Non-symmetric polarization

Sunke Schlüters

València, 18. October 2017
Institut für Mathematik
Carl von Ossietzky Universität Oldenburg

Joint work with Andreas Defant

Introduction: Polynomials and
 Polarization

Homogeneous polynomials

Let throughout the talk $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ denote a m-homogeneous polynomial.

Homogeneous polynomials

Let throughout the talk $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ denote a m-homogeneous polynomial. Every such polynomial can be written as

$$
P(x)=\sum_{\substack{\alpha \in \mathbb{N}_{0}^{n} \\|\alpha|=m}} c_{\alpha} x^{\alpha}
$$

Homogeneous polynomials

Let throughout the talk $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ denote a m-homogeneous polynomial. Every such polynomial can be written as

$$
P(x)=\sum_{\substack{\alpha \in \mathbb{N}_{o}^{n} \\|\alpha|=m}} c_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

Homogeneous polynomials

Let throughout the talk $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ denote a m-homogeneous polynomial. Every such polynomial can be written as

$$
P(x)=\sum_{\substack{\alpha \in \mathbb{N}_{0}^{n} \\|\alpha|=m}} c_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{\left(j_{1}, \ldots, j_{m}\right)} x_{j_{1}} \cdots x_{j_{m}} .
$$

Homogeneous polynomials

Let throughout the talk $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ denote a m-homogeneous polynomial. Every such polynomial can be written as

$$
P(x)=\sum_{\substack{\alpha \in \mathbb{N}_{0}^{n} \\|\alpha|=m}} c_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{\left(j_{1}, \ldots, j_{m}\right)} x_{j_{1}} \cdots x_{j_{m}} .
$$

An m-form which is somewhat naturally associated to P is given by

$$
L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right):=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{\left(j_{1}, \ldots, j_{m}\right)} x_{j_{1}}^{(1)} \cdots x_{j_{m}}^{(m)},
$$

Homogeneous polynomials

Let throughout the talk $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ denote a m-homogeneous polynomial. Every such polynomial can be written as

$$
P(x)=\sum_{\substack{\alpha \in \mathbb{N}_{0}^{n} \\|\alpha|=m}} c_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{\left(j_{1}, \ldots, j_{m}\right)} x_{j_{1}} \cdots x_{j_{m}} .
$$

An m-form which is somewhat naturally associated to P is given by

$$
L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right):=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{\left(j_{1}, \ldots, j_{m}\right)} x_{j_{1}}^{(1)} \cdots x_{j_{m}}^{(m)},
$$

and the symmetrization of L_{P},

$$
\mathcal{S} L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right):=\frac{1}{m!} \sum_{\sigma \in \Sigma_{m}} L_{P}\left(x^{(\sigma(1))}, \ldots, x^{(\sigma(m))}\right)
$$

where Σ_{m} denotes the set of all permutations of $\{1, \ldots, m\}$, is symmetric and likewise defines P.

Norm inequalities

With a norm $\|\cdot\|$ on \mathbb{C}^{n}, the space of all m-homogeneous polynomials P and the space of all m-linear forms L become Banach spaces, when equipped with the supremum norms

$$
\|P\|_{\infty}:=\sup _{\|x\| \leq 1}|P(x)|
$$

and

$$
\|L\|_{\infty}:=\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L\left(x^{(1)}, \ldots, x^{(m)}\right)\right|
$$

Norm inequalities

With a norm $\|\cdot\|$ on \mathbb{C}^{n}, the space of all m-homogeneous polynomials P and the space of all m-linear forms L become Banach spaces, when equipped with the supremum norms

$$
\|P\|_{\infty}:=\sup _{\|x\| \leq 1}|P(x)|
$$

and

$$
\|L\|_{\infty}:=\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L\left(x^{(1)}, \ldots, x^{(m)}\right)\right|
$$

As $P(x)=L_{P}(x, \ldots, x)=\mathcal{S} L_{P}(x, \ldots, x)$ for all $x \in \mathbb{C}^{n}$, it is easy to see that $\|P\|_{\infty} \leq\left\|L_{P}\right\|_{\infty}$ and $\|P\|_{\infty} \leq\left\|\mathcal{S} L_{P}\right\|_{\infty}$.

