NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

POLYNOMIAL DAUGAVET PROPERTY FOR REPRESENTABLE SPACES

Elisa Regina dos Santos

Joint work with Geraldo Botelho

Faculdade de Matemática UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Valencia, October 19th, 2017

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

DAUGAVET EQUATION

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Daugavet Equation Appearance

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

• I. K. Daugavet, 1963: Every compact linear operator *T* on *C*[0, 1] satisfies the equation ||Id + T|| = 1 + ||T||.

Definition

Let X be a Banach space and let $T : X \to X$ be a bounded linear operator. We say that T satisfies the **Daugavet equation** if

 $\||\mathbf{l}\mathbf{d} + T\| = 1 + \|T\|.$

(DE)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

We say that X has the **Daugavet property** (DP) if every rank-one operator on X satisfies the (DE).

Daugavet Equation Appearance

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

• I. K. Daugavet, 1963: Every compact linear operator *T* on *C*[0, 1] satisfies the equation ||Id + T|| = 1 + ||T||.

Definition

Let *X* be a Banach space and let $T : X \to X$ be a bounded linear operator. We say that *T* satisfies the **Daugavet equation** if

 $\|\mathsf{Id} + T\| = 1 + \|T\|.$

(DE)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We say that X has the **Daugavet property** (DP) if every rank-one operator on X satisfies the (DE).

Daugavet Equation Appearance

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

• I. K. Daugavet, 1963: Every compact linear operator *T* on *C*[0, 1] satisfies the equation ||Id + T|| = 1 + ||T||.

Definition

Let *X* be a Banach space and let $T : X \to X$ be a bounded linear operator. We say that *T* satisfies the **Daugavet equation** if

 $\|\mathsf{Id} + T\| = 1 + \|T\|.$

(DE)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

We say that X has the **Daugavet property** (DP) if every rank-one operator on X satisfies the (DE).

Classical examples

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

• J. R. Holub, 1987:

Weakly compact linear operators on $L_1(\mu)$, where μ is an atomless σ -finite measure, satisfy (DE).

• D. Werner, 1996:

Weakly compact linear operators on C(K), where K is a compact Hausdorff space without isolated points, satisfy (DE).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Classical examples

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

• J. R. Holub, 1987:

Weakly compact linear operators on $L_1(\mu)$, where μ is an atomless σ -finite measure, satisfy (DE).

• D. Werner, 1996:

Weakly compact linear operators on C(K), where K is a compact Hausdorff space without isolated points, satisfy (DE).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

DAUGAVET EQUATION FOR POLYNOMIALS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Generalization of (DE)

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Definition

Let *X* be a Banach space and let Φ be a bounded mapping from the closed unit ball B_X into *X*. We say that Φ satisfies the **Daugavet equation** if

(DE)

・ロット (雪) (日) (日) (日)

$$\|\mathsf{Id} + \Phi\| = 1 + \|\Phi\|$$

Definition

Let X be a Banach space. We say that X has the **polynomial Daugavet property** (PDP) if every weakly compact polynomial on X satisfies (DE).

Generalization of (DE)

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Definition

Let *X* be a Banach space and let Φ be a bounded mapping from the closed unit ball B_X into *X*. We say that Φ satisfies the **Daugavet equation** if

$$\|\mathsf{Id} + \Phi\| = 1 + \|\Phi\|$$

(DE)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Definition

Let X be a Banach space. We say that X has the **polynomial Daugavet property** (PDP) if every weakly compact polynomial on X satisfies (DE).

Examples

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Y. Choi, D. García, M. Maestre and M. Martín, 2007: If Ω is a completely regular Hausdorff space without isolated points, then C_b(Ω, X) has the polynomial Daugavet property.

• Y. Choi, D. García, M. Maestre and M. Martín, 2008: If μ is an atomless σ -finite measure, then $L_{\infty}(\mu, X)$ has the polynomial Daugavet property.

