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Introduction: Polynomials and

Polarization



Homogeneous polynomials

Let throughout the talk P : Cn → C denote a m–homogeneous

polynomial.

Every such polynomial can be written as

P (x) =
∑
α∈Nn

0

|α|=m

cαx
α =

∑
1≤j1≤...≤jm≤n

c(j1,...,jm)xj1 · · ·xjm .

An m–form which is somewhat naturally associated to P is given by

LP (x(1), . . . , x(m)) :=
∑

1≤j1≤...≤jm≤n

c(j1,...,jm)x
(1)
j1
· · ·x(m)

jm
,

and the symmetrization of LP ,

SLP (x(1), . . . , x(m)) :=
1

m!

∑
σ∈Σm

LP (x(σ(1)), . . . , x(σ(m))) ,

where Σm denotes the set of all permutations of {1, . . . ,m}, is

symmetric and likewise defines P .
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Norm inequalities

With a norm ‖ · ‖ on Cn, the space of all m–homogeneous polynomials P

and the space of all m–linear forms L become Banach spaces, when

equipped with the supremum norms

‖P‖∞ := sup
‖x‖≤1

|P (x)|

and

‖L‖∞ := sup
‖x(k)‖≤1

∣∣L(x(1), . . . , x(m)
)∣∣ .

As P (x) = LP (x, . . . , x) = SLP (x, . . . , x) for all x ∈ Cn, it is easy to

see that ‖P‖∞ ≤ ‖LP ‖∞ and ‖P‖∞ ≤ ‖SLP ‖∞.
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The classical polarization formula

Theorem (Polarization formula)

For each m–homogeneous polynomial P : Cn → C and every choice of

x(1), . . . , x(m) ∈ Cn,

SLP
(
x(1), . . . , x(m)

)
=

1

2mm!

∑
εk=±1

ε1 · · · εmP
( m∑
k=1

εkx
(k)
)
.

As an easy consequence,

‖P‖∞ ≤ ‖SLP ‖∞ ≤ mm

m! ‖P‖∞ ≤ e
m‖P‖∞ .

The question

Can we compare the norms of a m–homogeneous polynomial P with

norms of non-symmetric m–forms, which define P?
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Non-symmetric m–forms defining P

We introduced the m–form LP , which is somewhat naturally associated

with P . However, LP is in general not symmetric.

The norm inequality,

which arose from the polarization formula, is therefore not applicable!

Bad news: We can’t expect to have the same or a similar norm inequality

for every m–form defining P .

Consider for example

L : (C2)2 → C , (x, y) 7→ x1y2 − x2y1

and P (x) := L(x, x). Then L 6= 0, but P = 0, i.e. ‖L‖∞ > 0 and

‖P‖∞ = 0.

Good news: The mappings LP have a special structure...
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Our results



Main theorem

We consider 1–unconditional norms on Cn, that is |xk| ≤ |yk| for all k

implies ‖x‖ ≤ ‖y‖.

Examples are the `np norms ‖ · ‖p.

Theorem

There exists a universal constant c1 ≥ 1 such that for every

m–homogeneous polynomial P : Cn → C and every 1–unconditional

norm ‖ · ‖ on Cn

‖LP ‖∞ ≤ cm
2

1 (log n)m−1 · ‖P‖∞ .

Moreover, if ‖ · ‖ = ‖ · ‖p for 1 ≤ p < 2, then there even is a constant

c2 = c2(p) ≥ 1 for which

‖LP ‖∞ ≤ cm
2

2 · ‖P‖∞ .
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Partial symmetrization

Keeping the polarization formula in mind, we have to show that

‖LP ‖∞ ≤ c · ‖SLP ‖∞ with a suitable constant c. We will use an

iterative approach.

For 1 ≤ k ≤ n define the partial symmetrization

SkLP (x(1), . . . , x(m))

:=
1

k!

∑
σ∈Σk

LP (x(σ(1)), . . . , x(σ(k)), x(k+1), . . . , x(σ(m))) .

Note that S1LP = LP and SmLP = SLP .
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Partial symmetrization (cont.)

