Non-symmetric polarization

Sunke Schlüters

València, 18. October 2017

Institut für Mathematik Carl von Ossietzky Universität Oldenburg

Joint work with Andreas Defant

Introduction: Polynomials and Polarization

Let throughout the talk $P:\mathbb{C}^n\to\mathbb{C}$ denote a m-homogeneous polynomial.

Let throughout the talk $P:\mathbb{C}^n\to\mathbb{C}$ denote a m-homogeneous polynomial. Every such polynomial can be written as

$$P(x) = \sum_{\substack{\alpha \in \mathbb{N}_0^n \\ |\alpha| = m}} c_{\alpha} x^{\alpha}$$

Let throughout the talk $P:\mathbb{C}^n\to\mathbb{C}$ denote a m-homogeneous polynomial. Every such polynomial can be written as

$$P(x) = \sum_{\substack{\alpha \in \mathbb{N}_0^n \\ |\alpha| = m}} c_\alpha x_1^{\alpha_1} \cdots x_n^{\alpha_n}$$

Let throughout the talk $P:\mathbb{C}^n\to\mathbb{C}$ denote a m-homogeneous polynomial. Every such polynomial can be written as

$$P(x) = \sum_{\substack{\alpha \in \mathbb{N}_0^n \\ |\alpha| = m}} c_\alpha x_1^{\alpha_1} \cdots x_n^{\alpha_n} = \sum_{1 \le j_1 \le \dots \le j_m \le n} c_{(j_1,\dots,j_m)} x_{j_1} \cdots x_{j_m} \,.$$

Let throughout the talk $P: \mathbb{C}^n \to \mathbb{C}$ denote a *m*-homogeneous polynomial. Every such polynomial can be written as

$$P(x) = \sum_{\substack{\alpha \in \mathbb{N}_0^n \\ |\alpha|=m}} c_\alpha x_1^{\alpha_1} \cdots x_n^{\alpha_n} = \sum_{1 \le j_1 \le \dots \le j_m \le n} c_{(j_1,\dots,j_m)} x_{j_1} \cdots x_{j_m} \,.$$

An m-form which is somewhat naturally associated to P is given by

$$L_P(x^{(1)}, \dots, x^{(m)}) := \sum_{1 \le j_1 \le \dots \le j_m \le n} c_{(j_1, \dots, j_m)} x_{j_1}^{(1)} \cdots x_{j_m}^{(m)},$$

Let throughout the talk $P: \mathbb{C}^n \to \mathbb{C}$ denote a *m*-homogeneous polynomial. Every such polynomial can be written as

$$P(x) = \sum_{\substack{\alpha \in \mathbb{N}_0^n \\ |\alpha| = m}} c_\alpha x_1^{\alpha_1} \cdots x_n^{\alpha_n} = \sum_{1 \le j_1 \le \dots \le j_m \le n} c_{(j_1,\dots,j_m)} x_{j_1} \cdots x_{j_m}.$$

An m-form which is somewhat naturally associated to P is given by

$$L_P(x^{(1)}, \dots, x^{(m)}) := \sum_{1 \le j_1 \le \dots \le j_m \le n} c_{(j_1, \dots, j_m)} x_{j_1}^{(1)} \cdots x_{j_m}^{(m)},$$

and the symmetrization of L_P ,

$$\mathcal{S}L_P(x^{(1)},\ldots,x^{(m)}) := \frac{1}{m!} \sum_{\sigma \in \Sigma_m} L_P(x^{(\sigma(1))},\ldots,x^{(\sigma(m))}),$$

where Σ_m denotes the set of all permutations of $\{1, \ldots, m\}$, is symmetric and likewise defines P.