M. Martín, J. Merí and M. Popov, 2010:
 If μ is an atomless σ-finite measure, then L₁(μ, X) has the polynomial Daugavet property.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Examples

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

• Y. Choi, D. García, M. Maestre and M. Martín, 2007:

If Ω is a completely regular Hausdorff space without isolated points, then $C_b(\Omega, X)$ has the polynomial Daugavet property.

• Y. Choi, D. García, M. Maestre and M. Martín, 2008: If μ is an atomless σ -finite measure, then $L_{\infty}(\mu, X)$ has the polynomial Daugavet property.

 M. Martín, J. Merí and M. Popov, 2010: If μ is an atomless σ-finite measure, then L₁(μ, X) has the polynomial Daugavet property.

Examples

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

• Y. Choi, D. García, M. Maestre and M. Martín, 2007:

If Ω is a completely regular Hausdorff space without isolated points, then $C_b(\Omega, X)$ has the polynomial Daugavet property.

Y. Choi, D. García, M. Maestre and M. Martín, 2008: If μ is an atomless σ-finite measure, then L_∞(μ, X) has the polynomial Daugavet property.

• M. Martín, J. Merí and M. Popov, 2010:

If μ is an atomless σ -finite measure, then $L_1(\mu, X)$ has the polynomial Daugavet property.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

DAUGAVET PROPERTY ON REPRESENTABLE SPACES

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Representable spaces

Definition

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Let *K* be a compact Hausdorff space. A Banach space *X* is said *K*-**representable** if there exists a family $(X_k)_{k \in K}$ of Banach spaces such that *X* is (linearly isometric to) a closed C(K)-submodule of the C(K)-module $\prod_{k \in K}^{\infty} X_k$ in such a way that, for every $x \in S_X$ and every $\varepsilon > 0$, the set $\{k \in K : ||x(k)|| > 1 - \varepsilon\}$ is infinite.

• When the compact set K is not relevant, we simply say that X is representable.

Representable spaces

Definition

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Let *K* be a compact Hausdorff space. A Banach space *X* is said *K*-**representable** if there exists a family $(X_k)_{k \in K}$ of Banach spaces such that *X* is (linearly isometric to) a closed C(K)-submodule of the C(K)-module $\prod_{k \in K}^{\infty} X_k$ in such a way that, for every $x \in S_X$ and every $\varepsilon > 0$, the set $\{k \in K : ||x(k)|| > 1 - \varepsilon\}$ is infinite.

• When the compact set *K* is not relevant, we simply say that *X* is representable.

J. B. Guerrero and A. Rodrígues-Palacios, 2008

NoLiFA 2017	
Elisa R. Santos	
Daugavet Equation	
Daugavet Equation for Polynomials	
Representable spaces	Proposition
	Every representable Banach space has the Daugavet property.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

G. Botelho and S., 2016

NoLiFA 2017	
Elisa R. Santos	
Daugavet Equation	
Daugavet Equation for Polynomials	
Representable	
spaces	Theorem
	Every representable Banach space has the polynomial Daugavet property.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Y. S. Choi, D. García, M. Maestre, M. Martín, 2008

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Let *X* be a *K*-representable Banach space and let $(X_k)_{k \in K}$ be as in definition of representable space. Fix $x, z \in S_k$, $\omega \in \mathbb{T}$ and $\varepsilon > 0$. Then the set

 $I = \left\{ k \in K : \|x(k)\| > 1 - \frac{\varepsilon}{2} \right\}$

is infinite and there exist a sequence $(k_n)_{n \in \mathbb{N}}$ in V and a sequence $(V_n)_{n \in \mathbb{N}}$ of pairwise disjoint nonempty open subsets of K, such that k_n belongs to V_n for every $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, apply Urysohn's lemma to find a continuous function $f_n : K \longrightarrow [0, 1]$ such that $f_n(k_n) = 1$ and $f_n(k) = 0$ for every $k \in K \setminus V_n$. Now, define

$$z_n = f_n(\omega^{-1}x - z) \in X.$$

By disjointness of the supports, the series $\sum_{n} z_{n}$ is weakly unconditionally Cauchy.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Let *X* be a *K*-representable Banach space and let $(X_k)_{k \in K}$ be as in definition of representable space. Fix $x, z \in S_X$, $\omega \in \mathbb{T}$ and $\varepsilon > 0$. Then the set

