The Radius of Analyticity for Real Analytic Functions

Ray Ryan (Joint work with Chris Boyd & Nina Snigireva)

National University of Ireland Galway

NonLinear Functional Analysis

Valencia 17-20 October 2017

E: a real or complex Banach space.

Power series at the origin:

$$f(x) = \sum_{n=0}^{\infty} P_n(x)$$

where P_n are bounded n-homogeneous polynomials:

$$P_n(x) = A_n(x, x, \dots, x) = A_n(x)^n$$

where A_n are bounded, symmetric n-linear forms on E.

Norms:

$$\begin{split} \|P_n\| &= \mathsf{sup}\big\{|P_n(x)|: \|x\| \leqslant 1\big\}\\ \|A_n\| &= \mathsf{sup}\big\{|A_n(x_1,\ldots,x_n)|: \|x_j\| \leqslant 1\big\} \end{split}$$

The Radius of Uniform Convergence

 $R=R(f,0)\colon$ the largest $R\geqslant 0$ such that the power series

$$f(x) = \sum_{n=0}^{\infty} P_n(x)$$

converges uniformly in the ball $B_\rho(0)$ for every $\rho < R.$

The Cauchy-Hadamard formula:

$$\mathbf{R} = \left(\lim \sup \|\mathbf{P}_n\|^{1/n}\right)^{-1}$$

The Taylor series of f at a point $a \in B_R(0)$:

$$T_{a}f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \hat{d}^{n}f(a)(x-a)$$

The complex case:

We have the Cauchy Inequalities:

$$\left\|\frac{1}{n!}\hat{d}^{n}f(a)\right\| \leqslant \frac{\|f\|_{B_{\rho}(a)}}{\rho^{n}}$$

and it follows that the radius of uniform convergence of the Taylor series $T_{\alpha}f(x)$ is at least $R-\|\alpha\|.$

The Taylor series of f at a point $a \in B_R(0)$:

$$T_{a}f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \hat{d}^{n}f(a)(x-a)$$

The complex case:

We have the Cauchy Inequalities:

$$\left\|\frac{1}{n!}\hat{d}^{n}f(\alpha)\right\| \leqslant \frac{\|f\|_{B_{\rho}(\alpha)}}{\rho^{n}}$$

and it follows that the radius of uniform convergence of the Taylor series $T_\alpha f(x)$ is at least $R-\|\alpha\|.$

The real case:

We no longer have the Cauchy Integral.

Analytic and Fully Analytic Functions

Let E be a real Banach space and U an open subset. A function $f\colon U\to \mathbb{R}$ is

- 1. Analytic at $a \in U$ if there is a power series at a with positive radius of uniform convergence that converges to f within the ball of uniform convergence.
- 2. Analytic in U if f is analytic at every point in U.

Analytic and Fully Analytic Functions

Let E be a real Banach space and U an open subset. A function $f\colon U\to \mathbb{R}$ is

- 1. Analytic at $a \in U$ if there is a power series at a with positive radius of uniform convergence that converges to f within the ball of uniform convergence.
- 2. Analytic in U if f is analytic at every point in U.
- 3. Fully analytic in U if it is analytic in U and for every $a \in U$, the Taylor series at a converges uniformly in *every* closed ball centered at a that is contained in U.

The Radius of Analyticity

Let

$$f(x) = \sum_{n=0}^{\infty} P_n(x)$$

be a power series with radius of uniform convergence R.

The radius of analyticity R_A is the largest r > 0 such that f is fully analytic in the ball $B_r(0)$.

Clearly, we have $R_A \leq R$.

The Radius of Analyticity

Let

$$f(x) = \sum_{n=0}^{\infty} P_n(x)$$

be a power series with radius of uniform convergence R.

The radius of analyticity R_A is the largest r > 0 such that f is fully analytic in the ball $B_r(0)$.

Clearly, we have $R_A \leq R$.

Question:

$$R_A = R$$
 ?

First Approach: Complexification

Given a power series

$$f(x) = \sum_{n=0}^{\infty} P_n(x)$$

with radius of uniform convergence R.

Complexify the space: $E_{\mathbb{C}} = E + iE$ with a suitable norm.