With a norm $\|\cdot\|$ on \mathbb{C}^n , the space of all *m*-homogeneous polynomials P and the space of all *m*-linear forms L become Banach spaces, when equipped with the supremum norms

$$||P||_{\infty} := \sup_{||x|| \le 1} |P(x)|$$

and

$$||L||_{\infty} := \sup_{||x^{(k)}|| \le 1} |L(x^{(1)}, \dots, x^{(m)})|.$$

With a norm $\|\cdot\|$ on \mathbb{C}^n , the space of all *m*-homogeneous polynomials P and the space of all *m*-linear forms L become Banach spaces, when equipped with the supremum norms

$$||P||_{\infty} := \sup_{||x|| \le 1} |P(x)|$$

and

$$||L||_{\infty} := \sup_{||x^{(k)}|| \le 1} |L(x^{(1)}, \dots, x^{(m)})|.$$

As $P(x) = L_P(x, ..., x) = SL_P(x, ..., x)$ for all $x \in \mathbb{C}^n$, it is easy to see that $||P||_{\infty} \leq ||L_P||_{\infty}$ and $||P||_{\infty} \leq ||SL_P||_{\infty}$.

Theorem (Polarization formula)

For each *m*-homogeneous polynomial $P: \mathbb{C}^n \to \mathbb{C}$ and every choice of $x^{(1)}, \ldots, x^{(m)} \in \mathbb{C}^n$,

$$\mathcal{S}L_P(x^{(1)},\ldots,x^{(m)}) = \frac{1}{2^m m!} \sum_{\varepsilon_k = \pm 1} \varepsilon_1 \cdots \varepsilon_m P\left(\sum_{k=1}^m \varepsilon_k x^{(k)}\right).$$

Theorem (Polarization formula)

For each *m*-homogeneous polynomial $P : \mathbb{C}^n \to \mathbb{C}$ and every choice of $x^{(1)}, \ldots, x^{(m)} \in \mathbb{C}^n$,

$$\mathcal{S}L_P(x^{(1)},\ldots,x^{(m)}) = \frac{1}{2^m m!} \sum_{\varepsilon_k=\pm 1} \varepsilon_1 \cdots \varepsilon_m P\left(\sum_{k=1}^m \varepsilon_k x^{(k)}\right).$$

As an easy consequence,

$$\|P\|_{\infty} \leq \|\mathcal{S}L_P\|_{\infty} \leq \frac{m^m}{m!} \|P\|_{\infty} \leq e^m \|P\|_{\infty}.$$

Theorem (Polarization formula)

For each *m*-homogeneous polynomial $P: \mathbb{C}^n \to \mathbb{C}$ and every choice of $x^{(1)}, \ldots, x^{(m)} \in \mathbb{C}^n$,

$$SL_P(x^{(1)},\ldots,x^{(m)}) = \frac{1}{2^m m!} \sum_{\varepsilon_k=\pm 1} \varepsilon_1 \cdots \varepsilon_m P\left(\sum_{k=1}^m \varepsilon_k x^{(k)}\right).$$

As an easy consequence,

$$\|P\|_{\infty} \leq \|\mathcal{S}L_P\|_{\infty} \leq \frac{m^m}{m!} \|P\|_{\infty} \leq e^m \|P\|_{\infty}.$$

The question

Can we compare the norms of a m-homogeneous polynomial P with norms of *non-symmetric* m-forms, which define P?

We introduced the *m*-form L_P , which is somewhat naturally associated with *P*. However, L_P is in general *not symmetric*.

Bad news: We can't expect to have the same or a similar norm inequality for every m-form defining P.

Bad news: We can't expect to have the same or a similar norm inequality for every m-form defining P.

Consider for example

 $L: (\mathbb{C}^2)^2 \to \mathbb{C}, \quad (x,y) \mapsto x_1 y_2 - x_2 y_1$

and P(x):=L(x,x). Then $L\neq 0$, but P=0, i.e. $\|L\|_{\infty}>0$ and $\|P\|_{\infty}=0.$

Bad news: We can't expect to have the same or a similar norm inequality for every m-form defining P.

Consider for example

 $L: (\mathbb{C}^2)^2 \to \mathbb{C}, \quad (x, y) \mapsto x_1 y_2 - x_2 y_1$

and P(x):=L(x,x). Then $L\neq 0$, but P=0, i.e. $\|L\|_{\infty}>0$ and $\|P\|_{\infty}=0.$

Good news: The mappings L_P have a special structure...

Our results

We consider 1-unconditional norms on $\mathbb{C}^n,$ that is $|x_k| \leq |y_k|$ for all k implies $\|x\| \leq \|y\|.$

We consider 1-unconditional norms on \mathbb{C}^n , that is $|x_k| \leq |y_k|$ for all k implies $||x|| \leq ||y||$. Examples are the ℓ_p^n norms $|| \cdot ||_p$.