 $I = \left\{ k \in K : \|x(k)\| > 1 - \frac{\varepsilon}{2} \right\}$

is infinite and there exist a sequence $(k_n)_{n \in \mathbb{N}}$ in V and a sequence $(V_n)_{n \in \mathbb{N}}$ of pairwise disjoint nonempty open subsets of K, such that k_n belongs to V_n for every $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, apply Urysohn's lemma to find a continuous function $f_n : K \longrightarrow [0, 1]$ such that $f_n(k_n) = 1$ and $f_n(k) = 0$ for every $k \in K \setminus V_n$. Now, define

$$z_n = f_n(\omega^{-1}x - z) \in X.$$

By disjointness of the supports, the series $\sum_n z_n$ is weakly unconditionally Cauchy.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Let *X* be a *K*-representable Banach space and let $(X_k)_{k \in K}$ be as in definition of representable space. Fix $x, z \in S_X$, $\omega \in \mathbb{T}$ and $\varepsilon > 0$. Then the set

$$V = \left\{k \in K : \|x(k)\| > 1 - rac{arepsilon}{2}
ight\}$$

is infinite and there exist a sequence $(k_n)_{n \in \mathbb{N}}$ in *V* and a sequence $(V_n)_{n \in \mathbb{N}}$ of pairwise disjoint nonempty open subsets of *K*, such that k_n belongs to V_n for every $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, apply Urysohn's lemma to find a continuous function $f_n : K \longrightarrow [0, 1]$ such that $f_n(k_n) = 1$ and $f_n(k) = 0$ for every $k \in K \setminus V_n$. Now, define

$$z_n = f_n(\omega^{-1}x - z) \in X.$$

By disjointness of the supports, the series $\sum_n z_n$ is weakly unconditionally Cauchy.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Let *X* be a *K*-representable Banach space and let $(X_k)_{k \in K}$ be as in definition of representable space. Fix $x, z \in S_X$, $\omega \in \mathbb{T}$ and $\varepsilon > 0$. Then the set

$$V = \left\{k \in K : \|x(k)\| > 1 - rac{arepsilon}{2}
ight\}$$

is infinite and there exist a sequence $(k_n)_{n \in \mathbb{N}}$ in V and a sequence $(V_n)_{n \in \mathbb{N}}$ of pairwise disjoint nonempty open subsets of K, such that k_n belongs to V_n for every $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, apply Urysohn's lemma to find a continuous function $f_n : K \longrightarrow [0, 1]$ such that $f_n(k_n) = 1$ and $f_n(k) = 0$ for every $k \in K \setminus V_n$. Now, define

$$z_n = f_n(\omega^{-1}x - z) \in X.$$

By disjointness of the supports, the series $\sum_{n} z_{n}$ is weakly unconditionally Cauchy.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Let *X* be a *K*-representable Banach space and let $(X_k)_{k \in K}$ be as in definition of representable space. Fix $x, z \in S_X$, $\omega \in \mathbb{T}$ and $\varepsilon > 0$. Then the set

$$V = \left\{k \in K : \|x(k)\| > 1 - rac{arepsilon}{2}
ight\}$$

is infinite and there exist a sequence $(k_n)_{n \in \mathbb{N}}$ in *V* and a sequence $(V_n)_{n \in \mathbb{N}}$ of pairwise disjoint nonempty open subsets of *K*, such that k_n belongs to V_n for every $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, apply Urysohn's lemma to find a continuous function $f_n : K \longrightarrow [0, 1]$ such that $f_n(k_n) = 1$ and $f_n(k) = 0$ for every $k \in K \setminus V_n$. Now, define

$$z_n=f_n(\omega^{-1}x-z)\in X.$$

By disjointness of the supports, the series $\sum_{n} z_{n}$ is weakly unconditionally Cauchy.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Let *X* be a *K*-representable Banach space and let $(X_k)_{k \in K}$ be as in definition of representable space. Fix $x, z \in S_X$, $\omega \in \mathbb{T}$ and $\varepsilon > 0$. Then the set

