theorem (C. Boyd, RR & N. Snigireva)

Let E be any real Banach space. Then

A(E) > A(`1) .
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Harmonic functions on Rn

Let f be a harmonic function on the open euclidean ball ‖x‖ < R
in Rn. Then f is real analytic in this ball and has a power series
expansion

f(x) =

∞∑
n=0

Pn(x)

(where Pn are harmonic n-homogeneous polynomials)
with radius of convergence at least equal to R.

What happens if we expand using monomials?

f(x) =

∞∑
n=0

∑
α∈N(N)

|α|=n

cαx
α =

∑
α∈N(N)

cαx
α ?
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W.K. Hayman 1970:

1. Let f be a harmonic function on the open euclidean ball at the
origin in Rn of radius R. Then the monomial expansion of f is
absolutely uniformly convergent for ‖x‖ 6 ρ, where

ρ <
R√
2
,

but this expansion may diverge at some points on the sphere
‖x‖ = R/

√
2.

2. Suppose that f is harmonic in the open euclidean disc at the
origin in R2 of radius R, but not in any larger open disc
centered at the origin.
Then the monomial expansion of f is absolutely uniformly
convergent on every compact subset of the open square
‖x‖1 < R. It diverges at all points outside this square that do
not lie on the coordinate axes.
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The Banach Lattice Viewpoint

Let E, F be Banach lattices
An n-homogeneous polynomial Pn = Ân is positive if the unique
symmetric n-linear form that generates Pn is positive in each
variable:

An(x1, . . . , xn) > 0 if x1, . . . , xn > 0 .

An n-homogeneous polynomial Pn is said to be regular if it is the
difference of two positive n-homogeneous polynomials. If F is
Dedekind complete, this condition is equivalent to the existence of
the absolute value (modulus): this is the smallest positive
n-homogeneous polynomial satisfying ±Pn 6 |Pn| . In particular,

|Pn(x)| 6 |Pn|(|x|) for every x ∈ E.
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B. Grecu & RR 2005:
Let E be a Banach space with a 1-unconditional Schauder basis.
A bounded n-homogeneous polynomial on E is regular if and only
if its monomial expansion is unconditionally convergent at every
point in E. And if

Pn(x) =
∑

|α|=n

cαx
α

is regular, then |Pn| is given by

|Pn|(x) =
∑

|α|=n

|cα|x
α

Hayman’s result:

If
∞∑
n=0

Pn(x) has radius of convergence R,

then
∞∑
n=0

|Pn|(x) has radius of convergence at least R/
√
2.

18 / 21



B. Grecu & RR 2005:
Let E be a Banach space with a 1-unconditional Schauder basis.
A bounded n-homogeneous polynomial on E is regular if and only
if its monomial expansion is unconditionally convergent at every
point in E. And if

Pn(x) =
∑

|α|=n

cαx
α

is regular, then |Pn| is given by

|Pn|(x) =
∑

|α|=n

|cα|x
α

Hayman’s result:

If
∞∑
n=0

Pn(x) has radius of convergence R,

then
∞∑
n=0

|Pn|(x) has radius of convergence at least R/
√
2.

18 / 21



Power series on Banach lattices

Every Banach lattice E can be complexified: on the algebraic
complexification EC = E+ iE , a modulus is defined by

|z| = |x+ iy| = sup{x cos θ+ y sin θ : 0 6 θ 6 2π} .

It can be shown that this supremum always exists. We also have

|z| =
√
x2 + y2

where this expression is defined using the Krivine functional
calculus.

A complex Banach lattice is a complex Banach space of the
form EC, where E is a Banach lattice and the norm is given by

‖z‖ = ‖ |z| ‖ .
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Proposition (C. Boyd, RR & N. Snigireva)

Let E, F be Banach lattices, with F Dedekind complete and let
Pn : E→ F be a regular n-homogeneous polynomial.

(a) The complexification of Pn satisfies

|(Pn)C(z)| 6 |Pn|(|z|)

for every z ∈ EC.

(b) In particular, if Pn is positive, then

|(Pn)C(z)| 6 Pn(|z|)

and so ‖(Pn)C‖ = ‖Pn‖.
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Theorem (C. Boyd, RR & N. Snigireva)

Let E be a real Banach lattice and let

f(x) =

∞∑
n=0

Pn(x)

be a power series with positive terms. Then the radius of
analyticity and the radius of uniform convergence are equal.

21 / 21