The classical polarization formula

Theorem (Polarization formula)

For each m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ and every choice of $x^{(1)}, \ldots, x^{(m)} \in \mathbb{C}^{n}$,

$$
\mathcal{S} L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)=\frac{1}{2^{m} m!} \sum_{\varepsilon_{k}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{m} P\left(\sum_{k=1}^{m} \varepsilon_{k} x^{(k)}\right) .
$$

The classical polarization formula

Theorem (Polarization formula)

For each m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ and every choice of $x^{(1)}, \ldots, x^{(m)} \in \mathbb{C}^{n}$,

$$
\mathcal{S} L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)=\frac{1}{2^{m} m!} \sum_{\varepsilon_{k}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{m} P\left(\sum_{k=1}^{m} \varepsilon_{k} x^{(k)}\right) .
$$

As an easy consequence,

$$
\|P\|_{\infty} \leq\left\|\mathcal{S} L_{P}\right\|_{\infty} \leq \frac{m^{m}}{m!}\|P\|_{\infty} \leq e^{m}\|P\|_{\infty} .
$$

The classical polarization formula

Theorem (Polarization formula)

For each m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ and every choice of $x^{(1)}, \ldots, x^{(m)} \in \mathbb{C}^{n}$,

$$
\mathcal{S} L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)=\frac{1}{2^{m} m!} \sum_{\varepsilon_{k}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{m} P\left(\sum_{k=1}^{m} \varepsilon_{k} x^{(k)}\right) .
$$

As an easy consequence,

$$
\|P\|_{\infty} \leq\left\|\mathcal{S} L_{P}\right\|_{\infty} \leq \frac{m^{m}}{m!}\|P\|_{\infty} \leq e^{m}\|P\|_{\infty} .
$$

The question

Can we compare the norms of a m-homogeneous polynomial P with norms of non-symmetric m-forms, which define P ?

Non-symmetric m-forms defining P

We introduced the m-form L_{P}, which is somewhat naturally associated with P. However, L_{P} is in general not symmetric.

Non-symmetric m-forms defining P

We introduced the m-form L_{P}, which is somewhat naturally associated with P. However, L_{P} is in general not symmetric. The norm inequality, which arose from the polarization formula, is therefore not applicable!

Non-symmetric m-forms defining P

We introduced the m-form L_{P}, which is somewhat naturally associated with P. However, L_{P} is in general not symmetric. The norm inequality, which arose from the polarization formula, is therefore not applicable!

Bad news: We can't expect to have the same or a similar norm inequality for every m-form defining P.

Non-symmetric m-forms defining P

We introduced the m-form L_{P}, which is somewhat naturally associated with P. However, L_{P} is in general not symmetric. The norm inequality, which arose from the polarization formula, is therefore not applicable!

Bad news: We can't expect to have the same or a similar norm inequality for every m-form defining P.

Consider for example

$$
L:\left(\mathbb{C}^{2}\right)^{2} \rightarrow \mathbb{C}, \quad(x, y) \mapsto x_{1} y_{2}-x_{2} y_{1}
$$

and $P(x):=L(x, x)$. Then $L \neq 0$, but $P=0$, i.e. $\|L\|_{\infty}>0$ and $\|P\|_{\infty}=0$.

Non-symmetric m-forms defining P

We introduced the m-form L_{P}, which is somewhat naturally associated with P. However, L_{P} is in general not symmetric. The norm inequality, which arose from the polarization formula, is therefore not applicable!

Bad news: We can't expect to have the same or a similar norm inequality for every m-form defining P.

Consider for example

$$
L:\left(\mathbb{C}^{2}\right)^{2} \rightarrow \mathbb{C}, \quad(x, y) \mapsto x_{1} y_{2}-x_{2} y_{1}
$$

and $P(x):=L(x, x)$. Then $L \neq 0$, but $P=0$, i.e. $\|L\|_{\infty}>0$ and $\|P\|_{\infty}=0$.

Good news: The mappings L_{P} have a special structure...

Our results

Main theorem

We consider 1-unconditional norms on \mathbb{C}^{n}, that is $\left|x_{k}\right| \leq\left|y_{k}\right|$ for all k implies $\|x\| \leq\|y\|$.