$$V = \left\{k \in K : \|x(k)\| > 1 - \frac{\varepsilon}{2}
ight\}$$

is infinite and there exist a sequence $(k_n)_{n \in \mathbb{N}}$ in *V* and a sequence $(V_n)_{n \in \mathbb{N}}$ of pairwise disjoint nonempty open subsets of *K*, such that k_n belongs to V_n for every $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, apply Urysohn's lemma to find a continuous function $f_n : K \longrightarrow [0, 1]$ such that $f_n(k_n) = 1$ and $f_n(k) = 0$ for every $k \in K \setminus V_n$. Now, define

$$z_n = f_n(\omega^{-1}x - z) \in X.$$

By disjointness of the supports, the series $\sum_{n} z_{n}$ is weakly unconditionally Cauchy.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Moreover, for every $n \in \mathbb{N}$ and $k \in K$, $\|[z + z_n](k)\| = \left\| (1 - f_n(k)) z(k) + f_n(k) \omega^{-1} x(k) \right\|,$ so $\|z + z_n\| \le 1$ by convexity. Also, for every $n \in \mathbb{N}$, $\|x + \omega(z + z_n)\| \ge \|x(k_n) + \omega(z(k_n) + z_n(k_n))\|$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

The result follows from the previous proposition.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Moreover, for every
$$n \in \mathbb{N}$$
 and $k \in K$,

$$\|[z+z_n](k)\| = \left\| (1-f_n(k)) z(k) + f_n(k) \omega^{-1} x(k) \right\|,$$

so
$$||z + z_n|| \le 1$$
 by convexity. Also, for every $n \in \mathbb{N}$,

$$egin{aligned} \|x+\omega(z+z_n)\|&\geq \|x(k_n)+\omega\left(z(k_n)+z_n(k_n)
ight)\|\ &=\|2x(k_n)\|>2\left(1-rac{arepsilon}{2}
ight)=2-arepsilon. \end{aligned}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

The result follows from the previous proposition.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

SO

Moreover, for every
$$n \in \mathbb{N}$$
 and $k \in K$,

$$\|[z+z_n](k)\| = \left\| (1-f_n(k)) z(k) + f_n(k) \omega^{-1} x(k) \right\|,$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$egin{aligned} \|z+z_n\| &\leq 1 ext{ by convexity. Also, for every } n \in \mathbb{N}, \ \|x+\omega(z+z_n)\| &\geq \|x(k_n)+\omega\left(z(k_n)+z_n(k_n)
ight)\| \ &= \|2x(k_n)\| > 2\left(1-rac{arepsilon}{2}
ight) = 2-arepsilon. \end{aligned}$$

The result follows from the previous proposition.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

• Consider Z a norming subspace of Y^* for Y, and τ a vector space topology on Y with $\sigma(Y, Z) \le \tau \le n$, where n denotes the norm topology on Y and $\sigma(Y, Z)$ denotes the weak topology on Y relative to its duality with Z. If K is a perfect compact Hausdorff topological space, then $C(K, (Y, \tau))$ is K-representable by ([5], Theorem 3.1).

Corollary

Let K be a perfect compact Hausdorff topological space, let Y be a nonzero Banach space, let Z be a norming subspace of Y^{*} for Y, and let τ be a vector space topology on Y with $\sigma(Y, Z) \leq \tau \leq n$. Then $C(K, (Y, \tau))$ satisfies the polynomial Daugavet property.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

• Consider Z a norming subspace of Y^* for Y, and τ a vector space topology on Y with $\sigma(Y, Z) \le \tau \le n$, where n denotes the norm topology on Y and $\sigma(Y, Z)$ denotes the weak topology on Y relative to its duality with Z. If K is a perfect compact Hausdorff topological space, then $C(K, (Y, \tau))$ is K-representable by ([5], Theorem 3.1).