Compexify the polynomials to get a power series in $z \in E_{\mathbb{C}}$:

$$f(z) = \sum_{n=0}^{\infty} (P_n)_{\mathbb{C}}(z).$$

Use the Cauchy estimates and restrict back to E.

A E Taylor, 1938:

$$R_A \ge \frac{R}{e\sqrt{2}}$$

A E Taylor, 1938:

$$R_A \ge \frac{R}{e\sqrt{2}}$$

Munoz–Sarantopoulos–Tonge, Kirwan 1999:

The best estimates for the norm of the complexified polynomials:

$$\|(\mathsf{P}_n)_{\mathbb{C}}\| \leqslant 2^{n-1} \|\mathsf{P}_n\|$$

A E Taylor, 1938:

$$R_A \geqslant \frac{R}{e\sqrt{2}}$$

Munoz–Sarantopoulos–Tonge, Kirwan 1999:

The best estimates for the norm of the complexified polynomials:

$$\|(\mathsf{P}_n)_{\mathbb{C}}\| \leqslant 2^{n-1} \|\mathsf{P}_n\|$$

This gives the estimate

$$R_A \ge \frac{R}{2}$$

Second Approach: Polarization

Expand around the point \mathfrak{a} :

$$f(x) = \sum_{n=0}^{\infty} P_n(x) = \sum_{n=0}^{\infty} A_n (a + (x - a))^n$$
$$= \sum_{n=0}^{\infty} \sum_{k=0}^n {n \choose k} A_n (a^{n-k} (x - a)^k)$$
$$= \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} {n \choose k} A_n (a)^{n-k} (x - a)^k$$
$$= \sum_{k=0}^n \frac{1}{k!} \hat{d}^k f(a) (x - a)$$

Absolute convergence will follow if

$$\begin{split} \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} |A_{n}(a^{n-k}(x-a)^{k})| \\ &\leqslant \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} ||A_{n}|| ||a||^{n-k} ||x-a||^{k}) \\ &\leqslant \sum_{n=0}^{\infty} ||A_{n}|| (||a|| + ||x-a||)^{n} \leqslant \sum_{n=0}^{\infty} e^{n} ||P_{n}|| (||a|| + ||x-a||)^{n} < \infty \end{split}$$

and this happens when

$$\|\mathbf{a}\| + \|\mathbf{x} - \mathbf{a}\| < \frac{\mathsf{R}}{\mathsf{e}}$$

The Curse of Polarization

The factor e has appeared because of the Polarization Inequality:

$$\|A_n\| \leqslant \frac{n^n}{n!} \|P_n\|.$$

The Curse of Polarization

The factor e has appeared because of the Polarization Inequality:

$$\|A_n\| \leqslant \frac{n^n}{n!} \|P_n\|.$$

Banach (and others) showed that, in the case of a Hilbert space,

$$||A_n|| = ||P_n||$$
.

So, for power series on Hilbert spaces,

$$R_A = R$$
.

In the general case, we can do a little better than e — the full polarization inequality is not required. Instead of $||A_n||$, we only have to estimate

$$\|A_n\|_{(2)} = \mathsf{sup}\big\{|A_n(u^k v^{n-k})| : 0 \leqslant k \leqslant n, \|u\|, \|v\| \leqslant 1\big\}$$

In the general case, we can do a little better than e — the full polarization inequality is not required. Instead of $||A_n||$, we only have to estimate

$$\|A_n\|_{(2)} = \mathsf{sup}\big\{|A_n(\mathfrak{u}^k \nu^{n-k})| : 0 \leqslant k \leqslant n, \|\mathfrak{u}\|, \|\nu\| \leqslant 1\big\}$$

T Nguyen 2009:

$$R_A \geqslant \frac{R}{\sqrt{e}}$$

In the general case, we can do a little better than e — the full polarization inequality is not required. Instead of $||A_n||$, we only have to estimate

$$\|A_n\|_{(2)} = \mathsf{sup}\big\{|A_n(u^k \nu^{n-k})| : 0 \leqslant k \leqslant n, \|u\|, \|\nu\| \leqslant 1\big\}$$

T Nguyen 2009:

$$R_A \ge \frac{R}{\sqrt{e}}$$

L. Harris 1972, P. Hájek & M. Johanis 2014:

$$R_A \ge \frac{R}{\sqrt{2}}$$

(P. Hájek & M. Johanis, Smooth Analysis in Banach Spaces, 2014) Also proved by Papadiamantis & Sarantopoulos 2016, using an improvement of Nguyen's techniques.