We consider 1-unconditional norms on \mathbb{C}^n , that is $|x_k| \leq |y_k|$ for all k implies $||x|| \leq ||y||$. Examples are the ℓ_p^n norms $|| \cdot ||_p$.

Theorem

There exists a universal constant $c_1 \ge 1$ such that for every m-homogeneous polynomial $P : \mathbb{C}^n \to \mathbb{C}$ and every 1-unconditional norm $\|\cdot\|$ on \mathbb{C}^n

$$||L_P||_{\infty} \le c_1^{m^2} (\log n)^{m-1} \cdot ||P||_{\infty}.$$

Moreover, if $\|\cdot\| = \|\cdot\|_p$ for $1 \le p < 2$, then there even is a constant $c_2 = c_2(p) \ge 1$ for which

 $||L_P||_{\infty} \le c_2^{m^2} \cdot ||P||_{\infty}.$

Keeping the polarization formula in mind, we have to show that $||L_P||_{\infty} \leq c \cdot ||SL_P||_{\infty}$ with a suitable constant c. We will use an iterative approach.

Keeping the polarization formula in mind, we have to show that $||L_P||_{\infty} \leq c \cdot ||SL_P||_{\infty}$ with a suitable constant c. We will use an iterative approach.

For $1 \leq k \leq n$ define the partial symmetrization

$$S_k L_P(x^{(1)}, \dots, x^{(m)})$$

:= $\frac{1}{k!} \sum_{\sigma \in \Sigma_k} L_P(x^{(\sigma(1))}, \dots, x^{(\sigma(k))}, x^{(k+1)}, \dots, x^{(\sigma(m))}).$

Keeping the polarization formula in mind, we have to show that $||L_P||_{\infty} \leq c \cdot ||SL_P||_{\infty}$ with a suitable constant c. We will use an iterative approach.

For $1 \leq k \leq n$ define the partial symmetrization

$$S_k L_P(x^{(1)}, \dots, x^{(m)})$$

:= $\frac{1}{k!} \sum_{\sigma \in \Sigma_k} L_P(x^{(\sigma(1))}, \dots, x^{(\sigma(k))}, x^{(k+1)}, \dots, x^{(\sigma(m))}).$

Note that $S_1L_P = L_P$ and $S_mL_P = SL_P$.

Theorem

There exists a universal constant $c_1 \ge 1$ such that for every m-homogeneous polynomial $P : \mathbb{C}^n \to \mathbb{C}$, every 1-unconditional norm $\|\cdot\|$ on \mathbb{C}^n and $2 \le k \le m$

$$\|\mathcal{S}_{k-1}L_P\|_{\infty} \le (c_1 \log n)^k \cdot \|\mathcal{S}_kL_P\|_{\infty}.$$

Moreover, if $\|\cdot\| = \|\cdot\|_p$ for $1 \le p < 2$, then there even is a constant $c_2 = c_2(p) \ge 1$ for which

$$\|\mathcal{S}_{k-1}L_P\|_{\infty} \le c_2^k \cdot \|\mathcal{S}_kL_P\|_{\infty}.$$

Ideas of the proof

An *m*-form $L: (\mathbb{C}^n)^m \to \mathbb{C}$ is uniquely determined by its coefficients $c_i = c_i(L) := L(e_{i_1}, \dots, e_{i_m}), \quad i \in \mathcal{I}(n, m) := \{1, \dots, n\}^m.$ With $L_i: (\mathbb{C}^n)^m \to \mathbb{C}, \ (x^{(1)}, \dots, x^{(m)}) \mapsto x^{(1)}_{i_1} \cdots x^{(m)}_{i_m}$ we have $L = \sum_{i \in \mathcal{I}(n, m)} c_i L_i.$

An *m*-form $L: (\mathbb{C}^n)^m \to \mathbb{C}$ is uniquely determined by its coefficients $c_i = c_i(L) := L(e_{i_1}, \dots, e_{i_m}), \quad i \in \mathcal{I}(n, m) := \{1, \dots, n\}^m.$ With $L_i: (\mathbb{C}^n)^m \to \mathbb{C}, \ (x^{(1)}, \dots, x^{(m)}) \mapsto x^{(1)}_{i_1} \cdots x^{(m)}_{i_m}$ we have $L = \sum_{i \in \mathcal{I}(n, m)} c_i L_i.$