Corollary

Let K be a perfect compact Hausdorff topological space, let Y be a nonzero Banach space, let Z be a norming subspace of Y^{*} for Y, and let τ be a vector space topology on Y with $\sigma(Y, Z) \leq \tau \leq n$. Then $C(K, (Y, \tau))$ satisfies the polynomial Daugavet property.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Given a Banach space X, a representable Banach space Y and a closed subspace M of L(X, Y) such that L(Y) ∘ M ⊂ M, ([5], Lemma 2.5 and Corollary 2.6) proved that M and X ⊗_e Y are representable spaces.

orollary

Let X be a Banach space, let Y be a representable Banach space, and let M be a closed subspace of $\mathcal{L}(X, Y)$ such that $\mathcal{L}(Y) \circ M \subset M$. Then M has the polynomial Daugavet property.

Corollary

Let X be a Banach space, and let Y be a representable Banach space. Then $X \widehat{\otimes}_e Y$ has the polynomial Daugavet property.

・ロット (雪) (日) (日) (日)

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Given a Banach space X, a representable Banach space Y and a closed subspace M of L(X, Y) such that L(Y) ∘ M ⊂ M, ([5], Lemma 2.5 and Corollary 2.6) proved that M and X ⊗_e Y are representable spaces.

Corollary

Let X be a Banach space, let Y be a representable Banach space, and let M be a closed subspace of $\mathcal{L}(X, Y)$ such that $\mathcal{L}(Y) \circ M \subset M$. Then M has the polynomial Daugavet property.

Corollary

Let X be a Banach space, and let Y be a representable Banach space. Then $X \widehat{\otimes}_{\epsilon} Y$ has the polynomial Daugavet property.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Given a Banach space X, a representable Banach space Y and a closed subspace M of L(X, Y) such that L(Y) ∘ M ⊂ M, ([5], Lemma 2.5 and Corollary 2.6) proved that M and X ⊗_e Y are representable spaces.

Corollary

Let X be a Banach space, let Y be a representable Banach space, and let M be a closed subspace of $\mathcal{L}(X, Y)$ such that $\mathcal{L}(Y) \circ M \subset M$. Then M has the polynomial Daugavet property.

Corollary

Let X be a Banach space, and let Y be a representable Banach space. Then $X \widehat{\otimes}_{\epsilon} Y$ has the polynomial Daugavet property.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Definition

Let X be a Banach space. A closed subspace J of X will be called an Msummand if there is a closed subspace J^{\perp} of X such that X is the algebraic direct sum of J and J^{\perp} , and

 $||x + x^{\perp}|| = \max\{||x||, ||x^{\perp}||\} \text{ for } x \in J, x^{\perp} \in J^{\perp}.$

• By ([5], Theorem 4.3) we know that every dual Banach space *Y* without minimal *M*-summands is a representable space.

Corollary

Every dual Banach space without minimal M-summands has the polynomial Daugavet property.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Definition

Let X be a Banach space. A closed subspace J of X will be called an Msummand if there is a closed subspace J^{\perp} of X such that X is the algebraic direct sum of J and J^{\perp} , and

 $||x + x^{\perp}|| = \max\{||x||, ||x^{\perp}||\} \text{ for } x \in J, x^{\perp} \in J^{\perp}.$

• By ([5], Theorem 4.3) we know that every dual Banach space *Y* without minimal *M*-summands is a representable space.

Corollary

Every dual Banach space without minimal M-summands has the polynomial Daugavet property.

(ロ) (同) (三) (三) (三) (三) (○) (○)

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Definition

Let X be a Banach space. A closed subspace J of X will be called an Msummand if there is a closed subspace J^{\perp} of X such that X is the algebraic direct sum of J and J^{\perp} , and

 $||x + x^{\perp}|| = \max\{||x||, ||x^{\perp}||\} \text{ for } x \in J, x^{\perp} \in J^{\perp}.$

• By ([5], Theorem 4.3) we know that every dual Banach space *Y* without minimal *M*-summands is a representable space.