The Constant of Analyticity for a Banach space

Let E be a real Banach space.

We define the **constant of analyticity of** E, denoted $\mathcal{A}(E)$, to be the supremum of the set of positive real numbers ρ for which every power series at the origin in E, with unit radius of uniform convergence, has radius of analyticity at least ρ .

The Constant of Analyticity for a Banach space

Let E be a real Banach space.

We define the **constant of analyticity of** E, denoted $\mathcal{A}(E)$, to be the supremum of the set of positive real numbers ρ for which every power series at the origin in E, with unit radius of uniform convergence, has radius of analyticity at least ρ .

In general,

$$\frac{1}{\sqrt{2}} \leqslant \mathcal{A}(\mathsf{E}) \leqslant 1$$

and when E is a Hilbert space, $\mathcal{A}(E)=1$

 ℓ_1 is the worst (or best) case.

Theorem (C. Boyd, RR & N. Snigireva) Let E, F be real Banach spaces such that E is a quotient space of F. Then $\mathcal{A}(E) \ge \mathcal{A}(F)$.

Every Banach space is a quotient of $\ell_1(\mathrm{I})$ for a suitable indexing set $\mathrm{I}.$

The value of the constant of analyticity of $\ell_1(I)$ is essentially determined by a countable set of points in the space. Each point in $\ell_1(I)$ is supported by a countable subset of I. Hence

Theorem (C. Boyd, RR & N. Snigireva) Let E be any real Banach space. Then

 $\mathcal{A}(\mathsf{E}) \geqslant \mathcal{A}(\ell_1)$.

Harmonic functions on \mathbb{R}^n

Let f be a harmonic function on the open euclidean ball $\|x\| < R$ in $\mathbb{R}^n.$ Then f is real analytic in this ball and has a power series expansion

$$f(x) = \sum_{n=0}^{\infty} P_n(x)$$

(where P_n are harmonic n-homogeneous polynomials) with radius of convergence at least equal to R.

What happens if we expand using monomials?

$$f(x) = \sum_{n=0}^{\infty} \sum_{\substack{\alpha \in \mathbb{N}^{(\mathbb{N})} \\ |\alpha| = n}} c_{\alpha} x^{\alpha} = \sum_{\alpha \in \mathbb{N}^{(\mathbb{N})}} c_{\alpha} x^{\alpha} ?$$

W.K. Hayman 1970:

1. Let f be a harmonic function on the open euclidean ball at the origin in \mathbb{R}^n of radius R. Then the monomial expansion of f is absolutely uniformly convergent for $||\mathbf{x}|| \leq \rho$, where

$$\rho < \frac{\mathsf{R}}{\sqrt{2}},$$

but this expansion may diverge at some points on the sphere $\|x\| = R/\sqrt{2}$.

W.K. Hayman 1970:

1. Let f be a harmonic function on the open euclidean ball at the origin in \mathbb{R}^n of radius R. Then the monomial expansion of f is absolutely uniformly convergent for $||\mathbf{x}|| \leq \rho$, where

$$ho < rac{\mathsf{R}}{\sqrt{2}}\,,$$

but this expansion may diverge at some points on the sphere $||\mathbf{x}|| = R/\sqrt{2}$.

2. Suppose that f is harmonic in the open euclidean disc at the origin in \mathbb{R}^2 of radius R, but not in any larger open disc centered at the origin.

Then the monomial expansion of f is absolutely uniformly convergent on every compact subset of the open square $||x||_1 < R$. It diverges at all points outside this square that do not lie on the coordinate axes.

The Banach Lattice Viewpoint

Let E, F be Banach lattices An n-homogeneous polynomial $P_n=\hat{A}_n$ is **positive** if the unique symmetric n-linear form that generates P_n is positive in each variable:

$$A_n(x_1,\ldots,x_n) \ge 0$$
 if $x_1,\ldots,x_n \ge 0$.