We call $A \in \mathbb{C}^{\mathcal{I}(n,m)}$ an (*m*-dimensional) matrix and by $c_i(A)$ we denote its i^{th} entry. For $A, B \in \mathbb{C}^{\mathcal{I}(n,m)}$ we define the Schur product A * B (entry wise) by

 $c_{\boldsymbol{i}}(A * B) := c_{\boldsymbol{i}}(A) \cdot c_{\boldsymbol{i}}(B) \,.$

An *m*-form $L: (\mathbb{C}^n)^m \to \mathbb{C}$ is uniquely determined by its coefficients $c_i = c_i(L) := L(e_{i_1}, \dots, e_{i_m}), \quad i \in \mathcal{I}(n, m) := \{1, \dots, n\}^m.$ With $L_i: (\mathbb{C}^n)^m \to \mathbb{C}, \ (x^{(1)}, \dots, x^{(m)}) \mapsto x^{(1)}_{i_1} \cdots x^{(m)}_{i_m}$ we have $L = \sum_{i \in \mathcal{I}(n, m)} c_i L_i.$

We call $A \in \mathbb{C}^{\mathcal{I}(n,m)}$ an (*m*-dimensional) matrix and by $c_i(A)$ we denote its i^{th} entry. For $A, B \in \mathbb{C}^{\mathcal{I}(n,m)}$ we define the Schur product A * B (entry wise) by

$$c_{\boldsymbol{i}}(A * B) := c_{\boldsymbol{i}}(A) \cdot c_{\boldsymbol{i}}(B) \,.$$

For an $m\text{--form }L:(\mathbb{C}^n)^m\to\mathbb{C}$ and $A\in\mathbb{C}^{\mathcal{I}(n,m)}$ let

$$A * L := \sum_{i} \left(c_i(A) \cdot c_i(L) \right) L_i \,.$$

An *m*-form $L: (\mathbb{C}^n)^m \to \mathbb{C}$ is uniquely determined by its coefficients $c_i = c_i(L) := L(e_{i_1}, \dots, e_{i_m}), \quad i \in \mathcal{I}(n, m) := \{1, \dots, n\}^m.$ With $L_i: (\mathbb{C}^n)^m \to \mathbb{C}, \ (x^{(1)}, \dots, x^{(m)}) \mapsto x^{(1)}_{i_1} \cdots x^{(m)}_{i_m}$ we have $L = \sum_{i \in \mathcal{I}(n, m)} c_i L_i.$

For an $m\text{--form}\ L:(\mathbb{C}^n)^m\to\mathbb{C}$ and $A\in\mathbb{C}^{\mathcal{I}(n,m)}$ let

$$A * L := \sum_{i} \left(c_{i}(A) \cdot c_{i}(L) \right) L_{i}.$$

For a norm $\|\cdot\|$ on \mathbb{C}^n and $A\in\mathbb{C}^{\mathcal{I}(n,m)}$ we define the Schur norm $\mu^m_{\|\cdot\|}(A)$ as the best constant c, such that

$$||A * L||_{\infty} \le c \cdot ||L||_{\infty}$$

for any *m*-form $L: (\mathbb{C}^n)^m \to \mathbb{C}$.

1. Write $S_{k-1}L_P$ as the Schur product of a (suitable) matrix and S_kL_P , i.e.

$$\mathcal{S}_{k-1}L_P = \mathfrak{A}^k * \mathcal{S}_k L_P \,.$$

1. Write $S_{k-1}L_P$ as the Schur product of a (suitable) matrix and S_kL_P , i.e.

$$\mathcal{S}_{k-1}L_P = \mathfrak{A}^k * \mathcal{S}_k L_P \,.$$

2. Estimate the Schur norm of \mathfrak{A}^k

1. Write $S_{k-1}L_P$ as the Schur product of a (suitable) matrix and S_kL_P , i.e.

$$\mathcal{S}_{k-1}L_P = \mathfrak{A}^k * \mathcal{S}_k L_P \,.$$

- 2. Estimate the Schur norm of \mathfrak{A}^k
 - 2.1 Decompose \mathfrak{A}^k into a sum and product of more handily pieces.
 - 2.2 Generalize results of Kwapień and Pełczyński (1970) and Bennett (1976) (for the case m = 2) to any m.
 - 2.3 Use the compatibility of addition and Schur multiplication with the Schur norm to estimate $\mu_{\|\cdot\|}^m(\mathfrak{A}^k)$.