Main theorem

We consider 1-unconditional norms on \mathbb{C}^{n}, that is $\left|x_{k}\right| \leq\left|y_{k}\right|$ for all k implies $\|x\| \leq\|y\|$. Examples are the ℓ_{p}^{n} norms $\|\cdot\|_{p}$.

Main theorem

We consider 1-unconditional norms on \mathbb{C}^{n}, that is $\left|x_{k}\right| \leq\left|y_{k}\right|$ for all k implies $\|x\| \leq\|y\|$. Examples are the ℓ_{p}^{n} norms $\|\cdot\|_{p}$.

Theorem

There exists a universal constant $c_{1} \geq 1$ such that for every m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ and every 1 -unconditional norm $\|\cdot\|$ on \mathbb{C}^{n}

$$
\left\|L_{P}\right\|_{\infty} \leq c_{1}^{m^{2}}(\log n)^{m-1} \cdot\|P\|_{\infty}
$$

Moreover, if $\|\cdot\|=\|\cdot\|_{p}$ for $1 \leq p<2$, then there even is a constant $c_{2}=c_{2}(p) \geq 1$ for which

$$
\left\|L_{P}\right\|_{\infty} \leq c_{2}^{m^{2}} \cdot\|P\|_{\infty}
$$

Partial symmetrization

Keeping the polarization formula in mind, we have to show that $\left\|L_{P}\right\|_{\infty} \leq c \cdot\left\|\mathcal{S} L_{P}\right\|_{\infty}$ with a suitable constant c. We will use an iterative approach.

Partial symmetrization

Keeping the polarization formula in mind, we have to show that $\left\|L_{P}\right\|_{\infty} \leq c \cdot\left\|\mathcal{S} L_{P}\right\|_{\infty}$ with a suitable constant c. We will use an iterative approach.

For $1 \leq k \leq n$ define the partial symmetrization

$$
\begin{aligned}
\mathcal{S}_{k} L_{P}\left(x^{(1)}, \ldots,\right. & \left.x^{(m)}\right) \\
& :=\frac{1}{k!} \sum_{\sigma \in \Sigma_{k}} L_{P}\left(x^{(\sigma(1))}, \ldots, x^{(\sigma(k))}, x^{(k+1)}, \ldots, x^{(\sigma(m))}\right) .
\end{aligned}
$$

Partial symmetrization

Keeping the polarization formula in mind, we have to show that $\left\|L_{P}\right\|_{\infty} \leq c \cdot\left\|\mathcal{S} L_{P}\right\|_{\infty}$ with a suitable constant c. We will use an iterative approach.

For $1 \leq k \leq n$ define the partial symmetrization

$$
\begin{aligned}
\mathcal{S}_{k} L_{P}\left(x^{(1)}, \ldots,\right. & \left.x^{(m)}\right) \\
& :=\frac{1}{k!} \sum_{\sigma \in \Sigma_{k}} L_{P}\left(x^{(\sigma(1))}, \ldots, x^{(\sigma(k))}, x^{(k+1)}, \ldots, x^{(\sigma(m))}\right) .
\end{aligned}
$$

Note that $\mathcal{S}_{1} L_{P}=L_{P}$ and $\mathcal{S}_{m} L_{P}=\mathcal{S} L_{P}$.

Partial symmetrization (cont.)

Theorem

There exists a universal constant $c_{1} \geq 1$ such that for every m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$, every 1 -unconditional norm $\|\cdot\|$ on \mathbb{C}^{n} and $2 \leq k \leq m$

$$
\left\|\mathcal{S}_{k-1} L_{P}\right\|_{\infty} \leq\left(c_{1} \log n\right)^{k} \cdot\left\|\mathcal{S}_{k} L_{P}\right\|_{\infty}
$$

Moreover, if $\|\cdot\|=\|\cdot\|_{p}$ for $1 \leq p<2$, then there even is a constant $c_{2}=c_{2}(p) \geq 1$ for which

$$
\left\|\mathcal{S}_{k-1} L_{P}\right\|_{\infty} \leq c_{2}^{k} \cdot\left\|\mathcal{S}_{k} L_{P}\right\|_{\infty}
$$