Corollary

Every dual Banach space without minimal M-summands has the polynomial Daugavet property.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Corollary

Let X be a Banach space, let Y be a dual Banach space without minimal Msummands, and let M be a closed subspace of $\mathcal{L}(X, Y)$ such that $\mathcal{L}(Y) \circ M \subset$ M. Then M has the polynomial Daugavet property.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Definition

Let X be a Banach space. A closed subspace J of X will be called an Lsummand if there is a closed subspace J^{\perp} of X such that X is the algebraic direct sum of J and J^{\perp} , and

$$||x + x^{\perp}|| = ||x|| + ||x^{\perp}||$$
 for $x \in J, x^{\perp} \in J^{\perp}$.

• Let X be a Banach space without minimal L-summands, and let Y be a dual Banach space. Since X is a Banach space without minimal Lsummands, X* has no minimal M-summands. If Y_* is a predual of Y, then $\mathcal{L}(X, Y)$ is linearly isometric to $\mathcal{L}(Y_*, X^*)$. Therefore, the result below follows from the previous corollary, with (Y_*, X^*) instead of (X, Y).

Corollary

Let X be a Banach space without minimal L-summands, and let Y be a dual Banach space. Then $\mathcal{L}(X, Y)$ has the polynomial Daugavet property.

・ロット (雪) (き) (き) (き)

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Definition

Let X be a Banach space. A closed subspace J of X will be called an Lsummand if there is a closed subspace J^{\perp} of X such that X is the algebraic direct sum of J and J^{\perp} , and

 $||x + x^{\perp}|| = ||x|| + ||x^{\perp}||$ for $x \in J, x^{\perp} \in J^{\perp}$.

• Let X be a Banach space without minimal L-summands, and let Y be a dual Banach space. Since X is a Banach space without minimal Lsummands, X* has no minimal M-summands. If Y_* is a predual of Y, then $\mathcal{L}(X, Y)$ is linearly isometric to $\mathcal{L}(Y_*, X^*)$. Therefore, the result below follows from the previous corollary, with (Y_*, X^*) instead of (X, Y).

Corollary

Let X be a Banach space without minimal L-summands, and let Y be a dual Banach space. Then $\mathcal{L}(X, Y)$ has the polynomial Daugavet property.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Definition

Let X be a Banach space. A closed subspace J of X will be called an Lsummand if there is a closed subspace J^{\perp} of X such that X is the algebraic direct sum of J and J^{\perp} , and

 $||x + x^{\perp}|| = ||x|| + ||x^{\perp}||$ for $x \in J, x^{\perp} \in J^{\perp}$.

• Let X be a Banach space without minimal L-summands, and let Y be a dual Banach space. Since X is a Banach space without minimal Lsummands, X* has no minimal M-summands. If Y_* is a predual of Y, then $\mathcal{L}(X, Y)$ is linearly isometric to $\mathcal{L}(Y_*, X^*)$. Therefore, the result below follows from the previous corollary, with (Y_*, X^*) instead of (X, Y).

Corollary

Let X be a Banach space without minimal L-summands, and let Y be a dual Banach space. Then $\mathcal{L}(X, Y)$ has the polynomial Daugavet property.

Main References

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

BOTELHO, G. AND SANTOS, E. R. - Representable spaces have the polynomial Daugavet property. *Arch. Math.*, **107**, 37-42, 2016.

CHOI, Y. S., GARCÍA, D., MAESTRE, M., MARTÍN, M. - The Daugavet equation for polynomials. *Studia Math.*, **178**, 63-82, 2007.

CHOI, Y. S., GARCÍA, D., MAESTRE, M., MARTÍN, M. - The polynomial numerical index for some complex vector-valued function spaces. *Quart. J. Math.*, **59**, 455-474, 2008.

DAUGAVET, I. K. - On a property of completely continuous operators in the space C. *Uspekhi Mat. Nauk*, **18**, 157-158, 1963 (in Russian).

GUERRERO, J. B. AND RODRÍGUEZ-PALACIOS, A. - Banach spaces with the Daugavet property, and the centralizer. *J. Funct. Anal.*, **254**, 2294-2302, 2008.

NoLiFA 2017

Elisa R. Santos

Daugavet Equation

Daugavet Equation for Polynomials

Representable spaces

Thanks!