Comparing coefficients

To write $S_{k-1}L_P$ as the Schur product of a matrix and S_kL_P we have to compare coefficients.

Comparing coefficients

To write $S_{k-1}L_P$ as the Schur product of a matrix and S_kL_P we have to compare coefficients. We have the following result:

Proposition

Let $P : \mathbb{C}^n \to \mathbb{C}$ be a *m*-homogeneous polynomial, $i \in \mathcal{I}(n,m)$ and $k \in \{2, \ldots, n\}$. Then

$$c_{\boldsymbol{i}}(\mathcal{S}_{k-1}L_P) = \frac{k}{|\{1 \le u \le k \mid i_u = i_k\}|} \cdot c_{\boldsymbol{i}}(\mathcal{S}_kL_P)$$

provided $\max\{i_1, \ldots, i_{k-1}\} \leq i_k$; and

$$c_{i}(\mathcal{S}_{k-1}L_{P}) = 0 \cdot c_{i}(\mathcal{S}_{k}L_{P})$$

otherwise.

Comparing coefficients

To write $S_{k-1}L_P$ as the Schur product of a matrix and S_kL_P we have to compare coefficients. We have the following result:

Proposition

Let $P: \mathbb{C}^n \to \mathbb{C}$ be a *m*-homogeneous polynomial, $i \in \mathcal{I}(n,m)$ and $k \in \{2, \ldots, n\}$. Then

$$c_{\boldsymbol{i}}(\mathcal{S}_{k-1}L_P) = \frac{k}{|\{1 \le u \le k \mid i_u = i_k\}|} \cdot c_{\boldsymbol{i}}(\mathcal{S}_kL_P)$$

provided $\max\{i_1, \ldots, i_{k-1}\} \leq i_k$; and

$$c_{i}(\mathcal{S}_{k-1}L_{P}) = 0 \cdot c_{i}(\mathcal{S}_{k}L_{P})$$

otherwise.

Thus,

$$\mathcal{S}_{k-1}L_P = \mathfrak{A}^k * \mathcal{S}_k L_P \,,$$

with $c_i(\mathfrak{A}^k)$ given by the proposition.

Decomposing \mathfrak{A}^k

To estimate $\mu^m_{\|\cdot\|}(\mathfrak{A}^k)$ we decompose it into more handily pieces.

Decomposing \mathfrak{A}^k

To estimate $\mu_{\parallel \cdot \parallel}^m(\mathfrak{A}^k)$ we decompose it into more handily pieces.

Lemma

For $1 \leq k \leq m$ we have

$$\mathfrak{A}^{k} = \binom{k-1}{u=1} T^{u,k} \ast \left(\sum_{u=1}^{k} \frac{k}{u} \cdot A^{k,u} \right)$$

with

$$A^{k,u} := \sum_{\substack{Q \subset \{1,...,k\} \\ |Q|=u}} \left(*_{q \in Q} D^{q,k} \right) * \left(*_{q \in Q^c} (1 - D^{q,k}) \right),$$

where Q^c denotes the complement of Q in $\{1, \ldots, k\}$.

The matrices $1, D^{u,v}, T^{u,v} \in \mathbb{C}^{\mathcal{I}(n,m)}$ $(u, v \in \{1, \ldots, m\}, u \neq v)$ are defined by

$$c_{i}(1) := 1, \quad c_{i}(D^{u,v}) := \begin{cases} 1, & i_{u} = i_{v} \\ 0, & i_{u} \neq i_{v} \end{cases}, \quad c_{i}(T^{u,v}) := \begin{cases} 1, & i_{u} \le i_{v} \\ 0, & i_{u} > i_{v} \end{cases}$$