The Banach Lattice Viewpoint

Let E, F be Banach lattices

An n-homogeneous polynomial $P_n = \hat{A}_n$ is **positive** if the unique symmetric n-linear form that generates P_n is positive in each variable:

$$A_n(x_1,\ldots,x_n) \ge 0$$
 if $x_1,\ldots,x_n \ge 0$.

An n-homogeneous polynomial P_n is said to be **regular** if it is the difference of two positive n-homogeneous polynomials. If F is Dedekind complete, this condition is equivalent to the existence of the absolute value (modulus): this is the smallest positive n-homogeneous polynomial satisfying $\pm P_n \leq |P_n|$. In particular,

 $|P_n(x)|\leqslant |P_n|(|x|) \quad \text{ for every } x\in E.$

B. Grecu & RR 2005:

Let E be a Banach space with a 1-unconditional Schauder basis. A bounded n-homogeneous polynomial on E is regular if and only if its monomial expansion is unconditionally convergent at every point in E. And if

$$\mathsf{P}_{\mathsf{n}}(\mathsf{x}) = \sum_{|\alpha| = \mathsf{n}} c_{\alpha} \mathsf{x}^{\alpha}$$

is regular, then $|P_n|$ is given by

$$|P_n|(x) = \sum_{|\alpha|=n} |c_{\alpha}| x^{\alpha}$$

B. Grecu & RR 2005:

Let E be a Banach space with a 1-unconditional Schauder basis. A bounded n-homogeneous polynomial on E is regular if and only if its monomial expansion is unconditionally convergent at every point in E. And if

$$\mathsf{P}_{\mathsf{n}}(\mathsf{x}) = \sum_{|\alpha| = \mathsf{n}} \mathsf{c}_{\alpha} \mathsf{x}^{\alpha}$$

is regular, then $|P_n|$ is given by

$$|\mathsf{P}_{\mathsf{n}}|(\mathsf{x}) = \sum_{|\alpha| = \mathsf{n}} |\mathsf{c}_{\alpha}|\mathsf{x}^{\alpha}$$

Hayman's result:

If
$$\sum_{n=0}^{\infty} P_n(x)$$
 has radius of convergence R, then $\sum_{n=0}^{\infty} |P_n|(x)$ has radius of convergence at least $R/\sqrt{2}$

Power series on Banach lattices

Every Banach lattice E can be complexified: on the algebraic complexification $E_{\mathbb C}=E+iE$, a modulus is defined by

$$|z| = |x + iy| = \sup\{x \cos \theta + y \sin \theta : 0 \le \theta \le 2\pi\}.$$

It can be shown that this supremum always exists. We also have

$$|z| = \sqrt{x^2 + y^2}$$

where this expression is defined using the Krivine functional calculus.

Power series on Banach lattices

Every Banach lattice E can be complexified: on the algebraic complexification $E_{\mathbb C}=E+iE$, a modulus is defined by

$$|z| = |x + iy| = \sup\{x \cos \theta + y \sin \theta : 0 \le \theta \le 2\pi\}.$$

It can be shown that this supremum always exists. We also have

$$|z| = \sqrt{x^2 + y^2}$$

where this expression is defined using the Krivine functional calculus.

A complex Banach lattice is a complex Banach space of the form $E_{\mathbb{C}}$, where E is a Banach lattice and the norm is given by

$$||z|| = |||z|||$$
.

Proposition (C. Boyd, RR & N. Snigireva)

Let E, F be Banach lattices, with F Dedekind complete and let $P_n : E \to F$ be a regular n-homogeneous polynomial.

(a) The complexification of P_n satisfies

 $|(\mathsf{P}_n)_{\mathbb{C}}(z)| \leqslant |\mathsf{P}_n|(|z|)$

for every $z \in E_{\mathbb{C}}$.

(b) In particular, if P_n is positive, then

 $|(\mathsf{P}_n)_{\mathbb{C}}(z)| \leq \mathsf{P}_n(|z|)$

and so $\|(P_n)_{\mathbb{C}}\|=\|P_n\|.$

Theorem (C. Boyd, RR & N. Snigireva) Let E be a real Banach lattice and let

$$f(x) = \sum_{n=0}^{\infty} P_n(x)$$

be a power series with positive terms. Then the radius of analyticity and the radius of uniform convergence are equal.