Theorem

There exists a universal constant c1 ≥ 1 such that for every

m–homogeneous polynomial P : Cn → C, every 1–unconditional norm

‖ · ‖ on Cn and 2 ≤ k ≤ m

‖Sk−1LP ‖∞ ≤ (c1 log n)k · ‖SkLP ‖∞ .

Moreover, if ‖ · ‖ = ‖ · ‖p for 1 ≤ p < 2, then there even is a constant

c2 = c2(p) ≥ 1 for which

‖Sk−1LP ‖∞ ≤ ck2 · ‖SkLP ‖∞ .
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Ideas of the proof



Coefficients of m–forms and Schur multiplication

An m–form L : (Cn)m → C is uniquely determined by its coefficients

ci = ci(L) := L(ei1 , . . . , eim) , i ∈ I(n,m) := {1, . . . , n}m .

With Li : (Cn)m → C, (x(1), . . . , x(m)) 7→ x
(1)
i1
· · ·x(m)

im
we have

L =
∑

i∈I(n,m)

ciLi .

We call A ∈ CI(n,m) an (m–dimensional) matrix and by ci(A) we denote

its ith entry. For A,B ∈ CI(n,m) we define the Schur product A ∗B
(entry wise) by

ci(A∗B) := ci(A) · ci(B) .

For an m–form L : (Cn)m → C and A ∈ CI(n,m) let

A∗L :=
∑
i

(
ci(A) · ci(L)

)
Li .

9



Coefficients of m–forms and Schur multiplication

An m–form L : (Cn)m → C is uniquely determined by its coefficients

ci = ci(L) := L(ei1 , . . . , eim) , i ∈ I(n,m) := {1, . . . , n}m .

With Li : (Cn)m → C, (x(1), . . . , x(m)) 7→ x
(1)
i1
· · ·x(m)

im
we have

L =
∑

i∈I(n,m)

ciLi .

We call A ∈ CI(n,m) an (m–dimensional) matrix and by ci(A) we denote

its ith entry. For A,B ∈ CI(n,m) we define the Schur product A ∗B
(entry wise) by

ci(A∗B) := ci(A) · ci(B) .

For an m–form L : (Cn)m → C and A ∈ CI(n,m) let

A∗L :=
∑
i

(
ci(A) · ci(L)

)
Li .

9



Coefficients of m–forms and Schur multiplication

An m–form L : (Cn)m → C is uniquely determined by its coefficients

ci = ci(L) := L(ei1 , . . . , eim) , i ∈ I(n,m) := {1, . . . , n}m .

With Li : (Cn)m → C, (x(1), . . . , x(m)) 7→ x
(1)
i1
· · ·x(m)

im
we have

L =
∑

i∈I(n,m)

ciLi .

We call A ∈ CI(n,m) an (m–dimensional) matrix and by ci(A) we denote

its ith entry. For A,B ∈ CI(n,m) we define the Schur product A ∗B
(entry wise) by

ci(A∗B) := ci(A) · ci(B) .

For an m–form L : (Cn)m → C and A ∈ CI(n,m) let

A∗L :=
∑
i

(
ci(A) · ci(L)

)
Li .

9



Coefficients of m–forms and Schur multiplication

An m–form L : (Cn)m → C is uniquely determined by its coefficients

ci = ci(L) := L(ei1 , . . . , eim) , i ∈ I(n,m) := {1, . . . , n}m .

With Li : (Cn)m → C, (x(1), . . . , x(m)) 7→ x
(1)
i1
· · ·x(m)

im
we have

L =
∑

i∈I(n,m)

ciLi .

For an m–form L : (Cn)m → C and A ∈ CI(n,m) let

A∗L :=
∑
i

(
ci(A) · ci(L)

)
Li .

For a norm ‖ · ‖ on Cn and A ∈ CI(n,m) we define the Schur norm

µm‖ · ‖(A) as the best constant c, such that

‖A∗L‖∞ ≤ c · ‖L‖∞
for any m–form L : (Cn)m → C.

9



Plan for the proof

1. Write Sk−1LP as the Schur product of a (suitable) matrix and

SkLP , i.e.

Sk−1LP = Ak ∗SkLP .