Ideas of the proof

Coefficients of m-forms and Schur multiplication

An m-form $L:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ is uniquely determined by its coefficients

$$
c_{i}=c_{i}(L):=L\left(e_{i_{1}}, \ldots, e_{i_{m}}\right), \quad i \in \mathcal{I}(n, m):=\{1, \ldots, n\}^{m} .
$$

With $L_{i}:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C},\left(x^{(1)}, \ldots, x^{(m)}\right) \mapsto x_{i_{1}}^{(1)} \cdots x_{i_{m}}^{(m)}$ we have

$$
L=\sum_{i \in \mathcal{I}(n, m)} c_{i} L_{i} .
$$

Coefficients of m-forms and Schur multiplication

An m-form $L:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ is uniquely determined by its coefficients

$$
c_{\boldsymbol{i}}=c_{\boldsymbol{i}}(L):=L\left(e_{i_{1}}, \ldots, e_{i_{m}}\right), \quad \boldsymbol{i} \in \mathcal{I}(n, m):=\{1, \ldots, n\}^{m}
$$

With $L_{i}:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C},\left(x^{(1)}, \ldots, x^{(m)}\right) \mapsto x_{i_{1}}^{(1)} \cdots x_{i_{m}}^{(m)}$ we have

$$
L=\sum_{i \in \mathcal{I}(n, m)} c_{i} L_{i} .
$$

We call $A \in \mathbb{C}^{\mathcal{I}(n, m)}$ an (m-dimensional) matrix and by $c_{i}(A)$ we denote its $i^{\text {th }}$ entry. For $A, B \in \mathbb{C}^{\mathcal{I}(n, m)}$ we define the Schur product $A * B$ (entry wise) by

$$
c_{\boldsymbol{i}}(A * B):=c_{\boldsymbol{i}}(A) \cdot c_{\boldsymbol{i}}(B) .
$$

Coefficients of m-forms and Schur multiplication

An m-form $L:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ is uniquely determined by its coefficients

$$
c_{i}=c_{i}(L):=L\left(e_{i_{1}}, \ldots, e_{i_{m}}\right), \quad i \in \mathcal{I}(n, m):=\{1, \ldots, n\}^{m} .
$$

With $L_{i}:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C},\left(x^{(1)}, \ldots, x^{(m)}\right) \mapsto x_{i_{1}}^{(1)} \cdots x_{i_{m}}^{(m)}$ we have

$$
L=\sum_{i \in \mathcal{I}(n, m)} c_{i} L_{i} .
$$

We call $A \in \mathbb{C}^{\mathcal{I}(n, m)}$ an (m-dimensional) matrix and by $c_{i}(A)$ we denote its $i^{\text {th }}$ entry. For $A, B \in \mathbb{C}^{\mathcal{I}(n, m)}$ we define the Schur product $A * B$ (entry wise) by

$$
c_{\boldsymbol{i}}(A * B):=c_{\boldsymbol{i}}(A) \cdot c_{\boldsymbol{i}}(B) .
$$

For an m-form $L:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ and $A \in \mathbb{C}^{\mathcal{I}(n, m)}$ let

$$
A * L:=\sum_{i}\left(c_{i}(A) \cdot c_{i}(L)\right) L_{i}
$$

Coefficients of m-forms and Schur multiplication

An m-form $L:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ is uniquely determined by its coefficients

$$
c_{\boldsymbol{i}}=c_{\boldsymbol{i}}(L):=L\left(e_{i_{1}}, \ldots, e_{i_{m}}\right), \quad i \in \mathcal{I}(n, m):=\{1, \ldots, n\}^{m} .
$$

With $L_{i}:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C},\left(x^{(1)}, \ldots, x^{(m)}\right) \mapsto x_{i_{1}}^{(1)} \cdots x_{i_{m}}^{(m)}$ we have

$$
L=\sum_{i \in \mathcal{I}(n, m)} c_{i} L_{i} .
$$

For an m-form $L:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ and $A \in \mathbb{C}^{\mathcal{I}(n, m)}$ let

$$
A * L:=\sum_{i}\left(c_{i}(A) \cdot c_{i}(L)\right) L_{i} .
$$

For a norm $\|\cdot\|$ on \mathbb{C}^{n} and $A \in \mathbb{C}^{\mathcal{I}(n, m)}$ we define the Schur norm $\mu_{\|\cdot\|}^{m}(A)$ as the best constant c, such that

$$
\|A * L\|_{\infty} \leq c \cdot\|L\|_{\infty}
$$

for any m-form $L:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$.