Classical Schur multipliers

In the case m = 2 Kwapień and Pełczyński (1970) and Bennett (1976) obtained for these matrices:

$$\mu_{\|\cdot\|_{\infty}}^{2}(D^{1,2}) \le 1,$$

$$\mu_{\|\cdot\|_{\infty}}^{2}(T^{1,2}) \le \log_{2}(2n)$$

and, moreover, for $1 \le p < 2$ there is a constant $c_3 = c_3(p)$ such that

$$\mu_{\|\cdot\|_p}^2(T^{1,2}) \le c_3 \,.$$

Classical Schur multipliers

In the case m = 2 Kwapień and Pełczyński (1970) and Bennett (1976) obtained for these matrices:

$$\mu_{\|\cdot\|_{\infty}}^{2}(D^{1,2}) \le 1,$$

$$\mu_{\|\cdot\|_{\infty}}^{2}(T^{1,2}) \le \log_{2}(2n)$$

and, moreover, for $1 \le p < 2$ there is a constant $c_3 = c_3(p)$ such that

$$\mu_{\|\cdot\|_p}^2(T^{1,2}) \le c_3.$$

This can be generalized to any norm $\|\cdot\|$ on \mathbb{C}^n and any m. We have:

$$\mu_{\|\cdot\|}^{m}(D^{u,v}) \le 1,$$

$$\mu_{\|\cdot\|}^{m}(T^{u,v}) \le \log_{2}(2n),$$

$$\mu_{\|\cdot\|_{p}}^{m}(T^{u,v}) \le c_{3}.$$

Using that

$$\mu^m_{\|\,\cdot\,\,\|}(A\ast B) \leq \mu^m_{\|\,\cdot\,\,\|}(A)\cdot \mu^m_{\|\,\cdot\,\,\|}(B)$$

and that $\mu_{\|\cdot\|}^m$ is a norm, we are able to use our decomposition and the norm estimates on the previous slide to estimate the Schur norm of \mathfrak{A}^k .

We obtain

$$\mu_{\|\cdot\|}^{m}(\mathfrak{A}^{k}) \le k3^{k} \left(\mu_{\|\cdot\|}^{m}(T^{u,k})\right)^{k-1} \le (c_{1}\log n)^{k},$$

respectively for $1 \leq p < 2$

$$\mu^m_{\|\cdot\|_p}(\mathfrak{A}^k) \leq k 3^k \left(\mu^m_{\|\cdot\|_p}(T^{u,k}) \right)^{k-1} \leq c_2^k \,.$$

 $\|\mathcal{S}_{k-1}L_P\|_{\infty} \leq c^k \cdot \|\mathcal{S}_kL_P\|_{\infty}.$

$$\|\mathcal{S}_{k-1}L_P\|_{\infty} \le c^k \cdot \|\mathcal{S}_kL_P\|_{\infty}.$$

Iteratively applying this result yields

 $||L_P||_{\infty} = ||\mathcal{S}_1 L_P||_{\infty}$

$$\|\mathcal{S}_{k-1}L_P\|_{\infty} \le c^k \cdot \|\mathcal{S}_kL_P\|_{\infty}.$$

Iteratively applying this result yields

$$||L_P||_{\infty} = ||\mathcal{S}_1 L_P||_{\infty} \le c^2 \cdot ||\mathcal{S}_2 L_P||_{\infty} \le c^2 c^3 \cdot ||\mathcal{S}_3 L_P||_{\infty}$$
$$\le \dots \le c^{2+3+\dots+m} \cdot ||\mathcal{S}_m L_P||_{\infty}$$

$$\|\mathcal{S}_{k-1}L_P\|_{\infty} \le c^k \cdot \|\mathcal{S}_kL_P\|_{\infty}.$$

Iteratively applying this result yields

$$||L_P||_{\infty} = ||\mathcal{S}_1 L_P||_{\infty} \le c^2 \cdot ||\mathcal{S}_2 L_P||_{\infty} \le c^2 c^3 \cdot ||\mathcal{S}_3 L_P||_{\infty}$$
$$\le \dots \le c^{2+3+\dots+m} \cdot ||\mathcal{S}_m L_P||_{\infty}$$
$$\le c^{m^2} \cdot ||\mathcal{S}L_P||_{\infty} \le c^{m^2} e^m \cdot ||P||_{\infty}.$$

