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Daugavet Equation Appearance

I. K. Daugavet, 1963: Every compact linear operator T on C[0, 1] sa-
tisfies the equation ‖Id + T‖ = 1 + ‖T‖.

Definition
Let X be a Banach space and let T : X → X be a bounded linear operator.
We say that T satisfies the Daugavet equation if

‖Id + T‖ = 1 + ‖T‖. (DE)

We say that X has the Daugavet property (DP) if every rank-one operator
on X satisfies the (DE).
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Classical examples

J. R. Holub, 1987:
Weakly compact linear operators on L1(µ), where µ is an atomless σ-
finite measure, satisfy (DE).

D. Werner, 1996:
Weakly compact linear operators on C(K ), where K is a compact Haus-
dorff space without isolated points, satisfy (DE).
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Generalization of (DE)

Definition
Let X be a Banach space and let Φ be a bounded mapping from the closed
unit ball BX into X. We say that Φ satisfies the Daugavet equation if

‖Id + Φ‖ = 1 + ‖Φ‖. (DE)

Definition
Let X be a Banach space. We say that X has the polynomial Daugavet
property (PDP) if every weakly compact polynomial on X satisfies (DE).
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Examples

Y. Choi, D. García, M. Maestre and M. Martín, 2007:
If Ω is a completely regular Hausdorff space without isolated points,
then Cb(Ω,X ) has the polynomial Daugavet property.

Y. Choi, D. García, M. Maestre and M. Martín, 2008:
If µ is an atomless σ-finite measure, then L∞(µ,X ) has the polynomial
Daugavet property.

M. Martín, J. Merí and M. Popov, 2010:
If µ is an atomless σ-finite measure, then L1(µ,X ) has the polynomial
Daugavet property.
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Representable spaces

Definition
Let K be a compact Hausdorff space. A Banach space X is said K -
representable if there exists a family (Xk )k∈K of Banach spaces such that
X is (linearly isometric to) a closed C(K )-submodule of the C(K )-module∏∞

k∈K Xk in such a way that, for every x ∈ SX and every ε > 0, the set
{k ∈ K : ‖x(k)‖ > 1− ε} is infinite.

When the compact set K is not relevant, we simply say that X is repre-
sentable.
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J. B. Guerrero and A. Rodrígues-Palacios, 2008

Proposition
Every representable Banach space has the Daugavet property.
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G. Botelho and S., 2016

Theorem

Every representable Banach space has the polynomial Daugavet property.
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Y. S. Choi, D. García, M. Maestre, M. Martín, 2008

Proposition

Let X be a Banach space. Suppose that for every x , z ∈ SX , ω ∈ T and
ε > 0, there exists a sequence (zn) in X such that

∑
n zn is weakly uncondi-

tionally Cauchy and

lim sup ‖z + zn‖ ≤ 1 and ‖x + ω(z + zn)‖ > 2− ε

for every n ∈ N. Then X has the polynomial Daugavet property.
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Proof of the Theorem

Let X be a K -representable Banach space and let (Xk )k∈K be as in definition
of representable space. Fix x , z ∈ SX , ω ∈ T and ε > 0. Then the set

V =
{

k ∈ K : ‖x(k)‖ > 1− ε

2

}
is infinite and there exist a sequence (kn)n∈N in V and a sequence (Vn)n∈N
of pairwise disjoint nonempty open subsets of K , such that kn belongs to
Vn for every n ∈ N. For each n ∈ N, apply Urysohn’s lemma to find a
continuous function fn : K −→ [0, 1] such that fn(kn) = 1 and fn(k) = 0 for
every k ∈ K \ Vn. Now, define

zn = fn(ω−1x − z) ∈ X .

By disjointness of the supports, the series
∑

n zn is weakly unconditionally
Cauchy.
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Proof of the Theorem

Moreover, for every n ∈ N and k ∈ K ,

‖[z + zn](k)‖ =
∥∥∥(1− fn(k)) z(k) + fn(k)ω−1x(k)

∥∥∥ ,
so ‖z + zn‖ ≤ 1 by convexity. Also, for every n ∈ N,

‖x + ω(z + zn)‖ ≥ ‖x(kn) + ω (z(kn) + zn(kn))‖

= ‖2x(kn)‖ > 2
(

1− ε

2

)
= 2− ε.

The result follows from the previous proposition.
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Results

Consider Z a norming subspace of Y ∗ for Y , and τ a vector space to-
pology on Y with σ(Y ,Z ) ≤ τ ≤ n, where n denotes the norm topology
on Y and σ(Y ,Z ) denotes the weak topology on Y relative to its dua-
lity with Z . If K is a perfect compact Hausdorff topological space, then
C(K , (Y , τ)) is K -representable by ([5], Theorem 3.1).

Corollary
Let K be a perfect compact Hausdorff topological space, let Y be a non-
zero Banach space, let Z be a norming subspace of Y ∗ for Y , and let τ be
a vector space topology on Y with σ(Y ,Z ) ≤ τ ≤ n. Then C(K , (Y , τ))
satisfies the polynomial Daugavet property.
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Results

Given a Banach space X , a representable Banach space Y and a clo-
sed subspace M of L(X ,Y ) such that L(Y ) ◦M ⊂ M, ([5], Lemma 2.5
and Corollary 2.6) proved that M and X ⊗̂εY are representable spaces.

Corollary

Let X be a Banach space, let Y be a representable Banach space, and let
M be a closed subspace of L(X ,Y ) such that L(Y ) ◦M ⊂ M. Then M has
the polynomial Daugavet property.

Corollary
Let X be a Banach space, and let Y be a representable Banach space.
Then X ⊗̂εY has the polynomial Daugavet property.
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Results

Definition
Let X be a Banach space. A closed subspace J of X will be called an M-
summand if there is a closed subspace J⊥ of X such that X is the algebraic
direct sum of J and J⊥, and

‖x + x⊥‖ = max{‖x‖, ‖x⊥‖} for x ∈ J, x⊥ ∈ J⊥.

By ([5], Theorem 4.3) we know that every dual Banach space Y without
minimal M-summands is a representable space.

Corollary

Every dual Banach space without minimal M-summands has the polynomial
Daugavet property.
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Corollary

Let X be a Banach space, let Y be a dual Banach space without minimal M-
summands, and let M be a closed subspace ofL(X ,Y ) such that L(Y )◦M ⊂
M. Then M has the polynomial Daugavet property.
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Results

Definition
Let X be a Banach space. A closed subspace J of X will be called an L-
summand if there is a closed subspace J⊥ of X such that X is the algebraic
direct sum of J and J⊥, and

‖x + x⊥‖ = ‖x‖+ ‖x⊥‖ for x ∈ J, x⊥ ∈ J⊥.

Let X be a Banach space without minimal L-summands, and let Y be
a dual Banach space. Since X is a Banach space without minimal L-
summands, X∗ has no minimal M-summands. If Y∗ is a predual of
Y , then L(X ,Y ) is linearly isometric to L(Y∗,X∗). Therefore, the re-
sult below follows from the previous corollary, with (Y∗,X∗) instead of
(X ,Y ).

Corollary
Let X be a Banach space without minimal L-summands, and let Y be a dual
Banach space. Then L(X ,Y ) has the polynomial Daugavet property.
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