Plan for the proof

1. Write $\mathcal{S}_{k-1} L_{P}$ as the Schur product of a (suitable) matrix and $\mathcal{S}_{k} L_{P}$, i.e.

$$
\mathcal{S}_{k-1} L_{P}=\mathfrak{A}^{k} * \mathcal{S}_{k} L_{P} .
$$

Plan for the proof

1. Write $\mathcal{S}_{k-1} L_{P}$ as the Schur product of a (suitable) matrix and $\mathcal{S}_{k} L_{P}$, i.e.

$$
\mathcal{S}_{k-1} L_{P}=\mathfrak{A}^{k} * \mathcal{S}_{k} L_{P} .
$$

2. Estimate the Schur norm of \mathfrak{A}^{k}

Plan for the proof

1. Write $\mathcal{S}_{k-1} L_{P}$ as the Schur product of a (suitable) matrix and $\mathcal{S}_{k} L_{P}$, i.e.

$$
\mathcal{S}_{k-1} L_{P}=\mathfrak{A}^{k} * \mathcal{S}_{k} L_{P} .
$$

2. Estimate the Schur norm of \mathfrak{A}^{k}
2.1 Decompose \mathfrak{A}^{k} into a sum and product of more handily pieces.
2.2 Generalize results of Kwapień and Petczyński (1970) and Bennett (1976) (for the case $m=2$) to any m.
2.3 Use the compatibility of addition and Schur multiplication with the Schur norm to estimate $\mu_{\|\cdot\|}^{m}\left(\mathfrak{A}^{k}\right)$.

Comparing coefficients

To write $\mathcal{S}_{k-1} L_{P}$ as the Schur product of a matrix and $\mathcal{S}_{k} L_{P}$ we have to compare coefficients.

Comparing coefficients

To write $\mathcal{S}_{k-1} L_{P}$ as the Schur product of a matrix and $\mathcal{S}_{k} L_{P}$ we have to compare coefficients. We have the following result:

Proposition

Let $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a m-homogeneous polynomial, $\boldsymbol{i} \in \mathcal{I}(n, m)$ and $k \in\{2, \ldots, n\}$. Then

$$
c_{i}\left(\mathcal{S}_{k-1} L_{P}\right)=\frac{k}{\left|\left\{1 \leq u \leq k \mid i_{u}=i_{k}\right\}\right|} \cdot c_{i}\left(\mathcal{S}_{k} L_{P}\right)
$$

provided $\max \left\{i_{1}, \ldots, i_{k-1}\right\} \leq i_{k}$; and

$$
c_{i}\left(\mathcal{S}_{k-1} L_{P}\right)=0 \cdot c_{i}\left(\mathcal{S}_{k} L_{P}\right)
$$

otherwise.

Comparing coefficients

To write $\mathcal{S}_{k-1} L_{P}$ as the Schur product of a matrix and $\mathcal{S}_{k} L_{P}$ we have to compare coefficients. We have the following result:

Proposition

Let $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a m-homogeneous polynomial, $\boldsymbol{i} \in \mathcal{I}(n, m)$ and $k \in\{2, \ldots, n\}$. Then

$$
c_{i}\left(\mathcal{S}_{k-1} L_{P}\right)=\frac{k}{\left|\left\{1 \leq u \leq k \mid i_{u}=i_{k}\right\}\right|} \cdot c_{i}\left(\mathcal{S}_{k} L_{P}\right)
$$

provided $\max \left\{i_{1}, \ldots, i_{k-1}\right\} \leq i_{k}$; and

$$
c_{i}\left(\mathcal{S}_{k-1} L_{P}\right)=0 \cdot c_{i}\left(\mathcal{S}_{k} L_{P}\right)
$$

otherwise.
Thus,

$$
\mathcal{S}_{k-1} L_{P}=\mathfrak{A}^{k} * \mathcal{S}_{k} L_{P},
$$

with $c_{i}\left(\mathfrak{A}^{k}\right)$ given by the proposition.