We established the identity

$$\mathcal{S}_{k-1}L_P = \mathfrak{A}^k * \mathcal{S}_k L_P \,,$$

thus

$$L_P = \binom{m}{*} \mathfrak{A}^k \times \mathcal{S}L_P.$$

We established the identity

$$\mathcal{S}_{k-1}L_P = \mathfrak{A}^k * \mathcal{S}_k L_P \,,$$

thus

$$L_P = \binom{m}{*} \mathfrak{A}^k \cdot \mathcal{S}L_P.$$

In the general case, we get an $\log n$ factor out of every occurrence of $T^{u,k}$ in \mathfrak{A}^k . In the product $\underset{k=2}{\overset{m}{*}}\mathfrak{A}^k$ we have the factor $\underset{k=2}{\overset{m}{*}}\binom{k-1}{\underset{u=1}{*}}T^{u,k}\right).$

We established the identity

$$\mathcal{S}_{k-1}L_P = \mathfrak{A}^k * \mathcal{S}_k L_P \,,$$

thus

$$L_P = \binom{m}{*} \mathfrak{A}^k \ast \mathcal{S} L_P.$$

In the general case, we get an $\log n$ factor out of every occurrence of $T^{u,k}$ in \mathfrak{A}^k . In the product $\overset{m}{\underset{k=2}{\overset{m}{\ast}}}\mathfrak{A}^k$ we have the factor $\overset{m}{\underset{k=2}{\overset{m}{\ast}}} \begin{pmatrix} k^{-1} \\ \ast \\ u^{-1} \end{pmatrix}.$

This gives, using the naive approach, a factor of $(\log n)^{m^2}$.

We established the identity

$$\mathcal{S}_{k-1}L_P = \mathfrak{A}^k * \mathcal{S}_k L_P \,,$$

thus

$$L_P = \binom{m}{*} \mathfrak{A}^k \ast \mathcal{S} L_P.$$

In the general case, we get an $\log n$ factor out of every occurrence of $T^{u,k}$ in \mathfrak{A}^k . In the product $\underset{k=2}{\overset{m}{*}}\mathfrak{A}^k$ we have the factor $\underset{k=2}{\overset{m}{*}}\binom{k-1}{\underset{u=1}{*}}T^{u,k}\right).$

This gives, using the naive approach, a factor of $(\log n)^{m^2}$. However, we can improve the result by checking that

$$\underset{k=2}{\overset{m}{*}} \begin{pmatrix} k-1 \\ * \\ u=1 \end{pmatrix} = \underset{k=2}{\overset{m}{*}} T^{k-1,k},$$

We established the identity

$$\mathcal{S}_{k-1}L_P = \mathfrak{A}^k * \mathcal{S}_k L_P \,,$$

thus

$$L_P = \binom{m}{*} \mathfrak{A}^k \ast \mathcal{S} L_P.$$

In the general case, we get an $\log n$ factor out of every occurrence of $T^{u,k}$ in \mathfrak{A}^k . In the product $\underset{k=2}{\overset{m}{*}}\mathfrak{A}^k$ we have the factor $\underset{k=2}{\overset{m}{*}}\binom{k-1}{\underset{u=1}{*}}T^{u,k}\right).$

This gives, using the naive approach, a factor of $(\log n)^{m^2}$. However, we can improve the result by checking that

$$\underset{k=2}{\overset{m}{\ast}} \begin{pmatrix} k-1 \\ * \\ u=1 \end{pmatrix} = \underset{k=2}{\overset{m}{\ast}} T^{k-1,k},$$

and we obtain $\mu_{\|\cdot\|}^m(\underset{k=2}{\overset{m}{*}}\mathfrak{A}^k) \leq c^{m^2}(\log n)^{m-1}$ in the general case.

References

- G. Bennett. Unconditional convergence and almost everywhere convergence. (1976).
- A. Defant and S. Schlüters. Non-symmetric polarization. (2017).
- S. Kwapień and A. Pełczyński. The main triangle projection in matrix spaces and its applications. (1970).
- F. A. Sukochev and A. A. Tomskova. (E, F)-Schur multipliers and applications. (2013).