2. Estimate the Schur norm of Ak

2.1 Decompose Ak into a sum and product of more handily pieces.

2.2 Generalize results of Kwapień and Pe lczyński (1970) and Bennett

(1976) (for the case m = 2) to any m.

2.3 Use the compatibility of addition and Schur multiplication with the

Schur norm to estimate µm
‖ · ‖(A

k).
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Comparing coefficients

To write Sk−1LP as the Schur product of a matrix and SkLP we have to

compare coefficients.

We have the following result:

Proposition

Let P : Cn → C be a m–homogeneous polynomial, i ∈ I(n,m) and

k ∈ {2, . . . , n}. Then

ci(Sk−1LP ) =
k

|{1 ≤ u ≤ k | iu = ik}|
· ci(SkLP )

provided max{i1, . . . , ik−1} ≤ ik; and

ci(Sk−1LP ) = 0 · ci(SkLP )

otherwise.

Thus,

Sk−1LP = Ak ∗SkLP ,
with ci(A

k) given by the proposition.
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Decomposing Ak

To estimate µm‖ · ‖(A
k) we decompose it into more handily pieces.

Lemma

For 1 ≤ k ≤ m we have

Ak =
(
k−1∗
u=1

Tu,k
)
∗
( k∑
u=1

k

u
·Ak,u

)
with

Ak,u :=
∑

Q⊂{1,...,k}
|Q|=u

(
∗
q∈Q

Dq,k
)
∗
(
∗

q∈Qc
(1−Dq,k)

)
,

where Qc denotes the complement of Q in {1, . . . , k}.

The matrices 1, Du,v, Tu,v ∈ CI(n,m) (u, v ∈ {1, . . . ,m}, u 6= v) are

defined by

ci(1) := 1 , ci(D
u,v) :=

{
1, iu = iv

0, iu 6= iv
, ci(T

u,v) :=

{
1, iu ≤ iv
0, iu > iv

.
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Classical Schur multipliers

In the case m = 2 Kwapień and Pe lczyński (1970) and Bennett (1976)

obtained for these matrices:

µ2
‖ · ‖∞(D1,2) ≤ 1 ,

µ2
‖ · ‖∞(T 1,2) ≤ log2(2n) ,

and, moreover, for 1 ≤ p < 2 there is a constant c3 = c3(p) such that

µ2
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Decomposing Ak (cont.)

Using that

µm‖ · ‖(A∗B) ≤ µm‖ · ‖(A) · µm‖ · ‖(B)

and that µm‖ · ‖ is a norm, we are able to use our decomposition and the

norm estimates on the previous slide to estimate the Schur norm of Ak.

We obtain

µm‖ · ‖(A
k) ≤ k3k

(
µm‖ · ‖(T

u,k)
)k−1 ≤ (c1 log n)k ,

respectively for 1 ≤ p < 2

µm‖ · ‖p(Ak) ≤ k3k
(
µm‖ · ‖p(Tu,k)

)k−1 ≤ ck2 .
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Summary

We established upper bounds µm‖ · ‖(A
k) ≤ ck with nice constants c.

Hence

‖Sk−1LP ‖∞ ≤ ck · ‖SkLP ‖∞ .

Iteratively applying this result yields

‖LP ‖∞ = ‖S1LP ‖∞

≤ c2 · ‖S2LP ‖∞ ≤ c2c3 · ‖S3LP ‖∞
≤ . . . ≤ c2+3+...+m · ‖SmLP ‖∞

≤ cm
2

· ‖SLP ‖∞ ≤ cm
2

em · ‖P‖∞ .
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Simple improvement

We established the identity

Sk−1LP = Ak ∗SkLP ,
thus

LP =
(

m∗
k=2

Ak
)
∗SLP .

In the general case, we get an log n factor out of every occurrence of

Tu,k in Ak. In the product
m∗
k=2

Ak we have the factor

m∗
k=2

(
k−1∗
u=1

Tu,k
)
.

This gives, using the naive approach, a factor of (log n)m
2

. However, we

can improve the result by checking that

m∗
k=2

(
k−1∗
u=1

Tu,k
)

=
m∗
k=2

T k−1,k ,

and we obtain µm‖ · ‖(
m∗
k=2

Ak) ≤ cm2

(log n)m−1 in the general case.
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