Decomposing \mathfrak{A}^{k}

To estimate $\mu_{\|\cdot\|}^{m}\left(\mathfrak{A}^{k}\right)$ we decompose it into more handily pieces.

Decomposing \mathfrak{A}^{k}

To estimate $\mu_{\|\cdot\|}^{m}\left(\mathfrak{A}^{k}\right)$ we decompose it into more handily pieces.

Lemma

For $1 \leq k \leq m$ we have
with

$$
A^{k, u}:=\sum_{\substack{Q \subset\{1, \ldots, k\} \\
|Q|=u}}\left(\begin{array}{c}
* \\
q \in Q
\end{array} D^{q, k}\right) *\left(\underset{\substack{ \\
q \in Q^{c}}}{*}\left(\mathbf{1}-D^{q, k}\right)\right),
$$

where Q^{c} denotes the complement of Q in $\{1, \ldots, k\}$.
The matrices $1, D^{u, v}, T^{u, v} \in \mathbb{C}^{\mathcal{I}(n, m)}(u, v \in\{1, \ldots, m\}, u \neq v)$ are defined by

$$
c_{i}(\mathbf{1}):=1, \quad c_{\boldsymbol{i}}\left(D^{u, v}\right):=\left\{\begin{array}{ll}
1, & i_{u}=i_{v} \\
0, & i_{u} \neq i_{v}
\end{array}, \quad c_{i}\left(T^{u, v}\right):=\left\{\begin{array}{ll}
1, & i_{u} \leq i_{v} \\
0, & i_{u}>i_{v}
\end{array} .\right.\right.
$$

Classical Schur multipliers

In the case $m=2$ Kwapień and Petczyński (1970) and Bennett (1976) obtained for these matrices:

$$
\begin{gathered}
\mu_{\|\cdot\|_{\infty}}^{2}\left(D^{1,2}\right) \leq 1, \\
\mu_{\|\cdot\|_{\infty}}^{2}\left(T^{1,2}\right) \leq \log _{2}(2 n),
\end{gathered}
$$

and, moreover, for $1 \leq p<2$ there is a constant $c_{3}=c_{3}(p)$ such that

$$
\mu_{\|\cdot\|_{p}}^{2}\left(T^{1,2}\right) \leq c_{3} .
$$

Classical Schur multipliers

In the case $m=2$ Kwapień and Pełczyński (1970) and Bennett (1976) obtained for these matrices:

$$
\begin{gathered}
\mu_{\|\cdot\|_{\infty}}^{2}\left(D^{1,2}\right) \leq 1, \\
\mu_{\|\cdot\|_{\infty}}^{2}\left(T^{1,2}\right) \leq \log _{2}(2 n),
\end{gathered}
$$

and, moreover, for $1 \leq p<2$ there is a constant $c_{3}=c_{3}(p)$ such that

$$
\mu_{\|\cdot\|_{p}}^{2}\left(T^{1,2}\right) \leq c_{3} .
$$

This can be generalized to any norm $\|\cdot\|$ on \mathbb{C}^{n} and any m. We have:

$$
\begin{gathered}
\mu_{\|\cdot\|}^{m}\left(D^{u, v}\right) \leq 1 \\
\mu_{\|\cdot\|}^{m}\left(T^{u, v}\right) \leq \log _{2}(2 n), \\
\mu_{\|\cdot\|_{p}}^{m}\left(T^{u, v}\right) \leq c_{3} .
\end{gathered}
$$

Decomposing \mathfrak{A}^{k} (cont.)

Using that

$$
\mu_{\|\cdot\| \|}^{m}(A * B) \leq \mu_{\|\cdot\|}^{m}(A) \cdot \mu_{\|\cdot\|}^{m}(B)
$$

and that $\mu_{\|\cdot\|}^{m}$ is a norm, we are able to use our decomposition and the norm estimates on the previous slide to estimate the Schur norm of \mathfrak{A}^{k}.

We obtain

$$
\mu_{\|\cdot\|}^{m}\left(\mathfrak{A}^{k}\right) \leq k 3^{k}\left(\mu_{\|\cdot\|}^{m}\left(T^{u, k}\right)\right)^{k-1} \leq\left(c_{1} \log n\right)^{k}
$$

respectively for $1 \leq p<2$

$$
\mu_{\|\cdot\|_{p}}^{m}\left(\mathfrak{A}^{k}\right) \leq k 3^{k}\left(\mu_{\|\cdot\|_{p}}^{m}\left(T^{u, k}\right)\right)^{k-1} \leq c_{2}^{k} .
$$

Summary

We established upper bounds $\mu_{\|\cdot\|}^{m}\left(\mathfrak{A}^{k}\right) \leq c^{k}$ with nice constants c.

Summary

We established upper bounds $\mu_{\|\cdot\|}^{m}\left(\mathfrak{A}^{k}\right) \leq c^{k}$ with nice constants c. Hence

$$
\left\|\mathcal{S}_{k-1} L_{P}\right\|_{\infty} \leq c^{k} \cdot\left\|\mathcal{S}_{k} L_{P}\right\|_{\infty}
$$

Summary

We established upper bounds $\mu_{\|\cdot\|}^{m}\left(\mathfrak{A}^{k}\right) \leq c^{k}$ with nice constants c. Hence

$$
\left\|\mathcal{S}_{k-1} L_{P}\right\|_{\infty} \leq c^{k} \cdot\left\|\mathcal{S}_{k} L_{P}\right\|_{\infty}
$$

Iteratively applying this result yields

$$
\left\|L_{P}\right\|_{\infty}=\left\|\mathcal{S}_{1} L_{P}\right\|_{\infty}
$$

Summary

We established upper bounds $\mu_{\|\cdot\|}^{m}\left(\mathfrak{A}^{k}\right) \leq c^{k}$ with nice constants c. Hence

$$
\left\|\mathcal{S}_{k-1} L_{P}\right\|_{\infty} \leq c^{k} \cdot\left\|\mathcal{S}_{k} L_{P}\right\|_{\infty}
$$

Iteratively applying this result yields

$$
\begin{gathered}
\left\|L_{P}\right\|_{\infty}=\left\|\mathcal{S}_{1} L_{P}\right\|_{\infty} \leq c^{2} \cdot\left\|\mathcal{S}_{2} L_{P}\right\|_{\infty} \leq c^{2} c^{3} \cdot\left\|\mathcal{S}_{3} L_{P}\right\|_{\infty} \\
\leq \ldots \leq c^{2+3+\ldots+m} \cdot\left\|\mathcal{S}_{m} L_{P}\right\|_{\infty}
\end{gathered}
$$

Summary

We established upper bounds $\mu_{\|\cdot\|}^{m}\left(\mathfrak{A}^{k}\right) \leq c^{k}$ with nice constants c. Hence

$$
\left\|\mathcal{S}_{k-1} L_{P}\right\|_{\infty} \leq c^{k} \cdot\left\|\mathcal{S}_{k} L_{P}\right\|_{\infty}
$$

Iteratively applying this result yields

$$
\begin{gathered}
\left\|L_{P}\right\|_{\infty}=\left\|\mathcal{S}_{1} L_{P}\right\|_{\infty} \leq c^{2} \cdot\left\|\mathcal{S}_{2} L_{P}\right\|_{\infty} \leq c^{2} c^{3} \cdot\left\|\mathcal{S}_{3} L_{P}\right\|_{\infty} \\
\leq \ldots \leq c^{2+3+\ldots+m} \cdot\left\|\mathcal{S}_{m} L_{P}\right\|_{\infty} \\
\leq c^{m^{2}} \cdot\left\|\mathcal{S} L_{P}\right\|_{\infty} \leq c^{m^{2}} e^{m} \cdot\|P\|_{\infty}
\end{gathered}
$$

Simple improvement

We established the identity

$$
\mathcal{S}_{k-1} L_{P}=\mathfrak{A}^{k} * \mathcal{S}_{k} L_{P},
$$

thus

$$
L_{P}=\left(\begin{array}{c}
m \\
*=2
\end{array} \mathfrak{A}^{k}\right) * \mathcal{S} L_{P} .
$$

Simple improvement

We established the identity

$$
\mathcal{S}_{k-1} L_{P}=\mathfrak{A}^{k} * \mathcal{S}_{k} L_{P}
$$

thus

$$
L_{P}=\left(\begin{array}{c}
m \\
*=2 \\
*=2
\end{array} \mathfrak{A}^{k}\right) * \mathcal{S} L_{P} .
$$

In the general case, we get an $\log n$ factor out of every occurrence of $T^{u, k}$ in \mathfrak{A}^{k}. In the product $\underset{k=2}{\nrightarrow} \mathfrak{A}^{k}$ we have the factor

$$
\left.\stackrel{m}{\stackrel{*}{*}} \underset{k=2}{\substack{k-1 \\ * \\ u=1}} T^{u, k}\right) .
$$

Simple improvement

We established the identity

$$
\mathcal{S}_{k-1} L_{P}=\mathfrak{A}^{k} * \mathcal{S}_{k} L_{P},
$$

thus

$$
L_{P}=\left(\begin{array}{c}
m \\
*=2
\end{array} \mathfrak{A}^{k}\right) * \mathcal{S} L_{P} .
$$

In the general case, we get an $\log n$ factor out of every occurrence of

$$
\stackrel{m}{\stackrel{m}{*=2}}\binom{k-1}{\underset{u=1}{*} T^{u, k}} .
$$

This gives, using the naive approach, a factor of $(\log n)^{m^{2}}$.

Simple improvement

We established the identity

$$
\mathcal{S}_{k-1} L_{P}=\mathfrak{A}^{k} * \mathcal{S}_{k} L_{P},
$$

thus

$$
L_{P}=\left(\begin{array}{c}
m \\
*=2
\end{array} \mathfrak{A}^{k}\right) * \mathcal{S} L_{P} .
$$

In the general case, we get an $\log n$ factor out of every occurrence of $T^{u, k}$ in \mathfrak{A}^{k}. In the product $\underset{k=2}{\nrightarrow} \mathfrak{A}^{k}$ we have the factor

$$
\stackrel{m}{\underset{k=2}{*}\binom{k-1}{\underset{u=1}{*} T^{u, k}} . . . ~ . ~}
$$

This gives, using the naive approach, a factor of $(\log n)^{m^{2}}$. However, we can improve the result by checking that

$$
\stackrel{m}{\underset{k=2}{*}\left(\begin{array}{c}
k-1 \\
\underset{u=1}{*}
\end{array} T^{u, k}\right)=\stackrel{m}{*} \underset{k=2}{*} T^{k-1, k}, ~}
$$

Simple improvement

We established the identity

$$
\mathcal{S}_{k-1} L_{P}=\mathfrak{A}^{k} * \mathcal{S}_{k} L_{P},
$$

thus

$$
L_{P}=\left(\begin{array}{c}
m \\
*=2
\end{array} \mathfrak{A}^{k}\right) * \mathcal{S} L_{P} .
$$

In the general case, we get an $\log n$ factor out of every occurrence of $T^{u, k}$ in \mathfrak{A}^{k}. In the product $\underset{k=2}{\underset{\sim}{*}} \mathfrak{A}^{k}$ we have the factor

$$
\stackrel{m}{\stackrel{m}{*=2}}\binom{k-1}{\underset{u=1}{*} T^{u, k}} .
$$

This gives, using the naive approach, a factor of $(\log n)^{m^{2}}$. However, we can improve the result by checking that

$$
\stackrel{m}{\underset{k=2}{*}\binom{k-1}{\underset{u=1}{*} T^{u, k}}=\stackrel{m}{\underset{k=2}{*}} T^{k-1, k}, ~}
$$

and we obtain $\mu_{\|\cdot\|}^{m}\left(\underset{k=2}{m} \mathfrak{A}^{k}\right) \leq c^{m^{2}}(\log n)^{m-1}$ in the general case.

References

G. Bennett. Unconditional convergence and almost everywhere convergence. (1976).
A. Defant and S. Schlüters. Non-symmetric polarization. (2017).
S. Kwapień and A. Pełczyński. The main triangle projection in matrix spaces and its applications. (1970).
F. A. Sukochev and A. A. Tomskova. (E, F)-Schur multipliers and applications. (2013).

